pfs.cc 69.9 KB
Newer Older
Marc Alff's avatar
Marc Alff committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
/* Copyright (C) 2008-2009 Sun Microsystems, Inc

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; version 2 of the License.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */

/**
  @file storage/perfschema/pfs.cc
  The performance schema implementation of all instruments.
*/

#include "my_global.h"
#include "pfs.h"
#include "pfs_instr_class.h"
#include "pfs_instr.h"
#include "pfs_global.h"
#include "pfs_column_values.h"
#include "pfs_timer.h"
#include "pfs_events_waits.h"

/* Pending WL#4895 PERFORMANCE_SCHEMA Instrumenting Table IO */
#undef HAVE_TABLE_WAIT

/**
  @page PAGE_PERFORMANCE_SCHEMA The Performance Schema main page
  MySQL PERFORMANCE_SCHEMA implementation.

  @section INTRO Introduction
  The PERFORMANCE_SCHEMA is a way to introspect the internal execution of
  the server at runtime.
  The performance schema focuses primarily on performance data,
  as opposed to the INFORMATION_SCHEMA whose purpose is to inspect metadata.

  From a user point of view, the performance schema consists of:
  - a dedicated database schema, named PERFORMANCE_SCHEMA,
  - SQL tables, used to query the server internal state or change
  configuration settings.

  From an implementation point of view, the performance schema is a dedicated
  Storage Engine which exposes data collected by 'Instrumentation Points'
  placed in the server code.

  @section INTERFACES Multiple interfaces

  The performance schema exposes many different interfaces,
  for different components, and for different purposes.

  @subsection INT_INSTRUMENTING Instrumenting interface

  All the data representing the server internal state exposed
  in the performance schema must be first collected:
  this is the role of the instrumenting interface.
  The instrumenting interface is a coding interface provided
  by implementors (of the performance schema) to implementors
  (of the server or server components).

  This interface is available to:
  - C implementations
  - C++ implementations
  - the core SQL layer (/sql)
  - the mysys library (/mysys)
  - MySQL plugins, including storage engines,
  - third party plugins, including third party storage engines.

  For details, see the @ref PAGE_INSTRUMENTATION_INTERFACE
  "instrumentation interface page".

  @subsection INT_COMPILING Compiling interface

  The implementation of the performance schema can be enabled or disabled at
  build time, when building MySQL from the source code.

  When building with the performance schema code, some compilation flags
  are available to change the default values used in the code, if required.

  For more details, see:
  @verbatim ./configure --help @endverbatim

  To compile with the performance schema:
  @verbatim ./configure --with-perfschema @endverbatim

  The implementation of all the compiling options is located in
  @verbatim ./storage/perfschema/plug.in @endverbatim

  @subsection INT_STARTUP Server startup interface

  The server startup interface consists of the "./mysqld ..."
  command line used to start the server.
  When the performance schema is compiled in the server binary,
  extra command line options are available.

  These extra start options allow the DBA to:
  - enable or disable the performance schema
  - specify some sizing parameters.

  To see help for the performance schema startup options, see:
  @verbatim ./sql/mysqld --verbose --help  @endverbatim

  The implementation of all the startup options is located in
  @verbatim ./sql/mysqld.cc, my_long_options[] @endverbatim

  @subsection INT_BOOTSTRAP Server bootstrap interface

  The bootstrap interface is a private interface exposed by
  the performance schema, and used by the SQL layer.
  Its role is to advertise all the SQL tables natively
  supported by the performance schema to the SQL server.
  The code consists of creating MySQL tables for the
  performance schema itself, and is used in './mysql --bootstrap'
  mode when a server is installed.

  The implementation of the database creation script is located in
  @verbatim ./scripts/mysql_system_tables.sql @endverbatim

  @subsection INT_CONFIG Runtime configuration interface

  When the performance schema is used at runtime, various configuration
  parameters can be used to specify what kind of data is collected,
  what kind of aggregations are computed, what kind of timers are used,
  what events are timed, etc.

  For all these capabilities, not a single statement or special syntax
  was introduced in the parser.
  Instead of new SQL statements, the interface consists of DML
  (SELECT, INSERT, UPDATE, DELETE) against special "SETUP" tables.

  For example:
  @verbatim mysql> update performance_schema.SETUP_INSTRUMENTS
    set ENABLED='YES', TIMED='YES';
  Query OK, 234 rows affected (0.00 sec)
  Rows matched: 234  Changed: 234  Warnings: 0 @endverbatim

  @subsection INT_STATUS Internal audit interface

  The internal audit interface is provided to the DBA to inspect if the
  performance schema code itself is functioning properly.
  This interface is necessary because a failure caused while
  instrumenting code in the server should not cause failures in the
  MySQL server itself, so that the performance schema implementation
  never raises errors during runtime execution.

  This auditing interface consists of:
  @verbatim SHOW ENGINE PERFORMANCE_SCHEMA STATUS; @endverbatim
  It displays data related to the memory usage of the performance schema,
  as well as statistics about lost events, if any.

  The SHOW STATUS command is implemented in
  @verbatim ./storage/perfschema/pfs_engine_table.cc @endverbatim

  @subsection INT_QUERY Query interface

  The query interface is used to query the internal state of a running server.
  It is provided as SQL tables.

  For example:
  @verbatim mysql> select * from performance_schema.EVENTS_WAITS_CURRENT;
  @endverbatim

  @section DESIGN_PRINCIPLES Design principles

  @subsection PRINCIPLE_BEHAVIOR No behavior changes

  The primary goal of the performance schema is to measure (instrument) the
  execution of the server. A good measure should not cause any change
  in behavior.

  To achieve this, the overall design of the performance schema complies
  with the following very severe design constraints:

  The parser is unchanged. There are no new keywords, no new statements.
  This guarantees that existing applications will run the same way with or
  without the performance schema.

  All the instrumentation points return "void", there are no error codes.
  Even if the performance schema internally fails, execution of the server
  code will proceed.

  None of the instrumentation points allocate memory.
  All the memory used by the performance schema is pre-allocated at startup,
  and is considered "static" during the server life time.

  None of the instrumentation points use any pthread_mutex, pthread_rwlock,
  or pthread_cond (or platform equivalents).
  Executing the instrumentation point should not cause thread scheduling to
  change in the server.

  In other words, the implementation of the instrumentation points,
  including all the code called by the instrumentation points, is:
  - malloc free
  - mutex free
  - rwlock free

  TODO: All the code located in storage/perfschema is malloc free,
  but unfortunately the usage of LF_HASH introduces some memory allocation.
  This should be revised if possible, to use a lock-free,
  malloc-free hash code table.

  @subsection PRINCIPLE_PERFORMANCE No performance hit

  The instrumentation of the server should be as fast as possible.
  In cases when there are choices between:
  - doing some processing when recording the performance data
  in the instrumentation,
  - doing some processing when retrieving the performance data,

  priority is given in the design to make the instrumentation faster,
  pushing some complexity to data retrieval.

  As a result, some parts of the design, related to:
  - the setup code path,
  - the query code path,

  might appear to be sub-optimal.

  The criterion used here is to optimize primarily the critical path (data
  collection), possibly at the expense of non-critical code paths.

  @subsection PRINCIPLE_NOT_INTRUSIVE Unintrusive instrumentation

  For the performance schema in general to be successful, the barrier
  of entry for a developer should be low, so it's easy to instrument code.

  In particular, the instrumentation interface:
  - is available for C and C++ code (so it's a C interface),
  - does not require parameters that the calling code can't easily provide,
  - supports partial instrumentation (for example, instrumenting mutexes does
  not require that every mutex is instrumented)

  @subsection PRINCIPLE_EXTENDABLE Extendable instrumentation

  As the content of the performance schema improves,
  with more tables exposed and more data collected,
  the instrumentation interface will also be augmented
  to support instrumenting new concepts.
  Existing instrumentations should not be affected when additional
  instrumentation is made available, and making a new instrumentation
  available should not require existing instrumented code to support it.

  @subsection PRINCIPLE_VERSIONED Versioned instrumentation

  Given that the instrumentation offered by the performance schema will
  be augmented with time, when more features are implemented,
  the interface itself should be versioned, to keep compatibility
  with previous instrumented code.

  For example, after both plugin-A and plugin-B have been instrumented for
  mutexes, read write locks and conditions, using the instrumentation
  interface, we can anticipate that the instrumentation interface
  is expanded to support file based operations.

  Plugin-A, a file based storage engine, will most likely use the expanded
  interface and instrument its file usage, using the version 2
  interface, while Plugin-B, a network based storage engine, will not change
  its code and not release a new binary.

  When later the instrumentation interface is expanded to support network
  based operations (which will define interface version 3), the Plugin-B code
  can then be changed to make use of it.

  Note, this is just an example to illustrate the design concept here.
  Both mutexes and file instrumentation are already available
  since version 1 of the instrumentation interface.

  @subsection PRINCIPLE_DEPLOYMENT Easy deployment

  Internally, we might want every plugin implementation to upgrade the
  instrumented code to the latest available, but this will cause additional
  work and this is not practical if the code change is monolithic.

