- 02 Apr, 2020 40 commits
-
-
Joel Savitz authored
Currently, the vm.min_free_kbytes sysctl value is capped at a hardcoded 64M in init_per_zone_wmark_min (unless it is overridden by khugepaged initialization). This value has not been modified since 2005, and enterprise-grade systems now frequently have hundreds of GB of RAM and multiple 10, 40, or even 100 GB NICs. We have seen page allocation failures on heavily loaded systems related to NIC drivers. These issues were resolved by an increase to vm.min_free_kbytes. This patch increases the hardcoded value by a factor of 4 as a temporary solution. Further work to make the calculation of vm.min_free_kbytes more consistent throughout the kernel would be desirable. As an example of the inconsistency of the current method, this value is recalculated by init_per_zone_wmark_min() in the case of memory hotplug which will override the value set by set_recommended_min_free_kbytes() called during khugepaged initialization even if khugepaged remains enabled, however an on/off toggle of khugepaged will then recalculate and set the value via set_recommended_min_free_kbytes(). Signed-off-by: Joel Savitz <jsavitz@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Rafael Aquini <aquini@redhat.com> Link: http://lkml.kernel.org/r/20200220150103.5183-1-jsavitz@redhat.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Walter Wu authored
Test negative size in memmove in order to verify whether it correctly get KASAN report. Casting negative numbers to size_t would indeed turn up as a large size_t, so it will have out-of-bounds bug and be detected by KASAN. [walter-zh.wu@mediatek.com: fix -Wstringop-overflow warning] Link: http://lkml.kernel.org/r/20200311134244.13016-1-walter-zh.wu@mediatek.comSigned-off-by: Walter Wu <walter-zh.wu@mediatek.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: kernel test robot <lkp@intel.com> Link: http://lkml.kernel.org/r/20191112065313.7060-1-walter-zh.wu@mediatek.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Walter Wu authored
Patch series "fix the missing underflow in memory operation function", v4. The patchset helps to produce a KASAN report when size is negative in memory operation functions. It is helpful for programmer to solve an undefined behavior issue. Patch 1 based on Dmitry's review and suggestion, patch 2 is a test in order to verify the patch 1. [1]https://bugzilla.kernel.org/show_bug.cgi?id=199341 [2]https://lore.kernel.org/linux-arm-kernel/20190927034338.15813-1-walter-zh.wu@mediatek.com/ This patch (of 2): KASAN missed detecting size is a negative number in memset(), memcpy(), and memmove(), it will cause out-of-bounds bug. So needs to be detected by KASAN. If size is a negative number, then it has a reason to be defined as out-of-bounds bug type. Casting negative numbers to size_t would indeed turn up as a large size_t and its value will be larger than ULONG_MAX/2, so that this can qualify as out-of-bounds. KASAN report is shown below: BUG: KASAN: out-of-bounds in kmalloc_memmove_invalid_size+0x70/0xa0 Read of size 18446744073709551608 at addr ffffff8069660904 by task cat/72 CPU: 2 PID: 72 Comm: cat Not tainted 5.4.0-rc1-next-20191004ajb-00001-gdb8af2f372b2-dirty #1 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace+0x0/0x288 show_stack+0x14/0x20 dump_stack+0x10c/0x164 print_address_description.isra.9+0x68/0x378 __kasan_report+0x164/0x1a0 kasan_report+0xc/0x18 check_memory_region+0x174/0x1d0 memmove+0x34/0x88 kmalloc_memmove_invalid_size+0x70/0xa0 [1] https://bugzilla.kernel.org/show_bug.cgi?id=199341 [cai@lca.pw: fix -Wdeclaration-after-statement warn] Link: http://lkml.kernel.org/r/1583509030-27939-1-git-send-email-cai@lca.pw [peterz@infradead.org: fix objtool warning] Link: http://lkml.kernel.org/r/20200305095436.GV2596@hirez.programming.kicks-ass.netReported-by: kernel test robot <lkp@intel.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Suggested-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Walter Wu <walter-zh.wu@mediatek.com> Signed-off-by: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Link: http://lkml.kernel.org/r/20191112065302.7015-1-walter-zh.wu@mediatek.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Baoquan He authored
When allocating memmap for hot added memory with the classic sparse, the specified 'nid' is ignored in populate_section_memmap(). While in allocating memmap for the classic sparse during boot, the node given by 'nid' is preferred. And VMEMMAP prefers the node of 'nid' in both boot stage and memory hot adding. So seems no reason to not respect the node of 'nid' for the classic sparse when hot adding memory. Use kvmalloc_node instead to use the passed in 'nid'. Signed-off-by: Baoquan He <bhe@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Wei Yang <richard.weiyang@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com> Link: http://lkml.kernel.org/r/20200316125625.GH3486@MiWiFi-R3L-srvSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Baoquan He authored
This change makes populate_section_memmap()/depopulate_section_memmap much simpler. Suggested-by: Michal Hocko <mhocko@kernel.org> Signed-off-by: Baoquan He <bhe@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Wei Yang <richard.weiyang@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Link: http://lkml.kernel.org/r/20200316125450.GG3486@MiWiFi-R3L-srvSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Pingfan Liu authored
