- 27 Jul, 2011 15 commits
-
-
Chris Mason authored
-
Chris Mason authored
The btrfs transaction code will return any errors that come from reserve_metadata_bytes. We need to make sure we don't return funny things like 1 or EAGAIN. Signed-off-by: Chris Mason <chris.mason@oracle.com>
-
Chris Mason authored
Now that we are using regular file crcs for the free space cache, we can deadlock if we try to read the free_space_inode while we are updating the crc tree. This commit fixes things by using the commit_root to read the crcs. This is safe because we the free space cache file would already be loaded if that block group had been changed in the current transaction. Signed-off-by: Chris Mason <chris.mason@oracle.com>
-
Chris Mason authored
For metadata buffers that don't straddle pages (all of them), btrfs can safely use the page uptodate bits and extent_buffer uptodate bit instead of needing to use the extent_state tree. This greatly reduces contention on the state tree lock. Signed-off-by: Chris Mason <chris.mason@oracle.com>
-
Chris Mason authored
Before the reader/writer locks, btrfs_next_leaf needed to keep the path blocking to avoid making lockdep upset. Now that btrfs_next_leaf only takes read locks, this isn't required. Signed-off-by: Chris Mason <chris.mason@oracle.com>
-
Chris Mason authored
This patch was originally from Tejun Heo. lockdep complains about the btrfs locking because we sometimes take btree locks from two different trees at the same time. The current classes are based only on level in the btree, which isn't enough information for lockdep to figure out if the lock is safe. This patch makes a class for each type of tree, and lumps all the FS trees that actually have files and directories into the same class. Signed-off-by: Chris Mason <chris.mason@oracle.com>
-
Chris Mason authored
The btrfs metadata btree is the source of significant lock contention, especially in the root node. This commit changes our locking to use a reader/writer lock. The lock is built on top of rw spinlocks, and it extends the lock tracking to remember if we have a read lock or a write lock when we go to blocking. Atomics count the number of blocking readers or writers at any given time. It removes all of the adaptive spinning from the old code and uses only the spinning/blocking hints inside of btrfs to decide when it should continue spinning. In read heavy workloads this is dramatically faster. In write heavy workloads we're still faster because of less contention on the root node lock. We suffer slightly in dbench because we schedule more often during write locks, but all other benchmarks so far are improved. Signed-off-by: Chris Mason <chris.mason@oracle.com>
-
Josef Bacik authored
Hit this nice little deadlock. What happens is this __btrfs_end_transaction with throttle set, --use_count so it equals 0 btrfs_commit_transaction <somebody else actually manages to start the commit> btrfs_end_transaction --use_count so now its -1 <== BAD we just return and wait on the transaction This is bad because we just return after our use_count is -1 and don't let go of our num_writer count on the transaction, so the guy committing the transaction just sits there forever. Fix this by inc'ing our use_count if we're going to call commit_transaction so that if we call btrfs_end_transaction it's valid. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
-
Chris Mason authored
The extent_buffers have a very complex interface where we use HIGHMEM for metadata and try to cache a kmap mapping to access the memory. The next commit adds reader/writer locks, and concurrent use of this kmap cache would make it even more complex. This commit drops the ability to use HIGHMEM with extent buffers, and rips out all of the related code. Signed-off-by: Chris Mason <chris.mason@oracle.com>
-
Miao Xie authored
