sql_partition.cc 226 KB
Newer Older
1
/* Copyright (C) 2005, 2006 MySQL AB
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */

/*
18
  This file is a container for general functionality related
19
  to partitioning introduced in MySQL version 5.1. It contains functionality
20 21
  used by all handlers that support partitioning, such as
  the partitioning handler itself and the NDB handler.
22

unknown's avatar
unknown committed
23
  The first version was written by Mikael Ronstrom.
24 25 26 27 28

  This version supports RANGE partitioning, LIST partitioning, HASH
  partitioning and composite partitioning (hereafter called subpartitioning)
  where each RANGE/LIST partitioning is HASH partitioned. The hash function
  can either be supplied by the user or by only a list of fields (also
29
  called KEY partitioning), where the MySQL server will use an internal
30 31 32 33 34 35
  hash function.
  There are quite a few defaults that can be used as well.
*/

/* Some general useful functions */

36
#define MYSQL_LEX 1
37 38 39 40 41
#include "mysql_priv.h"
#include <errno.h>
#include <m_ctype.h>
#include "md5.h"

42
#ifdef WITH_PARTITION_STORAGE_ENGINE
unknown's avatar
unknown committed
43
#include "ha_partition.h"
44 45 46
/*
  Partition related functions declarations and some static constants;
*/
47 48
const LEX_STRING partition_keywords[]=
{
unknown's avatar
unknown committed
49 50 51 52 53 54
  { C_STRING_WITH_LEN("HASH") },
  { C_STRING_WITH_LEN("RANGE") },
  { C_STRING_WITH_LEN("LIST") }, 
  { C_STRING_WITH_LEN("KEY") },
  { C_STRING_WITH_LEN("MAXVALUE") },
  { C_STRING_WITH_LEN("LINEAR ") }
55
};
56 57 58 59 60 61 62 63
static const char *part_str= "PARTITION";
static const char *sub_str= "SUB";
static const char *by_str= "BY";
static const char *space_str= " ";
static const char *equal_str= "=";
static const char *end_paren_str= ")";
static const char *begin_paren_str= "(";
static const char *comma_str= ",";
64

unknown's avatar
unknown committed
65
int get_partition_id_list(partition_info *part_info,
66 67
                           uint32 *part_id,
                           longlong *func_value);
unknown's avatar
unknown committed
68
int get_partition_id_range(partition_info *part_info,
69 70
                            uint32 *part_id,
                            longlong *func_value);
unknown's avatar
unknown committed
71
int get_partition_id_hash_nosub(partition_info *part_info,
72 73
                                 uint32 *part_id,
                                 longlong *func_value);
unknown's avatar
unknown committed
74
int get_partition_id_key_nosub(partition_info *part_info,
75 76
                                uint32 *part_id,
                                longlong *func_value);
unknown's avatar
unknown committed
77
int get_partition_id_linear_hash_nosub(partition_info *part_info,
78 79
                                        uint32 *part_id,
                                        longlong *func_value);
unknown's avatar
unknown committed
80
int get_partition_id_linear_key_nosub(partition_info *part_info,
81 82
                                       uint32 *part_id,
                                       longlong *func_value);
unknown's avatar
unknown committed
83
int get_partition_id_range_sub_hash(partition_info *part_info,
84 85
                                     uint32 *part_id,
                                     longlong *func_value);
unknown's avatar
unknown committed
86
int get_partition_id_range_sub_key(partition_info *part_info,
87 88
                                    uint32 *part_id,
                                    longlong *func_value);
unknown's avatar
unknown committed
89
int get_partition_id_range_sub_linear_hash(partition_info *part_info,
90 91
                                            uint32 *part_id,
                                            longlong *func_value);
unknown's avatar
unknown committed
92
int get_partition_id_range_sub_linear_key(partition_info *part_info,
93 94
                                           uint32 *part_id,
                                           longlong *func_value);
unknown's avatar
unknown committed
95
int get_partition_id_list_sub_hash(partition_info *part_info,
96 97
                                    uint32 *part_id,
                                    longlong *func_value);
unknown's avatar
unknown committed
98
int get_partition_id_list_sub_key(partition_info *part_info,
99 100
                                   uint32 *part_id,
                                   longlong *func_value);
unknown's avatar
unknown committed
101
int get_partition_id_list_sub_linear_hash(partition_info *part_info,
102 103
                                           uint32 *part_id,
                                           longlong *func_value);
unknown's avatar
unknown committed
104
int get_partition_id_list_sub_linear_key(partition_info *part_info,
105 106
                                          uint32 *part_id,
                                          longlong *func_value);
107 108 109 110
uint32 get_partition_id_hash_sub(partition_info *part_info); 
uint32 get_partition_id_key_sub(partition_info *part_info); 
uint32 get_partition_id_linear_hash_sub(partition_info *part_info); 
uint32 get_partition_id_linear_key_sub(partition_info *part_info); 
unknown's avatar
unknown committed
111 112
#endif

unknown's avatar
unknown committed
113 114 115 116 117 118
static uint32 get_next_partition_via_walking(PARTITION_ITERATOR*);
static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR*);
uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter);
uint32 get_next_partition_id_list(PARTITION_ITERATOR* part_iter);
int get_part_iter_for_interval_via_mapping(partition_info *part_info,
                                           bool is_subpart,
119
                                           char *min_value, char *max_value,
unknown's avatar
unknown committed
120 121 122 123
                                           uint flags,
                                           PARTITION_ITERATOR *part_iter);
int get_part_iter_for_interval_via_walking(partition_info *part_info,
                                           bool is_subpart,
124
                                           char *min_value, char *max_value,
unknown's avatar
unknown committed
125 126 127
                                           uint flags,
                                           PARTITION_ITERATOR *part_iter);
static void set_up_range_analysis_info(partition_info *part_info);
unknown's avatar
unknown committed
128 129 130 131

/*
  A routine used by the parser to decide whether we are specifying a full
  partitioning or if only partitions to add or to split.
unknown's avatar
unknown committed
132

unknown's avatar
unknown committed
133 134 135
  SYNOPSIS
    is_partition_management()
    lex                    Reference to the lex object
unknown's avatar
unknown committed
136

unknown's avatar
unknown committed
137 138 139
  RETURN VALUE
    TRUE                   Yes, it is part of a management partition command
    FALSE                  No, not a management partition command
unknown's avatar
unknown committed
140

unknown's avatar
unknown committed
141
  DESCRIPTION
142 143
    This needs to be outside of WITH_PARTITION_STORAGE_ENGINE since it is
    used from the sql parser that doesn't have any #ifdef's
unknown's avatar
unknown committed
144 145 146 147 148 149
*/

my_bool is_partition_management(LEX *lex)
{
  return (lex->sql_command == SQLCOM_ALTER_TABLE &&
          (lex->alter_info.flags == ALTER_ADD_PARTITION ||
unknown's avatar
unknown committed
150
           lex->alter_info.flags == ALTER_REORGANIZE_PARTITION));
unknown's avatar
unknown committed
151 152
}

153
#ifdef WITH_PARTITION_STORAGE_ENGINE
unknown's avatar
unknown committed
154
/*
unknown's avatar
unknown committed
155 156
  A support function to check if a name is in a list of strings

unknown's avatar
unknown committed
157
  SYNOPSIS
unknown's avatar
unknown committed
158 159 160 161
    is_name_in_list()
    name               String searched for
    list_names         A list of names searched in

unknown's avatar
unknown committed
162 163 164 165 166
  RETURN VALUES
    TRUE               String found
    FALSE              String not found
*/

unknown's avatar
unknown committed
167 168
bool is_name_in_list(char *name,
                          List<char> list_names)
unknown's avatar
unknown committed
169
{
unknown's avatar
unknown committed
170 171
  List_iterator<char> names_it(list_names);
  uint no_names= list_names.elements;
unknown's avatar
unknown committed
172
  uint i= 0;
unknown's avatar
unknown committed
173

unknown's avatar
unknown committed
174 175
  do
  {
unknown's avatar
unknown committed
176 177
    char *list_name= names_it++;
    if (!(my_strcasecmp(system_charset_info, name, list_name)))
unknown's avatar
unknown committed
178 179 180 181 182 183
      return TRUE;
  } while (++i < no_names);
  return FALSE;
}


unknown's avatar
unknown committed
184 185 186 187 188 189 190 191

/*
  Set-up defaults for partitions. 

  SYNOPSIS
    partition_default_handling()
    table                         Table object
    part_info                     Partition info to set up
192 193
    is_create_table_ind           Is this part of a table creation
    normalized_path               Normalized path name of table and database
unknown's avatar
unknown committed
194 195 196 197 198 199

  RETURN VALUES
    TRUE                          Error
    FALSE                         Success
*/

200
bool partition_default_handling(TABLE *table, partition_info *part_info,
201
                                bool is_create_table_ind,
202
                                const char *normalized_path)
unknown's avatar
unknown committed
203 204 205 206 207
{
  DBUG_ENTER("partition_default_handling");

  if (part_info->use_default_no_partitions)
  {
208 209
    if (!is_create_table_ind &&
        table->file->get_no_parts(normalized_path, &part_info->no_parts))
unknown's avatar
unknown committed
210 211 212 213
    {
      DBUG_RETURN(TRUE);
    }
  }
214
  else if (part_info->is_sub_partitioned() &&
unknown's avatar
unknown committed
215 216 217
           part_info->use_default_no_subpartitions)
  {
    uint no_parts;
218 219
    if (!is_create_table_ind &&
        (table->file->get_no_parts(normalized_path, &no_parts)))
unknown's avatar
unknown committed
220 221 222 223 224 225 226
    {
      DBUG_RETURN(TRUE);
    }
    DBUG_ASSERT(part_info->no_parts > 0);
    part_info->no_subparts= no_parts / part_info->no_parts;
    DBUG_ASSERT((no_parts % part_info->no_parts) == 0);
  }
227 228
  part_info->set_up_defaults_for_partitioning(table->file,
                                              (ulonglong)0, (uint)0);
unknown's avatar
unknown committed
229 230 231 232
  DBUG_RETURN(FALSE);
}


233 234 235 236 237 238 239
/*
  Check that the reorganized table will not have duplicate partitions.

  SYNOPSIS
    check_reorganise_list()
    new_part_info      New partition info
    old_part_info      Old partition info
240 241
    list_part_names    The list of partition names that will go away and
                       can be reused in the new table.
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

  RETURN VALUES
    TRUE               Inacceptable name conflict detected.
    FALSE              New names are OK.

  DESCRIPTION
    Can handle that the 'new_part_info' and 'old_part_info' the same
    in which case it checks that the list of names in the partitions
    doesn't contain any duplicated names.
*/

bool check_reorganise_list(partition_info *new_part_info,
                           partition_info *old_part_info,
                           List<char> list_part_names)
{
  uint new_count, old_count;
  uint no_new_parts= new_part_info->partitions.elements;
  uint no_old_parts= old_part_info->partitions.elements;
  List_iterator<partition_element> new_parts_it(new_part_info->partitions);
  bool same_part_info= (new_part_info == old_part_info);
  DBUG_ENTER("check_reorganise_list");

  new_count= 0;
  do
  {
    List_iterator<partition_element> old_parts_it(old_part_info->partitions);
    char *new_name= (new_parts_it++)->partition_name;
    new_count++;
    old_count= 0;
    do
    {
      char *old_name= (old_parts_it++)->partition_name;
      old_count++;
      if (same_part_info && old_count == new_count)
        break;
      if (!(my_strcasecmp(system_charset_info, old_name, new_name)))
      {
unknown's avatar
unknown committed
279
        if (!is_name_in_list(old_name, list_part_names))
280 281 282 283 284 285 286 287
          DBUG_RETURN(TRUE);
      }
    } while (old_count < no_old_parts);
  } while (new_count < no_new_parts);
  DBUG_RETURN(FALSE);
}


288 289 290
/*
  A useful routine used by update_row for partition handlers to calculate
  the partition ids of the old and the new record.
unknown's avatar
unknown committed
291

292 293 294 295 296 297
  SYNOPSIS
    get_part_for_update()
    old_data                Buffer of old record
    new_data                Buffer of new record
    rec0                    Reference to table->record[0]
    part_info               Reference to partition information
unknown's avatar
unknown committed
298 299 300
    out:old_part_id         The returned partition id of old record 
    out:new_part_id         The returned partition id of new record