  Externally, for third party plugin implementors, asking implementors to
  always stay aligned to the latest instrumentation and make new releases,
  even when the change does not provide new functionality for them,
  is a bad idea.

  For example, requiring a network based engine to re-release because the
  instrumentation interface changed for file based operations, will create
  too many deployment issues.

  So, the performance schema implementation must support concurrently,
  in the same deployment, multiple versions of the instrumentation
  interface, and ensure binary compatibility with each version.

  In addition to this, the performance schema can be included or excluded
  from the server binary, using build time configuration options.

  Regardless, the following types of deployment are valid:
  - a server supporting the performance schema + a storage engine
  that is not instrumented
  - a server not supporting the performance schema + a storage engine
  that is instrumented
*/

/**
  @page PAGE_INSTRUMENTATION_INTERFACE
  Performance schema: instrumentation interface page.
  MySQL performance schema instrumentation interface.

  @section INTRO Introduction

  The instrumentation interface consist of two layers:
  - a raw ABI (Application Binary Interface) layer, that exposes the primitive
  instrumentation functions exported by the performance schema instrumentation
  - an API (Application Programing Interface) layer,
  that provides many helpers for a developer instrumenting some code,
  to make the instrumentation as easy as possible.

  The ABI layer consists of:
@code
#include "mysql/psi/psi.h"
@endcode

  The API layer consists of:
@code
#include "mysql/psi/mutex_mutex.h"
#include "mysql/psi/mutex_file.h"
@endcode

  The first helper is for mutexes, rwlocks and conditions,
  the second for file io.

  The API layer exposes C macros and typedefs which will expand:
  - either to non-instrumented code, when compiled without the performance
  schema instrumentation
  - or to instrumented code, that will issue the raw calls to the ABI layer
  so that the implementation can collect data.

  Note that all the names introduced (for example, @c mysql_mutex_lock) do not
  collide with any other namespace.
  In particular, the macro @c mysql_mutex_lock is on purpose not named
  @c pthread_mutex_lock.
  This is to:
  - avoid overloading @c pthread_mutex_lock with yet another macro,
  which is dangerous as it can affect user code and pollute
  the end-user namespace.
  - allow the developer instrumenting code to selectively instrument
  some code but not all.

  @section PRINCIPLES Design principles

  The ABI part is designed as a facade, that exposes basic primitives.
  The expectation is that each primitive will be very stable over time,
  but the list will constantly grow when more instruments are supported.
  To support binary compatibility with plugins compiled with a different
  version of the instrumentation, the ABI itself is versioned
  (see @c PSI_v1, @c PSI_v2).

  For a given instrumentation point in the API, the basic coding pattern
  used is:
  - (a) If the performance schema is not initialized, do nothing
  - (b) If the object acted upon is not instrumented, do nothing
  - (c) otherwise, notify the performance schema of the operation
  about to be performed.

  The implementation of the instrumentation interface can:
  - decide that it is not interested by the event, and return NULL.
  In this context, 'interested' means whether the instrumentation for
  this object + event is turned on in the performance schema configuration
  (the SETUP_ tables).
  - decide that this event is to be instrumented.
  In this case, the instrumentation returns an opaque pointer,
  that acts as a listener.

  If a listener is returned, the instrumentation point then:
  - (d) invokes the "start" event method
  - (e) executes the instrumented code.
  - (f) invokes the "end" event method.

  If no listener is returned, only the instrumented code (e) is invoked.

  The following code fragment is annotated to show how in detail this pattern
  in implemented, when the instrumentation is compiled in:

@verbatim
static inline int mysql_mutex_lock(
  mysql_mutex_t *that, myf flags, const char *src_file, uint src_line)
{
  int result;
  struct PSI_mutex_locker *locker= NULL;

  ...... (a) .......... (b)
  if (PSI_server && that->m_psi)

  .......................... (c)
    if ((locker= PSI_server->get_thread_mutex_locker(that->m_psi,
                                                     PSI_MUTEX_LOCK)))

  ............... (d)
      PSI_server->start_mutex_wait(locker, src_file, src_line);

  ........ (e)
  result= pthread_mutex_lock(&that->m_mutex);

  if (locker)

  ............. (f)
    PSI_server->end_mutex_wait(locker, result);

  return result;
}
@endverbatim

  When the performance schema instrumentation is not compiled in,
  the code becomes simply a wrapper, expanded in line by the compiler:

@verbatim
static inline int mysql_mutex_lock(...)
{
  int result;

  ........ (e)
  result= pthread_mutex_lock(&that->m_mutex);

  return result;
}
@endverbatim
*/

/**
  @page PAGE_AGGREGATES Performance schema: the aggregates page.
  Performance schema aggregates.

  @section INTRO Introduction

  Aggregates tables are tables that can be formally defined as
  SELECT ... from EVENTS_WAITS_HISTORY_INFINITE ... group by 'group clause'.

  Each group clause defines a different kind of aggregate, and corresponds to
  a different table exposed by the performance schema.

  Aggregates can be either:
  - computed on the fly,
  - computed on demand, based on other available data.

  'EVENTS_WAITS_HISTORY_INFINITE' is a table that does not exist,
  the best approximation is EVENTS_WAITS_HISTORY_LONG.
  Aggregates computed on the fly in fact are based on EVENTS_WAITS_CURRENT,
  while aggregates computed on demand are based on other
  EVENTS_WAITS_SUMMARY_BY_xxx tables.

  To better understand the implementation itself, a bit of math is
  required first, to understand the model behind the code:
  the code is deceptively simple, the real complexity resides
  in the flyweight of pointers between various performance schema buffers.

  @section DIMENSION Concept of dimension

  An event measured by the instrumentation has many attributes.
  An event is represented as a data point P(x1, x2, ..., xN),
  where each x_i coordinate represents a given attribute value.

  Examples of attributes are:
  - the time waited
  - the object waited on
  - the instrument waited on
  - the thread that waited
  - the operation performed
  - per object or per operation additional attributes, such as spins,
  number of bytes, etc.

  Computing an aggregate per thread is fundamentally different from
  computing an aggregate by instrument, so the "_BY_THREAD" and
  "_BY_EVENT_NAME" aggregates are different dimensions,
  operating on different x_i and x_j coordinates.
  These aggregates are "orthogonal".

  @section PROJECTION Concept of projection

  A given x_i attribute value can convey either just one basic information,
  such as a number of bytes, or can convey implied information,
  such as an object fully qualified name.

  For example, from the value "test.t1", the name of the object schema
  "test" can be separated from the object name "t1", so that now aggregates
  by object schema can be implemented.

  In math terms, that corresponds to defining a function:
  F_i (x): x --> y
  Applying this function to our point P gives another point P':

  F_i (P):
  P(x1, x2, ..., x{i-1}, x_i, x{i+1}, ..., x_N
  --> P' (x1, x2, ..., x{i-1}, f_i(x_i), x{i+1}, ..., x_N)

  That function defines in fact an aggregate !
  In SQL terms, this aggregate would look like the following table:

@verbatim
  CREATE VIEW EVENTS_WAITS_SUMMARY_BY_Func_i AS
  SELECT col_1, col_2, ..., col_{i-1},
         Func_i(col_i),
         COUNT(col_i),
         MIN(col_i), AVG(col_i), MAX(col_i), -- if col_i is a numeric value
         col_{i+1}, ..., col_N
         FROM EVENTS_WAITS_HISTORY_INFINITE
         group by col_1, col_2, ..., col_{i-1}, col{i+1}, ..., col_N.
@endverbatim

  Note that not all columns have to be included,
  in particular some columns that are dependent on the x_i column should
  be removed, so that in practice, MySQL's aggregation method tends to
  remove many attributes at each aggregation steps.

  For example, when aggregating wait events by object instances,
  - the wait_time and number_of_bytes can be summed,
  and sum(wait_time) now becomes an object instance attribute.
  - the source, timer_start, timer_end columns are not in the
  _BY_INSTANCE table, because these attributes are only
  meaningful for a wait.

  @section COMPOSITION Concept of composition

  Now, the "test.t1" --> "test" example was purely theory,
  just to explain the concept, and does not lead very far.
  Let's look at a more interesting example of data that can be derived
  from the row event.

  An event creates a transient object, PFS_wait_locker, per operation.
  This object's life cycle is extremely short: it's created just
  before the start_wait() instrumentation call, and is destroyed in
  the end_wait() call.

  The wait locker itself contains a pointer to the object instance
  waited on.
  That allows to implement a wait_locker --> object instance projection,
  with m_target.
  The object instance life cycle depends on _init and _destroy calls
  from the code, such as mysql_mutex_init()
  and mysql_mutex_destroy() for a mutex.

  The object instance waited on contains a pointer to the object class,
  which is represented by the instrument name.
  That allows to implement an object instance --> object class projection.
  The object class life cycle is permanent, as instruments are loaded in
  the server and never removed.

  The object class is named in such a way
  (for example, "wait/sync/mutex/sql/LOCK_open",
  "wait/io/file/maria/data_file) that the component ("sql", "maria")
  that it belongs to can be inferred.
  That allows to implement an object class --> server component projection.