When we balanced the chunks across the devices, BUG_ON() in __finish_chunk_alloc() was triggered. ------------[ cut here ]------------ kernel BUG at fs/btrfs/volumes.c:2568! [SNIP] Call Trace: [<ffffffffa049525e>] btrfs_alloc_chunk+0x8e/0xa0 [btrfs] [<ffffffffa04546b0>] do_chunk_alloc+0x330/0x3a0 [btrfs] [<ffffffffa045c654>] btrfs_reserve_extent+0xb4/0x1f0 [btrfs] [<ffffffffa045c86b>] btrfs_alloc_free_block+0xdb/0x350 [btrfs] [<ffffffffa048a8d8>] ? read_extent_buffer+0xd8/0x1d0 [btrfs] [<ffffffffa04476fd>] __btrfs_cow_block+0x14d/0x5e0 [btrfs] [<ffffffffa044660d>] ? read_block_for_search+0x14d/0x4d0 [btrfs] [<ffffffffa0447c9b>] btrfs_cow_block+0x10b/0x240 [btrfs] [<ffffffffa044dd5e>] btrfs_search_slot+0x49e/0x7a0 [btrfs] [<ffffffffa044f07d>] btrfs_insert_empty_items+0x8d/0xf0 [btrfs] [<ffffffffa045e973>] insert_with_overflow+0x43/0x110 [btrfs] [<ffffffffa045eb0d>] btrfs_insert_dir_item+0xcd/0x1f0 [btrfs] [<ffffffffa0489bd0>] ? map_extent_buffer+0xb0/0xc0 [btrfs] [<ffffffff812276ad>] ? rb_insert_color+0x9d/0x160 [<ffffffffa046cc40>] ? inode_tree_add+0xf0/0x150 [btrfs] [<ffffffffa0474801>] btrfs_add_link+0xc1/0x1c0 [btrfs] [<ffffffff811dacac>] ? security_inode_init_security+0x1c/0x30 [<ffffffffa04a28aa>] ? btrfs_init_acl+0x4a/0x180 [btrfs] [<ffffffffa047492f>] btrfs_add_nondir+0x2f/0x70 [btrfs] [<ffffffffa046af16>] ? btrfs_init_inode_security+0x46/0x60 [btrfs] [<ffffffffa0474ac0>] btrfs_create+0x150/0x1d0 [btrfs] [<ffffffff81159c63>] ? generic_permission+0x23/0xb0 [<ffffffff8115b415>] vfs_create+0xa5/0xc0 [<ffffffff8115ce6e>] do_last+0x5fe/0x880 [<ffffffff8115dc0d>] path_openat+0xcd/0x3d0 [<ffffffff8115e029>] do_filp_open+0x49/0xa0 [<ffffffff8116a965>] ? alloc_fd+0x95/0x160 [<ffffffff8114f0c7>] do_sys_open+0x107/0x1e0 [<ffffffff810bcc3f>] ? audit_syscall_entry+0x1bf/0x1f0 [<ffffffff8114f1e0>] sys_open+0x20/0x30 [<ffffffff81484ec2>] system_call_fastpath+0x16/0x1b [SNIP] RIP [<ffffffffa049444a>] __finish_chunk_alloc+0x20a/0x220 [btrfs] The reason is: Task1 Space balance task do_chunk_alloc() __finish_chunk_alloc() update device info in the chunk tree alloc system metadata block relocate system metadata block group set system metadata block group readonly, This block group is the only one that can allocate space. So there is no free space that can be allocated now. find no space and don't try to alloc new chunk, and then return ENOSPC BUG_ON() in __finish_chunk_alloc() was triggered. Fix this bug by allocating a new system metadata chunk before relocating the old one if we find there is no free space which can be allocated after setting the old block group to be read-only. Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com> Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
-
Josef Bacik authored
Everybody else does this, we need to do it too. If we're syncing, we need to tag the pages we're going to write for writeback so we don't end up writing the same stuff over and over again if somebody is constantly redirtying our file. This will keep us from having latencies with heavy sync workloads. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
-
Josef Bacik authored
So I had this brilliant idea to use atomic counters for outstanding and reserved extents, but this turned out to be a bad idea. Consider this where we have 1 outstanding extent and 1 reserved extent Reserver Releaser atomic_dec(outstanding) now 0 atomic_read(outstanding)+1 get 1 atomic_read(reserved) get 1 don't actually reserve anything because they are the same atomic_cmpxchg(reserved, 1, 0) atomic_inc(outstanding) atomic_add(0, reserved) free reserved space for 1 extent Then the reserver now has no actual space reserved for it, and when it goes to finish the ordered IO it won't have enough space to do it's allocation and you get those lovely warnings. Signed-off-by: Josef Bacik <josef@redhat.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
-
Josef Bacik authored
Kill the check to see if we have 512mb of reserved space in delalloc and shrink_delalloc if we do. This causes unexpected latencies and we have other logic to see if we need to throttle. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
-
Josef Bacik authored