301 302 303 304 305 306 307
  RETURN VALUE
    0                       Success
    > 0                     Error code
*/

int get_parts_for_update(const byte *old_data, byte *new_data,
                         const byte *rec0, partition_info *part_info,
308 309
                         uint32 *old_part_id, uint32 *new_part_id,
                         longlong *new_func_value)
310 311 312
{
  Field **part_field_array= part_info->full_part_field_array;
  int error;
313
  longlong old_func_value;
314 315
  DBUG_ENTER("get_parts_for_update");

unknown's avatar
unknown committed
316
  DBUG_ASSERT(new_data == rec0);
317
  set_field_ptr(part_field_array, old_data, rec0);
318 319
  error= part_info->get_partition_id(part_info, old_part_id,
                                     &old_func_value);
320 321 322 323 324 325 326 327 328 329
  set_field_ptr(part_field_array, rec0, old_data);
  if (unlikely(error))                             // Should never happen
  {
    DBUG_ASSERT(0);
    DBUG_RETURN(error);
  }
#ifdef NOT_NEEDED
  if (new_data == rec0)
#endif
  {
330 331 332
    if (unlikely(error= part_info->get_partition_id(part_info,
                                                    new_part_id,
                                                    new_func_value)))
333 334 335 336 337 338 339 340 341 342 343 344 345
    {
      DBUG_RETURN(error);
    }
  }
#ifdef NOT_NEEDED
  else
  {
    /*
      This branch should never execute but it is written anyways for
      future use. It will be tested by ensuring that the above
      condition is false in one test situation before pushing the code.
    */
    set_field_ptr(part_field_array, new_data, rec0);
346 347
    error= part_info->get_partition_id(part_info, new_part_id,
                                       new_func_value);
348 349 350 351 352 353 354 355 356 357 358 359 360 361
    set_field_ptr(part_field_array, rec0, new_data);
    if (unlikely(error))
    {
      DBUG_RETURN(error);
    }
  }
#endif
  DBUG_RETURN(0);
}


/*
  A useful routine used by delete_row for partition handlers to calculate
  the partition id.
unknown's avatar
unknown committed
362

363 364 365 366 367
  SYNOPSIS
    get_part_for_delete()
    buf                     Buffer of old record
    rec0                    Reference to table->record[0]
    part_info               Reference to partition information
unknown's avatar
unknown committed
368 369
    out:part_id             The returned partition id to delete from

370 371 372
  RETURN VALUE
    0                       Success
    > 0                     Error code
unknown's avatar
unknown committed
373

374 375 376 377 378 379 380 381 382 383
  DESCRIPTION
    Dependent on whether buf is not record[0] we need to prepare the
    fields. Then we call the function pointer get_partition_id to
    calculate the partition id.
*/

int get_part_for_delete(const byte *buf, const byte *rec0,
                        partition_info *part_info, uint32 *part_id)
{
  int error;
384
  longlong func_value;
385 386 387 388
  DBUG_ENTER("get_part_for_delete");

  if (likely(buf == rec0))
  {
389 390
    if (unlikely((error= part_info->get_partition_id(part_info, part_id,
                                                     &func_value))))
391 392 393 394 395 396 397 398 399
    {
      DBUG_RETURN(error);
    }
    DBUG_PRINT("info", ("Delete from partition %d", *part_id));
  }
  else
  {
    Field **part_field_array= part_info->full_part_field_array;
    set_field_ptr(part_field_array, buf, rec0);
400
    error= part_info->get_partition_id(part_info, part_id, &func_value);
401 402 403 404 405 406 407 408 409 410 411 412
    set_field_ptr(part_field_array, rec0, buf);
    if (unlikely(error))
    {
      DBUG_RETURN(error);
    }
    DBUG_PRINT("info", ("Delete from partition %d (path2)", *part_id));
  }
  DBUG_RETURN(0);
}


/*
unknown's avatar
unknown committed
413 414 415
  This method is used to set-up both partition and subpartitioning
  field array and used for all types of partitioning.
  It is part of the logic around fix_partition_func.
416 417 418 419 420

  SYNOPSIS
    set_up_field_array()
    table                TABLE object for which partition fields are set-up
    sub_part             Is the table subpartitioned as well
unknown's avatar
unknown committed
421

422 423 424
  RETURN VALUE
    TRUE                 Error, some field didn't meet requirements
    FALSE                Ok, partition field array set-up
unknown's avatar
unknown committed
425

426
  DESCRIPTION
unknown's avatar
unknown committed
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

    A great number of functions below here is part of the fix_partition_func
    method. It is used to set up the partition structures for execution from
    openfrm. It is called at the end of the openfrm when the table struct has
    been set-up apart from the partition information.
    It involves:
    1) Setting arrays of fields for the partition functions.
    2) Setting up binary search array for LIST partitioning
    3) Setting up array for binary search for RANGE partitioning
    4) Setting up key_map's to assist in quick evaluation whether one
       can deduce anything from a given index of what partition to use
    5) Checking whether a set of partitions can be derived from a range on
       a field in the partition function.
    As part of doing this there is also a great number of error controls.
    This is actually the place where most of the things are checked for
    partition information when creating a table.
    Things that are checked includes
    1) All fields of partition function in Primary keys and unique indexes
       (if not supported)


    Create an array of partition fields (NULL terminated). Before this method
    is called fix_fields or find_table_in_sef has been called to set
    GET_FIXED_FIELDS_FLAG on all fields that are part of the partition
    function.
452
*/
unknown's avatar
unknown committed
453

454
static bool set_up_field_array(TABLE *table,
unknown's avatar
unknown committed
455
                              bool is_sub_part)
456 457
{
  Field **ptr, *field, **field_array;
unknown's avatar
unknown committed
458 459 460
  uint no_fields= 0;
  uint size_field_array;
  uint i= 0;
unknown's avatar
unknown committed
461
  partition_info *part_info= table->part_info;
462 463 464 465 466 467 468 469 470
  int result= FALSE;
  DBUG_ENTER("set_up_field_array");

  ptr= table->field;
  while ((field= *(ptr++))) 
  {
    if (field->flags & GET_FIXED_FIELDS_FLAG)
      no_fields++;
  }
unknown's avatar
unknown committed
471 472 473 474 475 476 477 478
  if (no_fields == 0)
  {
    /*
      We are using hidden key as partitioning field
    */
    DBUG_ASSERT(!is_sub_part);
    DBUG_RETURN(result);
  }
479 480 481 482
  size_field_array= (no_fields+1)*sizeof(Field*);
  field_array= (Field**)sql_alloc(size_field_array);
  if (unlikely(!field_array))
  {
unknown's avatar
unknown committed
483
    mem_alloc_error(size_field_array);
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
    result= TRUE;
  }
  ptr= table->field;
  while ((field= *(ptr++))) 
  {
    if (field->flags & GET_FIXED_FIELDS_FLAG)
    {
      field->flags&= ~GET_FIXED_FIELDS_FLAG;
      field->flags|= FIELD_IN_PART_FUNC_FLAG;
      if (likely(!result))
      {
        field_array[i++]= field;

        /*
          We check that the fields are proper. It is required for each
          field in a partition function to:
          1) Not be a BLOB of any type
            A BLOB takes too long time to evaluate so we don't want it for
            performance reasons.
        */

        if (unlikely(field->flags & BLOB_FLAG))
        {
          my_error(ER_BLOB_FIELD_IN_PART_FUNC_ERROR, MYF(0));
          result= TRUE;
        }
      }
    }
  }
  field_array[no_fields]= 0;
unknown's avatar
unknown committed
514
  if (!is_sub_part)
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
  {
    part_info->part_field_array= field_array;
    part_info->no_part_fields= no_fields;
  }
  else
  {
    part_info->subpart_field_array= field_array;
    part_info->no_subpart_fields= no_fields;
  }
  DBUG_RETURN(result);
}


/*
  Create a field array including all fields of both the partitioning and the
  subpartitioning functions.
unknown's avatar
unknown committed
531

532 533 534 535
  SYNOPSIS
    create_full_part_field_array()
    table                TABLE object for which partition fields are set-up
    part_info            Reference to partitioning data structure
unknown's avatar
unknown committed
536

537 538 539
  RETURN VALUE
    TRUE                 Memory allocation of field array failed
    FALSE                Ok
unknown's avatar
unknown committed
540

541 542 543 544 545 546 547 548 549 550 551 552 553
  DESCRIPTION
    If there is no subpartitioning then the same array is used as for the
    partitioning. Otherwise a new array is built up using the flag
    FIELD_IN_PART_FUNC in the field object.
    This function is called from fix_partition_func
*/

static bool create_full_part_field_array(TABLE *table,
                                         partition_info *part_info)
{
  bool result= FALSE;
  DBUG_ENTER("create_full_part_field_array");

554
  if (!part_info->is_sub_partitioned())
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
  {
    part_info->full_part_field_array= part_info->part_field_array;
    part_info->no_full_part_fields= part_info->no_part_fields;
  }
  else
  {
    Field **ptr, *field, **field_array;
    uint no_part_fields=0, size_field_array;
    ptr= table->field;
    while ((field= *(ptr++)))
    {
      if (field->flags & FIELD_IN_PART_FUNC_FLAG)
        no_part_fields++;
    }
    size_field_array= (no_part_fields+1)*sizeof(Field*);
    field_array= (Field**)sql_alloc(size_field_array);
    if (unlikely(!field_array))
    {
unknown's avatar
unknown committed
573
      mem_alloc_error(size_field_array);
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
      result= TRUE;
      goto end;
    }
    no_part_fields= 0;
    ptr= table->field;
    while ((field= *(ptr++)))
    {
      if (field->flags & FIELD_IN_PART_FUNC_FLAG)
        field_array[no_part_fields++]= field;
    }
    field_array[no_part_fields]=0;
    part_info->full_part_field_array= field_array;
    part_info->no_full_part_fields= no_part_fields;
  }
end:
  DBUG_RETURN(result);
}


/*

  Clear flag GET_FIXED_FIELDS_FLAG in all fields of a key previously set by
  set_indicator_in_key_fields (always used in pairs).
unknown's avatar
unknown committed
597

598 599 600
  SYNOPSIS
    clear_indicator_in_key_fields()
    key_info                  Reference to find the key fields
unknown's avatar
unknown committed
601 602 603 604 605 606 607 608 609 610 611 612

  RETURN VALUE
    NONE

  DESCRIPTION
    These support routines is used to set/reset an indicator of all fields
    in a certain key. It is used in conjunction with another support routine
    that traverse all fields in the PF to find if all or some fields in the
    PF is part of the key. This is used to check primary keys and unique
    keys involve all fields in PF (unless supported) and to derive the
    key_map's used to quickly decide whether the index can be used to
    derive which partitions are needed to scan.
613 614 615 616 617 618 619 620 621 622 623 624 625
*/

static void clear_indicator_in_key_fields(KEY *key_info)
{
  KEY_PART_INFO *key_part;
  uint key_parts= key_info->key_parts, i;
  for (i= 0, key_part=key_info->key_part; i < key_parts; i++, key_part++)
    key_part->field->flags&= (~GET_FIXED_FIELDS_FLAG);
}


/*
  Set flag GET_FIXED_FIELDS_FLAG in all fields of a key.
unknown's avatar
unknown committed
626

627 628 629
  SYNOPSIS
    set_indicator_in_key_fields
    key_info                  Reference to find the key fields
unknown's avatar
unknown committed
630 631 632

  RETURN VALUE
    NONE
633 634 635 636 637 638 639 640 641 642 643 644 645 646
*/

static void set_indicator_in_key_fields(KEY *key_info)
{
  KEY_PART_INFO *key_part;
  uint key_parts= key_info->key_parts, i;
  for (i= 0, key_part=key_info->key_part; i < key_parts; i++, key_part++)
    key_part->field->flags|= GET_FIXED_FIELDS_FLAG;
}


/*
  Check if all or some fields in partition field array is part of a key
  previously used to tag key fields.
unknown's avatar
unknown committed
647

648 649 650
  SYNOPSIS
    check_fields_in_PF()
    ptr                  Partition field array
unknown's avatar
unknown committed
651 652 653
    out:all_fields       Is all fields of partition field array used in key
    out:some_fields      Is some fields of partition field array used in key

654 655 656 657 658 659 660 661
  RETURN VALUE
    all_fields, some_fields
*/

static void check_fields_in_PF(Field **ptr, bool *all_fields,
                               bool *some_fields)
{
  DBUG_ENTER("check_fields_in_PF");
unknown's avatar
unknown committed
662

663 664
  *all_fields= TRUE;
  *some_fields= FALSE;
665 666 667 668 669
  if ((!ptr) || !(*ptr))
  {
    *all_fields= FALSE;
    DBUG_VOID_RETURN;
  }
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
  do
  {
  /* Check if the field of the PF is part of the current key investigated */
    if ((*ptr)->flags & GET_FIXED_FIELDS_FLAG)
      *some_fields= TRUE; 
    else
      *all_fields= FALSE;
  } while (*(++ptr));
  DBUG_VOID_RETURN;
}


/*
  Clear flag GET_FIXED_FIELDS_FLAG in all fields of the table.
  This routine is used for error handling purposes.
unknown's avatar
unknown committed
685

686 687 688
  SYNOPSIS
    clear_field_flag()
    table                TABLE object for which partition fields are set-up
unknown's avatar
unknown committed
689 690 691

  RETURN VALUE
    NONE
692 693 694 695 696 697 698 699 700 701 702 703 704 705
*/

static void clear_field_flag(TABLE *table)
{
  Field **ptr;
  DBUG_ENTER("clear_field_flag");

  for (ptr= table->field; *ptr; ptr++)
    (*ptr)->flags&= (~GET_FIXED_FIELDS_FLAG);
  DBUG_VOID_RETURN;
}


/*
unknown's avatar
unknown committed
706 707 708
  find_field_in_table_sef finds the field given its name. All fields get
  GET_FIXED_FIELDS_FLAG set.

