- 13 Jan, 2012 40 commits
-
-
KAMEZAWA Hiroyuki authored
This patch is a clean up. No functional/logical changes. Because of commit ef6a3c63 ("mm: add replace_page_cache_page() function") , FUSE uses replace_page_cache() instead of add_to_page_cache(). Then, mem_cgroup_cache_charge() is not called against FUSE's pages from splice. So now, mem_cgroup_cache_charge() gets pages that are not on the LRU with the exception of PageSwapCache pages. For checking, WARN_ON_ONCE(PageLRU(page)) is added. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Miklos Szeredi <mszeredi@suse.cz> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Ying Han <yinghan@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
David Rientjes authored
The oom killer relies on logic that identifies threads that have already been oom killed when scanning the tasklist and, if found, deferring until such threads have exited. This is done by checking for any candidate threads that have the TIF_MEMDIE bit set. For memcg ooms, candidate threads are first found by calling task_in_mem_cgroup() since the oom killer should not defer if there's an oom killed thread in another memcg. Unfortunately, task_in_mem_cgroup() excludes threads if they have detached their mm in the process of exiting so TIF_MEMDIE is never detected for such conditions. This is different for global, mempolicy, and cpuset oom conditions where a detached mm is only excluded after checking for TIF_MEMDIE and deferring, if necessary, in select_bad_process(). The fix is to return true if a task has a detached mm but is still in the memcg or its hierarchy that is currently oom. This will allow the oom killer to appropriately defer rather than kill unnecessarily or, in the worst case, panic the machine if nothing else is available to kill. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Michal Hocko authored
If we are not able to allocate tree nodes for all NUMA nodes then we should release those that were allocated. Signed-off-by: Michal Hocko <mhocko@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Bob Liu authored
There are multiple places which need to get the swap_cgroup address, so add a helper function: static struct swap_cgroup *swap_cgroup_getsc(swp_entry_t ent, struct swap_cgroup_ctrl **ctrl); to simplify the code. Signed-off-by: Bob Liu <lliubbo@gmail.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
mem_cgroup_uncharge_page() is only called on either freshly allocated pages without page->mapping or on rmapped PageAnon() pages. There is no need to check for a page->mapping that is not an anon_vma. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
All callsites pass in freshly allocated pages and a valid mm. As a result, all checks pertaining to the page's mapcount, page->mapping or the fallback to init_mm are unneeded. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
lookup_page_cgroup() is usually used only against pages that are used in userspace. The exception is the CONFIG_DEBUG_VM-only memcg check from the page allocator: it can run on pages without page_cgroup descriptors allocated when the pages are fed into the page allocator for the first time during boot or memory hotplug. Include the array check only when CONFIG_DEBUG_VM is set and save the unnecessary check in production kernels. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
Pages have their corresponding page_cgroup descriptors set up before they are used in userspace, and thus managed by a memory cgroup. The only time where lookup_page_cgroup() can return NULL is in the CONFIG_DEBUG_VM-only page sanity checking code that executes while feeding pages into the page allocator for the first time. Remove the NULL checks against lookup_page_cgroup() results from all callsites where we know that corresponding page_cgroup descriptors must be allocated, and add a comment to the callsite that actually does have to check the return value. [hughd@google.com: stop oops in mem_cgroup_update_page_stat()] Signed-off-by: Johannes Weiner <jweiner@redhat.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
The fault accounting functions have a single, memcg-internal user, so they don't need to be global. In fact, their one-line bodies can be directly folded into the caller. And since faults happen one at a time, use this_cpu_inc() directly instead of this_cpu_add(foo, 1). Signed-off-by: Johannes Weiner <jweiner@redhat.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Balbir Singh <bsingharora@gmail.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
Signed-off-by: Johannes Weiner <jweiner@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
The memcg argument of oom_kill_task() hasn't been used since 341aea2b 'oom-kill: remove boost_dying_task_prio()'. Kill it. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Ying Han authored
The two memcg stats pgpgin/pgpgout have different meaning than the ones in vmstat, which indicates that we picked a bad naming for them. It might be late to change the stat name, but better documentation is always helpful. Signed-off-by: Ying Han <yinghan@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Zhu Yanhai authored