grab_cache_page will use mapping_gfp_mask(), which for all inodes is set to GFP_HIGHUSER_MOVABLE. So instead use find_or_create_page in all cases where we need GFP_NOFS so we don't deadlock. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
-
Josef Bacik authored
A user reported a deadlock when copying a bunch of files. This is because they were low on memory and kthreadd got hung up trying to migrate pages for an allocation when starting the caching kthread. The page was locked by the person starting the caching kthread. To fix this we just need to use the async thread stuff so that the threads are already created and we don't have to worry about deadlocks. Thanks, Reported-by: Roman Mamedov <rm@romanrm.ru> Signed-off-by: Josef Bacik <josef@redhat.com>
-
- 22 Jul, 2011 2 commits
-
-
Linus Torvalds authored
-
git://git.kernel.org/pub/scm/linux/kernel/git/jwessel/linux-2.6-kgdbLinus Torvalds authored
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jwessel/linux-2.6-kgdb: sparc,kgdbts: fix compile regression with kgdb test suite
-
- 21 Jul, 2011 9 commits
-
-
Jason Wessel authored
Commit 63ab25eb (kgdbts: unify/generalize gdb breakpoint adjustment) introduced a compile regression on sparc. kgdbts.c: In function 'check_and_rewind_pc': kgdbts.c:307: error: implicit declaration of function 'instruction_pointer_set' Simply add the correct macro definition for instruction pointer on the Sparc architecture. Signed-off-by: Jason Wessel <jason.wessel@windriver.com> Acked-by: Mike Frysinger <vapier@gentoo.org> Acked-by: David S. Miller <davem@davemloft.net>
-
git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6Linus Torvalds authored
* git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6: CIFS: Fix wrong length in cifs_iovec_read
-
Linus Torvalds authored
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: x86: Make Dell Latitude E6420 use reboot=pci x86: Make Dell Latitude E5420 use reboot=pci
-
H. Peter Anvin authored
Yet another variant of the Dell Latitude series which requires reboot=pci. From the E5420 bug report by Daniel J Blueman: > The E6420 is affected also (same platform, different casing and > features), which provides an external confirmation of the issue; I can > submit a patch for that later or include it if you prefer: > http://linux.koolsolutions.com/2009/08/04/howto-fix-linux-hangfreeze-during-reboots-and-restarts/Reported-by: Daniel J Blueman <daniel.blueman@gmail.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com> Cc: <stable@kernel.org>
-
Daniel J Blueman authored
Rebooting on the Dell E5420 often hangs with the keyboard or ACPI methods, but is reliable via the PCI method. [ hpa: this was deferred because we believed for a long time that the recent reshuffling of the boot priorities in commit 660e34ce fixed this platform. Unfortunately that turned out to be incorrect. ] Signed-off-by: Daniel J Blueman <daniel.blueman@gmail.com> Link: http://lkml.kernel.org/r/1305248699-2347-1-git-send-email-daniel.blueman@gmail.comSigned-off-by: H. Peter Anvin <hpa@zytor.com> Cc: <stable@kernel.org>
-
git://git.kernel.org/pub/scm/linux/kernel/git/keithp/linux-2.6Linus Torvalds authored
* 'drm-intel-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/keithp/linux-2.6: drm/i915: Fix unfenced alignment on pre-G33 hardware drm/i915: Add quirk to disable SSC on Lenovo U160 LVDS
-
Linus Torvalds authored
It seems to hurt performance in real life. Yes, the inode will be used later, but the conditional doesn't seem to predict all that well (negative dentries are not uncommon) and it looks like the cost of prefetching is simply higher than depending on the cache doing the right thing. As usual. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jan Beulich authored