709 710 711 712 713 714
  SYNOPSIS
    handle_list_of_fields()
    it                   A list of field names for the partition function
    table                TABLE object for which partition fields are set-up
    part_info            Reference to partitioning data structure
    sub_part             Is the table subpartitioned as well
unknown's avatar
unknown committed
715

716 717 718
  RETURN VALUE
    TRUE                 Fields in list of fields not part of table
    FALSE                All fields ok and array created
unknown's avatar
unknown committed
719

720
  DESCRIPTION
unknown's avatar
unknown committed
721 722 723 724
    This routine sets-up the partition field array for KEY partitioning, it
    also verifies that all fields in the list of fields is actually a part of
    the table.

725 726
*/

unknown's avatar
unknown committed
727

728 729 730
static bool handle_list_of_fields(List_iterator<char> it,
                                  TABLE *table,
                                  partition_info *part_info,
unknown's avatar
unknown committed
731
                                  bool is_sub_part)
732 733 734 735
{
  Field *field;
  bool result;
  char *field_name;
unknown's avatar
unknown committed
736
  bool is_list_empty= TRUE;
737 738 739 740
  DBUG_ENTER("handle_list_of_fields");

  while ((field_name= it++))
  {
unknown's avatar
unknown committed
741
    is_list_empty= FALSE;
742 743 744 745 746 747 748 749 750 751 752
    field= find_field_in_table_sef(table, field_name);
    if (likely(field != 0))
      field->flags|= GET_FIXED_FIELDS_FLAG;
    else
    {
      my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0));
      clear_field_flag(table);
      result= TRUE;
      goto end;
    }
  }
unknown's avatar
unknown committed
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
  if (is_list_empty)
  {
    uint primary_key= table->s->primary_key;
    if (primary_key != MAX_KEY)
    {
      uint no_key_parts= table->key_info[primary_key].key_parts, i;
      /*
        In the case of an empty list we use primary key as partition key.
      */
      for (i= 0; i < no_key_parts; i++)
      {
        Field *field= table->key_info[primary_key].key_part[i].field;
        field->flags|= GET_FIXED_FIELDS_FLAG;
      }
    }
    else
    {
      if (table->s->db_type->partition_flags &&
          (table->s->db_type->partition_flags() & HA_USE_AUTO_PARTITION) &&
          (table->s->db_type->partition_flags() & HA_CAN_PARTITION))
      {
        /*
          This engine can handle automatic partitioning and there is no
          primary key. In this case we rely on that the engine handles
          partitioning based on a hidden key. Thus we allocate no
          array for partitioning fields.
        */
        DBUG_RETURN(FALSE);
      }
      else
      {
        my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0));
        DBUG_RETURN(TRUE);
      }
    }
  }
  result= set_up_field_array(table, is_sub_part);
790 791 792 793 794
end:
  DBUG_RETURN(result);
}


795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
/*
  Support function to check if all VALUES * (expression) is of the
  right sign (no signed constants when unsigned partition function)

  SYNOPSIS
    check_signed_flag()
    part_info                Partition info object

  RETURN VALUES
    0                        No errors due to sign errors
    >0                       Sign error
*/

int check_signed_flag(partition_info *part_info)
{
  int error= 0;
  uint i= 0;
  if (part_info->part_type != HASH_PARTITION &&
      part_info->part_expr->unsigned_flag)
  {
    List_iterator<partition_element> part_it(part_info->partitions);
    do
    {
      partition_element *part_elem= part_it++;

      if (part_elem->signed_flag)
      {
822 823
        my_error(ER_PARTITION_CONST_DOMAIN_ERROR, MYF(0));
        error= ER_PARTITION_CONST_DOMAIN_ERROR;
824 825 826 827 828 829 830 831
        break;
      }
    } while (++i < part_info->no_parts);
  }
  return error;
}


832
/*
unknown's avatar
unknown committed
833 834 835 836 837
  The function uses a new feature in fix_fields where the flag 
  GET_FIXED_FIELDS_FLAG is set for all fields in the item tree.
  This field must always be reset before returning from the function
  since it is used for other purposes as well.

838 839 840 841
  SYNOPSIS
    fix_fields_part_func()
    thd                  The thread object
    func_expr            The item tree reference of the partition function
842
    table                The table object
843
    part_info            Reference to partitioning data structure
844 845
    is_sub_part          Is the table subpartitioned as well
    is_field_to_be_setup Flag if we are to set-up field arrays
unknown's avatar
unknown committed
846

847 848 849 850
  RETURN VALUE
    TRUE                 An error occurred, something was wrong with the
                         partition function.
    FALSE                Ok, a partition field array was created
unknown's avatar
unknown committed
851

852
  DESCRIPTION
unknown's avatar
unknown committed
853 854 855 856 857 858
    This function is used to build an array of partition fields for the
    partitioning function and subpartitioning function. The partitioning
    function is an item tree that must reference at least one field in the
    table. This is checked first in the parser that the function doesn't
    contain non-cacheable parts (like a random function) and by checking
    here that the function isn't a constant function.
859 860 861 862 863 864 865

    Calculate the number of fields in the partition function.
    Use it allocate memory for array of Field pointers.
    Initialise array of field pointers. Use information set when
    calling fix_fields and reset it immediately after.
    The get_fields_in_item_tree activates setting of bit in flags
    on the field object.
unknown's avatar
unknown committed
866
*/
867

868 869
bool fix_fields_part_func(THD *thd, Item* func_expr, TABLE *table,
                          bool is_sub_part, bool is_field_to_be_setup)
unknown's avatar
unknown committed
870
{
871
  MEM_ROOT new_mem_root;
872 873
  partition_info *part_info= table->part_info;
  uint dir_length, home_dir_length;
874
  bool result= TRUE;
875
  TABLE_LIST tables;
unknown's avatar
unknown committed
876
  TABLE_LIST *save_table_list, *save_first_table, *save_last_table;
877
  int error;
unknown's avatar
unknown committed
878
  Name_resolution_context *context;
unknown's avatar
unknown committed
879
  const char *save_where;
880 881
  char* db_name;
  char db_name_string[FN_REFLEN];
882 883
  DBUG_ENTER("fix_fields_part_func");

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
  if (part_info->fixed)
  {
    if (!(is_sub_part || (error= check_signed_flag(part_info))))
      result= FALSE;
    goto end;
  }

  /*
    Set-up the TABLE_LIST object to be a list with a single table
    Set the object to zero to create NULL pointers and set alias
    and real name to table name and get database name from file name.
  */

  bzero((void*)&tables, sizeof(TABLE_LIST));
  tables.alias= tables.table_name= (char*) table->s->table_name.str;
  tables.table= table;
  tables.next_local= 0;
  tables.next_name_resolution_table= 0;
  strmov(db_name_string, table->s->normalized_path.str);
  dir_length= dirname_length(db_name_string);
  db_name_string[dir_length - 1]= 0;
  home_dir_length= dirname_length(db_name_string);
  db_name= &db_name_string[home_dir_length];
  tables.db= db_name;

unknown's avatar
unknown committed
909
  context= thd->lex->current_context();
910 911
  table->map= 1; //To ensure correct calculation of const item
  table->get_fields_in_item_tree= TRUE;
unknown's avatar
unknown committed
912 913 914
  save_table_list= context->table_list;
  save_first_table= context->first_name_resolution_table;
  save_last_table= context->last_name_resolution_table;
915 916
  context->table_list= &tables;
  context->first_name_resolution_table= &tables;
unknown's avatar
unknown committed
917
  context->last_name_resolution_table= NULL;
918
  func_expr->walk(&Item::change_context_processor, 0, (byte*) context);
unknown's avatar
unknown committed
919
  save_where= thd->where;
920
  thd->where= "partition function";
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
  /*
    In execution we must avoid the use of thd->change_item_tree since
    we might release memory before statement is completed. We do this
    by temporarily setting the stmt_arena->mem_root to be the mem_root
    of the table object, this also ensures that any memory allocated
    during fix_fields will not be released at end of execution of this
    statement. Thus the item tree will remain valid also in subsequent
    executions of this table object. We do however not at the moment
    support allocations during execution of val_int so any item class
    that does this during val_int must be disallowed as partition
    function.
    SEE Bug #21658
  */
  /*
    This is a tricky call to prepare for since it can have a large number
    of interesting side effects, both desirable and undesirable.
  */
938
  error= func_expr->fix_fields(thd, (Item**)0);
939

unknown's avatar
unknown committed
940 941 942
  context->table_list= save_table_list;
  context->first_name_resolution_table= save_first_table;
  context->last_name_resolution_table= save_last_table;
943 944 945
  if (unlikely(error))
  {
    DBUG_PRINT("info", ("Field in partition function not part of table"));
946 947
    if (is_field_to_be_setup)
      clear_field_flag(table);
948 949
    goto end;
  }
unknown's avatar
unknown committed
950
  thd->where= save_where;
951 952 953 954 955 956
  if (unlikely(func_expr->const_item()))
  {
    my_error(ER_CONST_EXPR_IN_PARTITION_FUNC_ERROR, MYF(0));
    clear_field_flag(table);
    goto end;
  }
957 958 959 960 961 962 963
  if ((!is_sub_part) && (error= check_signed_flag(part_info)))
    goto end;
  result= FALSE;
  if (is_field_to_be_setup)
    result= set_up_field_array(table, is_sub_part);
  if (!is_sub_part)
    part_info->fixed= TRUE;
964 965 966 967 968 969 970 971
end:
  table->get_fields_in_item_tree= FALSE;
  table->map= 0; //Restore old value
  DBUG_RETURN(result);
}


/*
unknown's avatar
unknown committed
972 973
  Check that the primary key contains all partition fields if defined

974 975 976
  SYNOPSIS
    check_primary_key()
    table                TABLE object for which partition fields are set-up
unknown's avatar
unknown committed
977

978 979 980 981 982
  RETURN VALUES
    TRUE                 Not all fields in partitioning function was part
                         of primary key
    FALSE                Ok, all fields of partitioning function were part
                         of primary key
unknown's avatar
unknown committed
983 984 985 986 987 988

  DESCRIPTION
    This function verifies that if there is a primary key that it contains
    all the fields of the partition function.
    This is a temporary limitation that will hopefully be removed after a
    while.
989 990 991 992 993
*/

static bool check_primary_key(TABLE *table)
{
  uint primary_key= table->s->primary_key;
unknown's avatar
unknown committed
994 995
  bool all_fields, some_fields;
  bool result= FALSE;
996 997 998 999 1000
  DBUG_ENTER("check_primary_key");

  if (primary_key < MAX_KEY)
  {
    set_indicator_in_key_fields(table->key_info+primary_key);
unknown's avatar
unknown committed
1001
    check_fields_in_PF(table->part_info->full_part_field_array,
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
                        &all_fields, &some_fields);
    clear_indicator_in_key_fields(table->key_info+primary_key);
    if (unlikely(!all_fields))
    {
      my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF,MYF(0),"PRIMARY KEY");
      result= TRUE;
    }
  }
  DBUG_RETURN(result);
}


/*
unknown's avatar
unknown committed
1015 1016
  Check that unique keys contains all partition fields

1017 1018 1019
  SYNOPSIS
    check_unique_keys()
    table                TABLE object for which partition fields are set-up
unknown's avatar
unknown committed
1020

1021 1022 1023 1024 1025
  RETURN VALUES
    TRUE                 Not all fields in partitioning function was part
                         of all unique keys
    FALSE                Ok, all fields of partitioning function were part
                         of unique keys
unknown's avatar
unknown committed
1026 1027 1028 1029 1030 1031

  DESCRIPTION
    This function verifies that if there is a unique index that it contains
    all the fields of the partition function.
    This is a temporary limitation that will hopefully be removed after a
    while.
1032 1033 1034 1035
*/

static bool check_unique_keys(TABLE *table)
{
unknown's avatar
unknown committed
1036 1037 1038 1039
  bool all_fields, some_fields;
  bool result= FALSE;
  uint keys= table->s->keys;
  uint i;
1040
  DBUG_ENTER("check_unique_keys");
unknown's avatar
unknown committed
1041

1042 1043 1044 1045 1046
  for (i= 0; i < keys; i++)
  {
    if (table->key_info[i].flags & HA_NOSAME) //Unique index
    {
      set_indicator_in_key_fields(table->key_info+i);
unknown's avatar
unknown committed
1047
      check_fields_in_PF(table->part_info->full_part_field_array,
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
                         &all_fields, &some_fields);
      clear_indicator_in_key_fields(table->key_info+i);
      if (unlikely(!all_fields))
      {
        my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF,MYF(0),"UNIQUE INDEX");
        result= TRUE;
        break;
      }
    }
  }
  DBUG_RETURN(result);
}


/*
  An important optimisation is whether a range on a field can select a subset
  of the partitions.
  A prerequisite for this to happen is that the PF is a growing function OR
  a shrinking function.
  This can never happen for a multi-dimensional PF. Thus this can only happen
  with PF with at most one field involved in the PF.
  The idea is that if the function is a growing function and you know that
  the field of the PF is 4 <= A <= 6 then we can convert this to a range
  in the PF instead by setting the range to PF(4) <= PF(A) <= PF(6). In the
  case of RANGE PARTITIONING and LIST PARTITIONING this can be used to
  calculate a set of partitions rather than scanning all of them.
  Thus the following prerequisites are there to check if sets of partitions
  can be found.
  1) Only possible for RANGE and LIST partitioning (not for subpartitioning)
  2) Only possible if PF only contains 1 field
  3) Possible if PF is a growing function of the field
  4) Possible if PF is a shrinking function of the field
  OBSERVATION:
  1) IF f1(A) is a growing function AND f2(A) is a growing function THEN
     f1(A) + f2(A) is a growing function
     f1(A) * f2(A) is a growing function if f1(A) >= 0 and f2(A) >= 0
  2) IF f1(A) is a growing function and f2(A) is a shrinking function THEN
     f1(A) / f2(A) is a growing function if f1(A) >= 0 and f2(A) > 0
  3) IF A is a growing function then a function f(A) that removes the
     least significant portion of A is a growing function
     E.g. DATE(datetime) is a growing function
     MONTH(datetime) is not a growing/shrinking function
  4) IF f1(A) is a growing function and f2(A) is a growing function THEN
     f1(f2(A)) and f2(f1(A)) are also growing functions
  5) IF f1(A) is a shrinking function and f2(A) is a growing function THEN
     f1(f2(A)) is a shrinking function and f2(f1(A)) is a shrinking function
  6) f1(A) = A is a growing function
  7) f1(A) = A*a + b (where a and b are constants) is a growing function

  By analysing the item tree of the PF we can use these deducements and
  derive whether the PF is a growing function or a shrinking function or
  neither of it.

