- 11 Sep, 2024 4 commits
-
-
Christian Loehle authored
Convert the sugov deadline task attributes to use the available definitions to make them more readable. No functional change. Signed-off-by: Christian Loehle <christian.loehle@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Acked-by: Rafael J. Wysocki <rafael@kernel.org> Link: https://lore.kernel.org/r/20240813144348.1180344-5-christian.loehle@arm.com
-
Christian Loehle authored
Convert the cppc deadline task attributes to use the available definitions to make them more readable. No functional change. Signed-off-by: Christian Loehle <christian.loehle@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Acked-by: Rafael J. Wysocki <rafael@kernel.org> Link: https://lore.kernel.org/r/20240813144348.1180344-4-christian.loehle@arm.com
-
Christian Loehle authored
Specify the time values of the deadline parameters of deadline, runtime, and period as being in nanoseconds explicitly as they always have been. Signed-off-by: Christian Loehle <christian.loehle@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Acked-by: Rafael J. Wysocki <rafael@kernel.org> Link: https://lore.kernel.org/r/20240813144348.1180344-3-christian.loehle@arm.com
-
Christian Loehle authored
chrt has SCHED_DEADLINE support so convert the example instead of relying on a schedtool fork. While at it fix the wrong mentioning of microseconds, it was nanoseconds for both schedtool and chrt. Signed-off-by: Christian Loehle <christian.loehle@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Acked-by: Rafael J. Wysocki <rafael@kernel.org> Link: https://lore.kernel.org/r/20240813144348.1180344-2-christian.loehle@arm.com
-
- 10 Sep, 2024 7 commits
-
-
Huang Shijie authored
The current runnable tasks output looks like: runnable tasks: S task PID tree-key switches prio wait-time sum-exec sum-sleep ------------------------------------------------------------------------------------------------------------- Ikworker/R-rcu_g 4 0.129049 E 0.620179 0.750000 0.002920 2 100 0.000000 0.002920 0.000000 0.000000 0 0 / Ikworker/R-sync_ 5 0.125328 E 0.624147 0.750000 0.001840 2 100 0.000000 0.001840 0.000000 0.000000 0 0 / Ikworker/R-slub_ 6 0.120835 E 0.628680 0.750000 0.001800 2 100 0.000000 0.001800 0.000000 0.000000 0 0 / Ikworker/R-netns 7 0.114294 E 0.634701 0.750000 0.002400 2 100 0.000000 0.002400 0.000000 0.000000 0 0 / I kworker/0:1 9 508.781746 E 511.754666 3.000000 151.575240 224 120 0.000000 151.575240 0.000000 0.000000 0 0 / Which is messy. Remove the duplicate printing of sum_exec_runtime and tidy up the layout to make it look like: runnable tasks: S task PID vruntime eligible deadline slice sum-exec switches prio wait-time sum-sleep sum-block node group-id group-path ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- I kworker/0:3 1698 295.001459 E 297.977619 3.000000 38.862920 9 120 0.000000 0.000000 0.000000 0 0 / I kworker/0:4 1702 278.026303 E 281.026303 3.000000 9.918760 3 120 0.000000 0.000000 0.000000 0 0 / S NetworkManager 2646 0.377936 E 2.598104 3.000000 98.535880 314 120 0.000000 0.000000 0.000000 0 0 /system.slice/NetworkManager.service S virtqemud 2689 0.541016 E 2.440104 3.000000 50.967960 80 120 0.000000 0.000000 0.000000 0 0 /system.slice/virtqemud.service S gsd-smartcard 3058 73.604144 E 76.475904 3.000000 74.033320 88 120 0.000000 0.000000 0.000000 0 0 /user.slice/user-42.slice/session-c1.scope Reviewed-by: Christoph Lameter (Ampere) <cl@linux.com> Signed-off-by: Huang Shijie <shijie@os.amperecomputing.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20240906053019.7874-1-shijie@os.amperecomputing.com
-
Peter Zijlstra authored
Completely analogous to commit dfa0a574 ("sched/uclamg: Handle delayed dequeue"), avoid double dequeue for the sched_core entries. Fixes: 152e11f6 ("sched/fair: Implement delayed dequeue") Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
-
Dietmar Eggemann authored