The compiler, at least for ix86 and m68k, validly warns that the comparison: next <= (loff_t)-1 is always true (and it's always true also for x86-64 and probably all other arches - as long as pgoff_t isn't wider than loff_t). The intention appears to be to avoid wrapping of "next", so rather than eliminating the pointless comparison, fix the loop to indeed get exited when "next" would otherwise wrap. On m68k the following warning is observed: fs/fscache/page.c: In function '__fscache_uncache_all_inode_pages': fs/fscache/page.c:979: warning: comparison is always false due to limited range of data type Reported-by: Geert Uytterhoeven <geert@linux-m68k.org> Reported-by: Jan Beulich <jbeulich@novell.com> Signed-off-by: Jan Beulich <jbeulich@novell.com> Signed-off-by: David Howells <dhowells@redhat.com> Cc: Suresh Jayaraman <sjayaraman@suse.de> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Pavel Shilovsky authored
Signed-off-by: Pavel Shilovsky <piastryyy@gmail.com> Reviewed-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Steve French <sfrench@us.ibm.com>
-
- 20 Jul, 2011 14 commits
-
-
Linus Torvalds authored
Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: signal: align __lock_task_sighand() irq disabling and RCU softirq,rcu: Inform RCU of irq_exit() activity sched: Add irq_{enter,exit}() to scheduler_ipi() rcu: protect __rcu_read_unlock() against scheduler-using irq handlers rcu: Streamline code produced by __rcu_read_unlock() rcu: Fix RCU_BOOST race handling current->rcu_read_unlock_special rcu: decrease rcu_report_exp_rnp coupling with scheduler
-
Linus Torvalds authored
Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: sched: Avoid creating superfluous NUMA domains on non-NUMA systems sched: Allow for overlapping sched_domain spans sched: Break out cpu_power from the sched_group structure
-
Linus Torvalds authored
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: x86. reboot: Make Dell Latitude E6320 use reboot=pci x86, doc only: Correct real-mode kernel header offset for init_size x86: Disable AMD_NUMA for 32bit for now
-
Ingo Molnar authored
Merge branch 'rcu/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-2.6-rcu into core/urgent
-
Paul E. McKenney authored
The __lock_task_sighand() function calls rcu_read_lock() with interrupts and preemption enabled, but later calls rcu_read_unlock() with interrupts disabled. It is therefore possible that this RCU read-side critical section will be preempted and later RCU priority boosted, which means that rcu_read_unlock() will call rt_mutex_unlock() in order to deboost itself, but with interrupts disabled. This results in lockdep splats, so this commit nests the RCU read-side critical section within the interrupt-disabled region of code. This prevents the RCU read-side critical section from being preempted, and thus prevents the attempt to deboost with interrupts disabled. It is quite possible that a better long-term fix is to make rt_mutex_unlock() disable irqs when acquiring the rt_mutex structure's ->wait_lock. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
-
Peter Zijlstra authored
The rcu_read_unlock_special() function relies on in_irq() to exclude scheduler activity from interrupt level. This fails because exit_irq() can invoke the scheduler after clearing the preempt_count() bits that in_irq() uses to determine that it is at interrupt level. This situation can result in failures as follows: $task IRQ SoftIRQ rcu_read_lock() /* do stuff */ <preempt> |= UNLOCK_BLOCKED rcu_read_unlock() --t->rcu_read_lock_nesting irq_enter(); /* do stuff, don't use RCU */ irq_exit(); sub_preempt_count(IRQ_EXIT_OFFSET); invoke_softirq() ttwu(); spin_lock_irq(&pi->lock) rcu_read_lock(); /* do stuff */ rcu_read_unlock(); rcu_read_unlock_special() rcu_report_exp_rnp() ttwu() spin_lock_irq(&pi->lock) /* deadlock */ rcu_read_unlock_special(t); Ed can simply trigger this 'easy' because invoke_softirq() immediately does a ttwu() of ksoftirqd/# instead of doing the in-place softirq stuff first, but even without that the above happens. Cure this by also excluding softirqs from the rcu_read_unlock_special() handler and ensuring the force_irqthreads ksoftirqd/# wakeup is done from full softirq context. [ Alternatively, delaying the ->rcu_read_lock_nesting decrement until after the special handling would make the thing more robust in the face of interrupts as well. And there is a separate patch for that. ] Cc: Thomas Gleixner <tglx@linutronix.de> Reported-and-tested-by: Ed Tomlinson <edt@aei.ca> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