  If the PF is range capable then a flag is set on the table object
  indicating this to notify that we can use also ranges on the field
  of the PF to deduce a set of partitions if the fields of the PF were
  not all fully bound.
unknown's avatar
unknown committed
1105

1106 1107 1108
  SYNOPSIS
    check_range_capable_PF()
    table                TABLE object for which partition fields are set-up
unknown's avatar
unknown committed
1109

1110 1111 1112 1113 1114 1115 1116
  DESCRIPTION
    Support for this is not implemented yet.
*/

void check_range_capable_PF(TABLE *table)
{
  DBUG_ENTER("check_range_capable_PF");
unknown's avatar
unknown committed
1117

1118 1119 1120 1121
  DBUG_VOID_RETURN;
}


unknown's avatar
unknown committed
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
/*
  Set up partition bitmap

  SYNOPSIS
    set_up_partition_bitmap()
    thd                  Thread object
    part_info            Reference to partitioning data structure

  RETURN VALUE
    TRUE                 Memory allocation failure
    FALSE                Success

  DESCRIPTION
    Allocate memory for bitmap of the partitioned table
    and initialise it.
*/

static bool set_up_partition_bitmap(THD *thd, partition_info *part_info)
{
  uint32 *bitmap_buf;
  uint bitmap_bits= part_info->no_subparts? 
                     (part_info->no_subparts* part_info->no_parts):
                      part_info->no_parts;
  uint bitmap_bytes= bitmap_buffer_size(bitmap_bits);
  DBUG_ENTER("set_up_partition_bitmap");

  if (!(bitmap_buf= (uint32*)thd->alloc(bitmap_bytes)))
  {
    mem_alloc_error(bitmap_bytes);
    DBUG_RETURN(TRUE);
  }
  bitmap_init(&part_info->used_partitions, bitmap_buf, bitmap_bytes*8, FALSE);
unknown's avatar
unknown committed
1154
  bitmap_set_all(&part_info->used_partitions);
unknown's avatar
unknown committed
1155 1156 1157 1158
  DBUG_RETURN(FALSE);
}


1159 1160
/*
  Set up partition key maps
unknown's avatar
unknown committed
1161

1162 1163 1164 1165
  SYNOPSIS
    set_up_partition_key_maps()
    table                TABLE object for which partition fields are set-up
    part_info            Reference to partitioning data structure
unknown's avatar
unknown committed
1166

1167 1168
  RETURN VALUES
    None
unknown's avatar
unknown committed
1169

1170
  DESCRIPTION
unknown's avatar
unknown committed
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
    This function sets up a couple of key maps to be able to quickly check
    if an index ever can be used to deduce the partition fields or even
    a part of the fields of the  partition function.
    We set up the following key_map's.
    PF = Partition Function
    1) All fields of the PF is set even by equal on the first fields in the
       key
    2) All fields of the PF is set if all fields of the key is set
    3) At least one field in the PF is set if all fields is set
    4) At least one field in the PF is part of the key
1181 1182 1183 1184 1185
*/

static void set_up_partition_key_maps(TABLE *table,
                                      partition_info *part_info)
{
unknown's avatar
unknown committed
1186 1187
  uint keys= table->s->keys;
  uint i;
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
  bool all_fields, some_fields;
  DBUG_ENTER("set_up_partition_key_maps");

  part_info->all_fields_in_PF.clear_all();
  part_info->all_fields_in_PPF.clear_all();
  part_info->all_fields_in_SPF.clear_all();
  part_info->some_fields_in_PF.clear_all();
  for (i= 0; i < keys; i++)
  {
    set_indicator_in_key_fields(table->key_info+i);
    check_fields_in_PF(part_info->full_part_field_array,
                       &all_fields, &some_fields);
    if (all_fields)
      part_info->all_fields_in_PF.set_bit(i);
    if (some_fields)
      part_info->some_fields_in_PF.set_bit(i);
1204
    if (part_info->is_sub_partitioned())
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
    {
      check_fields_in_PF(part_info->part_field_array,
                         &all_fields, &some_fields);
      if (all_fields)
        part_info->all_fields_in_PPF.set_bit(i);
      check_fields_in_PF(part_info->subpart_field_array,
                         &all_fields, &some_fields);
      if (all_fields)
        part_info->all_fields_in_SPF.set_bit(i);
    }
    clear_indicator_in_key_fields(table->key_info+i);
  }
  DBUG_VOID_RETURN;
}


/*
unknown's avatar
unknown committed
1222 1223
  Set up function pointers for partition function

1224
  SYNOPSIS
unknown's avatar
unknown committed
1225
    set_up_partition_func_pointers()
1226
    part_info            Reference to partitioning data structure
unknown's avatar
unknown committed
1227 1228 1229 1230 1231 1232 1233 1234 1235

  RETURN VALUE
    NONE

  DESCRIPTION
    Set-up all function pointers for calculation of partition id,
    subpartition id and the upper part in subpartitioning. This is to speed up
    execution of get_partition_id which is executed once every record to be
    written and deleted and twice for updates.
1236 1237 1238 1239
*/

static void set_up_partition_func_pointers(partition_info *part_info)
{
unknown's avatar
unknown committed
1240 1241
  DBUG_ENTER("set_up_partition_func_pointers");

1242
  if (part_info->is_sub_partitioned())
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
  {
    if (part_info->part_type == RANGE_PARTITION)
    {
      part_info->get_part_partition_id= get_partition_id_range;
      if (part_info->list_of_subpart_fields)
      {
        if (part_info->linear_hash_ind)
        {
          part_info->get_partition_id= get_partition_id_range_sub_linear_key;
          part_info->get_subpartition_id= get_partition_id_linear_key_sub;
        }
        else
        {
          part_info->get_partition_id= get_partition_id_range_sub_key;
          part_info->get_subpartition_id= get_partition_id_key_sub;
        }
      }
      else
      {
        if (part_info->linear_hash_ind)
        {
          part_info->get_partition_id= get_partition_id_range_sub_linear_hash;
          part_info->get_subpartition_id= get_partition_id_linear_hash_sub;
        }
        else
        {
          part_info->get_partition_id= get_partition_id_range_sub_hash;
          part_info->get_subpartition_id= get_partition_id_hash_sub;
        }
      }
    }
unknown's avatar
unknown committed
1274
    else /* LIST Partitioning */
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
    {
      part_info->get_part_partition_id= get_partition_id_list;
      if (part_info->list_of_subpart_fields)
      {
        if (part_info->linear_hash_ind)
        {
          part_info->get_partition_id= get_partition_id_list_sub_linear_key;
          part_info->get_subpartition_id= get_partition_id_linear_key_sub;
        }
        else
        {
          part_info->get_partition_id= get_partition_id_list_sub_key;
          part_info->get_subpartition_id= get_partition_id_key_sub;
        }
      }
      else
      {
        if (part_info->linear_hash_ind)
        {
          part_info->get_partition_id= get_partition_id_list_sub_linear_hash;
          part_info->get_subpartition_id= get_partition_id_linear_hash_sub;
        }
        else
        {
          part_info->get_partition_id= get_partition_id_list_sub_hash;
          part_info->get_subpartition_id= get_partition_id_hash_sub;
        }
      }
    }
  }
unknown's avatar
unknown committed
1305
  else /* No subpartitioning */
1306 1307 1308 1309 1310 1311 1312
  {
    part_info->get_part_partition_id= NULL;
    part_info->get_subpartition_id= NULL;
    if (part_info->part_type == RANGE_PARTITION)
      part_info->get_partition_id= get_partition_id_range;
    else if (part_info->part_type == LIST_PARTITION)
      part_info->get_partition_id= get_partition_id_list;
unknown's avatar
unknown committed
1313
    else /* HASH partitioning */
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
    {
      if (part_info->list_of_part_fields)
      {
        if (part_info->linear_hash_ind)
          part_info->get_partition_id= get_partition_id_linear_key_nosub;
        else
          part_info->get_partition_id= get_partition_id_key_nosub;
      }
      else
      {
        if (part_info->linear_hash_ind)
          part_info->get_partition_id= get_partition_id_linear_hash_nosub;
        else
          part_info->get_partition_id= get_partition_id_hash_nosub;
      }
    }
  }
unknown's avatar
unknown committed
1331
  DBUG_VOID_RETURN;
1332
}
unknown's avatar
unknown committed
1333 1334


1335 1336 1337
/*
  For linear hashing we need a mask which is on the form 2**n - 1 where
  2**n >= no_parts. Thus if no_parts is 6 then mask is 2**3 - 1 = 8 - 1 = 7.
unknown's avatar
unknown committed
1338

1339 1340 1341 1342
  SYNOPSIS
    set_linear_hash_mask()
    part_info            Reference to partitioning data structure
    no_parts             Number of parts in linear hash partitioning
unknown's avatar
unknown committed
1343 1344 1345

  RETURN VALUE
    NONE
1346 1347 1348 1349 1350
*/

static void set_linear_hash_mask(partition_info *part_info, uint no_parts)
{
  uint mask;
unknown's avatar
unknown committed
1351

1352 1353 1354 1355 1356 1357 1358 1359 1360
  for (mask= 1; mask < no_parts; mask<<=1)
    ;
  part_info->linear_hash_mask= mask - 1;
}


/*
  This function calculates the partition id provided the result of the hash
  function using linear hashing parameters, mask and number of partitions.
unknown's avatar
unknown committed
1361

1362 1363 1364 1365 1366
  SYNOPSIS
    get_part_id_from_linear_hash()
    hash_value          Hash value calculated by HASH function or KEY function
    mask                Mask calculated previously by set_linear_hash_mask
    no_parts            Number of partitions in HASH partitioned part
unknown's avatar
unknown committed
1367

1368 1369
  RETURN VALUE
    part_id             The calculated partition identity (starting at 0)
unknown's avatar
unknown committed
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
  DESCRIPTION
    The partition is calculated according to the theory of linear hashing.
    See e.g. Linear hashing: a new tool for file and table addressing,
    Reprinted from VLDB-80 in Readings Database Systems, 2nd ed, M. Stonebraker
    (ed.), Morgan Kaufmann 1994.
*/

static uint32 get_part_id_from_linear_hash(longlong hash_value, uint mask,
                                           uint no_parts)
{
  uint32 part_id= (uint32)(hash_value & mask);
unknown's avatar
unknown committed
1382

1383 1384 1385
  if (part_id >= no_parts)
  {
    uint new_mask= ((mask + 1) >> 1) - 1;
1386
    part_id= (uint32)(hash_value & new_mask);
1387 1388 1389 1390 1391
  }
  return part_id;
}

/*
unknown's avatar
unknown committed
1392 1393
  fix partition functions

1394 1395 1396 1397
  SYNOPSIS
    fix_partition_func()
    thd                  The thread object
    table                TABLE object for which partition fields are set-up
1398
    is_create_table_ind  Indicator of whether openfrm was called as part of
unknown's avatar
unknown committed
1399
                         CREATE or ALTER TABLE
unknown's avatar
unknown committed
1400

1401
  RETURN VALUE
unknown's avatar
unknown committed
1402 1403
    TRUE                 Error
    FALSE                Success
unknown's avatar
unknown committed
1404

1405 1406 1407 1408
  DESCRIPTION
    The name parameter contains the full table name and is used to get the
    database name of the table which is used to set-up a correct
    TABLE_LIST object for use in fix_fields.
unknown's avatar
unknown committed
1409 1410 1411 1412 1413 1414 1415