After introducing mem sub section concept, pfn_present() loses its literal meaning, and will not be necessary a truth on partial populated mem section. Since all of the callers use it to judge an absent section, it is better to rename pfn_present() as pfn_in_present_section(). Signed-off-by: Pingfan Liu <kernelfans@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Cc: Dan Williams <dan.j.williams@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Leonardo Bras <leonardo@linux.ibm.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: Nathan Lynch <nathanl@linux.ibm.com> Link: http://lkml.kernel.org/r/1581919110-29575-1-git-send-email-kernelfans@gmail.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Wei Yang authored
memmap should be the address to page struct instead of address to pfn. As mentioned by David, if system memory and devmem sit within a section, the mismatch address would lead kdump to dump unexpected memory. Since sub-section only works for SPARSEMEM_VMEMMAP, pfn_to_page() is valid to get the page struct address at this point. Fixes: ba72b4c8 ("mm/sparsemem: support sub-section hotplug") Signed-off-by: Wei Yang <richardw.yang@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Hildenbrand <david@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Baoquan He <bhe@redhat.com> Link: http://lkml.kernel.org/r/20200210005048.10437-1-richardw.yang@linux.intel.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Brian Geffon authored
Add a few simple self tests for the new flag MREMAP_DONTUNMAP, they are simple smoke tests which also demonstrate the behavior. [akpm@linux-foundation.org: convert eight-spaces to hard tabs] [bgeffon@google.com: v7] Link: http://lkml.kernel.org/r/20200221174248.244748-2-bgeffon@google.com [akpm@linux-foundation.org: coding style fixes] Signed-off-by: Brian Geffon <bgeffon@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: "Michael S . Tsirkin" <mst@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Will Deacon <will@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Sonny Rao <sonnyrao@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Jesse Barnes <jsbarnes@google.com> Cc: Nathan Chancellor <natechancellor@gmail.com> Cc: Florian Weimer <fweimer@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Link: http://lkml.kernel.org/r/20200218173221.237674-2-bgeffon@google.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Brian Geffon authored
When remapping an anonymous, private mapping, if MREMAP_DONTUNMAP is set, the source mapping will not be removed. The remap operation will be performed as it would have been normally by moving over the page tables to the new mapping. The old vma will have any locked flags cleared, have no pagetables, and any userfaultfds that were watching that range will continue watching it. For a mapping that is shared or not anonymous, MREMAP_DONTUNMAP will cause the mremap() call to fail. Because MREMAP_DONTUNMAP always results in moving a VMA you MUST use the MREMAP_MAYMOVE flag, it's not possible to resize a VMA while also moving with MREMAP_DONTUNMAP so old_len must always be equal to the new_len otherwise it will return -EINVAL. We hope to use this in Chrome OS where with userfaultfd we could write an anonymous mapping to disk without having to STOP the process or worry about VMA permission changes. This feature also has a use case in Android, Lokesh Gidra has said that "As part of using userfaultfd for GC, We'll have to move the physical pages of the java heap to a separate location. For this purpose mremap will be used. Without the MREMAP_DONTUNMAP flag, when I mremap the java heap, its virtual mapping will be removed as well. Therefore, we'll require performing mmap immediately after. This is not only time consuming but also opens a time window where a native thread may call mmap and reserve the java heap's address range for its own usage. This flag solves the problem." [bgeffon@google.com: v6] Link: http://lkml.kernel.org/r/20200218173221.237674-1-bgeffon@google.com [bgeffon@google.com: v7] Link: http://lkml.kernel.org/r/20200221174248.244748-1-bgeffon@google.comSigned-off-by: Brian Geffon <bgeffon@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Lokesh Gidra <lokeshgidra@google.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: "Michael S . Tsirkin" <mst@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Will Deacon <will@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Sonny Rao <sonnyrao@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Jesse Barnes <jsbarnes@google.com> Cc: Nathan Chancellor <natechancellor@gmail.com> Cc: Florian Weimer <fweimer@redhat.com> Link: http://lkml.kernel.org/r/20200207201856.46070-1-bgeffon@google.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jaewon Kim authored
Even on 64 bit kernel, the mmap failure can happen for a 32 bit task. Virtual memory space shortage of a task on mmap is reported to userspace as -ENOMEM. It can be confused as physical memory shortage of overall system. The vm_unmapped_area can be called to by some drivers or other kernel core system like filesystem. In my platform, GPU driver calls to vm_unmapped_area and the driver returns -ENOMEM even in GPU side shortage. It can be hard to distinguish which code layer returns the -ENOMEM. Create mmap trace file and add trace point of vm_unmapped_area. i.e.) 277.156599: vm_unmapped_area: addr=77e0d03000 err=0 total_vm=0x17014b flags=0x1 len=0x400000 lo=0x8000 hi=0x7878c27000 mask=0x0 ofs=0x1 342.838740: vm_unmapped_area: addr=0 err=-12 total_vm=0xffb08 flags=0x0 len=0x100000 lo=0x40000000 hi=0xfffff000 mask=0x0 ofs=0x22 [akpm@linux-foundation.org: prefix address printk with 0x, per Matthew] Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@suse.de> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michel Lespinasse <walken@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200320055823.27089-3-jaewon31.kim@samsung.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jaewon Kim authored