It should be memsw.max_usage_in_bytes. This typo has been there for a really long time. Signed-off-by: Zhu Yanhai <gaoyang.zyh@taobao.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
Only the ratelimit checks themselves have to run with preemption disabled, the resulting actions - checking for usage thresholds, updating the soft limit tree - can and should run with preemption enabled. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reported-by: Yong Zhang <yong.zhang0@gmail.com> Tested-by: Yong Zhang <yong.zhang0@gmail.com> Reported-by: Luis Henriques <henrix@camandro.org> Tested-by: Luis Henriques <henrix@camandro.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
KAMEZAWA Hiroyuki authored
In split_huge_page(), mem_cgroup_split_huge_fixup() is called to handle page_cgroup modifcations. It takes move_lock_page_cgroup() and modifies page_cgroup and LRU accounting jobs and called HPAGE_PMD_SIZE - 1 times. But thinking again, - compound_lock() is held at move_accout...then, it's not necessary to take move_lock_page_cgroup(). - LRU is locked and all tail pages will go into the same LRU as head is now on. - page_cgroup is contiguous in huge page range. This patch fixes mem_cgroup_split_huge_fixup() as to be called once per hugepage and reduce costs for spliting. [akpm@linux-foundation.org: fix typo, per Michal] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
To find the page corresponding to a certain page_cgroup, the pc->flags encoded the node or section ID with the base array to compare the pc pointer to. Now that the per-memory cgroup LRU lists link page descriptors directly, there is no longer any code that knows the struct page_cgroup of a PFN but not the struct page. [hughd@google.com: remove unused node/section info from pc->flags fix] Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ying Han <yinghan@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
Now that all code that operated on global per-zone LRU lists is converted to operate on per-memory cgroup LRU lists instead, there is no reason to keep the double-LRU scheme around any longer. The pc->lru member is removed and page->lru is linked directly to the per-memory cgroup LRU lists, which removes two pointers from a descriptor that exists for every page frame in the system. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Ying Han <yinghan@google.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
Having a unified structure with a LRU list set for both global zones and per-memcg zones allows to keep that code simple which deals with LRU lists and does not care about the container itself. Once the per-memcg LRU lists directly link struct pages, the isolation function and all other list manipulations are shared between the memcg case and the global LRU case. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ying Han <yinghan@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
The global per-zone LRU lists are about to go away on memcg-enabled kernels, global reclaim must be able to find its pages on the per-memcg LRU lists. Since the LRU pages of a zone are distributed over all existing memory cgroups, a scan target for a zone is complete when all memory cgroups are scanned for their proportional share of a zone's memory. The forced scanning of small scan targets from kswapd is limited to zones marked unreclaimable, otherwise kswapd can quickly overreclaim by force-scanning the LRU lists of multiple memory cgroups. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ying Han <yinghan@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
root_mem_cgroup, lacking a configurable limit, was never subject to limit reclaim, so the pages charged to it could be kept off its LRU lists. They would be found on the global per-zone LRU lists upon physical memory pressure and it made sense to avoid uselessly linking them to both lists. The global per-zone LRU lists are about to go away on memcg-enabled kernels, with all pages being exclusively linked to their respective per-memcg LRU lists. As a result, pages of the root_mem_cgroup must also be linked to its LRU lists again. This is purely about the LRU list, root_mem_cgroup is still not charged. The overhead is temporary until the double-LRU scheme is going away completely. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ying Han <yinghan@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
Memory cgroup limit reclaim and traditional global pressure reclaim will soon share the same code to reclaim from a hierarchical tree of memory cgroups. In preparation of this, move the two right next to each other in shrink_zone(). The mem_cgroup_hierarchical_reclaim() polymath is split into a soft limit reclaim function, which still does hierarchy walking on its own, and a limit (shrinking) reclaim function, which relies on generic reclaim code to walk the hierarchy. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ying Han <yinghan@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