  Back to math again, we have, for example for mutexes:

  F1 (l) : PFS_wait_locker l --> PFS_mutex m = l->m_target.m_mutex

  F1_to_2 (m) : PFS_mutex m --> PFS_mutex_class i = m->m_class

  F2_to_3 (i) : PFS_mutex_class i --> const char *component =
                                        substring(i->m_name, ...)

  Per components aggregates are not implemented, this is just an illustration.

  F1 alone defines this aggregate:

  EVENTS_WAITS_HISTORY_INFINITE --> EVENTS_WAITS_SUMMARY_BY_INSTANCE
  (or MUTEX_INSTANCE)

  F1_to_2 alone could define this aggregate:

  EVENTS_WAITS_SUMMARY_BY_INSTANCE --> EVENTS_WAITS_SUMMARY_BY_EVENT_NAME

  Alternatively, using function composition, with
  F2 = F1_to_2 o F1, F2 defines:

  EVENTS_WAITS_HISTORY_INFINITE --> EVENTS_WAITS_SUMMARY_BY_EVENT_NAME

  Likewise, F_2_to_3 defines:

  EVENTS_WAITS_SUMMARY_BY_EVENT_NAME --> EVENTS_WAITS_SUMMARY_BY_COMPONENT

  and F3 = F_2_to_3 o F_1_to_2 o F1 defines:

  EVENTS_WAITS_HISTORY_INFINITE --> EVENTS_WAITS_SUMMARY_BY_COMPONENT

  What has all this to do with the code ?

  Function composition such as F_2_to_3 o F_1_to_2 o F1 is implemented
  as PFS_single_stat_chain, where each link in the chain represents
  an individual F_{i}_to_{i+1} aggregation step.

  A single call to aggregate_single_stat_chain() updates all the tables
  described in the statistics chain.

  @section STAT_CHAIN Statistics chains

  Statistics chains are only used for on the fly aggregates,
  and are therefore all based initially on the '_CURRENT' base table that
  contains the data recorded.
  The following table aggregates are implemented with a statistics chain:

  EVENTS_WAITS_CURRENT --> EVENTS_WAITS_SUMMARY_BY_INSTANCE
  --> EVENTS_WAITS_SUMMARY_BY_EVENT_NAME

  This relationship is between classes.

  In terms of object instances, or records, this chain is implemented
  as a flyweight.

  For example, assuming the following scenario:
  - A mutex class "M" is instrumented, the instrument name
  is "wait/sync/mutex/sql/M"
  - This mutex instrument has been instantiated twice,
  mutex instances are noted M-1 and M-2
  - Threads T-A and T-B are locking mutex instance M-1
  - Threads T-C and T-D are locking mutex instance M-2

  The performance schema will record the following data:
  - EVENTS_WAITS_CURRENT has 4 rows, one for each mutex locker
  - EVENTS_WAITS_SUMMARY_BY_INSTANCE shows 2 rows, for M-1 and M-2
  - EVENTS_WAITS_SUMMARY_BY_EVENT_NAME shows 1 row, for M

  The graph of structures will look like:

@verbatim
  PFS_wait_locker (T-A, M-1) ----------
                                      |
                                      v
                                 PFS_mutex (M-1)
                                 - m_wait_stat    ------------
                                      ^                      |
                                      |                      |
  PFS_wait_locker (T-B, M-1) ----------                      |
                                                             v
                                                        PFS_mutex_class (M)
                                                        - m_wait_stat
  PFS_wait_locker (T-C, M-2) ----------                      ^
                                      |                      |
                                      v                      |
                                 PFS_mutex (M-2)             |
                                 - m_wait_stat    ------------
                                      ^
                                      |
  PFS_wait_locker (T-D, M-2) ----------

            ||                        ||                     ||
            ||                        ||                     ||
            vv                        vv                     vv

  EVENTS_WAITS_CURRENT ..._SUMMARY_BY_INSTANCE ..._SUMMARY_BY_EVENT_NAME
@endverbatim

  @section ON_THE_FLY On the fly aggregates

  'On the fly' aggregates are computed during the code execution.
  This is necessary because the data the aggregate is based on is volatile,
  and can not be kept indefinitely.

  @section HIGHER_LEVEL Higher level aggregates

  Note: no higher level aggregate is implemented yet,
  this section is a place holder.
*/

/**
  @defgroup Performance_schema Performance Schema
  The performance schema component.
  For details, see the
  @ref PAGE_PERFORMANCE_SCHEMA "performance schema main page".

  @defgroup Performance_schema_implementation Performance Schema Implementation
  @ingroup Performance_schema

  @defgroup Performance_schema_tables Performance Schema Tables
  @ingroup Performance_schema_implementation
*/

pthread_key(PFS_thread*, THR_PFS);
bool THR_PFS_initialized= false;

static enum_operation_type mutex_operation_map[]=
{
  OPERATION_TYPE_LOCK,
  OPERATION_TYPE_TRYLOCK
};

static enum_operation_type rwlock_operation_map[]=
{
  OPERATION_TYPE_READLOCK,
  OPERATION_TYPE_WRITELOCK,
  OPERATION_TYPE_TRYREADLOCK,
  OPERATION_TYPE_TRYWRITELOCK
};

static enum_operation_type cond_operation_map[]=
{
  OPERATION_TYPE_WAIT,
  OPERATION_TYPE_TIMEDWAIT
};

/**
  Conversion map from PSI_file_operation to enum_operation_type.
  Indexed by enum PSI_file_operation.
*/
static enum_operation_type file_operation_map[]=
{
  OPERATION_TYPE_FILECREATE,
  OPERATION_TYPE_FILECREATETMP,
  OPERATION_TYPE_FILEOPEN,
  OPERATION_TYPE_FILESTREAMOPEN,
  OPERATION_TYPE_FILECLOSE,
  OPERATION_TYPE_FILESTREAMCLOSE,
  OPERATION_TYPE_FILEREAD,
  OPERATION_TYPE_FILEWRITE,
  OPERATION_TYPE_FILESEEK,
  OPERATION_TYPE_FILETELL,
  OPERATION_TYPE_FILEFLUSH,
  OPERATION_TYPE_FILESTAT,
  OPERATION_TYPE_FILEFSTAT,
  OPERATION_TYPE_FILECHSIZE,
  OPERATION_TYPE_FILEDELETE,
  OPERATION_TYPE_FILERENAME,
  OPERATION_TYPE_FILESYNC
};

/**
  Build the prefix name of a class of instruments in a category.
  For example, this function builds the string 'wait/sync/mutex/sql/' from
  a prefix 'wait/sync/mutex' and a category 'sql'.
  This prefix is used later to build each instrument name, such as
  'wait/sync/mutex/sql/LOCK_open'.
  @param prefix               Prefix for this class of instruments
  @param category             Category name
  @param [out] output         Buffer of length PFS_MAX_INFO_NAME_LENGTH.
  @param [out] output_length  Length of the resulting output string.
  @return 0 for success, non zero for errors
*/
static int build_prefix(const LEX_STRING *prefix, const char *category,
                        char *output, int *output_length)
{
  int len= strlen(category);
  char *out_ptr= output;
  int prefix_length= prefix->length;

  if (unlikely((prefix_length + len + 1) >=
               PFS_MAX_FULL_PREFIX_NAME_LENGTH))
  {
    pfs_print_error("build_prefix: prefix+category is too long <%s> <%s>\n",
                    prefix->str, category);
    return 1;
  }

  if (unlikely(strchr(category, '/') != NULL))
  {
    pfs_print_error("build_prefix: invalid category <%s>\n",
                    category);
    return 1;
  }

  /* output = prefix + category + '/' */
  memcpy(out_ptr, prefix->str, prefix_length);
  out_ptr+= prefix_length;
  memcpy(out_ptr, category, len);
  out_ptr+= len;
  *out_ptr= '/';
  out_ptr++;
  *output_length= out_ptr - output;

  return 0;
}

#define REGISTER_BODY_V1(KEY_T, PREFIX, REGISTER_FUNC)                \
  KEY_T key;                                                          \
  char formatted_name[PFS_MAX_INFO_NAME_LENGTH];                      \
  int prefix_length;                                                  \
  int len;                                                            \
  int full_length;                                                    \
                                                                      \
  DBUG_ASSERT(category != NULL);                                      \
  DBUG_ASSERT(info != NULL);                                          \
  if (unlikely(build_prefix(&PREFIX, category,                        \
                   formatted_name, &prefix_length)))                  \
  {                                                                   \
    for (; count>0; count--, info++)                                  \
      *(info->m_key)= 0;                                              \
    return ;                                                          \
  }                                                                   \
                                                                      \
  for (; count>0; count--, info++)                                    \
  {                                                                   \
    DBUG_ASSERT(info->m_key != NULL);                                 \
    DBUG_ASSERT(info->m_name != NULL);                                \
    len= strlen(info->m_name);                                        \
    full_length= prefix_length + len;                                 \
    if (likely(full_length <= PFS_MAX_INFO_NAME_LENGTH))              \
    {                                                                 \
      memcpy(formatted_name + prefix_length, info->m_name, len);      \
      key= REGISTER_FUNC(formatted_name, full_length, info->m_flags); \
    }                                                                 \
    else                                                              \
    {                                                                 \
      pfs_print_error("REGISTER_BODY_V1: name too long <%s> <%s>\n",  \
                      category, info->m_name);                        \
      key= 0;                                                         \
    }                                                                 \
                                                                      \
    *(info->m_key)= key;                                              \
  }                                                                   \
  return;