Patch series "mm: mmap: add mmap trace point", v3. Create mmap trace file and add trace point of vm_unmapped_area(). This patch (of 2): In preparation for next patch remove inline of vm_unmapped_area and move code to mmap.c. There is no logical change. Also remove unmapped_area[_topdown] out of mm.h, there is no code calling to them. Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michel Lespinasse <walken@google.com> Cc: Borislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/20200320055823.27089-2-jaewon31.kim@samsung.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Wang Wenhu authored
The param "start" actually referes to the physical memory start, which is to be mapped into virtual area vma. And it is the field vma->vm_start which stands for the start of the area. Most of the time, we do not read through whole implementation of a function but only the definition and essential comments. Accurate comments are definitely the base stone. Signed-off-by: Wang Wenhu <wenhu.wang@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/20200318052206.105104-1-wenhu.wang@vivo.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
WANG Wenhu authored
It really made me scratch my head. Replace the comment with an accurate and consistent description. The parameter pfn actually refers to the page frame number which is right-shifted by PAGE_SHIFT from the physical address. Signed-off-by: WANG Wenhu <wenhu.wang@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/20200310073955.43415-1-wenhu.wang@vivo.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Peter Xu authored
Userfaultfd fault path was by default killable even if the caller does not have FAULT_FLAG_KILLABLE. That makes sense before in that when with gup we don't have FAULT_FLAG_KILLABLE properly set before. Now after previous patch we've got FAULT_FLAG_KILLABLE applied even for gup code so it should also make sense to let userfaultfd to honor the FAULT_FLAG_KILLABLE. Because we're unconditionally setting FAULT_FLAG_KILLABLE in gup code right now, this patch should have no functional change. It also cleaned the code a little bit by introducing some helpers. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220160300.9941-1-peterx@redhat.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Peter Xu authored
The existing gup code does not react to the fatal signals in many code paths. For example, in one retry path of gup we're still using down_read() rather than down_read_killable(). Also, when doing page faults we don't pass in FAULT_FLAG_KILLABLE as well, which means that within the faulting process we'll wait in non-killable way as well. These were spotted by Linus during the code review of some other patches. Let's allow the gup code to react to fatal signals to improve the responsiveness of threads when during gup and being killed. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220160256.9887-1-peterx@redhat.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Peter Xu authored
This is the gup counterpart of the change that allows the VM_FAULT_RETRY to happen for more than once. One thing to mention is that we must check the fatal signal here before retry because the GUP can be interrupted by that, otherwise we can loop forever. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220195357.16371-1-peterx@redhat.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Peter Xu authored
The idea comes from a discussion between Linus and Andrea [1]. Before this patch we only allow a page fault to retry once. We achieved this by clearing the FAULT_FLAG_ALLOW_RETRY flag when doing handle_mm_fault() the second time. This was majorly used to avoid unexpected starvation of the system by looping over forever to handle the page fault on a single page. However that should hardly happen, and after all for each code path to return a VM_FAULT_RETRY we'll first wait for a condition (during which time we should possibly yield the cpu) to happen before VM_FAULT_RETRY is really returned. This patch removes the restriction by keeping the FAULT_FLAG_ALLOW_RETRY flag when we receive VM_FAULT_RETRY. It means that the page fault handler now can retry the page fault for multiple times if necessary without the need to generate another page fault event. Meanwhile we still keep the FAULT_FLAG_TRIED flag so page fault handler can still identify whether a page fault is the first attempt or not. Then we'll have these combinations of fault flags (only considering ALLOW_RETRY flag and TRIED flag): - ALLOW_RETRY and !TRIED: this means the page fault allows to retry, and this is the first try - ALLOW_RETRY and TRIED: this means the page fault allows to retry, and this is not the first try - !ALLOW_RETRY and !TRIED: this means the page fault does not allow to retry at all - !ALLOW_RETRY and TRIED: this is forbidden and should never be used In existing code we have multiple places that has taken special care of the first condition above by checking against (fault_flags & FAULT_FLAG_ALLOW_RETRY). This patch introduces a simple helper to detect the first retry of a page fault by checking against both (fault_flags & FAULT_FLAG_ALLOW_RETRY) and !