Memory cgroup limit reclaim currently picks one memory cgroup out of the target hierarchy, remembers it as the last scanned child, and reclaims all zones in it with decreasing priority levels. The new hierarchy reclaim code will pick memory cgroups from the same hierarchy concurrently from different zones and priority levels, it becomes necessary that hierarchy roots not only remember the last scanned child, but do so for each zone and priority level. Until now, we reclaimed memcgs like this: mem = mem_cgroup_iter(root) for each priority level: for each zone in zonelist: reclaim(mem, zone) But subsequent patches will move the memcg iteration inside the loop over the zones: for each priority level: for each zone in zonelist: mem = mem_cgroup_iter(root) reclaim(mem, zone) And to keep with the original scan order - memcg -> priority -> zone - the last scanned memcg has to be remembered per zone and per priority level. Furthermore, global reclaim will be switched to the hierarchy walk as well. Different from limit reclaim, which can just recheck the limit after some reclaim progress, its target is to scan all memcgs for the desired zone pages, proportional to the memcg size, and so reliably detecting a full hierarchy round-trip will become crucial. Currently, the code relies on one reclaimer encountering the same memcg twice, but that is error-prone with concurrent reclaimers. Instead, use a generation counter that is increased every time the child with the highest ID has been visited, so that reclaimers can stop when the generation changes. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ying Han <yinghan@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
Memory cgroup hierarchies are currently handled completely outside of the traditional reclaim code, which is invoked with a single memory cgroup as an argument for the whole call stack. Subsequent patches will switch this code to do hierarchical reclaim, so there needs to be a distinction between a) the memory cgroup that is triggering reclaim due to hitting its limit and b) the memory cgroup that is being scanned as a child of a). This patch introduces a struct mem_cgroup_zone that contains the combination of the memory cgroup and the zone being scanned, which is then passed down the stack instead of the zone argument. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ying Han <yinghan@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
The traditional zone reclaim code is scanning the per-zone LRU lists during direct reclaim and kswapd, and the per-zone per-memory cgroup LRU lists when reclaiming on behalf of a memory cgroup limit. Subsequent patches will convert the traditional reclaim code to reclaim exclusively from the per-memory cgroup LRU lists. As a result, using the predicate for which LRU list is scanned will no longer be appropriate to tell global reclaim from limit reclaim. This patch adds a global_reclaim() predicate to tell direct/kswapd reclaim from memory cgroup limit reclaim and substitutes it in all places where currently scanning_global_lru() is used for that. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ying Han <yinghan@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
The memcg naturalization series: Memory control groups are currently bolted onto the side of traditional memory management in places where better integration would be preferrable. To reclaim memory, for example, memory control groups maintain their own LRU list and reclaim strategy aside from the global per-zone LRU list reclaim. But an extra list head for each existing page frame is expensive and maintaining it requires additional code. This patchset disables the global per-zone LRU lists on memory cgroup configurations and converts all its users to operate on the per-memory cgroup lists instead. As LRU pages are then exclusively on one list, this saves two list pointers for each page frame in the system: page_cgroup array size with 4G physical memory vanilla: allocated 31457280 bytes of page_cgroup patched: allocated 15728640 bytes of page_cgroup At the same time, system performance for various workloads is unaffected: 100G sparse file cat, 4G physical memory, 10 runs, to test for code bloat in the traditional LRU handling and kswapd & direct reclaim paths, without/with the memory controller configured in vanilla: 71.603(0.207) seconds patched: 71.640(0.156) seconds vanilla: 79.558(0.288) seconds patched: 77.233(0.147) seconds 100G sparse file cat in 1G memory cgroup, 10 runs, to test for code bloat in the traditional memory cgroup LRU handling and reclaim path vanilla: 96.844(0.281) seconds patched: 94.454(0.311) seconds 4 unlimited memcgs running kbuild -j32 each, 4G physical memory, 500M swap on SSD, 10 runs, to test for regressions in kswapd & direct reclaim using per-memcg LRU lists with multiple memcgs and multiple allocators within each memcg vanilla: 717.722(1.440) seconds [ 69720.100(11600.835) majfaults ] patched: 714.106(2.313) seconds [ 71109.300(14886.186) majfaults ] 16 unlimited memcgs running kbuild, 1900M hierarchical limit, 500M swap on SSD, 10 runs, to test for regressions in hierarchical memcg setups vanilla: 2742.058(1.992) seconds [ 26479.600(1736.737) majfaults ] patched: 2743.267(1.214) seconds [ 27240.700(1076.063) majfaults ] This patch: There are currently two different implementations of iterating over a memory cgroup hierarchy tree. Consolidate them into one worker function and base the convenience looping-macros on top of it. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ying Han <yinghan@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