Remove delayed tasks from util_est even they are runnable. Exclude delayed task which are (a) migrating between rq's or (b) in a SAVE/RESTORE dequeue/enqueue. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/c49ef5fe-a909-43f1-b02f-a765ab9cedbf@arm.com
-
Chen Yu authored
When analyzing a kernel waring message, Peter pointed out that there is a race condition when the kworker is being frozen and falls into try_to_freeze() with TASK_INTERRUPTIBLE, which could trigger a might_sleep() warning in try_to_freeze(). Although the root cause is not related to freeze()[1], it is still worthy to fix this issue ahead. One possible race scenario: CPU 0 CPU 1 ----- ----- // kthread_worker_fn set_current_state(TASK_INTERRUPTIBLE); suspend_freeze_processes() freeze_processes static_branch_inc(&freezer_active); freeze_kernel_threads pm_nosig_freezing = true; if (work) { //false __set_current_state(TASK_RUNNING); } else if (!freezing(current)) //false, been frozen freezing(): if (static_branch_unlikely(&freezer_active)) if (pm_nosig_freezing) return true; schedule() } // state is still TASK_INTERRUPTIBLE try_to_freeze() might_sleep() <--- warning Fix this by explicitly set the TASK_RUNNING before entering try_to_freeze(). Fixes: b56c0d89 ("kthread: implement kthread_worker") Suggested-by: Peter Zijlstra <peterz@infradead.org> Suggested-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Chen Yu <yu.c.chen@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/lkml/Zs2ZoAcUsZMX2B%2FI@chenyu5-mobl2/ [1]
-
Chen Yu authored
commit 97450eb9 ("sched/pelt: Remove shift of thermal clock") removed the decay_shift for hw_pressure. This commit uses the sched_clock_task() in sched_tick() while it replaces the sched_clock_task() with rq_clock_pelt() in __update_blocked_others(). This could bring inconsistence. One possible scenario I can think of is in ___update_load_sum(): u64 delta = now - sa->last_update_time 'now' could be calculated by rq_clock_pelt() from __update_blocked_others(), and last_update_time was calculated by rq_clock_task() previously from sched_tick(). Usually the former chases after the latter, it cause a very large 'delta' and brings unexpected behavior. Fixes: 97450eb9 ("sched/pelt: Remove shift of thermal clock") Signed-off-by: Chen Yu <yu.c.chen@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Hongyan Xia <hongyan.xia2@arm.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20240827112607.181206-1-yu.c.chen@intel.com
-
Vincent Guittot authored
Move effective_cpu_util() and sched_cpu_util() functions in fair.c file with others utilization related functions. No functional change. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20240904092417.20660-1-vincent.guittot@linaro.org
-
Peter Zijlstra authored
Since commit b2a02fc4 ("smp: Optimize send_call_function_single_ipi()") an idle CPU in TIF_POLLING_NRFLAG mode can be pulled out of idle by setting TIF_NEED_RESCHED flag to service an IPI without actually sending an interrupt. Even in cases where the IPI handler does not queue a task on the idle CPU, do_idle() will call __schedule() since need_resched() returns true in these cases. Introduce and use SM_IDLE to identify call to __schedule() from schedule_idle() and shorten the idle re-entry time by skipping pick_next_task() when nr_running is 0 and the previous task is the idle task. With the SM_IDLE fast-path, the time taken to complete a fixed set of IPIs using ipistorm improves noticeably. Following are the numbers from a dual socket Intel Ice Lake Xeon server (2 x 32C/64T) and 3rd Generation AMD EPYC system (2 x 64C/128T) (boost on, C2 disabled) running ipistorm between CPU8 and CPU16: cmdline: insmod ipistorm.ko numipi=100000 single=1 offset=8 cpulist=8 wait=1 ================================================================== Test : ipistorm (modified) Units : Normalized runtime Interpretation: Lower is better Statistic : AMean ======================= Intel Ice Lake Xeon ====================== kernel: time [pct imp] tip:sched/core 1.00 [baseline] tip:sched/core + SM_IDLE 0.80 [20.51%] ==================== 3rd Generation AMD EPYC ===================== kernel: time [pct imp] tip:sched/core 1.00 [baseline] tip:sched/core + SM_IDLE 0.90 [10.17%] ================================================================== [ kprateek: Commit message, SM_RTLOCK_WAIT fix ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Not-yet-signed-off-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20240809092240.6921-1-kprateek.nayak@amd.com
-
- 03 Sep, 2024 10 commits
-
-
Peter Zijlstra authored
In order to tell the previous sched_class what the next task is, add put_prev_task(.next). Notable SCX will use this to: 1) determine the next task will leave the SCX sched class and push the current task to another CPU if possible. 2) statistics on how often and which other classes preempt it Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240813224016.367421076@infradead.org
-
Peter Zijlstra authored
When a task is selected through a dl_server, it will have p->dl_server set, such that it can account runtime to the dl_server, see update_curr_task(). Currently p->dl_server is set in pick*task() whenever it goes through the dl_server, clearing it is a bit of a mess though. The trivial solution is clearing it on the final put (now that we have this location). However, this gives a problem when: p = pick_task(rq); if (p) put_prev_set_next_task(rq, prev, next); picks the same task but through a different path, notably when it goes from picking through the dl_server to a direct pick or vice-versa. In that case we cannot readily determine wether we should clear or preserve p->dl_server. An additional complication is pick_*task() setting p->dl_server for a remote pick, it might still need to update runtime before it schedules the core_pick. Close all these holes and remove all the random clearing of p->dl_server by: - having pick_*task() manage rq->dl_server - having the final put_prev_task() clear p->dl_server - having the first set_next_task() set p->dl_server = rq->dl_server - complicate the core_sched code to save/restore rq->dl_server where appropriate. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240813224016.259853414@infradead.org
-
Peter Zijlstra authored
Ensure the last put_prev_task() and the first set_next_task() always go together. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240813224016.158454756@infradead.org
-
Peter Zijlstra authored
The current rule is that: pick_next_task() := pick_task() + set_next_task(.first = true) And many classes implement it directly as such. Change things around to make pick_next_task() optional while also changing the definition to: pick_next_task(prev) := pick_task() + put_prev_task() + set_next_task(.first = true) The reason is that sched_ext would like to have a 'final' call that knows the next task. By placing put_prev_task() right next to set_next_task() (as it already is for sched_core) this becomes trivial. As a bonus, this is a nice cleanup on its own. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240813224016.051225657@infradead.org
-
Peter Zijlstra authored
With the goal of pushing put_prev_task() after pick_task() / into pick_next_task(). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240813224015.943143811@infradead.org
-
Peter Zijlstra authored
Abide by the simple rule: pick_next_task() := pick_task() + set_next_task(.first = true) This allows us to trivially get rid of server_pick_next() and things collapse nicely. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240813224015.837303391@infradead.org
-
Peter Zijlstra authored
The rule is that: pick_next_task() := pick_task() + set_next_task(.first = true) Turns out, there's still a few things in pick_next_task() that are missing from that combination. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240813224015.724111109@infradead.org