(fault_flag & FAULT_FLAG_TRIED) because now even the 2nd try will have the ALLOW_RETRY set, then use that helper in all existing special paths. One example is in __lock_page_or_retry(), now we'll drop the mmap_sem only in the first attempt of page fault and we'll keep it in follow up retries, so old locking behavior will be retained. This will be a nice enhancement for current code [2] at the same time a supporting material for the future userfaultfd-writeprotect work, since in that work there will always be an explicit userfault writeprotect retry for protected pages, and if that cannot resolve the page fault (e.g., when userfaultfd-writeprotect is used in conjunction with swapped pages) then we'll possibly need a 3rd retry of the page fault. It might also benefit other potential users who will have similar requirement like userfault write-protection. GUP code is not touched yet and will be covered in follow up patch. Please read the thread below for more information. [1] https://lore.kernel.org/lkml/20171102193644.GB22686@redhat.com/ [2] https://lore.kernel.org/lkml/20181230154648.GB9832@redhat.com/Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Suggested-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220160246.9790-1-peterx@redhat.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Peter Xu authored
handle_userfaultfd() is currently the only one place in the kernel page fault procedures that can respond to non-fatal userspace signals. It was trying to detect such an allowance by checking against USER & KILLABLE flags, which was "un-official". In this patch, we introduced a new flag (FAULT_FLAG_INTERRUPTIBLE) to show that the fault handler allows the fault procedure to respond even to non-fatal signals. Meanwhile, add this new flag to the default fault flags so that all the page fault handlers can benefit from the new flag. With that, replacing the userfault check to this one. Since the line is getting even longer, clean up the fault flags a bit too to ease TTY users. Although we've got a new flag and applied it, we shouldn't have any functional change with this patch so far. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220195348.16302-1-peterx@redhat.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Peter Xu authored
Although there're tons of arch-specific page fault handlers, most of them are still sharing the same initial value of the page fault flags. Say, merely all of the page fault handlers would allow the fault to be retried, and they also allow the fault to respond to SIGKILL. Let's define a default value for the fault flags to replace those initial page fault flags that were copied over. With this, it'll be far easier to introduce new fault flag that can be used by all the architectures instead of touching all the archs. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220160238.9694-1-peterx@redhat.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Peter Xu authored
This patch removes the risk path in handle_userfault() then we will be sure that the callers of handle_mm_fault() will know that the VMAs might have changed. Meanwhile with previous patch we don't lose responsiveness as well since the core mm code now can handle the nonfatal userspace signals even if we return VM_FAULT_RETRY. Suggested-by: Andrea Arcangeli <aarcange@redhat.com> Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Reviewed-by: Jerome Glisse <jglisse@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220160234.9646-1-peterx@redhat.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Peter Xu authored
The idea comes from the upstream discussion between Linus and Andrea: https://lore.kernel.org/lkml/20171102193644.GB22686@redhat.com/ A summary to the issue: there was a special path in handle_userfault() in the past that we'll return a VM_FAULT_NOPAGE when we detected non-fatal signals when waiting for userfault handling. We did that by reacquiring the mmap_sem before returning. However that brings a risk in that the vmas might have changed when we retake the mmap_sem and even we could be holding an invalid vma structure. This patch is a preparation of removing that special path by allowing the page fault to return even faster if we were interrupted by a non-fatal signal during a user-mode page fault handling routine. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Suggested-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220160230.9598-1-peterx@redhat.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Peter Xu authored
Let SH to use the new fault_signal_pending() helper. Here we'll need to move the up_read() out because that's actually needed as long as !RETRY cases. At the meantime we can drop all the rest of up_read()s now (which seems to be cleaner). Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220160226.9550-1-peterx@redhat.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Peter Xu authored
Let powerpc code to use the new helper, by moving the signal handling earlier before the retry logic. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220160222.9422-1-peterx@redhat.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Peter Xu authored