-
Peter Zijlstra authored
Ensure scheduler_ipi() calls irq_{enter,exit} when it does some actual work. Traditionally we never did any actual work from the resched IPI and all magic happened in the return from interrupt path. Now that we do do some work, we need to ensure irq_{enter,exit} are called so that we don't confuse things. This affects things like timekeeping, NO_HZ and RCU, basically everything with a hook in irq_enter/exit. Explicit examples of things going wrong are: sched_clock_cpu() -- has a callback when leaving NO_HZ state to take a new reading from GTOD and TSC. Without this callback, time is stuck in the past. RCU -- needs in_irq() to work in order to avoid some nasty deadlocks Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
-
Paul E. McKenney authored
The addition of RCU read-side critical sections within runqueue and priority-inheritance lock critical sections introduced some deadlock cycles, for example, involving interrupts from __rcu_read_unlock() where the interrupt handlers call wake_up(). This situation can cause the instance of __rcu_read_unlock() invoked from interrupt to do some of the processing that would otherwise have been carried out by the task-level instance of __rcu_read_unlock(). When the interrupt-level instance of __rcu_read_unlock() is called with a scheduler lock held from interrupt-entry/exit situations where in_irq() returns false, deadlock can result. This commit resolves these deadlocks by using negative values of the per-task ->rcu_read_lock_nesting counter to indicate that an instance of __rcu_read_unlock() is in flight, which in turn prevents instances from interrupt handlers from doing any special processing. This patch is inspired by Steven Rostedt's earlier patch that similarly made __rcu_read_unlock() guard against interrupt-mediated recursion (see https://lkml.org/lkml/2011/7/15/326), but this commit refines Steven's approach to avoid the need for preemption disabling on the __rcu_read_unlock() fastpath and to also avoid the need for manipulating a separate per-CPU variable. This patch avoids need for preempt_disable() by instead using negative values of the per-task ->rcu_read_lock_nesting counter. Note that nested rcu_read_lock()/rcu_read_unlock() pairs are still permitted, but they will never see ->rcu_read_lock_nesting go to zero, and will therefore never invoke rcu_read_unlock_special(), thus preventing them from seeing the RCU_READ_UNLOCK_BLOCKED bit should it be set in ->rcu_read_unlock_special. This patch also adds a check for ->rcu_read_unlock_special being negative in rcu_check_callbacks(), thus preventing the RCU_READ_UNLOCK_NEED_QS bit from being set should a scheduling-clock interrupt occur while __rcu_read_unlock() is exiting from an outermost RCU read-side critical section. Of course, __rcu_read_unlock() can be preempted during the time that ->rcu_read_lock_nesting is negative. This could result in the setting of the RCU_READ_UNLOCK_BLOCKED bit after __rcu_read_unlock() checks it, and would also result it this task being queued on the corresponding rcu_node structure's blkd_tasks list. Therefore, some later RCU read-side critical section would enter rcu_read_unlock_special() to clean up -- which could result in deadlock if that critical section happened to be in the scheduler where the runqueue or priority-inheritance locks were held. This situation is dealt with by making rcu_preempt_note_context_switch() check for negative ->rcu_read_lock_nesting, thus refraining from queuing the task (and from setting RCU_READ_UNLOCK_BLOCKED) if we are already exiting from the outermost RCU read-side critical section (in other words, we really are no longer actually in that RCU read-side critical section). In addition, rcu_preempt_note_context_switch() invokes rcu_read_unlock_special() to carry out the cleanup in this case, which clears out the ->rcu_read_unlock_special bits and dequeues the task (if necessary), in turn avoiding needless delay of the current RCU grace period and needless RCU priority boosting. It is still illegal to call rcu_read_unlock() while holding a scheduler lock if the prior RCU read-side critical section has ever had either preemption or irqs enabled. However, the common use case is legal, namely where then entire RCU read-side critical section executes with irqs disabled, for example, when the scheduler lock is held across the entire lifetime of the RCU read-side critical section. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