-
Peter Zijlstra authored
Turns out the core_sched bits forgot to use the set_next_task(.first=true) variant. Notably: pick_next_task() := pick_task() + set_next_task(.first = true) Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240813224015.614146342@infradead.org
-
Valentin Schneider authored
__sched_setscheduler() goes through an enqueue/dequeue cycle like so: flags := DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; prev_class->dequeue_task(rq, p, flags); new_class->enqueue_task(rq, p, flags); when prev_class := fair_sched_class, this is followed by: dequeue_task(rq, p, DEQUEUE_NOCLOCK | DEQUEUE_SLEEP); the idea being that since the task has switched classes, we need to drop the sched_delayed logic and have that task be deactivated per its previous dequeue_task(..., DEQUEUE_SLEEP). Unfortunately, this leaves the task on_rq. This is missing the tail end of dequeue_entities() that issues __block_task(), which __sched_setscheduler() won't have done due to not using DEQUEUE_DELAYED - not that it should, as it is pretty much a fair_sched_class specific thing. Make switched_from_fair() properly deactivate sched_delayed tasks upon class changes via __block_task(), as if a dequeue_task(..., DEQUEUE_DELAYED) had been issued. Fixes: 2e0199df ("sched/fair: Prepare exit/cleanup paths for delayed_dequeue") Reported-by: "Paul E. McKenney" <paulmck@kernel.org> Reported-by: Chen Yu <yu.c.chen@intel.com> Signed-off-by: Valentin Schneider <vschneid@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20240829135353.1524260-1-vschneid@redhat.com
-
Huang Shijie authored
In dl_server_start(), when schedstats is enabled, the following happens: dl_server_start() dl_se->dl_server = 1; enqueue_dl_entity() update_stats_enqueue_dl() __schedstats_from_dl_se() dl_task_of() BUG_ON(dl_server(dl_se)); Since only tasks have schedstats and internal entries do not, avoid trying to update stats in this case. Fixes: 63ba8422 ("sched/deadline: Introduce deadline servers") Signed-off-by: Huang Shijie <shijie@os.amperecomputing.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lkml.kernel.org/r/20240829031111.12142-1-shijie@os.amperecomputing.com
-
- 17 Aug, 2024 19 commits
-
-
Peter Zijlstra authored
In the absence of an explicit cgroup slice configureation, make mixed slice length work with cgroups by propagating the min_slice up the hierarchy. This ensures the cgroup entity gets timely service to service its entities that have this timing constraint set on them. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105030.948188417@infradead.org
-
Peter Zijlstra authored
Allow applications to directly set a suggested request/slice length using sched_attr::sched_runtime. The implementation clamps the value to: 0.1[ms] <= slice <= 100[ms] which is 1/10 the size of HZ=1000 and 10 times the size of HZ=100. Applications should strive to use their periodic runtime at a high confidence interval (95%+) as the target slice. Using a smaller slice will introduce undue preemptions, while using a larger value will increase latency. For all the following examples assume a scheduling quantum of 8, and for consistency all examples have W=4: {A,B,C,D}(w=1,r=8): ABCD... +---+---+---+--- t=0, V=1.5 t=1, V=3.5 A |------< A |------< B |------< B |------< C |------< C |------< D |------< D |------< ---+*------+-------+--- ---+--*----+-------+--- t=2, V=5.5 t=3, V=7.5 A |------< A |------< B |------< B |------< C |------< C |------< D |------< D |------< ---+----*--+-------+--- ---+------*+-------+--- Note: 4 identical tasks in FIFO order ~~~ {A,B}(w=1,r=16) C(w=2,r=16) AACCBBCC... +---+---+---+--- t=0, V=1.25 t=2, V=5.25 A |--------------< A |--------------< B |--------------< B |--------------< C |------< C |------< ---+*------+-------+--- ---+----*--+-------+--- t=4, V=8.25 t=6, V=12.25 A |--------------< A |--------------< B |--------------< B |--------------< C |------< C |------< ---+-------*-------+--- ---+-------+---*---+--- Note: 1 heavy task -- because q=8, double r such that the deadline of the w=2 task doesn't go below q. Note: observe the full schedule becomes: W*max(r_i/w_i) = 4*2q = 8q in length. Note: the period of the heavy task is half the full period at: W*(r_i/w_i) = 4*(2q/2) = 4q ~~~ {A,C,D}(w=1,r=16) B(w=1,r=8): BAACCBDD... +---+---+---+--- t=0, V=1.5 t=1, V=3.5 A |--------------< A |---------------< B |------< B |------< C |--------------< C |--------------< D |--------------< D |--------------< ---+*------+-------+--- ---+--*----+-------+--- t=3, V=7.5 t=5, V=11.5 A |---------------< A |---------------< B |------< B |------< C |--------------< C |--------------< D |--------------< D |--------------< ---+------*+-------+--- ---+-------+--*----+--- t=6, V=13.5 A |---------------< B |------< C |--------------< D |--------------< ---+-------+----*--+--- Note: 1 short task -- again double r so that the deadline of the short task won't be below q. Made B short because its not the leftmost task, but is eligible with the 0,1,2,3 spread. Note: like with the heavy task, the period of the short task observes: W*(r_i/w_i) = 4*(1q/1) = 4q ~~~ A(w=1,r=16) B(w=1,r=8) C(w=2,r=16) BCCAABCC... +---+---+---+--- t=0, V=1.25 t=1, V=3.25 A |--------------< A |--------------< B |------< B |------< C |------< C |------< ---+*------+-------+--- ---+--*----+-------+--- t=3, V=7.25 t=5, V=11.25 A |--------------< A |--------------< B |------< B |------< C |------< C |------< ---+------*+-------+--- ---+-------+--*----+--- t=6, V=13.25 A |--------------< B |------< C |------< ---+-------+----*--+--- Note: 1 heavy and 1 short task -- combine them all. Note: both the short and heavy task end up with a period of 4q ~~~ A(w=1,r=16) B(w=2,r=16) C(w=1,r=8) BBCAABBC... +---+---+---+--- t=0, V=1 t=2, V=5 A |--------------< A |--------------< B |------< B |------< C |------< C |------< ---+*------+-------+--- ---+----*--+-------+--- t=3, V=7 t=5, V=11 A |--------------< A |--------------< B |------< B |------< C |------< C |------< ---+------*+-------+--- ---+-------+--*----+--- t=7, V=15 A |--------------< B |------< C |------< ---+-------+------*+--- Note: as before but permuted ~~~ From all this it can be deduced that, for the steady state: - the total period (P) of a schedule is: W*max(r_i/w_i) - the average period of a task is: W*(r_i/w_i) - each task obtains the fair share: w_i/W of each full period P Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105030.842834421@infradead.org
-
Peter Zijlstra authored
Part of the reason to have shorter slices is to improve responsiveness. Allow shorter slices to preempt longer slices on wakeup. Task | Runtime ms | Switches | Avg delay ms | Max delay ms | Sum delay ms | 100ms massive_intr 500us cyclictest NO_PREEMPT_SHORT 1 massive_intr:(5) | 846018.956 ms | 779188 | avg: 0.273 ms | max: 58.337 ms | sum:212545.245 ms | 2 massive_intr:(5) | 853450.693 ms | 792269 | avg: 0.275 ms | max: 71.193 ms | sum:218263.588 ms | 3 massive_intr:(5) | 843888.920 ms | 771456 | avg: 0.277 ms | max: 92.405 ms | sum:213353.221 ms | 1 chromium-browse:(8) | 53015.889 ms | 131766 | avg: 0.463 ms | max: 36.341 ms | sum:60959.230 ms | 2 chromium-browse:(8) | 53864.088 ms | 136962 | avg: 0.480 ms | max: 27.091 ms | sum:65687.681 ms | 3 chromium-browse:(9) | 53637.904 ms | 132637 | avg: 0.481 ms | max: 24.756 ms | sum:63781.673 ms | 1 cyclictest:(5) | 12615.604 ms | 639689 | avg: 0.471 ms | max: 32.272 ms | sum:301351.094 ms | 2 cyclictest:(5) | 12511.583 ms | 642578 | avg: 0.448 ms | max: 44.243 ms | sum:287632.830 ms | 3 cyclictest:(5) | 12545.867 ms | 635953 | avg: 0.475 ms | max: 25.530 ms | sum:302374.658 ms | 100ms massive_intr 500us cyclictest PREEMPT_SHORT 1 massive_intr:(5) | 839843.919 ms | 837384 | avg: 