Let the arm64 fault handling to use the new fault_signal_pending() helper, by moving the signal handling out of the retry logic. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220155927.9264-1-peterx@redhat.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Peter Xu authored
Let ARC to use the new helper fault_signal_pending() by moving the signal check out of the retry logic as standalone. This should also helps to simplify the code a bit. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220155843.9172-1-peterx@redhat.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Peter Xu authored
Let's move the fatal signal check even earlier so that we can directly use the new fault_signal_pending() in x86 mm code. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220155353.8676-5-peterx@redhat.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Peter Xu authored
For most architectures, we've got a quick path to detect fatal signal after a handle_mm_fault(). Introduce a helper for that quick path. It cleans the current codes a bit so we don't need to duplicate the same check across archs. More importantly, this will be an unified place that we handle the signal immediately right after an interrupted page fault, so it'll be much easier for us if we want to change the behavior of handling signals later on for all the archs. Note that currently only part of the archs are using this new helper, because some archs have their own way to handle signals. In the follow up patches, we'll try to apply this helper to all the rest of archs. Another note is that the "regs" parameter in the new helper is not used yet. It'll be used very soon. Now we kept it in this patch only to avoid touching all the archs again in the follow up patches. [peterx@redhat.com: fix sparse warnings] Link: http://lkml.kernel.org/r/20200311145921.GD479302@xz-x1Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220155353.8676-4-peterx@redhat.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Peter Xu authored
When follow_hugetlb_page() returns with *locked==0, it means we've got a VM_FAULT_RETRY within the fauling process and we've released the mmap_sem. When that happens, we should stop and bail out. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220155353.8676-3-peterx@redhat.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Peter Xu authored
Patch series "mm: Page fault enhancements", v6. This series contains cleanups and enhancements to current page fault logic. The whole idea comes from the discussion between Andrea and Linus on the bug reported by syzbot here: https://lkml.org/lkml/2017/11/2/833 Basically it does two things: (a) Allows the page fault logic to be more interactive on not only SIGKILL, but also the rest of userspace signals, and, (b) Allows the page fault retry (VM_FAULT_RETRY) to happen for more than once. For (a): with the changes we should be able to react faster when page faults are working in parallel with userspace signals like SIGSTOP and SIGCONT (and more), and with that we can remove the buggy part in userfaultfd and benefit the whole page fault mechanism on faster signal processing to reach the userspace. For (b), we should be able to allow the page fault handler to loop for even more than twice. Some context: for now since we have FAULT_FLAG_ALLOW_RETRY we can allow to retry the page fault once with the same interrupt context, however never more than twice. This can be not only a potential cleanup to remove this assumption since AFAIU the code itself doesn't really have this twice-only limitation (though that should be a protective approach in the past), at the same time it'll greatly simplify future works like userfaultfd write-protect where it's possible to retry for more than twice (please have a look at [1] below for a possible user that might require the page fault to be handled for a third time; if we can remove the retry limitation we can simply drop that patch and those complexity). This patch (of 16): There's plenty of places around __get_user_pages() that has a parameter "nonblocking" which does not really mean that "it won't block" (because it can really block) but instead it shows whether the mmap_sem is released by up_read() during the page fault handling mostly when VM_FAULT_RETRY is returned. We have the correct naming in e.g. get_user_pages_locked() or get_user_pages_remote() as "locked", however there're still many places that are using the "nonblocking" as name. Renaming the places to "locked" where proper to better suite the functionality of the variable. While at it, fixing up some of the comments accordingly. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Reviewed-by: Jerome Glisse <jglisse@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Martin Cracauer <cracauer@cons.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220155353.8676-2-peterx@redhat.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
The documentation currently does not include the deathless prose written to describe functions in pagemap.h because it's not included in any rst file. Fix up the mismatches between parameter names and the documentation and add the file to mm-api. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Jonathan Corbet <corbet@lwn.net> Link: http://lkml.kernel.org/r/20200221220045.24989-1-willy@infradead.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Anshuman Khandual authored