NOTES
    This function is called as part of opening the table by opening the .frm
    file. It is a part of CREATE TABLE to do this so it is quite permissible
    that errors due to erroneus syntax isn't found until we come here.
    If the user has used a non-existing field in the table is one such example
    of an error that is not discovered until here.
1416 1417
*/

1418
bool fix_partition_func(THD *thd, TABLE *table,
unknown's avatar
unknown committed
1419
                        bool is_create_table_ind)
1420 1421
{
  bool result= TRUE;
unknown's avatar
unknown committed
1422
  partition_info *part_info= table->part_info;
1423
  enum_mark_columns save_mark_used_columns= thd->mark_used_columns;
1424 1425
  DBUG_ENTER("fix_partition_func");

unknown's avatar
unknown committed
1426 1427 1428 1429
  if (part_info->fixed)
  {
    DBUG_RETURN(FALSE);
  }
1430 1431
  thd->mark_used_columns= MARK_COLUMNS_NONE;
  DBUG_PRINT("info", ("thd->mark_used_columns: %d", thd->mark_used_columns));
1432

1433
  if (!is_create_table_ind ||
1434
       thd->lex->sql_command != SQLCOM_CREATE_TABLE)
unknown's avatar
unknown committed
1435
  {
1436
    if (partition_default_handling(table, part_info,
1437
                                   is_create_table_ind,
1438
                                   table->s->normalized_path.str))
unknown's avatar
unknown committed
1439 1440 1441 1442
    {
      DBUG_RETURN(TRUE);
    }
  }
1443
  if (part_info->is_sub_partitioned())
1444 1445 1446
  {
    DBUG_ASSERT(part_info->subpart_type == HASH_PARTITION);
    /*
unknown's avatar
unknown committed
1447 1448
      Subpartition is defined. We need to verify that subpartitioning
      function is correct.
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
    */
    if (part_info->linear_hash_ind)
      set_linear_hash_mask(part_info, part_info->no_subparts);
    if (part_info->list_of_subpart_fields)
    {
      List_iterator<char> it(part_info->subpart_field_list);
      if (unlikely(handle_list_of_fields(it, table, part_info, TRUE)))
        goto end;
    }
    else
    {
1460 1461
      if (unlikely(fix_fields_part_func(thd, part_info->subpart_expr,
                                        table, TRUE, TRUE)))
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
        goto end;
      if (unlikely(part_info->subpart_expr->result_type() != INT_RESULT))
      {
        my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0),
                 "SUBPARTITION");
        goto end;
      }
    }
  }
  DBUG_ASSERT(part_info->part_type != NOT_A_PARTITION);
  /*
unknown's avatar
unknown committed
1473 1474
    Partition is defined. We need to verify that partitioning
    function is correct.
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
  */
  if (part_info->part_type == HASH_PARTITION)
  {
    if (part_info->linear_hash_ind)
      set_linear_hash_mask(part_info, part_info->no_parts);
    if (part_info->list_of_part_fields)
    {
      List_iterator<char> it(part_info->part_field_list);
      if (unlikely(handle_list_of_fields(it, table, part_info, FALSE)))
        goto end;
    }
    else
    {
1488 1489
      if (unlikely(fix_fields_part_func(thd, part_info->part_expr,
                                        table, FALSE, TRUE)))
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
        goto end;
      if (unlikely(part_info->part_expr->result_type() != INT_RESULT))
      {
        my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), part_str);
        goto end;
      }
      part_info->part_result_type= INT_RESULT;
    }
  }
  else
  {
1501
    const char *error_str;
1502 1503 1504
    if (unlikely(fix_fields_part_func(thd, part_info->part_expr,
                                      table, FALSE, TRUE)))
      goto end;
1505 1506
    if (part_info->part_type == RANGE_PARTITION)
    {
1507
      error_str= partition_keywords[PKW_RANGE].str; 
unknown's avatar
unknown committed
1508
      if (unlikely(part_info->check_range_constants()))
1509 1510 1511 1512
        goto end;
    }
    else if (part_info->part_type == LIST_PARTITION)
    {
1513
      error_str= partition_keywords[PKW_LIST].str; 
unknown's avatar
unknown committed
1514
      if (unlikely(part_info->check_list_constants()))
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
        goto end;
    }
    else
    {
      DBUG_ASSERT(0);
      my_error(ER_INCONSISTENT_PARTITION_INFO_ERROR, MYF(0));
      goto end;
    }
    if (unlikely(part_info->no_parts < 1))
    {
      my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_str);
      goto end;
    }
    if (unlikely(part_info->part_expr->result_type() != INT_RESULT))
    {
      my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), part_str);
      goto end;
    }
  }
  if (unlikely(create_full_part_field_array(table, part_info)))
    goto end;
  if (unlikely(check_primary_key(table)))
    goto end;
unknown's avatar
unknown committed
1538 1539
  if (unlikely((!(table->s->db_type->partition_flags &&
      (table->s->db_type->partition_flags() & HA_CAN_PARTITION_UNIQUE))) &&
1540 1541
               check_unique_keys(table)))
    goto end;
unknown's avatar
unknown committed
1542 1543
  if (unlikely(set_up_partition_bitmap(thd, part_info)))
    goto end;
1544 1545 1546
  check_range_capable_PF(table);
  set_up_partition_key_maps(table, part_info);
  set_up_partition_func_pointers(part_info);
unknown's avatar
unknown committed
1547
  set_up_range_analysis_info(part_info);
1548 1549
  result= FALSE;
end:
1550 1551
  thd->mark_used_columns= save_mark_used_columns;
  DBUG_PRINT("info", ("thd->mark_used_columns: %d", thd->mark_used_columns));
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
  DBUG_RETURN(result);
}


/*
  The code below is support routines for the reverse parsing of the 
  partitioning syntax. This feature is very useful to generate syntax for
  all default values to avoid all default checking when opening the frm
  file. It is also used when altering the partitioning by use of various
  ALTER TABLE commands. Finally it is used for SHOW CREATE TABLES.
*/

static int add_write(File fptr, const char *buf, uint len)
{
1566
  uint len_written= my_write(fptr, (const byte*)buf, len, MYF(0));
unknown's avatar
unknown committed
1567

1568 1569 1570 1571 1572 1573
  if (likely(len == len_written))
    return 0;
  else
    return 1;
}

1574 1575 1576 1577 1578
static int add_string_object(File fptr, String *string)
{
  return add_write(fptr, string->ptr(), string->length());
}

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
static int add_string(File fptr, const char *string)
{
  return add_write(fptr, string, strlen(string));
}

static int add_string_len(File fptr, const char *string, uint len)
{
  return add_write(fptr, string, len);
}

static int add_space(File fptr)
{
  return add_string(fptr, space_str);
}

static int add_comma(File fptr)
{
  return add_string(fptr, comma_str);
}

static int add_equal(File fptr)
{
  return add_string(fptr, equal_str);
}

static int add_end_parenthesis(File fptr)
{
  return add_string(fptr, end_paren_str);
}

static int add_begin_parenthesis(File fptr)
{
  return add_string(fptr, begin_paren_str);
}

static int add_part_key_word(File fptr, const char *key_string)
{
  int err= add_string(fptr, key_string);
unknown's avatar
unknown committed
1617

1618 1619 1620 1621 1622 1623
  err+= add_space(fptr);
  return err + add_begin_parenthesis(fptr);
}

static int add_hash(File fptr)
{
1624
  return add_part_key_word(fptr, partition_keywords[PKW_HASH].str);
1625 1626 1627 1628
}

static int add_partition(File fptr)
{
1629
  char buff[22];
1630 1631 1632 1633 1634 1635 1636
  strxmov(buff, part_str, space_str, NullS);
  return add_string(fptr, buff);
}

static int add_subpartition(File fptr)
{
  int err= add_string(fptr, sub_str);
unknown's avatar
unknown committed
1637

1638 1639 1640 1641 1642
  return err + add_partition(fptr);
}

static int add_partition_by(File fptr)
{
1643
  char buff[22];
1644 1645 1646 1647 1648 1649 1650
  strxmov(buff, part_str, space_str, by_str, space_str, NullS);
  return add_string(fptr, buff);
}

static int add_subpartition_by(File fptr)
{
  int err= add_string(fptr, sub_str);
unknown's avatar
unknown committed
1651

1652 1653 1654 1655 1656 1657 1658
  return err + add_partition_by(fptr);
}

static int add_key_partition(File fptr, List<char> field_list)
{
  uint i, no_fields;
  int err;
unknown's avatar
unknown committed
1659

1660
  List_iterator<char> part_it(field_list);
1661
  err= add_part_key_word(fptr, partition_keywords[PKW_KEY].str);
1662 1663
  no_fields= field_list.elements;
  i= 0;
unknown's avatar
unknown committed
1664
  while (i < no_fields)
1665 1666
  {
    const char *field_str= part_it++;
1667 1668 1669 1670 1671 1672 1673 1674
    String field_string("", 0, system_charset_info);
    THD *thd= current_thd;
    ulonglong save_options= thd->options;
    thd->options= 0;
    append_identifier(thd, &field_string, field_str,
                      strlen(field_str));
    thd->options= save_options;
    err+= add_string_object(fptr, &field_string);
1675 1676
    if (i != (no_fields-1))
      err+= add_comma(fptr);
unknown's avatar
unknown committed
1677 1678
    i++;
  }
1679 1680 1681
  return err;
}

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
static int add_name_string(File fptr, const char *name)
{
  int err;
  String name_string("", 0, system_charset_info);
  THD *thd= current_thd;
  ulonglong save_options= thd->options;

  thd->options= 0;
  append_identifier(thd, &name_string, name,
                    strlen(name));
  thd->options= save_options;
  err= add_string_object(fptr, &name_string);
  return err;
}

1697 1698
static int add_int(File fptr, longlong number)
{
1699
  char buff[32];
1700 1701 1702 1703
  llstr(number, buff);
  return add_string(fptr, buff);
}

1704 1705 1706 1707 1708 1709 1710
static int add_uint(File fptr, ulonglong number)
{
  char buff[32];
  longlong2str(number, buff, 10);
  return add_string(fptr, buff);
}

1711
static int add_keyword_string(File fptr, const char *keyword,
1712
                              bool should_use_quotes, 
1713 1714 1715
                              const char *keystr)
{
  int err= add_string(fptr, keyword);
unknown's avatar
unknown committed
1716

1717 1718 1719
  err+= add_space(fptr);
  err+= add_equal(fptr);
  err+= add_space(fptr);
1720 1721
  if (should_use_quotes)
    err+= add_string(fptr, "'");
1722
  err+= add_string(fptr, keystr);
1723 1724
  if (should_use_quotes)
    err+= add_string(fptr, "'");
1725 1726 1727 1728 1729 1730
  return err + add_space(fptr);
}

static int add_keyword_int(File fptr, const char *keyword, longlong num)
{
  int err= add_string(fptr, keyword);
unknown's avatar
unknown committed
1731

1732 1733 1734 1735 1736 1737 1738
  err+= add_space(fptr);
  err+= add_equal(fptr);
  err+= add_space(fptr);
  err+= add_int(fptr, num);
  return err + add_space(fptr);
}

unknown's avatar
unknown committed
1739
static int add_engine(File fptr, handlerton *engine_type)
1740
{
unknown's avatar
unknown committed
1741 1742
  const char *engine_str= hton2plugin[engine_type->slot]->name.str;
  DBUG_PRINT("info", ("ENGINE: %s", engine_str));
1743 1744 1745 1746 1747 1748 1749
  int err= add_string(fptr, "ENGINE = ");
  return err + add_string(fptr, engine_str);
}

static int add_partition_options(File fptr, partition_element *p_elem)
{
  int err= 0;
unknown's avatar
unknown committed
1750

1751
  err+= add_space(fptr);
1752
  if (p_elem->tablespace_name)
unknown's avatar
unknown committed
1753
    err+= add_keyword_string(fptr,"TABLESPACE", FALSE,
1754
                             p_elem->tablespace_name);
1755 1756 1757 1758 1759 1760 1761
  if (p_elem->nodegroup_id != UNDEF_NODEGROUP)
    err+= add_keyword_int(fptr,"NODEGROUP",(longlong)p_elem->nodegroup_id);
  if (p_elem->part_max_rows)
    err+= add_keyword_int(fptr,"MAX_ROWS",(longlong)p_elem->part_max_rows);
  if (p_elem->part_min_rows)
    err+= add_keyword_int(fptr,"MIN_ROWS",(longlong)p_elem->part_min_rows);
  if (p_elem->data_file_name)
1762 1763
    err+= add_keyword_string(fptr, "DATA DIRECTORY", TRUE, 
                             p_elem->data_file_name);
1764
  if (p_elem->index_file_name)
1765 1766
    err+= add_keyword_string(fptr, "INDEX DIRECTORY", TRUE, 
                             p_elem->index_file_name);
1767
  if (p_elem->part_comment)
1768
    err+= add_keyword_string(fptr, "COMMENT", TRUE, p_elem->part_comment);
1769 1770 1771
  return err + add_engine(fptr,p_elem->engine_type);
}

unknown's avatar
unknown committed
1772
static int add_partition_values(File fptr, partition_info *part_info, partition_element *p_elem)
1773 1774
{
  int err= 0;
unknown's avatar
unknown committed
1775