static void register_mutex_v1(const char *category,
                              PSI_mutex_info_v1 *info,
                              int count)
{
  REGISTER_BODY_V1(PSI_mutex_key,
                   mutex_instrument_prefix,
                   register_mutex_class)
}

static void register_rwlock_v1(const char *category,
                               PSI_rwlock_info_v1 *info,
                               int count)
{
  REGISTER_BODY_V1(PSI_rwlock_key,
                   rwlock_instrument_prefix,
                   register_rwlock_class)
}

static void register_cond_v1(const char *category,
                             PSI_cond_info_v1 *info,
                             int count)
{
  REGISTER_BODY_V1(PSI_cond_key,
                   cond_instrument_prefix,
                   register_cond_class)
}

static void register_thread_v1(const char *category,
                               PSI_thread_info_v1 *info,
                               int count)
{
  REGISTER_BODY_V1(PSI_thread_key,
                   thread_instrument_prefix,
                   register_thread_class)
}

static void register_file_v1(const char *category,
                             PSI_file_info_v1 *info,
                             int count)
{
  REGISTER_BODY_V1(PSI_file_key,
                   file_instrument_prefix,
                   register_file_class)
}

#define INIT_BODY_V1(T, KEY, ID)                                            \
  PFS_##T##_class *klass;                                                   \
  PFS_##T *pfs;                                                             \
  PFS_thread *pfs_thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS); \
  if (unlikely(pfs_thread == NULL))                                         \
    return NULL;                                                            \
  if (! pfs_thread->m_enabled)                                              \
    return NULL;                                                            \
  klass= find_##T##_class(KEY);                                             \
  if (unlikely(klass == NULL))                                              \
    return NULL;                                                            \
  if (! klass->m_enabled)                                                   \
    return NULL;                                                            \
  pfs= create_##T(klass, ID);                                               \
  return reinterpret_cast<PSI_##T *> (pfs)

static PSI_mutex*
init_mutex_v1(PSI_mutex_key key, const void *identity)
{
  INIT_BODY_V1(mutex, key, identity);
}

static void destroy_mutex_v1(PSI_mutex* mutex)
{
  PFS_mutex *pfs= reinterpret_cast<PFS_mutex*> (mutex);
  destroy_mutex(pfs);
}

static PSI_rwlock*
init_rwlock_v1(PSI_rwlock_key key, const void *identity)
{
  INIT_BODY_V1(rwlock, key, identity);
}

static void destroy_rwlock_v1(PSI_rwlock* rwlock)
{
  PFS_rwlock *pfs= reinterpret_cast<PFS_rwlock*> (rwlock);
  destroy_rwlock(pfs);
}

static PSI_cond*
init_cond_v1(PSI_cond_key key, const void *identity)
{
  INIT_BODY_V1(cond, key, identity);
}

static void destroy_cond_v1(PSI_cond* cond)
{
  PFS_cond *pfs= reinterpret_cast<PFS_cond*> (cond);
  destroy_cond(pfs);
}

static PSI_table_share*
get_table_share_v1(const char *schema_name, int schema_name_length,
                   const char *table_name, int table_name_length,
                   const void *identity)
{
#ifdef HAVE_TABLE_WAIT
  PFS_thread *pfs_thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
  if (unlikely(pfs_thread == NULL))
    return NULL;
  PFS_table_share* share;
  share= find_or_create_table_share(pfs_thread,
                                    schema_name, schema_name_length,
                                    table_name, table_name_length);
  return reinterpret_cast<PSI_table_share*> (share);
#else
  return NULL;
#endif
}

static void release_table_share_v1(PSI_table_share* share)
{
  /*
    To be implemented by WL#4895 PERFORMANCE_SCHEMA Instrumenting Table IO.
  */
}

static PSI_table*
open_table_v1(PSI_table_share *share, const void *identity)
{
  PFS_table_share *pfs_table_share=
    reinterpret_cast<PFS_table_share*> (share);
  PFS_table *pfs_table;
  DBUG_ASSERT(pfs_table_share);
  pfs_table= create_table(pfs_table_share, identity);
  return reinterpret_cast<PSI_table *> (pfs_table);
}

static void close_table_v1(PSI_table *table)
{
  PFS_table *pfs= reinterpret_cast<PFS_table*> (table);
  DBUG_ASSERT(pfs);
  destroy_table(pfs);
}

static void create_file_v1(PSI_file_key key, const char *name, File file)
{
  int index= (int) file;
  if (unlikely(index < 0))
    return;
  PFS_thread *pfs_thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
  if (unlikely(pfs_thread == NULL))
    return;
  if (! pfs_thread->m_enabled)
    return;
  PFS_file_class *klass= find_file_class(key);
  if (unlikely(klass == NULL))
    return;
  if (! klass->m_enabled)
    return;
  if (likely(index < file_handle_max))
  {
    uint len= strlen(name);
    PFS_file *pfs= find_or_create_file(pfs_thread, klass, name, len);
    file_handle_array[index]= pfs;
  }
  else
    file_handle_lost++;
}

struct PFS_spawn_thread_arg
{
  PFS_thread *m_parent_thread;
  PSI_thread_key m_child_key;
  const void *m_child_identity;
  void *(*m_user_start_routine)(void*);
  void *m_user_arg;
};

void* pfs_spawn_thread(void *arg)
{
  PFS_spawn_thread_arg *typed_arg= (PFS_spawn_thread_arg*) arg;
  void *user_arg;
  void *(*user_start_routine)(void*);

  PFS_thread *pfs;

  /* First, attach instrumentation to this newly created pthread. */
  PFS_thread_class *klass= find_thread_class(typed_arg->m_child_key);
  if (likely(klass != NULL))
    pfs= create_thread(klass, typed_arg->m_child_identity, 0);
  else
    pfs= NULL;
  my_pthread_setspecific_ptr(THR_PFS, pfs);

  /*
    Secondly, free the memory allocated in spawn_thread_v1().
    It is preferable to do this before invoking the user
    routine, to avoid memory leaks at shutdown, in case
    the server exits without waiting for this thread.
  */
  user_start_routine= typed_arg->m_user_start_routine;
  user_arg= typed_arg->m_user_arg;
  my_free(typed_arg, MYF(0));

  /* Then, execute the user code for this thread. */
  (*user_start_routine)(user_arg);

  return NULL;
}

static int spawn_thread_v1(PSI_thread_key key,
                           pthread_t *thread, const pthread_attr_t *attr,
                           void *(*start_routine)(void*), void *arg)
{
  PFS_spawn_thread_arg *psi_arg;

  /* psi_arg can not be global, and can not be a local variable. */
  psi_arg= (PFS_spawn_thread_arg*) my_malloc(sizeof(PFS_spawn_thread_arg),
                                             MYF(MY_WME));
  if (unlikely(psi_arg == NULL))
    return EAGAIN;

  psi_arg->m_parent_thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
  psi_arg->m_child_key= key;
  psi_arg->m_child_identity= (arg ? arg : thread);
  psi_arg->m_user_start_routine= start_routine;
  psi_arg->m_user_arg= arg;

  int result= pthread_create(thread, attr, pfs_spawn_thread, psi_arg);
  if (unlikely(result != 0))
    my_free(psi_arg, MYF(0));
  return result;
}

static PSI_thread*
new_thread_v1(PSI_thread_key key, const void *identity, ulong thread_id)
{
  PFS_thread *pfs;

  PFS_thread_class *klass= find_thread_class(key);
  if (likely(klass != NULL))
    pfs= create_thread(klass, identity, thread_id);
  else
    pfs= NULL;

  return reinterpret_cast<PSI_thread*> (pfs);
}

static void set_thread_id_v1(PSI_thread *thread, unsigned long id)
{
  DBUG_ASSERT(thread);
  PFS_thread *pfs= reinterpret_cast<PFS_thread*> (thread);
  pfs->m_thread_id= id;
}

static PSI_thread*
get_thread_v1(void)
{
  PFS_thread *pfs= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
  return reinterpret_cast<PSI_thread*> (pfs);
}

static void set_thread_v1(PSI_thread* thread)
{
  PFS_thread *pfs= reinterpret_cast<PFS_thread*> (thread);
  my_pthread_setspecific_ptr(THR_PFS, pfs);
}

static void delete_current_thread_v1(void)
{
  PFS_thread *thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
  if (thread != NULL)
  {
    my_pthread_setspecific_ptr(THR_PFS, NULL);
    destroy_thread(thread);
  }
}