KAMEZAWA Hiroyuki authored
Commit ef6a3c63 ("mm: add replace_page_cache_page() function") added a function replace_page_cache_page(). This function replaces a page in the radix-tree with a new page. WHen doing this, memory cgroup needs to fix up the accounting information. memcg need to check PCG_USED bit etc. In some(many?) cases, 'newpage' is on LRU before calling replace_page_cache(). So, memcg's LRU accounting information should be fixed, too. This patch adds mem_cgroup_replace_page_cache() and removes the old hooks. In that function, old pages will be unaccounted without touching res_counter and new page will be accounted to the memcg (of old page). WHen overwriting pc->mem_cgroup of newpage, take zone->lru_lock and avoid races with LRU handling. Background: replace_page_cache_page() is called by FUSE code in its splice() handling. Here, 'newpage' is replacing oldpage but this newpage is not a newly allocated page and may be on LRU. LRU mis-accounting will be critical for memory cgroup because rmdir() checks the whole LRU is empty and there is no account leak. If a page is on the other LRU than it should be, rmdir() will fail. This bug was added in March 2011, but no bug report yet. I guess there are not many people who use memcg and FUSE at the same time with upstream kernels. The result of this bug is that admin cannot destroy a memcg because of account leak. So, no panic, no deadlock. And, even if an active cgroup exist, umount can succseed. So no problem at shutdown. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Miklos Szeredi <mszeredi@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jason Baron authored
The current epoll code can be tickled to run basically indefinitely in both loop detection path check (on ep_insert()), and in the wakeup paths. The programs that tickle this behavior set up deeply linked networks of epoll file descriptors that cause the epoll algorithms to traverse them indefinitely. A couple of these sample programs have been previously posted in this thread: https://lkml.org/lkml/2011/2/25/297. To fix the loop detection path check algorithms, I simply keep track of the epoll nodes that have been already visited. Thus, the loop detection becomes proportional to the number of epoll file descriptor and links. This dramatically decreases the run-time of the loop check algorithm. In one diabolical case I tried it reduced the run-time from 15 mintues (all in kernel time) to .3 seconds. Fixing the wakeup paths could be done at wakeup time in a similar manner by keeping track of nodes that have already been visited, but the complexity is harder, since there can be multiple wakeups on different cpus...Thus, I've opted to limit the number of possible wakeup paths when the paths are created. This is accomplished, by noting that the end file descriptor points that are found during the loop detection pass (from the newly added link), are actually the sources for wakeup events. I keep a list of these file descriptors and limit the number and length of these paths that emanate from these 'source file descriptors'. In the current implemetation I allow 1000 paths of length 1, 500 of length 2, 100 of length 3, 50 of length 4 and 10 of length 5. Note that it is sufficient to check the 'source file descriptors' reachable from the newly added link, since no other 'source file descriptors' will have newly added links. This allows us to check only the wakeup paths that may have gotten too long, and not re-check all possible wakeup paths on the system. In terms of the path limit selection, I think its first worth noting that the most common case for epoll, is probably the model where you have 1 epoll file descriptor that is monitoring n number of 'source file descriptors'. In this case, each 'source file descriptor' has a 1 path of length 1. Thus, I believe that the limits I'm proposing are quite reasonable and in fact may be too generous. Thus, I'm hoping that the proposed limits will not prevent any workloads that currently work to fail. In terms of locking, I have extended the use of the 'epmutex' to all epoll_ctl add and remove operations. Currently its only used in a subset of the add paths. I need to hold the epmutex, so that we can correctly traverse a coherent graph, to check the number of paths. I believe that this additional locking is probably ok, since its in the setup/teardown paths, and doesn't affect the running paths, but it certainly is going to add some extra overhead. Also, worth noting is that the epmuex was recently added to the ep_ctl add operations in the initial path loop detection code using the argument that it was not on a critical path. Another thing to note here, is the length of epoll chains that is allowed. Currently, eventpoll.c defines: /* Maximum number of nesting allowed inside epoll sets */ #define