-
Peter Zijlstra authored
When creating sched_domains, stop when we've covered the entire target span instead of continuing to create domains, only to later find they're redundant and throw them away again. This avoids single node systems from touching funny NUMA sched_domain creation code and reduces the risks of the new SD_OVERLAP code. Requested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Anton Blanchard <anton@samba.org> Cc: mahesh@linux.vnet.ibm.com Cc: benh@kernel.crashing.org Cc: linuxppc-dev@lists.ozlabs.org Link: http://lkml.kernel.org/r/1311180177.29152.57.camel@twinsSigned-off-by: Ingo Molnar <mingo@elte.hu>
-
Peter Zijlstra authored
Allow for sched_domain spans that overlap by giving such domains their own sched_group list instead of sharing the sched_groups amongst each-other. This is needed for machines with more than 16 nodes, because sched_domain_node_span() will generate a node mask from the 16 nearest nodes without regard if these masks have any overlap. Currently sched_domains have a sched_group that maps to their child sched_domain span, and since there is no overlap we share the sched_group between the sched_domains of the various CPUs. If however there is overlap, we would need to link the sched_group list in different ways for each cpu, and hence sharing isn't possible. In order to solve this, allocate private sched_groups for each CPU's sched_domain but have the sched_groups share a sched_group_power structure such that we can uniquely track the power. Reported-and-tested-by: Anton Blanchard <anton@samba.org> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/n/tip-08bxqw9wis3qti9u5inifh3y@git.kernel.orgSigned-off-by: Ingo Molnar <mingo@elte.hu>
-
Peter Zijlstra authored
In order to prepare for non-unique sched_groups per domain, we need to carry the cpu_power elsewhere, so put a level of indirection in. Reported-and-tested-by: Anton Blanchard <anton@samba.org> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/n/tip-qkho2byuhe4482fuknss40ad@git.kernel.orgSigned-off-by: Ingo Molnar <mingo@elte.hu>
-
git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph-clientLinus Torvalds authored
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph-client: ceph: fix file mode calculation
-
git://git.kernel.org/pub/scm/linux/kernel/git/arm/linux-arm-socLinus Torvalds authored
* 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/linux-arm-soc: davinci: DM365 EVM: fix video input mux bits ARM: davinci: Check for NULL return from irq_alloc_generic_chip arm: davinci: Fix low level gpio irq handlers' argument
-
Shaohua Li authored
I'm running a workload which triggers a lot of swap in a machine with 4 nodes. After I kill the workload, I found a kswapd livelock. Sometimes kswapd3 or kswapd2 are keeping running and I can't access filesystem, but most memory is free. This looks like a regression since commit 08951e54 ("mm: vmscan: correct check for kswapd sleeping in sleeping_prematurely"). Node 2 and 3 have only ZONE_NORMAL, but balance_pgdat() will return 0 for classzone_idx. The reason is end_zone in balance_pgdat() is 0 by default, if all zones have watermark ok, end_zone will keep 0. Later sleeping_prematurely() always returns true. Because this is an order 3 wakeup, and if classzone_idx is 0, both balanced_pages and present_pages in pgdat_balanced() are 0. We add a special case here. If a zone has no page, we think it's balanced. This fixes the livelock. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-