static PSI_mutex_locker*
get_thread_mutex_locker_v1(PSI_mutex *mutex, PSI_mutex_operation op)
{
  PFS_mutex *pfs_mutex= reinterpret_cast<PFS_mutex*> (mutex);
  DBUG_ASSERT((int) op >= 0);
  DBUG_ASSERT((uint) op < array_elements(mutex_operation_map));
  DBUG_ASSERT(pfs_mutex != NULL);
  DBUG_ASSERT(pfs_mutex->m_class != NULL);
  if (! flag_events_waits_current)
    return NULL;
  if (! pfs_mutex->m_class->m_enabled)
    return NULL;
  PFS_thread *pfs_thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
  if (unlikely(pfs_thread == NULL))
    return NULL;
  if (! pfs_thread->m_enabled)
    return NULL;
  if (unlikely(pfs_thread->m_wait_locker_count >= LOCKER_STACK_SIZE))
  {
    locker_lost++;
    return NULL;
  }
  PFS_wait_locker *pfs_locker= &pfs_thread->m_wait_locker_stack
    [pfs_thread->m_wait_locker_count];
  pfs_locker->m_waits_current.m_wait_class= NO_WAIT_CLASS;

  pfs_locker->m_target.m_mutex= pfs_mutex;
  pfs_locker->m_waits_current.m_thread= pfs_thread;
  pfs_locker->m_waits_current.m_class= pfs_mutex->m_class;
  if (pfs_mutex->m_class->m_timed)
  {
    pfs_locker->m_timer_name= wait_timer;
    pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_STARTING;
  }
  else
    pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_UNTIMED;
  pfs_locker->m_waits_current.m_object_instance_addr= pfs_mutex->m_identity;
  pfs_locker->m_waits_current.m_event_id= pfs_thread->m_event_id++;
  pfs_locker->m_waits_current.m_operation= mutex_operation_map[(int) op];
  pfs_locker->m_waits_current.m_wait_class= WAIT_CLASS_MUTEX;

  pfs_thread->m_wait_locker_count++;
  return reinterpret_cast<PSI_mutex_locker*> (pfs_locker);
}

static PSI_rwlock_locker*
get_thread_rwlock_locker_v1(PSI_rwlock *rwlock, PSI_rwlock_operation op)
{
  PFS_rwlock *pfs_rwlock= reinterpret_cast<PFS_rwlock*> (rwlock);
  DBUG_ASSERT(static_cast<int> (op) >= 0);
  DBUG_ASSERT(static_cast<uint> (op) < array_elements(rwlock_operation_map));
  DBUG_ASSERT(pfs_rwlock != NULL);
  DBUG_ASSERT(pfs_rwlock->m_class != NULL);
  if (! flag_events_waits_current)
    return NULL;
  if (! pfs_rwlock->m_class->m_enabled)
    return NULL;
  PFS_thread *pfs_thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
  if (unlikely(pfs_thread == NULL))
    return NULL;
  if (! pfs_thread->m_enabled)
    return NULL;
  if (unlikely(pfs_thread->m_wait_locker_count >= LOCKER_STACK_SIZE))
  {
    locker_lost++;
    return NULL;
  }
  PFS_wait_locker *pfs_locker= &pfs_thread->m_wait_locker_stack
    [pfs_thread->m_wait_locker_count];
  pfs_locker->m_waits_current.m_wait_class= NO_WAIT_CLASS;

  pfs_locker->m_target.m_rwlock= pfs_rwlock;
  pfs_locker->m_waits_current.m_thread= pfs_thread;
  pfs_locker->m_waits_current.m_class= pfs_rwlock->m_class;
  if (pfs_rwlock->m_class->m_timed)
  {
    pfs_locker->m_timer_name= wait_timer;
    pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_STARTING;
  }
  else
    pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_UNTIMED;
  pfs_locker->m_waits_current.m_object_instance_addr= pfs_rwlock->m_identity;
  pfs_locker->m_waits_current.m_event_id= pfs_thread->m_event_id++;
  pfs_locker->m_waits_current.m_operation=
    rwlock_operation_map[static_cast<int> (op)];
  pfs_locker->m_waits_current.m_wait_class= WAIT_CLASS_RWLOCK;

  pfs_thread->m_wait_locker_count++;
  return reinterpret_cast<PSI_rwlock_locker*> (pfs_locker);
}

static PSI_cond_locker*
get_thread_cond_locker_v1(PSI_cond *cond, PSI_mutex * /* unused: mutex */,
                          PSI_cond_operation op)
{
  /*
    Note about the unused PSI_mutex *mutex parameter:
    In the pthread library, a call to pthread_cond_wait()
    causes an unlock() + lock() on the mutex associated with the condition.
    This mutex operation is not instrumented, so the mutex will still
    appear as locked when a thread is waiting on a condition.
    This has no impact now, as unlock_mutex() is not recording events.
    When unlock_mutex() is implemented by later work logs,
    this parameter here will be used to adjust the mutex state,
    in start_cond_wait_v1() and end_cond_wait_v1().
  */
  PFS_cond *pfs_cond= reinterpret_cast<PFS_cond*> (cond);
  DBUG_ASSERT(static_cast<int> (op) >= 0);
  DBUG_ASSERT(static_cast<uint> (op) < array_elements(cond_operation_map));
  DBUG_ASSERT(pfs_cond != NULL);
  DBUG_ASSERT(pfs_cond->m_class != NULL);
  if (! flag_events_waits_current)
    return NULL;
  if (! pfs_cond->m_class->m_enabled)
    return NULL;
  PFS_thread *pfs_thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
  if (unlikely(pfs_thread == NULL))
    return NULL;
  if (! pfs_thread->m_enabled)
    return NULL;
  if (unlikely(pfs_thread->m_wait_locker_count >= LOCKER_STACK_SIZE))
  {
    locker_lost++;
    return NULL;
  }
  PFS_wait_locker *pfs_locker= &pfs_thread->m_wait_locker_stack
    [pfs_thread->m_wait_locker_count];
  pfs_locker->m_waits_current.m_wait_class= NO_WAIT_CLASS;

  pfs_locker->m_target.m_cond= pfs_cond;
  pfs_locker->m_waits_current.m_thread= pfs_thread;
  pfs_locker->m_waits_current.m_class= pfs_cond->m_class;
  if (pfs_cond->m_class->m_timed)
  {
    pfs_locker->m_timer_name= wait_timer;
    pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_STARTING;
  }
  else
    pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_UNTIMED;
  pfs_locker->m_waits_current.m_object_instance_addr= pfs_cond->m_identity;
  pfs_locker->m_waits_current.m_event_id= pfs_thread->m_event_id++;
  pfs_locker->m_waits_current.m_operation=
    cond_operation_map[static_cast<int> (op)];
  pfs_locker->m_waits_current.m_wait_class= WAIT_CLASS_COND;

  pfs_thread->m_wait_locker_count++;
  return reinterpret_cast<PSI_cond_locker*> (pfs_locker);
}

static PSI_table_locker*
get_thread_table_locker_v1(PSI_table *table)
{
  PFS_table *pfs_table= reinterpret_cast<PFS_table*> (table);
  DBUG_ASSERT(pfs_table != NULL);
  DBUG_ASSERT(pfs_table->m_share != NULL);
  if (! flag_events_waits_current)
    return NULL;
  if (! pfs_table->m_share->m_enabled)
    return NULL;
  PFS_thread *pfs_thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
  if (unlikely(pfs_thread == NULL))
    return NULL;
  if (! pfs_thread->m_enabled)
    return NULL;
  if (unlikely(pfs_thread->m_wait_locker_count >= LOCKER_STACK_SIZE))
  {
    locker_lost++;
    return NULL;
  }
  PFS_wait_locker *pfs_locker= &pfs_thread->m_wait_locker_stack
    [pfs_thread->m_wait_locker_count];
  pfs_locker->m_waits_current.m_wait_class= NO_WAIT_CLASS;

  pfs_locker->m_target.m_table= pfs_table;
  pfs_locker->m_waits_current.m_thread= pfs_thread;
  pfs_locker->m_waits_current.m_class= &global_table_class;
  if (pfs_table->m_share->m_timed)
  {
    pfs_locker->m_timer_name= wait_timer;
    pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_STARTING;
  }
  else
    pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_UNTIMED;
  pfs_locker->m_waits_current.m_object_instance_addr= pfs_table->m_identity;
  pfs_locker->m_waits_current.m_event_id= pfs_thread->m_event_id++;
  pfs_locker->m_waits_current.m_wait_class= WAIT_CLASS_TABLE;

  pfs_thread->m_wait_locker_count++;
  return reinterpret_cast<PSI_table_locker*> (pfs_locker);
}

static PSI_file_locker*
get_thread_file_name_locker_v1(PSI_file_key key,
                               PSI_file_operation op,
                               const char *name, const void *identity)
{
  DBUG_ASSERT(static_cast<int> (op) >= 0);
  DBUG_ASSERT(static_cast<uint> (op) < array_elements(file_operation_map));

  if (! flag_events_waits_current)
    return NULL;
  PFS_file_class *klass= find_file_class(key);
  if (unlikely(klass == NULL))
    return NULL;
  if (! klass->m_enabled)
    return NULL;
  PFS_thread *pfs_thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
  if (unlikely(pfs_thread == NULL))
    return NULL;
  if (! pfs_thread->m_enabled)
    return NULL;
  if (unlikely(pfs_thread->m_wait_locker_count >= LOCKER_STACK_SIZE))
  {
    locker_lost++;
    return NULL;
  }
  uint len= strlen(name);
  PFS_file *pfs_file= find_or_create_file(pfs_thread, klass, name, len);
  if (unlikely(pfs_file == NULL))
    return NULL;