0.264 ms | max: 74.366 ms | sum:221476.885 ms | 2 massive_intr:(5) | 852449.913 ms | 845086 | avg: 0.252 ms | max: 68.162 ms | sum:212595.968 ms | 3 massive_intr:(5) | 839180.725 ms | 836883 | avg: 0.266 ms | max: 69.742 ms | sum:222812.038 ms | 1 chromium-browse:(11) | 54591.481 ms | 138388 | avg: 0.458 ms | max: 35.427 ms | sum:63401.508 ms | 2 chromium-browse:(8) | 52034.541 ms | 132276 | avg: 0.436 ms | max: 31.826 ms | sum:57732.958 ms | 3 chromium-browse:(8) | 55231.771 ms | 141892 | avg: 0.469 ms | max: 27.607 ms | sum:66538.697 ms | 1 cyclictest:(5) | 13156.391 ms | 667412 | avg: 0.373 ms | max: 38.247 ms | sum:249174.502 ms | 2 cyclictest:(5) | 12688.939 ms | 665144 | avg: 0.374 ms | max: 33.548 ms | sum:248509.392 ms | 3 cyclictest:(5) | 13475.623 ms | 669110 | avg: 0.370 ms | max: 37.819 ms | sum:247673.390 ms | As per the numbers the, this makes cyclictest (short slice) it's max-delay more consistent and consistency drops the sum-delay. The trade-off is that the massive_intr (long slice) gets more context switches and a slight increase in sum-delay. Chunxin contributed did_preempt_short() where a task that lost slice protection from PREEMPT_SHORT gets rescheduled once it becomes in-eligible. [mike: numbers] Co-Developed-by: Chunxin Zang <zangchunxin@lixiang.com> Signed-off-by: Chunxin Zang <zangchunxin@lixiang.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Mike Galbraith <umgwanakikbuti@gmail.com> Link: https://lkml.kernel.org/r/20240727105030.735459544@infradead.org
-
Peter Zijlstra authored
During OSPM24 Youssef noted that migrations are re-setting the virtual deadline. Notably everything that does a dequeue-enqueue, like setting nice, changing preferred numa-node, and a myriad of other random crap, will cause this to happen. This shouldn't be. Preserve the relative virtual deadline across such dequeue/enqueue cycles. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105030.625119246@infradead.org
-
Peter Zijlstra authored
Note that tasks that are kept on the runqueue to burn off negative lag, are not in fact runnable anymore, they'll get dequeued the moment they get picked. As such, don't count this time towards runnable. Thanks to Valentin for spotting I had this backwards initially. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105030.514088302@infradead.org
-
Peter Zijlstra authored
'Extend' DELAY_DEQUEUE by noting that since we wanted to dequeued them at the 0-lag point, truncate lag (eg. don't let them earn positive lag). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105030.403750550@infradead.org
-
Peter Zijlstra authored
Extend / fix 86bfbb7c ("sched/fair: Add lag based placement") by noting that lag is fundamentally a temporal measure. It should not be carried around indefinitely. OTOH it should also not be instantly discarded, doing so will allow a task to game the system by purposefully (micro) sleeping at the end of its time quantum. Since lag is intimately tied to the virtual time base, a wall-time based decay is also insufficient, notably competition is required for any of this to make sense. Instead, delay the dequeue and keep the 'tasks' on the runqueue, competing until they are eligible. Strictly speaking, we only care about keeping them until the 0-lag point, but that is a difficult proposition, instead carry them around until they get picked again, and dequeue them at that point. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105030.226163742@infradead.org
-
Peter Zijlstra authored
Since special task states must not suffer spurious wakeups, and the proposed delayed dequeue can cause exactly these (under some boundary conditions), propagate this knowledge into dequeue_task() such that it can do the right thing. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105030.110439521@infradead.org
-
Peter Zijlstra authored