EP_MAX_NESTS 4 This basically means that I am limited to a graph depth of 5 (EP_MAX_NESTS + 1). However, this limit is currently only enforced during the loop check detection code, and only when the epoll file descriptors are added in a certain order. Thus, this limit is currently easily bypassed. The newly added check for wakeup paths, stricly limits the wakeup paths to a length of 5, regardless of the order in which ep's are linked together. Thus, a side-effect of the new code is a more consistent enforcement of the graph depth. Thus far, I've tested this, using the sample programs previously mentioned, which now either return quickly or return -EINVAL. I've also testing using the piptest.c epoll tester, which showed no difference in performance. I've also created a number of different epoll networks and tested that they behave as expectded. I believe this solves the original diabolical test cases, while still preserving the sane epoll nesting. Signed-off-by: Jason Baron <jbaron@redhat.com> Cc: Nelson Elhage <nelhage@ksplice.com> Cc: Davide Libenzi <davidel@xmailserver.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Sasha Levin authored
When a user with the CAP_SYS_RESOURCE cap tries to F_SETPIPE_SZ a pipe with size bigger than kmalloc() can alloc it spits out an ugly warning: ------------[ cut here ]------------ WARNING: at mm/page_alloc.c:2095 __alloc_pages_nodemask+0x5d3/0x7a0() Pid: 733, comm: a.out Not tainted 3.2.0-rc1+ #4 Call Trace: warn_slowpath_common+0x75/0xb0 warn_slowpath_null+0x15/0x20 __alloc_pages_nodemask+0x5d3/0x7a0 __get_free_pages+0x12/0x50 __kmalloc+0x12b/0x150 pipe_set_size+0x75/0x120 pipe_fcntl+0xf8/0x140 do_fcntl+0x2d4/0x410 sys_fcntl+0x66/0xa0 system_call_fastpath+0x16/0x1b ---[ end trace 432f702e6db7b5ee ]--- Instead, make kcalloc() handle the overflow case and fail quietly. [akpm@linux-foundation.org: switch to sizeof(*bufs) for 80-column niceness] Signed-off-by: Sasha Levin <levinsasha928@gmail.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Acked-by: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Stanislaw Gruszka authored
Acked-by: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mathias Krause authored
The address limit is already set in flush_old_exec() so those calls to set_fs(USER_DS) are redundant. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Helge Deller <deller@gmx.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mathias Krause authored
The address limit is already set in flush_old_exec() so this set_fs(USER_DS) is redundant. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Andrew Morton authored
Fix the int/bool confusion in there. drivers/video/nvidia/nvidia.c:1602: warning: return from incompatible pointer type Cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Heiko Carstens authored
Move CMPXCHG_DOUBLE and rename it to HAVE_CMPXCHG_DOUBLE so architectures can simply select the option if it is supported. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Heiko Carstens authored
Move CMPXCHG_LOCAL and rename it to HAVE_CMPXCHG_LOCAL so architectures can simply select the option if it is supported. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Heiko Carstens authored
While implementing cmpxchg_double() on s390 I realized that we don't set CONFIG_CMPXCHG_LOCAL despite the fact that we have support for it. However setting that option will increase the size of struct page by eight bytes on 64 bit, which we certainly do not want. Also, it doesn't make sense that a present cpu feature should increase the size of struct page. Besides that it looks like the dependency to CMPXCHG_LOCAL is wrong and that it should depend on CMPXCHG_DOUBLE instead. This patch: If an architecture supports CMPXCHG_LOCAL this shouldn't result automatically in larger struct pages if the SLUB allocator is used. Instead introduce a new config option "HAVE_ALIGNED_STRUCT_PAGE" which can be selected if a double word aligned struct page is required. Also update x86 Kconfig so that it should work as before. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Joe Perches authored
The uses have been renamed so delete the unused macro. Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Joe Perches authored
Use the more commonly used __noreturn instead of ATTRIB_NORETURN. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Joe Perches <joe@perches.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Acked-by: Ralf Baechle <ralf@linux-mips.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Joe Perches authored
It's a very old and now unused prototype marking so just delete it. Neaten panic pointer argument style to keep checkpatch quiet. Signed-off-by: Joe Perches <joe@perches.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Acked-by: Ralf Baechle <ralf@linux-mips.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Joe Perches authored
The only use in kernel.h is gone so remove the macro. Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Joe Perches authored
Use __printf macro. Convert NORET_AND to ATTRIB_NORET. Use the normal kernel style for pointer arguments. Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-