  PFS_wait_locker *pfs_locker= &pfs_thread->m_wait_locker_stack
    [pfs_thread->m_wait_locker_count];
  pfs_locker->m_waits_current.m_wait_class= NO_WAIT_CLASS;

  pfs_locker->m_target.m_file= pfs_file;
  pfs_locker->m_waits_current.m_thread= pfs_thread;
  pfs_locker->m_waits_current.m_class= pfs_file->m_class;
  if (pfs_file->m_class->m_timed)
  {
    pfs_locker->m_timer_name= wait_timer;
    pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_STARTING;
  }
  else
    pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_UNTIMED;
  pfs_locker->m_waits_current.m_object_instance_addr= pfs_file;
  pfs_locker->m_waits_current.m_object_name= pfs_file->m_filename;
  pfs_locker->m_waits_current.m_object_name_length=
    pfs_file->m_filename_length;
  pfs_locker->m_waits_current.m_event_id= pfs_thread->m_event_id++;
  pfs_locker->m_waits_current.m_operation=
    file_operation_map[static_cast<int> (op)];
  pfs_locker->m_waits_current.m_wait_class= WAIT_CLASS_FILE;

  pfs_thread->m_wait_locker_count++;
  return reinterpret_cast<PSI_file_locker*> (pfs_locker);
}

static PSI_file_locker*
get_thread_file_stream_locker_v1(PSI_file *file, PSI_file_operation op)
{
  PFS_file *pfs_file= reinterpret_cast<PFS_file*> (file);

  DBUG_ASSERT(static_cast<int> (op) >= 0);
  DBUG_ASSERT(static_cast<uint> (op) < array_elements(file_operation_map));
  DBUG_ASSERT(pfs_file != NULL);
  DBUG_ASSERT(pfs_file->m_class != NULL);

  if (! flag_events_waits_current)
    return NULL;
  if (! pfs_file->m_class->m_enabled)
    return NULL;
  PFS_thread *pfs_thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
  if (unlikely(pfs_thread == NULL))
    return NULL;
  if (! pfs_thread->m_enabled)
    return NULL;
  if (unlikely(pfs_thread->m_wait_locker_count >= LOCKER_STACK_SIZE))
  {
    locker_lost++;
    return NULL;
  }
  PFS_wait_locker *pfs_locker= &pfs_thread->m_wait_locker_stack
    [pfs_thread->m_wait_locker_count];
  pfs_locker->m_waits_current.m_wait_class= NO_WAIT_CLASS;

  pfs_locker->m_target.m_file= pfs_file;
  pfs_locker->m_waits_current.m_thread= pfs_thread;
  pfs_locker->m_waits_current.m_class= pfs_file->m_class;
  if (pfs_file->m_class->m_timed)
  {
    pfs_locker->m_timer_name= wait_timer;
    pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_STARTING;
  }
  else
    pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_UNTIMED;
  pfs_locker->m_waits_current.m_object_instance_addr= pfs_file;
  pfs_locker->m_waits_current.m_object_name= pfs_file->m_filename;
  pfs_locker->m_waits_current.m_object_name_length=
    pfs_file->m_filename_length;
  pfs_locker->m_waits_current.m_event_id= pfs_thread->m_event_id++;
  pfs_locker->m_waits_current.m_operation=
    file_operation_map[static_cast<int> (op)];
  pfs_locker->m_waits_current.m_wait_class= WAIT_CLASS_FILE;

  pfs_thread->m_wait_locker_count++;
  return reinterpret_cast<PSI_file_locker*> (pfs_locker);
}

static PSI_file_locker*
get_thread_file_descriptor_locker_v1(File file, PSI_file_operation op)
{
  int index= static_cast<int> (file);

  DBUG_ASSERT(static_cast<int> (op) >= 0);
  DBUG_ASSERT(static_cast<uint> (op) < array_elements(file_operation_map));

  if (! flag_events_waits_current)
    return NULL;
  if (likely((index >= 0) && (index < file_handle_max)))
  {
    PFS_file *pfs_file= file_handle_array[index];
    if (likely(pfs_file != NULL))
    {
      PFS_thread *pfs_thread;

      /*
        We are about to close a file by descriptor number,
        and the calling code still holds the descriptor.
        Cleanup the file descriptor <--> file instrument association.
        Remove the instrumentation *before* the close to avoid race
        conditions with another thread opening a file
        (that could be given the same descriptor).
      */
      if (op == PSI_FILE_CLOSE)
        file_handle_array[index]= NULL;

      DBUG_ASSERT(pfs_file->m_class != NULL);
      if (! pfs_file->m_class->m_enabled)
        return NULL;
      pfs_thread= my_pthread_getspecific_ptr(PFS_thread*, THR_PFS);
      if (unlikely(pfs_thread == NULL))
        return NULL;
      if (! pfs_thread->m_enabled)
        return NULL;
      if (unlikely(pfs_thread->m_wait_locker_count >= LOCKER_STACK_SIZE))
      {
        locker_lost++;
        return NULL;
      }
      PFS_wait_locker *pfs_locker= &pfs_thread->m_wait_locker_stack
        [pfs_thread->m_wait_locker_count];
      pfs_locker->m_waits_current.m_wait_class= NO_WAIT_CLASS;

      pfs_locker->m_target.m_file= pfs_file;
      pfs_locker->m_waits_current.m_thread= pfs_thread;
      pfs_locker->m_waits_current.m_class= pfs_file->m_class;
      if (pfs_file->m_class->m_timed)
      {
        pfs_locker->m_timer_name= wait_timer;
        pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_STARTING;
      }
      else
        pfs_locker->m_waits_current.m_timer_state= TIMER_STATE_UNTIMED;
      pfs_locker->m_waits_current.m_object_instance_addr= pfs_file;
      pfs_locker->m_waits_current.m_object_name= pfs_file->m_filename;
      pfs_locker->m_waits_current.m_object_name_length=
        pfs_file->m_filename_length;
      pfs_locker->m_waits_current.m_event_id= pfs_thread->m_event_id++;
      pfs_locker->m_waits_current.m_operation=
        file_operation_map[static_cast<int> (op)];
      pfs_locker->m_waits_current.m_wait_class= WAIT_CLASS_FILE;

      pfs_thread->m_wait_locker_count++;
      return reinterpret_cast<PSI_file_locker*> (pfs_locker);
    }
  }
  return NULL;
}

static void unlock_mutex_v1(PSI_thread * thread, PSI_mutex *mutex)
{
  PFS_mutex *pfs_mutex= reinterpret_cast<PFS_mutex*> (mutex);
  DBUG_ASSERT(pfs_mutex != NULL);

  /*
    Note that this code is still protected by the instrumented mutex,
    and therefore is thread safe. See inline_mysql_mutex_unlock().
  */

  /* Always update the instrumented state */
  pfs_mutex->m_owner= NULL;
  pfs_mutex->m_last_locked= 0;

#ifdef LATER_WL2333
  /*
    See WL#2333: SHOW ENGINE ... LOCK STATUS.
    PFS_mutex::m_lock_stat is not exposed in user visible tables
    currently, so there is no point spending time computing it.
  */
  PFS_thread *pfs_thread= reinterpret_cast<PFS_thread*> (thread);
  DBUG_ASSERT(pfs_thread != NULL);

  if (unlikely(! flag_events_waits_current))
    return;
  if (! pfs_mutex->m_class->m_enabled)
    return;
  if (! pfs_thread->m_enabled)
    return;

  if (pfs_mutex->m_class->m_timed)
  {
    ulonglong locked_time;
    locked_time= get_timer_value(wait_timer) - pfs_mutex->m_last_locked;
    aggregate_single_stat_chain(&pfs_mutex->m_lock_stat, locked_time);
  }
#endif
}

static void unlock_rwlock_v1(PSI_thread *thread, PSI_rwlock *rwlock)
{
  PFS_rwlock *pfs_rwlock= reinterpret_cast<PFS_rwlock*> (rwlock);
  DBUG_ASSERT(pfs_rwlock != NULL);
  bool last_writer= false;
  bool last_reader= false;

  /*
    Note that this code is still protected by the instrumented rwlock,
    and therefore is:
    - thread safe for write locks
    - almost thread safe for read locks (pfs_rwlock->m_readers is unsafe).
    See inline_mysql_rwlock_unlock()
  */

  /* Always update the instrumented state */
  if (pfs_rwlock->m_writer)
  {
    /* Nominal case, a writer is unlocking. */
    last_writer= true;
    pfs_rwlock->m_writer= NULL;
    /* Reset the readers stats, they could be off */
    pfs_rwlock->m_readers= 0;
  }
  else if (likely(pfs_rwlock->m_readers > 0))
  {
    /* Nominal case, a reader is unlocking. */
    if (--(pfs_rwlock->m_readers) == 0)
      last_reader= true;
  }
  else
  {
    /*
      Edge case, we have no writer and no readers,
      on an unlock event.
      This is possible for:
      - partial instrumentation
      - instrumentation disabled at runtime,
        see when get_thread_rwlock_locker_v1() returns NULL
      No further action is taken here, the next
      write lock will put the statistics is a valid state.
    */
  }