1776 1777
  if (part_info->part_type == RANGE_PARTITION)
  {
1778
    err+= add_string(fptr, " VALUES LESS THAN ");
1779
    if (!p_elem->max_value)
1780 1781
    {
      err+= add_begin_parenthesis(fptr);
1782
      if (p_elem->signed_flag)
1783 1784
        err+= add_int(fptr, p_elem->range_value);
      else
unknown's avatar
unknown committed
1785
        err+= add_uint(fptr, p_elem->range_value);
1786 1787 1788
      err+= add_end_parenthesis(fptr);
    }
    else
1789
      err+= add_string(fptr, partition_keywords[PKW_MAXVALUE].str);
1790 1791 1792 1793
  }
  else if (part_info->part_type == LIST_PARTITION)
  {
    uint i;
1794
    List_iterator<part_elem_value> list_val_it(p_elem->list_val_list);
1795
    err+= add_string(fptr, " VALUES IN ");
unknown's avatar
unknown committed
1796
    uint no_items= p_elem->list_val_list.elements;
1797

1798
    err+= add_begin_parenthesis(fptr);
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
    if (p_elem->has_null_value)
    {
      err+= add_string(fptr, "NULL");
      if (no_items == 0)
      {
        err+= add_end_parenthesis(fptr);
        goto end;
      }
      err+= add_comma(fptr);
    }
1809 1810 1811
    i= 0;
    do
    {
1812 1813 1814 1815 1816 1817
      part_elem_value *list_value= list_val_it++;

      if (!list_value->unsigned_flag)
        err+= add_int(fptr, list_value->value);
      else
        err+= add_uint(fptr, list_value->value);
1818 1819 1820 1821 1822
      if (i != (no_items-1))
        err+= add_comma(fptr);
    } while (++i < no_items);
    err+= add_end_parenthesis(fptr);
  }
1823
end:
1824
  return err;
1825 1826 1827 1828 1829 1830
}

/*
  Generate the partition syntax from the partition data structure.
  Useful for support of generating defaults, SHOW CREATE TABLES
  and easy partition management.
unknown's avatar
unknown committed
1831

1832 1833 1834 1835 1836 1837
  SYNOPSIS
    generate_partition_syntax()
    part_info                  The partitioning data structure
    buf_length                 A pointer to the returned buffer length
    use_sql_alloc              Allocate buffer from sql_alloc if true
                               otherwise use my_malloc
1838
    show_partition_options     Should we display partition options
unknown's avatar
unknown committed
1839

1840 1841 1842
  RETURN VALUES
    NULL error
    buf, buf_length            Buffer and its length
unknown's avatar
unknown committed
1843

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
  DESCRIPTION
  Here we will generate the full syntax for the given command where all
  defaults have been expanded. By so doing the it is also possible to
  make lots of checks of correctness while at it.
  This could will also be reused for SHOW CREATE TABLES and also for all
  type ALTER TABLE commands focusing on changing the PARTITION structure
  in any fashion.

  The implementation writes the syntax to a temporary file (essentially
  an abstraction of a dynamic array) and if all writes goes well it
  allocates a buffer and writes the syntax into this one and returns it.

  As a security precaution the file is deleted before writing into it. This
  means that no other processes on the machine can open and read the file
  while this processing is ongoing.

  The code is optimised for minimal code size since it is not used in any
  common queries.
*/

char *generate_partition_syntax(partition_info *part_info,
                                uint *buf_length,
1866
                                bool use_sql_alloc,
1867
                                bool show_partition_options)
1868
{
unknown's avatar
unknown committed
1869
  uint i,j, tot_no_parts, no_subparts, no_parts;
1870
  partition_element *part_elem;
unknown's avatar
unknown committed
1871
  partition_element *save_part_elem= NULL;
1872 1873 1874
  ulonglong buffer_length;
  char path[FN_REFLEN];
  int err= 0;
unknown's avatar
unknown committed
1875
  List_iterator<partition_element> part_it(part_info->partitions);
1876 1877
  File fptr;
  char *buf= NULL; //Return buffer
unknown's avatar
unknown committed
1878 1879
  DBUG_ENTER("generate_partition_syntax");

1880 1881 1882
  if (unlikely(((fptr= create_temp_file(path,mysql_tmpdir,"psy", 
                                        O_RDWR | O_BINARY | O_TRUNC |  
                                        O_TEMPORARY, MYF(MY_WME)))) < 0))
1883
    DBUG_RETURN(NULL);
unknown's avatar
unknown committed
1884 1885
#ifndef __WIN__
  unlink(path);
1886 1887 1888 1889 1890 1891
#endif
  err+= add_space(fptr);
  err+= add_partition_by(fptr);
  switch (part_info->part_type)
  {
    case RANGE_PARTITION:
1892
      err+= add_part_key_word(fptr, partition_keywords[PKW_RANGE].str);
1893 1894
      break;
    case LIST_PARTITION:
1895
      err+= add_part_key_word(fptr, partition_keywords[PKW_LIST].str);
1896 1897 1898
      break;
    case HASH_PARTITION:
      if (part_info->linear_hash_ind)
1899
        err+= add_string(fptr, partition_keywords[PKW_LINEAR].str);
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
      if (part_info->list_of_part_fields)
        err+= add_key_partition(fptr, part_info->part_field_list);
      else
        err+= add_hash(fptr);
      break;
    default:
      DBUG_ASSERT(0);
      /* We really shouldn't get here, no use in continuing from here */
      current_thd->fatal_error();
      DBUG_RETURN(NULL);
  }
  if (part_info->part_expr)
    err+= add_string_len(fptr, part_info->part_func_string,
                         part_info->part_func_len);
  err+= add_end_parenthesis(fptr);
  err+= add_space(fptr);
unknown's avatar
unknown committed
1916 1917 1918 1919 1920 1921 1922
  if ((!part_info->use_default_no_partitions) &&
       part_info->use_default_partitions)
  {
    err+= add_string(fptr, "PARTITIONS ");
    err+= add_int(fptr, part_info->no_parts);
    err+= add_space(fptr);
  }
1923
  if (part_info->is_sub_partitioned())
1924 1925 1926
  {
    err+= add_subpartition_by(fptr);
    /* Must be hash partitioning for subpartitioning */
1927 1928
    if (part_info->linear_hash_ind)
      err+= add_string(fptr, partition_keywords[PKW_LINEAR].str);
1929 1930 1931 1932 1933 1934 1935 1936 1937
    if (part_info->list_of_subpart_fields)
      err+= add_key_partition(fptr, part_info->subpart_field_list);
    else
      err+= add_hash(fptr);
    if (part_info->subpart_expr)
      err+= add_string_len(fptr, part_info->subpart_func_string,
                           part_info->subpart_func_len);
    err+= add_end_parenthesis(fptr);
    err+= add_space(fptr);
unknown's avatar
unknown committed
1938 1939 1940 1941 1942 1943 1944 1945
    if ((!part_info->use_default_no_subpartitions) && 
          part_info->use_default_subpartitions)
    {
      err+= add_string(fptr, "SUBPARTITIONS ");
      err+= add_int(fptr, part_info->no_subparts);
      err+= add_space(fptr);
    }
  }
1946
  tot_no_parts= part_info->partitions.elements;
1947
  no_subparts= part_info->no_subparts;
unknown's avatar
unknown committed
1948

1949
  if (!part_info->use_default_partitions)
1950
  {
1951
    bool first= TRUE;
unknown's avatar
unknown committed
1952 1953 1954
    err+= add_begin_parenthesis(fptr);
    i= 0;
    do
1955
    {
1956 1957 1958
      part_elem= part_it++;
      if (part_elem->part_state != PART_TO_BE_DROPPED &&
          part_elem->part_state != PART_REORGED_DROPPED)
unknown's avatar
unknown committed
1959
      {
1960
        if (!first)
unknown's avatar
unknown committed
1961
        {
1962 1963
          err+= add_comma(fptr);
          err+= add_space(fptr);
unknown's avatar
unknown committed
1964
        }
1965
        first= FALSE;
unknown's avatar
unknown committed
1966
        err+= add_partition(fptr);
1967
        err+= add_name_string(fptr, part_elem->partition_name);
unknown's avatar
unknown committed
1968
        err+= add_partition_values(fptr, part_info, part_elem);
1969 1970
        if (!part_info->is_sub_partitioned() ||
            part_info->use_default_subpartitions)
1971
        {
1972 1973
          if (show_partition_options)
            err+= add_partition_options(fptr, part_elem);
1974 1975
        }
        else
unknown's avatar
unknown committed
1976 1977 1978 1979 1980 1981 1982 1983 1984
        {
          err+= add_space(fptr);
          err+= add_begin_parenthesis(fptr);
          List_iterator<partition_element> sub_it(part_elem->subpartitions);
          j= 0;
          do
          {
            part_elem= sub_it++;
            err+= add_subpartition(fptr);
1985
            err+= add_name_string(fptr, part_elem->partition_name);
1986 1987
            if (show_partition_options)
              err+= add_partition_options(fptr, part_elem);
unknown's avatar
unknown committed
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
            if (j != (no_subparts-1))
            {
              err+= add_comma(fptr);
              err+= add_space(fptr);
            }
            else
              err+= add_end_parenthesis(fptr);
          } while (++j < no_subparts);
        }
      }
      if (i == (tot_no_parts-1))
        err+= add_end_parenthesis(fptr);
    } while (++i < tot_no_parts);
2001
  }
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
  if (err)
    goto close_file;
  buffer_length= my_seek(fptr, 0L,MY_SEEK_END,MYF(0));
  if (unlikely(buffer_length == MY_FILEPOS_ERROR))
    goto close_file;
  if (unlikely(my_seek(fptr, 0L, MY_SEEK_SET, MYF(0)) == MY_FILEPOS_ERROR))
    goto close_file;
  *buf_length= (uint)buffer_length;
  if (use_sql_alloc)
    buf= sql_alloc(*buf_length+1);
  else
    buf= my_malloc(*buf_length+1, MYF(MY_WME));
  if (!buf)
    goto close_file;

2017
  if (unlikely(my_read(fptr, (byte*)buf, *buf_length, MYF(MY_FNABP))))
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
  {
    if (!use_sql_alloc)
      my_free(buf, MYF(0));
    else
      buf= NULL;
  }
  else
    buf[*buf_length]= 0;

close_file:
  my_close(fptr, MYF(0));
  DBUG_RETURN(buf);
}


/*
  Check if partition key fields are modified and if it can be handled by the
  underlying storage engine.
unknown's avatar
unknown committed
2036

2037 2038 2039
  SYNOPSIS
    partition_key_modified
    table                TABLE object for which partition fields are set-up
2040
    fields               Bitmap representing fields to be modified
unknown's avatar
unknown committed
2041

2042 2043 2044 2045 2046
  RETURN VALUES
    TRUE                 Need special handling of UPDATE
    FALSE                Normal UPDATE handling is ok
*/

2047
bool partition_key_modified(TABLE *table, const MY_BITMAP *fields)
2048
{
2049
  Field **fld;
unknown's avatar
unknown committed
2050
  partition_info *part_info= table->part_info;
2051
  DBUG_ENTER("partition_key_modified");
unknown's avatar
unknown committed
2052

2053 2054
  if (!part_info)
    DBUG_RETURN(FALSE);
unknown's avatar
unknown committed
2055 2056
  if (table->s->db_type->partition_flags &&
      (table->s->db_type->partition_flags() & HA_CAN_UPDATE_PARTITION_KEY))
2057
    DBUG_RETURN(FALSE);
2058 2059
  for (fld= part_info->full_part_field_array; *fld; fld++)
    if (bitmap_is_set(fields, (*fld)->field_index))
2060 2061 2062 2063 2064
      DBUG_RETURN(TRUE);
  DBUG_RETURN(FALSE);
}


2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
/*
  A function to handle correct handling of NULL values in partition
  functions.
  SYNOPSIS
    part_val_int()
    item_expr                 The item expression to evaluate
  RETURN VALUES
    The value of the partition function, LONGLONG_MIN if any null value
    in function
*/

2076
static inline longlong part_val_int(Item *item_expr)
2077 2078 2079 2080 2081 2082 2083 2084
{
  longlong value= item_expr->val_int();
  if (item_expr->null_value)
    value= LONGLONG_MIN;
  return value;
}


2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
/*
  The next set of functions are used to calculate the partition identity.
  A handler sets up a variable that corresponds to one of these functions
  to be able to quickly call it whenever the partition id needs to calculated
  based on the record in table->record[0] (or set up to fake that).
  There are 4 functions for hash partitioning and 2 for RANGE/LIST partitions.
  In addition there are 4 variants for RANGE subpartitioning and 4 variants
  for LIST subpartitioning thus in total there are 14 variants of this
  function.