Currently the declaration and definition for is_vma_temporary_stack() are scattered. Lets make is_vma_temporary_stack() helper available for general use and also drop the declaration from (include/linux/huge_mm.h) which is no longer required. While at this, rename this as vma_is_temporary_stack() in line with existing helpers. This should not cause any functional change. Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Ingo Molnar <mingo@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1582782965-3274-4-git-send-email-anshuman.khandual@arm.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Anshuman Khandual authored
Idea of a foreign VMA with respect to the present context is very generic. But currently there are two identical definitions for this in powerpc and x86 platforms. Lets consolidate those redundant definitions while making vma_is_foreign() available for general use later. This should not cause any functional change. Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Link: http://lkml.kernel.org/r/1582782965-3274-3-git-send-email-anshuman.khandual@arm.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Anshuman Khandual authored
Patch series "mm/vma: some more minor changes", v2. The motivation here is to consolidate VMA flags and helpers in generic memory header and reduce code duplication when ever applicable. If there are other possible similar instances which might be missing here, please do let me me know. I will be happy to incorporate them. This patch (of 3): Move VM_NO_KHUGEPAGED into generic header (include/linux/mm.h). This just makes sure that no VMA flag is scattered in individual function files any longer. While at this, fix an old comment which is no longer valid. This should not cause any functional change. Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Ingo Molnar <mingo@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1582782965-3274-2-git-send-email-anshuman.khandual@arm.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Thomas Hellstrom authored
Following the update of pagewalk code commit a07984d48146 ("mm: pagewalk: add p4d_entry() and pgd_entry()") we can modify the mapping_dirty_helpers' huge page-table entry callbacks to avoid splitting when a huge pud or -pmd is encountered. Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Steven Price <steven.price@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/20200203154305.15045-1-thomas_os@shipmail.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Roman Gushchin authored
If a task is getting moved out of the OOMing cgroup, it might result in unexpected OOM killings if memory.oom.group is used anywhere in the cgroup tree. Imagine the following example: A (oom.group = 1) / \ (OOM) B C Let's say B's memory.max is exceeded and it's OOMing. The OOM killer selects a task in B as a victim, but someone asynchronously moves the task into C. mem_cgroup_get_oom_group() will iterate over all ancestors of C up to the root cgroup. In theory it had to stop at the oom_domain level - the memory cgroup which is OOMing. But because B is not an ancestor of C, it's not happening. Instead it chooses A (because it's oom.group is set), and kills all tasks in A. This behavior is wrong because the OOM happened in B, so there is no reason to kill anything outside. Fix this by checking it the memory cgroup to which the task belongs is a descendant of the oom_domain. If not, memory.oom.group should be ignored, and the OOM killer should kill only the victim task. Reported-by: Dan Schatzberg <dschatzberg@fb.com> Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: http://lkml.kernel.org/r/20200316223510.3176148-1-guro@fb.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Chris Down authored
The read side of this is all protected, but we can still tear if multiple iterations of mem_cgroup_protected are going at the same time. There's some intentional racing in mem_cgroup_protected which is ok, but load/store tearing should be avoided. Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/d1e9fbc0379fe8db475d82c8b6fbe048876e12ae.1584034301.git.chris@chrisdown.nameSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Chris Down authored
The write side of this is xchg()/smp_mb(), so that's all good. Just a few sites missing a READ_ONCE. Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/bbec2c3d822217334855c8877a9d28b2a6d395fb.1584034301.git.chris@chrisdown.nameSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Chris Down authored
This can be set concurrently with reads, which may cause the wrong value to be propagated. Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/e809b4e6b0c1626dac6945970de06409a180ee65.1584034301.git.chris@chrisdown.nameSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Chris Down authored
This can be set concurrently with reads, which may cause the wrong value to be propagated. Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/448206f44b0fa7be9dad2ca2601d2bcb2c0b7844.1584034301.git.chris@chrisdown.nameSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Chris Down authored
This one is a bit more nuanced because we have memcg_max_mutex, which is mostly just used for enforcing invariants, but we still need to READ_ONCE since (despite its name) it doesn't really protect memory.max access. On write (page_counter_set_max() and memory_max_write()) we use xchg(), which uses smp_mb(), so that's already fine. Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/50a31e5f39f8ae6c8fb73966ba1455f0924e8f44.1584034301.git.chris@chrisdown.nameSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-