#ifdef LATER_WL2333
  /* See WL#2333: SHOW ENGINE ... LOCK STATUS. */
  PFS_thread *pfs_thread= reinterpret_cast<PFS_thread*> (thread);
  DBUG_ASSERT(pfs_thread != NULL);

  if (unlikely(! flag_events_waits_current))
    return;
  if (! pfs_rwlock->m_class->m_enabled)
    return;
  if (! pfs_thread->m_enabled)
    return;

  ulonglong locked_time;
  if (last_writer)
  {
    if (pfs_rwlock->m_class->m_timed)
    {
      locked_time= get_timer_value(wait_timer) - pfs_rwlock->m_last_written;
      aggregate_single_stat_chain(&pfs_rwlock->m_write_lock_stat, locked_time);
    }
  }
  else if (last_reader)
  {
    if (pfs_rwlock->m_class->m_timed)
    {
      locked_time= get_timer_value(wait_timer) - pfs_rwlock->m_last_read;
      aggregate_single_stat_chain(&pfs_rwlock->m_read_lock_stat, locked_time);
    }
  }
#endif
}

static void signal_cond_v1(PSI_thread *thread, PSI_cond* cond)
{
  PFS_cond *pfs_cond= reinterpret_cast<PFS_cond*> (cond);
  DBUG_ASSERT(pfs_cond != NULL);

  pfs_cond->m_cond_stat.m_signal_count++;
}

static void broadcast_cond_v1(PSI_thread *thread, PSI_cond* cond)
{
  PFS_cond *pfs_cond= reinterpret_cast<PFS_cond*> (cond);
  DBUG_ASSERT(pfs_cond != NULL);

  pfs_cond->m_cond_stat.m_broadcast_count++;
}

static void start_mutex_wait_v1(PSI_mutex_locker* locker,
                                const char *src_file, uint src_line)
{
  PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
  DBUG_ASSERT(pfs_locker != NULL);

  PFS_events_waits *wait= &pfs_locker->m_waits_current;
  if (wait->m_timer_state == TIMER_STATE_STARTING)
  {
    wait->m_timer_start= get_timer_value(pfs_locker->m_timer_name);
    wait->m_timer_state= TIMER_STATE_STARTED;
  }
  wait->m_source_file= src_file;
  wait->m_source_line= src_line;
}

static void end_mutex_wait_v1(PSI_mutex_locker* locker, int rc)
{
  PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
  DBUG_ASSERT(pfs_locker != NULL);
  PFS_events_waits *wait= &pfs_locker->m_waits_current;

  if (wait->m_timer_state == TIMER_STATE_STARTED)
  {
    wait->m_timer_end= get_timer_value(pfs_locker->m_timer_name);
    wait->m_timer_state= TIMER_STATE_TIMED;
  }
  if (flag_events_waits_history)
    insert_events_waits_history(wait->m_thread, wait);
  if (flag_events_waits_history_long)
    insert_events_waits_history_long(wait);

  if (rc == 0)
  {
    /* Thread safe: we are protected by the instrumented mutex */
    PFS_single_stat_chain *stat;
    PFS_mutex *mutex= pfs_locker->m_target.m_mutex;
    mutex->m_owner= wait->m_thread;
    mutex->m_last_locked= wait->m_timer_end;

    ulonglong wait_time= wait->m_timer_end - wait->m_timer_start;
    aggregate_single_stat_chain(&mutex->m_wait_stat, wait_time);
    stat= find_per_thread_mutex_class_wait_stat(wait->m_thread,
                                                mutex->m_class);
   aggregate_single_stat_chain(stat, wait_time);
  }
  wait->m_thread->m_wait_locker_count--;
}

static void start_rwlock_rdwait_v1(PSI_rwlock_locker* locker,
                                   const char *src_file, uint src_line)
{
  PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
  DBUG_ASSERT(pfs_locker != NULL);

  PFS_events_waits *wait= &pfs_locker->m_waits_current;
  if (wait->m_timer_state == TIMER_STATE_STARTING)
  {
    wait->m_timer_start= get_timer_value(pfs_locker->m_timer_name);
    wait->m_timer_state= TIMER_STATE_STARTED;
  }
  wait->m_source_file= src_file;
  wait->m_source_line= src_line;
}

static void end_rwlock_rdwait_v1(PSI_rwlock_locker* locker, int rc)
{
  PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
  DBUG_ASSERT(pfs_locker != NULL);
  PFS_events_waits *wait= &pfs_locker->m_waits_current;

  if (wait->m_timer_state == TIMER_STATE_STARTED)
  {
    wait->m_timer_end= get_timer_value(pfs_locker->m_timer_name);
    wait->m_timer_state= TIMER_STATE_TIMED;
  }
  if (flag_events_waits_history)
    insert_events_waits_history(wait->m_thread, wait);
  if (flag_events_waits_history_long)
    insert_events_waits_history_long(wait);

  if (rc == 0)
  {
    /*
      Warning:
      Multiple threads can execute this section concurrently
      (since multiple readers can execute in parallel).
      The statistics generated are not safe, which is why they are
      just statistics, not facts.
    */
    PFS_single_stat_chain *stat;
    PFS_rwlock *rwlock= pfs_locker->m_target.m_rwlock;
    if (rwlock->m_readers == 0)
      rwlock->m_last_read= wait->m_timer_end;
    rwlock->m_writer= NULL;
    rwlock->m_readers++;

    ulonglong wait_time= wait->m_timer_end - wait->m_timer_start;
    aggregate_single_stat_chain(&rwlock->m_wait_stat, wait_time);
    stat= find_per_thread_rwlock_class_wait_stat(wait->m_thread,
                                                   rwlock->m_class);
    aggregate_single_stat_chain(stat, wait_time);
  }
  wait->m_thread->m_wait_locker_count--;
}

static void start_rwlock_wrwait_v1(PSI_rwlock_locker* locker,
                                   const char *src_file, uint src_line)
{
  PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
  DBUG_ASSERT(pfs_locker != NULL);

  PFS_events_waits *wait= &pfs_locker->m_waits_current;
  if (wait->m_timer_state == TIMER_STATE_STARTING)
  {
    wait->m_timer_start= get_timer_value(pfs_locker->m_timer_name);
    wait->m_timer_state= TIMER_STATE_STARTED;
  }
  wait->m_source_file= src_file;
  wait->m_source_line= src_line;
}

static void end_rwlock_wrwait_v1(PSI_rwlock_locker* locker, int rc)
{
  PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
  DBUG_ASSERT(pfs_locker != NULL);
  PFS_events_waits *wait= &pfs_locker->m_waits_current;

  if (wait->m_timer_state == TIMER_STATE_STARTED)
  {
    wait->m_timer_end= get_timer_value(pfs_locker->m_timer_name);
    wait->m_timer_state= TIMER_STATE_TIMED;
  }
  if (flag_events_waits_history)
    insert_events_waits_history(wait->m_thread, wait);
  if (flag_events_waits_history_long)
    insert_events_waits_history_long(wait);

  if (rc == 0)
  {
    /* Thread safe : we are protected by the instrumented rwlock */
    PFS_single_stat_chain *stat;
    PFS_rwlock *rwlock= pfs_locker->m_target.m_rwlock;
    rwlock->m_writer= wait->m_thread;
    rwlock->m_last_written= wait->m_timer_end;
    /* Reset the readers stats, they could be off */
    rwlock->m_readers= 0;
    rwlock->m_last_read= 0;

    ulonglong wait_time= wait->m_timer_end - wait->m_timer_start;
    aggregate_single_stat_chain(&rwlock->m_wait_stat, wait_time);
    stat= find_per_thread_rwlock_class_wait_stat(wait->m_thread,
                                                 rwlock->m_class);
    aggregate_single_stat_chain(stat, wait_time);
  }
  wait->m_thread->m_wait_locker_count--;
}

static void start_cond_wait_v1(PSI_cond_locker* locker,
                               const char *src_file, uint src_line)
{
  PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
  DBUG_ASSERT(pfs_locker != NULL);

  PFS_events_waits *wait= &pfs_locker->m_waits_current;
  if (wait->m_timer_state == TIMER_STATE_STARTING)
  {
    wait->m_timer_start= get_timer_value(pfs_locker->m_timer_name);
    wait->m_timer_state= TIMER_STATE_STARTED;
  }
  wait->m_source_file= src_file;
  wait->m_source_line= src_line;
}

static void end_cond_wait_v1(PSI_cond_locker* locker, int rc)
{
  PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
  DBUG_ASSERT(pfs_locker != NULL);
  PFS_events_waits *wait= &pfs_locker->m_waits_current;

  if (wait->m_timer_state == TIMER_STATE_STARTED)
  {
    wait->m_timer_end= get_timer_value(pfs_locker->m_timer_name);
    wait->m_timer_state= TIMER_STATE_TIMED;
  }
  if (flag_events_waits_history)
    insert_events_waits_history(wait->m_thread, wait);
  if (flag_events_waits_history_long)
    insert_events_waits_history_long(wait);

  if (rc == 0)
  {
    /*
      Not thread safe, race conditions will occur.
      A first race condition is:
      - thread 1 waits on cond A
      - thread 2 waits on cond B
      threads 1 and 2 compete when updating the same cond A
      statistics, possibly missing a min / max / sum / count.
      A second race condition is:
      - thread 1 waits on cond A
      - thread 2 destroys cond A
      - thread 2 or 3 creates cond B in the same condition slot
      thread 1 will then aggregate statistics about defunct A
      in condition B.
      This is accepted, the data will be slightly inaccurate.
    */
    PFS_single_stat_chain *stat;
    PFS_cond *cond= pfs_locker->m_target.m_cond;

    ulonglong wait_time= wait->m_timer_end - wait->m_timer_start;
    aggregate_single_stat_chain(&cond->m_wait_stat, wait_time);
    stat= find_per_thread_cond_class_wait_stat(wait->m_thread,
                                               cond->m_class);
    aggregate_single_stat_chain(stat, wait_time);
  }
  wait->m_thread->m_wait_locker_count--;
}

static void start_table_wait_v1(PSI_table_locker* locker,
                                const char *src_file, uint src_line)
{
  PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
  DBUG_ASSERT(pfs_locker != NULL);