  We have a set of support functions for these 14 variants. There are 4
  variants of hash functions and there is a function for each. The KEY
  partitioning uses the function calculate_key_value to calculate the hash
  value based on an array of fields. The linear hash variants uses the
  method get_part_id_from_linear_hash to get the partition id using the
  hash value and some parameters calculated from the number of partitions.
*/

/*
  Calculate hash value for KEY partitioning using an array of fields.
unknown's avatar
unknown committed
2105

2106 2107 2108
  SYNOPSIS
    calculate_key_value()
    field_array             An array of the fields in KEY partitioning
unknown's avatar
unknown committed
2109

2110 2111
  RETURN VALUE
    hash_value calculated
unknown's avatar
unknown committed
2112

2113 2114 2115 2116 2117 2118 2119
  DESCRIPTION
    Uses the hash function on the character set of the field. Integer and
    floating point fields use the binary character set by default.
*/

static uint32 calculate_key_value(Field **field_array)
{
2120
  ulong nr1= 1;
2121
  ulong nr2= 4;
unknown's avatar
unknown committed
2122

2123 2124 2125
  do
  {
    Field *field= *field_array;
2126
    field->hash(&nr1, &nr2);
2127
  } while (*(++field_array));
2128
  return (uint32) nr1;
2129 2130 2131 2132 2133 2134
}


/*
  A simple support function to calculate part_id given local part and
  sub part.
unknown's avatar
unknown committed
2135

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
  SYNOPSIS
    get_part_id_for_sub()
    loc_part_id             Local partition id
    sub_part_id             Subpartition id
    no_subparts             Number of subparts
*/

inline
static uint32 get_part_id_for_sub(uint32 loc_part_id, uint32 sub_part_id,
                                  uint no_subparts)
{
  return (uint32)((loc_part_id * no_subparts) + sub_part_id);
}


/*
  Calculate part_id for (SUB)PARTITION BY HASH
unknown's avatar
unknown committed
2153

2154 2155 2156 2157
  SYNOPSIS
    get_part_id_hash()
    no_parts                 Number of hash partitions
    part_expr                Item tree of hash function
2158
    out:func_value      Value of hash function
unknown's avatar
unknown committed
2159

2160 2161 2162 2163 2164 2165
  RETURN VALUE
    Calculated partition id
*/

inline
static uint32 get_part_id_hash(uint no_parts,
2166 2167
                               Item *part_expr,
                               longlong *func_value)
2168 2169
{
  DBUG_ENTER("get_part_id_hash");
2170
  *func_value= part_val_int(part_expr);
2171
  longlong int_hash_id= *func_value % no_parts;
2172
  DBUG_RETURN(int_hash_id < 0 ? -int_hash_id : int_hash_id);
2173 2174 2175 2176 2177
}


/*
  Calculate part_id for (SUB)PARTITION BY LINEAR HASH
unknown's avatar
unknown committed
2178

2179 2180 2181 2182 2183 2184
  SYNOPSIS
    get_part_id_linear_hash()
    part_info           A reference to the partition_info struct where all the
                        desired information is given
    no_parts            Number of hash partitions
    part_expr           Item tree of hash function
2185
    out:func_value      Value of hash function
unknown's avatar
unknown committed
2186

2187 2188 2189 2190 2191 2192 2193
  RETURN VALUE
    Calculated partition id
*/

inline
static uint32 get_part_id_linear_hash(partition_info *part_info,
                                      uint no_parts,
2194 2195
                                      Item *part_expr,
                                      longlong *func_value)
2196 2197
{
  DBUG_ENTER("get_part_id_linear_hash");
unknown's avatar
unknown committed
2198

2199
  *func_value= part_val_int(part_expr);
2200
  DBUG_RETURN(get_part_id_from_linear_hash(*func_value,
2201 2202 2203 2204 2205 2206 2207
                                           part_info->linear_hash_mask,
                                           no_parts));
}


/*
  Calculate part_id for (SUB)PARTITION BY KEY
unknown's avatar
unknown committed
2208

2209 2210 2211 2212
  SYNOPSIS
    get_part_id_key()
    field_array         Array of fields for PARTTION KEY
    no_parts            Number of KEY partitions
unknown's avatar
unknown committed
2213

2214 2215 2216 2217 2218 2219
  RETURN VALUE
    Calculated partition id
*/

inline
static uint32 get_part_id_key(Field **field_array,
2220 2221
                              uint no_parts,
                              longlong *func_value)
2222 2223
{
  DBUG_ENTER("get_part_id_key");
2224 2225
  *func_value= calculate_key_value(field_array);
  DBUG_RETURN(*func_value % no_parts);
2226 2227 2228 2229 2230
}


/*
  Calculate part_id for (SUB)PARTITION BY LINEAR KEY
unknown's avatar
unknown committed
2231

2232 2233 2234 2235 2236 2237
  SYNOPSIS
    get_part_id_linear_key()
    part_info           A reference to the partition_info struct where all the
                        desired information is given
    field_array         Array of fields for PARTTION KEY
    no_parts            Number of KEY partitions
unknown's avatar
unknown committed
2238

2239 2240 2241 2242 2243 2244 2245
  RETURN VALUE
    Calculated partition id
*/

inline
static uint32 get_part_id_linear_key(partition_info *part_info,
                                     Field **field_array,
2246 2247
                                     uint no_parts,
                                     longlong *func_value)
2248 2249
{
  DBUG_ENTER("get_partition_id_linear_key");
unknown's avatar
unknown committed
2250

2251 2252
  *func_value= calculate_key_value(field_array);
  DBUG_RETURN(get_part_id_from_linear_hash(*func_value,
2253 2254 2255 2256 2257 2258 2259 2260
                                           part_info->linear_hash_mask,
                                           no_parts));
}

/*
  This function is used to calculate the partition id where all partition
  fields have been prepared to point to a record where the partition field
  values are bound.
unknown's avatar
unknown committed
2261

2262 2263 2264 2265
  SYNOPSIS
    get_partition_id()
    part_info           A reference to the partition_info struct where all the
                        desired information is given
unknown's avatar
unknown committed
2266 2267
    out:part_id         The partition id is returned through this pointer

2268
  RETURN VALUE
2269 2270 2271 2272 2273
    part_id                     Partition id of partition that would contain
                                row with given values of PF-fields
    HA_ERR_NO_PARTITION_FOUND   The fields of the partition function didn't
                                fit into any partition and thus the values of 
                                the PF-fields are not allowed.
unknown's avatar
unknown committed
2274

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
  DESCRIPTION
    A routine used from write_row, update_row and delete_row from any
    handler supporting partitioning. It is also a support routine for
    get_partition_set used to find the set of partitions needed to scan
    for a certain index scan or full table scan.
    
    It is actually 14 different variants of this function which are called
    through a function pointer.

    get_partition_id_list
    get_partition_id_range
    get_partition_id_hash_nosub
    get_partition_id_key_nosub
    get_partition_id_linear_hash_nosub
    get_partition_id_linear_key_nosub
    get_partition_id_range_sub_hash
    get_partition_id_range_sub_key
    get_partition_id_range_sub_linear_hash
    get_partition_id_range_sub_linear_key
    get_partition_id_list_sub_hash
    get_partition_id_list_sub_key
    get_partition_id_list_sub_linear_hash
    get_partition_id_list_sub_linear_key
*/

/*
  This function is used to calculate the main partition to use in the case of
  subpartitioning and we don't know enough to get the partition identity in
  total.
unknown's avatar
unknown committed
2304

2305 2306 2307 2308
  SYNOPSIS
    get_part_partition_id()
    part_info           A reference to the partition_info struct where all the
                        desired information is given
unknown's avatar
unknown committed
2309 2310
    out:part_id         The partition id is returned through this pointer

2311
  RETURN VALUE
2312 2313 2314 2315 2316
    part_id                     Partition id of partition that would contain
                                row with given values of PF-fields
    HA_ERR_NO_PARTITION_FOUND   The fields of the partition function didn't
                                fit into any partition and thus the values of 
                                the PF-fields are not allowed.
unknown's avatar
unknown committed
2317

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
  DESCRIPTION
    
    It is actually 6 different variants of this function which are called
    through a function pointer.

    get_partition_id_list
    get_partition_id_range
    get_partition_id_hash_nosub
    get_partition_id_key_nosub
    get_partition_id_linear_hash_nosub
    get_partition_id_linear_key_nosub
*/


unknown's avatar
unknown committed
2332
int get_partition_id_list(partition_info *part_info,
2333 2334
                          uint32 *part_id,
                          longlong *func_value)
2335 2336
{
  LIST_PART_ENTRY *list_array= part_info->list_array;
unknown's avatar
unknown committed
2337 2338 2339
  int list_index;
  int min_list_index= 0;
  int max_list_index= part_info->no_list_values - 1;
2340
  longlong part_func_value= part_val_int(part_info->part_expr);
unknown's avatar
unknown committed
2341
  longlong list_value;
2342
  bool unsigned_flag= part_info->part_expr->unsigned_flag;
unknown's avatar
unknown committed
2343 2344
  DBUG_ENTER("get_partition_id_list");

2345 2346 2347 2348 2349 2350 2351 2352 2353
  if (part_info->part_expr->null_value)
  {
    if (part_info->has_null_value)
    {
      *part_id= part_info->has_null_part_id;
      DBUG_RETURN(0);
    }
    goto notfound;
  }
2354
  *func_value= part_func_value;
unknown's avatar
unknown committed
2355 2356
  if (unsigned_flag)
    part_func_value-= 0x8000000000000000ULL;
2357 2358 2359 2360 2361 2362 2363
  while (max_list_index >= min_list_index)
  {
    list_index= (max_list_index + min_list_index) >> 1;
    list_value= list_array[list_index].list_value;
    if (list_value < part_func_value)
      min_list_index= list_index + 1;
    else if (list_value > part_func_value)
unknown's avatar
unknown committed
2364 2365 2366
    {
      if (!list_index)
        goto notfound;
2367
      max_list_index= list_index - 1;
unknown's avatar
unknown committed
2368 2369 2370
    }
    else
    {
2371
      *part_id= (uint32)list_array[list_index].partition_id;
unknown's avatar
unknown committed
2372
      DBUG_RETURN(0);
2373 2374
    }
  }
unknown's avatar
unknown committed
2375
notfound:
2376
  *part_id= 0;
unknown's avatar
unknown committed
2377
  DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
2378 2379 2380
}


unknown's avatar
unknown committed
2381
/*
2382 2383
  Find the sub-array part_info->list_array that corresponds to given interval

unknown's avatar
unknown committed
2384 2385 2386 2387 2388 2389 2390 2391
  SYNOPSIS 
    get_list_array_idx_for_endpoint()
      part_info         Partitioning info (partitioning type must be LIST)
      left_endpoint     TRUE  - the interval is [a; +inf) or (a; +inf)
                        FALSE - the interval is (-inf; a] or (-inf; a)
      include_endpoint  TRUE iff the interval includes the endpoint

  DESCRIPTION
2392
    This function finds the sub-array of part_info->list_array where values of
unknown's avatar
unknown committed
2393 2394 2395
    list_array[idx].list_value are contained within the specifed interval.
    list_array is ordered by list_value, so
    1. For [a; +inf) or (a; +inf)-type intervals (left_endpoint==TRUE), the 
2396
       sought sub-array starts at some index idx and continues till array end.
unknown's avatar
unknown committed
2397 2398 2399 2400
       The function returns first number idx, such that 
       list_array[idx].list_value is contained within the passed interval.
       
    2. For (-inf; a] or (-inf; a)-type intervals (left_endpoint==FALSE), the
2401
       sought sub-array starts at array start and continues till some last 
unknown's avatar
unknown committed
2402 2403 2404 2405 2406 2407 2408
       index idx.
       The function returns first number idx, such that 
       list_array[idx].list_value is NOT contained within the passed interval.
       If all array elements are contained, part_info->no_list_values is
       returned.

  NOTE
2409
    The caller will call this function and then will run along the sub-array of
unknown's avatar
unknown committed
2410 2411 2412 2413 2414 2415
    list_array to collect partition ids. If the number of list values is 
    significantly higher then number of partitions, this could be slow and
    we could invent some other approach. The "run over list array" part is
    already wrapped in a get_next()-like function.