The special task states are those that do not suffer spurious wakeups, TASK_FROZEN is very much one of those, mark it as such. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105029.998329901@infradead.org
-
Peter Zijlstra authored
Doing a wakeup on a delayed dequeue task is about as simple as it sounds -- remove the delayed mark and enjoy the fact it was actually still on the runqueue. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105029.888107381@infradead.org
-
Peter Zijlstra authored
Delayed dequeue's natural end is when it gets picked again. Ensure pick_next_task() knows what to do with delayed tasks. Note, this relies on the earlier patch that made pick_next_task() state invariant -- it will restart the pick on dequeue, because obviously the just dequeued task is no longer eligible. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105029.747330118@infradead.org
-
Peter Zijlstra authored
When dequeue_task() is delayed it becomes possible to exit a task (or cgroup) that is still enqueued. Ensure things are dequeued before freeing. Thanks to Valentin for asking the obvious questions and making switched_from_fair() less weird. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105029.631948434@infradead.org
-
Peter Zijlstra authored
Just a little sanity test.. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105029.486423066@infradead.org
-
Peter Zijlstra authored
Delayed dequeue has tasks sit around on the runqueue that are not actually runnable -- specifically, they will be dequeued the moment they get picked. One side-effect is that such a task can get migrated, which leads to a 'nested' dequeue_task() scenario that messes up uclamp if we don't take care. Notably, dequeue_task(DEQUEUE_SLEEP) can 'fail' and keep the task on the runqueue. This however will have removed the task from uclamp -- per uclamp_rq_dec() in dequeue_task(). So far so good. However, if at that point the task gets migrated -- or nice adjusted or any of a myriad of operations that does a dequeue-enqueue cycle -- we'll pass through dequeue_task()/enqueue_task() again. Without modification this will lead to a double decrement for uclamp, which is wrong. Reported-by: Luis Machado <luis.machado@arm.com> Reported-by: Hongyan Xia <hongyan.xia2@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105029.315205425@infradead.org
-
Peter Zijlstra authored
While most of the delayed dequeue code can be done inside the sched_class itself, there is one location where we do not have an appropriate hook, namely ttwu_runnable(). Add an ENQUEUE_DELAYED call to the on_rq path to deal with waking delayed dequeue tasks. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105029.200000445@infradead.org
-
Peter Zijlstra authored
As a preparation for dequeue_task() failing, and a second code-path needing to take care of the 'success' path, split out the DEQEUE_SLEEP path from deactivate_task(). Much thanks to Libo for spotting and fixing a TASK_ON_RQ_MIGRATING ordering fail. Fixed-by: Libo Chen <libo.chen@oracle.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105029.086192709@infradead.org
-
Peter Zijlstra authored
Working towards delaying dequeue, notably also inside the hierachy, rework dequeue_task_fair() such that it can 'resume' an interrupted hierarchy walk. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105028.977256873@infradead.org
-
Peter Zijlstra authored
Change the function signature of sched_class::dequeue_task() to return a boolean, allowing future patches to 'fail' dequeue. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105028.864630153@infradead.org
-
Peter Zijlstra authored
Implement pick_next_task_fair() in terms of pick_task_fair() to de-duplicate the pick loop. More importantly, this makes all the pick loops use the state-invariant form, which is useful to introduce further re-try conditions in later patches. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105028.725062368@infradead.org
-