  PFS_events_waits *wait= &pfs_locker->m_waits_current;
  if (wait->m_timer_state == TIMER_STATE_STARTING)
  {
    wait->m_timer_start= get_timer_value(pfs_locker->m_timer_name);
    wait->m_timer_state= TIMER_STATE_STARTED;
  }
  wait->m_source_file= src_file;
  wait->m_source_line= src_line;
  wait->m_operation= OPERATION_TYPE_LOCK;
  PFS_table_share *share= pfs_locker->m_target.m_table->m_share;
  wait->m_schema_name= share->m_schema_name;
  wait->m_schema_name_length= share->m_schema_name_length;
  wait->m_object_name= share->m_table_name;
  wait->m_object_name_length= share->m_table_name_length;
}

static void end_table_wait_v1(PSI_table_locker* locker)
{
  PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
  DBUG_ASSERT(pfs_locker != NULL);
  PFS_events_waits *wait= &pfs_locker->m_waits_current;

  if (wait->m_timer_state == TIMER_STATE_STARTED)
  {
    wait->m_timer_end= get_timer_value(pfs_locker->m_timer_name);
    wait->m_timer_state= TIMER_STATE_TIMED;
  }
  if (flag_events_waits_history)
    insert_events_waits_history(wait->m_thread, wait);
  if (flag_events_waits_history_long)
    insert_events_waits_history_long(wait);

  PFS_table *table= pfs_locker->m_target.m_table;
  ulonglong wait_time= wait->m_timer_end - wait->m_timer_start;
  aggregate_single_stat_chain(&table->m_wait_stat, wait_time);

  /*
    There is currently no per table and per thread aggregation.
    The number of tables in the application is arbitrary, and may be high.
    The number of slots per thread to hold aggregates is fixed,
    and is constrained by memory.
    Implementing a per thread and per table aggregate has not been
    decided yet.
    If it's implemented, it's likely that the user will have to specify,
    per table name, if the aggregate per thread is to be computed or not.
    This will mean a SETUP_ table.
  */
  wait->m_thread->m_wait_locker_count--;
}

static void start_file_wait_v1(PSI_file_locker *locker,
                               size_t count,
                               const char *src_file,
                               uint src_line);

static void end_file_wait_v1(PSI_file_locker *locker,
                             size_t count);

static PSI_file* start_file_open_wait_v1(PSI_file_locker *locker,
                                         const char *src_file,
                                         uint src_line)
{
  PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
  DBUG_ASSERT(pfs_locker != NULL);

  start_file_wait_v1(locker, 0, src_file, src_line);

  PFS_file *pfs_file= pfs_locker->m_target.m_file;
  return reinterpret_cast<PSI_file*> (pfs_file);
}

static void end_file_open_wait_v1(PSI_file_locker *locker)
{
  end_file_wait_v1(locker, 0);
}

static void end_file_open_wait_and_bind_to_descriptor_v1
  (PSI_file_locker *locker, File file)
{
  int index= (int) file;
  PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
  DBUG_ASSERT(pfs_locker != NULL);

  end_file_wait_v1(locker, 0);

  PFS_file *pfs_file= pfs_locker->m_target.m_file;
  DBUG_ASSERT(pfs_file != NULL);

  if (likely(index >= 0))
  {
    if (likely(index < file_handle_max))
      file_handle_array[index]= pfs_file;
    else
      file_handle_lost++;
  }
  else
    release_file(pfs_file);
}

static void start_file_wait_v1(PSI_file_locker *locker,
                               size_t count,
                               const char *src_file,
                               uint src_line)
{
  PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
  DBUG_ASSERT(pfs_locker != NULL);

  PFS_events_waits *wait= &pfs_locker->m_waits_current;
  if (wait->m_timer_state == TIMER_STATE_STARTING)
  {
    wait->m_timer_start= get_timer_value(pfs_locker->m_timer_name);
    wait->m_timer_state= TIMER_STATE_STARTED;
  }
  wait->m_source_file= src_file;
  wait->m_source_line= src_line;
  wait->m_number_of_bytes= count;
}

static void end_file_wait_v1(PSI_file_locker *locker,
                             size_t count)
{
  PFS_wait_locker *pfs_locker= reinterpret_cast<PFS_wait_locker*> (locker);
  DBUG_ASSERT(pfs_locker != NULL);
  PFS_events_waits *wait= &pfs_locker->m_waits_current;

  wait->m_number_of_bytes= count;
  if (wait->m_timer_state == TIMER_STATE_STARTED)
  {
    wait->m_timer_end= get_timer_value(pfs_locker->m_timer_name);
    wait->m_timer_state= TIMER_STATE_TIMED;
  }
  if (flag_events_waits_history)
    insert_events_waits_history(wait->m_thread, wait);
  if (flag_events_waits_history_long)
    insert_events_waits_history_long(wait);

  PFS_single_stat_chain *stat;
  PFS_file *file= pfs_locker->m_target.m_file;

  ulonglong wait_time= wait->m_timer_end - wait->m_timer_start;
  aggregate_single_stat_chain(&file->m_wait_stat, wait_time);
  stat= find_per_thread_file_class_wait_stat(wait->m_thread,
                                             file->m_class);
  aggregate_single_stat_chain(stat, wait_time);

  PFS_file_class *klass= file->m_class;

  switch(wait->m_operation)
  {
  case OPERATION_TYPE_FILEREAD:
    file->m_file_stat.m_count_read++;
    file->m_file_stat.m_read_bytes+= count;
    klass->m_file_stat.m_count_read++;
    klass->m_file_stat.m_read_bytes+= count;
    break;
  case OPERATION_TYPE_FILEWRITE:
    file->m_file_stat.m_count_write++;
    file->m_file_stat.m_write_bytes+= count;
    klass->m_file_stat.m_count_write++;
    klass->m_file_stat.m_write_bytes+= count;
    break;
  case OPERATION_TYPE_FILECLOSE:
  case OPERATION_TYPE_FILESTREAMCLOSE:
  case OPERATION_TYPE_FILESTAT:
    release_file(pfs_locker->m_target.m_file);
    break;
  case OPERATION_TYPE_FILEDELETE:
    destroy_file(wait->m_thread, pfs_locker->m_target.m_file);
    break;
  default:
    break;
  }

  wait->m_thread->m_wait_locker_count--;
}

PSI_v1 PFS_v1=
{
  register_mutex_v1,
  register_rwlock_v1,
  register_cond_v1,
  register_thread_v1,
  register_file_v1,
  init_mutex_v1,
  destroy_mutex_v1,
  init_rwlock_v1,
  destroy_rwlock_v1,
  init_cond_v1,
  destroy_cond_v1,
  get_table_share_v1,
  release_table_share_v1,
  open_table_v1,
  close_table_v1,
  create_file_v1,
  spawn_thread_v1,
  new_thread_v1,
  set_thread_id_v1,
  get_thread_v1,
  set_thread_v1,
  delete_current_thread_v1,
  get_thread_mutex_locker_v1,
  get_thread_rwlock_locker_v1,
  get_thread_cond_locker_v1,
  get_thread_table_locker_v1,
  get_thread_file_name_locker_v1,
  get_thread_file_stream_locker_v1,
  get_thread_file_descriptor_locker_v1,
  unlock_mutex_v1,
  unlock_rwlock_v1,
  signal_cond_v1,
  broadcast_cond_v1,
  start_mutex_wait_v1,
  end_mutex_wait_v1,
  start_rwlock_rdwait_v1,
  end_rwlock_rdwait_v1,
  start_rwlock_wrwait_v1,
  end_rwlock_wrwait_v1,
  start_cond_wait_v1,
  end_cond_wait_v1,
  start_table_wait_v1,
  end_table_wait_v1,
  start_file_open_wait_v1,
  end_file_open_wait_v1,
  end_file_open_wait_and_bind_to_descriptor_v1,
  start_file_wait_v1,
  end_file_wait_v1
};

static void* get_interface(int version)
{
  switch (version)
  {
  case PSI_VERSION_1:
    return &PFS_v1;
  default:
    return NULL;
  }
}

struct PSI_bootstrap PFS_bootstrap=
{
  get_interface
};