  RETURN
2416
    The edge of corresponding sub-array of part_info->list_array
unknown's avatar
unknown committed
2417 2418 2419 2420 2421 2422 2423 2424 2425
*/

uint32 get_list_array_idx_for_endpoint(partition_info *part_info,
                                       bool left_endpoint,
                                       bool include_endpoint)
{
  LIST_PART_ENTRY *list_array= part_info->list_array;
  uint list_index;
  uint min_list_index= 0, max_list_index= part_info->no_list_values - 1;
2426
  longlong list_value;
2427
  /* Get the partitioning function value for the endpoint */
2428
  longlong part_func_value= part_val_int(part_info->part_expr);
2429 2430 2431
  bool unsigned_flag= part_info->part_expr->unsigned_flag;
  DBUG_ENTER("get_list_array_idx_for_endpoint");

2432 2433 2434 2435
  if (part_info->part_expr->null_value)
  {
    DBUG_RETURN(0);
  }
unknown's avatar
unknown committed
2436 2437
  if (unsigned_flag)
    part_func_value-= 0x8000000000000000ULL;
2438 2439
  DBUG_ASSERT(part_info->no_list_values);
  do
unknown's avatar
unknown committed
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
  {
    list_index= (max_list_index + min_list_index) >> 1;
    list_value= list_array[list_index].list_value;
    if (list_value < part_func_value)
      min_list_index= list_index + 1;
    else if (list_value > part_func_value)
    {
      if (!list_index)
        goto notfound;
      max_list_index= list_index - 1;
    }
    else 
    {
      DBUG_RETURN(list_index + test(left_endpoint ^ include_endpoint));
    }
2455
  } while (max_list_index >= min_list_index);
unknown's avatar
unknown committed
2456 2457 2458 2459 2460 2461
notfound:
  if (list_value < part_func_value)
    list_index++;
  DBUG_RETURN(list_index);
}

2462

unknown's avatar
unknown committed
2463
int get_partition_id_range(partition_info *part_info,
2464 2465
                            uint32 *part_id,
                            longlong *func_value)
2466 2467 2468
{
  longlong *range_array= part_info->range_int_array;
  uint max_partition= part_info->no_parts - 1;
unknown's avatar
unknown committed
2469 2470 2471
  uint min_part_id= 0;
  uint max_part_id= max_partition;
  uint loc_part_id;
2472
  longlong part_func_value= part_val_int(part_info->part_expr);
2473
  bool unsigned_flag= part_info->part_expr->unsigned_flag;
unknown's avatar
unknown committed
2474
  DBUG_ENTER("get_partition_id_range");
unknown's avatar
unknown committed
2475

2476 2477 2478 2479 2480
  if (part_info->part_expr->null_value)
  {
    *part_id= 0;
    DBUG_RETURN(0);
  }
unknown's avatar
unknown committed
2481
  *func_value= part_func_value;
unknown's avatar
unknown committed
2482 2483
  if (unsigned_flag)
    part_func_value-= 0x8000000000000000ULL;
2484 2485 2486
  while (max_part_id > min_part_id)
  {
    loc_part_id= (max_part_id + min_part_id + 1) >> 1;
unknown's avatar
unknown committed
2487
    if (range_array[loc_part_id] <= part_func_value)
2488 2489 2490 2491 2492 2493 2494 2495 2496
      min_part_id= loc_part_id + 1;
    else
      max_part_id= loc_part_id - 1;
  }
  loc_part_id= max_part_id;
  if (part_func_value >= range_array[loc_part_id])
    if (loc_part_id != max_partition)
      loc_part_id++;
  *part_id= (uint32)loc_part_id;
2497 2498 2499 2500 2501 2502
  if (loc_part_id == max_partition &&
      range_array[loc_part_id] != LONGLONG_MAX &&
      part_func_value >= range_array[loc_part_id])
    DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);

  DBUG_PRINT("exit",("partition: %d", *part_id));
unknown's avatar
unknown committed
2503
  DBUG_RETURN(0);
2504 2505
}

unknown's avatar
unknown committed
2506 2507

/*
2508 2509
  Find the sub-array of part_info->range_int_array that covers given interval
 
unknown's avatar
unknown committed
2510 2511 2512 2513 2514 2515 2516 2517 2518
  SYNOPSIS 
    get_partition_id_range_for_endpoint()
      part_info         Partitioning info (partitioning type must be RANGE)
      left_endpoint     TRUE  - the interval is [a; +inf) or (a; +inf)
                        FALSE - the interval is (-inf; a] or (-inf; a).
      include_endpoint  TRUE <=> the endpoint itself is included in the
                        interval

  DESCRIPTION
2519
    This function finds the sub-array of part_info->range_int_array where the
unknown's avatar
unknown committed
2520
    elements have non-empty intersections with the given interval.
2521
 
unknown's avatar
unknown committed
2522 2523 2524 2525 2526 2527 2528
    A range_int_array element at index idx represents the interval
      
      [range_int_array[idx-1], range_int_array[idx]),

    intervals are disjoint and ordered by their right bound, so
    
    1. For [a; +inf) or (a; +inf)-type intervals (left_endpoint==TRUE), the
2529
       sought sub-array starts at some index idx and continues till array end.
unknown's avatar
unknown committed
2530 2531 2532 2533 2534
       The function returns first number idx, such that the interval
       represented by range_int_array[idx] has non empty intersection with 
       the passed interval.
       
    2. For (-inf; a] or (-inf; a)-type intervals (left_endpoint==FALSE), the
2535
       sought sub-array starts at array start and continues till some last
unknown's avatar
unknown committed
2536 2537 2538 2539 2540 2541 2542 2543 2544
       index idx.
       The function returns first number idx, such that the interval
       represented by range_int_array[idx] has EMPTY intersection with the
       passed interval.
       If the interval represented by the last array element has non-empty 
       intersection with the passed interval, part_info->no_parts is
       returned.
       
  RETURN
2545
    The edge of corresponding part_info->range_int_array sub-array.
unknown's avatar
unknown committed
2546 2547 2548 2549 2550 2551 2552 2553 2554
*/

uint32 get_partition_id_range_for_endpoint(partition_info *part_info,
                                           bool left_endpoint,
                                           bool include_endpoint)
{
  longlong *range_array= part_info->range_int_array;
  uint max_partition= part_info->no_parts - 1;
  uint min_part_id= 0, max_part_id= max_partition, loc_part_id;
2555
  /* Get the partitioning function value for the endpoint */
2556
  longlong part_func_value= part_val_int(part_info->part_expr);
2557 2558
  bool unsigned_flag= part_info->part_expr->unsigned_flag;
  DBUG_ENTER("get_partition_id_range_for_endpoint");
2559

2560 2561 2562 2563 2564 2565 2566
  if (part_info->part_expr->null_value)
  {
    uint32 ret_part_id= 0;
    if (!left_endpoint && include_endpoint)
      ret_part_id= 1;
    DBUG_RETURN(ret_part_id);
  }
unknown's avatar
unknown committed
2567 2568
  if (unsigned_flag)
    part_func_value-= 0x8000000000000000ULL;
unknown's avatar
unknown committed
2569 2570 2571
  while (max_part_id > min_part_id)
  {
    loc_part_id= (max_part_id + min_part_id + 1) >> 1;
unknown's avatar
unknown committed
2572
    if (range_array[loc_part_id] <= part_func_value)
unknown's avatar
unknown committed
2573 2574 2575 2576 2577 2578 2579 2580
      min_part_id= loc_part_id + 1;
    else
      max_part_id= loc_part_id - 1;
  }
  loc_part_id= max_part_id;
  if (loc_part_id < max_partition && 
      part_func_value >= range_array[loc_part_id+1])
  {
unknown's avatar
unknown committed
2581
   loc_part_id++;
unknown's avatar
unknown committed
2582 2583 2584 2585 2586 2587 2588 2589
  }
  if (left_endpoint)
  {
    if (part_func_value >= range_array[loc_part_id])
      loc_part_id++;
  }
  else 
  {
2590 2591 2592 2593 2594 2595 2596
    if (loc_part_id < max_partition)
    {
      if (part_func_value == range_array[loc_part_id])
        loc_part_id += test(include_endpoint);
      else if (part_func_value > range_array[loc_part_id])
        loc_part_id++;
    }
unknown's avatar
unknown committed
2597 2598 2599 2600 2601 2602
    loc_part_id++;
  }
  DBUG_RETURN(loc_part_id);
}


unknown's avatar
unknown committed
2603
int get_partition_id_hash_nosub(partition_info *part_info,
2604 2605
                                 uint32 *part_id,
                                 longlong *func_value)
2606
{
2607 2608
  *part_id= get_part_id_hash(part_info->no_parts, part_info->part_expr,
                             func_value);
unknown's avatar
unknown committed
2609
  return 0;
2610 2611 2612
}


unknown's avatar
unknown committed
2613
int get_partition_id_linear_hash_nosub(partition_info *part_info,
2614 2615
                                        uint32 *part_id,
                                        longlong *func_value)
2616 2617
{
  *part_id= get_part_id_linear_hash(part_info, part_info->no_parts,
2618
                                    part_info->part_expr, func_value);
unknown's avatar
unknown committed
2619
  return 0;
2620 2621 2622
}


unknown's avatar
unknown committed
2623
int get_partition_id_key_nosub(partition_info *part_info,
2624 2625
                                uint32 *part_id,
                                longlong *func_value)
2626
{
2627 2628
  *part_id= get_part_id_key(part_info->part_field_array,
                            part_info->no_parts, func_value);
unknown's avatar
unknown committed
2629
  return 0;
2630 2631 2632
}


unknown's avatar
unknown committed
2633
int get_partition_id_linear_key_nosub(partition_info *part_info,
2634 2635
                                       uint32 *part_id,
                                       longlong *func_value)
2636 2637 2638
{
  *part_id= get_part_id_linear_key(part_info,
                                   part_info->part_field_array,
2639
                                   part_info->no_parts, func_value);
unknown's avatar
unknown committed
2640
  return 0;
2641 2642 2643
}


unknown's avatar
unknown committed
2644
int get_partition_id_range_sub_hash(partition_info *part_info,
2645 2646
                                     uint32 *part_id,
                                     longlong *func_value)
2647 2648 2649
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
2650
  longlong local_func_value;
unknown's avatar
unknown committed
2651
  int error;
2652
  DBUG_ENTER("get_partition_id_range_sub_hash");
unknown's avatar
unknown committed
2653

2654 2655
  if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
                                              func_value))))
2656
  {
unknown's avatar
unknown committed
2657
    DBUG_RETURN(error);
2658 2659
  }
  no_subparts= part_info->no_subparts;
2660 2661
  sub_part_id= get_part_id_hash(no_subparts, part_info->subpart_expr,
                                &local_func_value);
2662
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
unknown's avatar
unknown committed
2663
  DBUG_RETURN(0);
2664 2665 2666
}


unknown's avatar
unknown committed
2667
int get_partition_id_range_sub_linear_hash(partition_info *part_info,
2668 2669
                                            uint32 *part_id,
                                            longlong *func_value)
2670 2671 2672
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
2673
  longlong local_func_value;
unknown's avatar
unknown committed
2674
  int error;
2675
  DBUG_ENTER("get_partition_id_range_sub_linear_hash");
unknown's avatar
unknown committed
2676

2677 2678
  if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
                                              func_value))))
2679
  {
unknown's avatar
unknown committed
2680
    DBUG_RETURN(error);
2681 2682 2683
  }
  no_subparts= part_info->no_subparts;
  sub_part_id= get_part_id_linear_hash(part_info, no_subparts,
2684 2685
                                       part_info->subpart_expr,
                                       &local_func_value);
2686
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
unknown's avatar
unknown committed
2687
  DBUG_RETURN(0);
2688 2689 2690
}


unknown's avatar
unknown committed
2691
int get_partition_id_range_sub_key(partition_info *part_info,
2692 2693
                                    uint32 *part_id,
                                    longlong *func_value)
2694 2695 2696
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
2697
  longlong local_func_value;
unknown's avatar
unknown committed
2698
  int error;
2699
  DBUG_ENTER("get_partition_id_range_sub_key");
unknown's avatar
unknown committed
2700

2701 2702
  if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
                                              func_value))))
2703
  {
unknown's avatar
unknown committed
2704
    DBUG_RETURN(error);
2705 2706
  }
  no_subparts= part_info->no_subparts;
2707 2708
  sub_part_id= get_part_id_key(part_info->subpart_field_array,
                               no_subparts, &local_func_value);
2709
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
unknown's avatar
unknown committed
2710
  DBUG_RETURN(0);
2711 2712 2713
}


unknown's avatar
unknown committed
2714
int get_partition_id_range_sub_linear_key(partition_info *part_info,
2715 2716
                                           uint32 *part_id,
                                           longlong *func_value)
2717 2718 2719
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
2720
  longlong local_func_value;
unknown's avatar
unknown committed
2721
  int error;
2722
  DBUG_ENTER("get_partition_id_range_sub_linear_key");
unknown's avatar
unknown committed
2723

2724 2725
  if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
                                              func_value))))
2726
  {
unknown's avatar
unknown committed
2727
    DBUG_RETURN(error);
2728 2729 2730 2731
  }
  no_subparts= part_info->no_subparts;
  sub_part_id= get_part_id_linear_key(part_info,
                                      part_info->subpart_field_array,
2732
                                      no_subparts, &local_func_value);
2733
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
unknown's avatar
unknown committed
2734
  DBUG_RETURN(0);
2735 2736 2737
}


unknown's avatar
unknown committed
2738
int get_partition_id_list_sub_hash(partition_info *part_info,
2739 2740
                                    uint32 *part_id,
                                    longlong *func_value)
2741 2742 2743
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
2744
  longlong local_func_value;
unknown's avatar
unknown committed
2745
  int error;
2746
  DBUG_ENTER("get_partition_id_list_sub_hash");
unknown's avatar
unknown committed
2747

2748 2749
  if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
                                             func_value))))
2750
  {
unknown's avatar
unknown committed
2751
    DBUG_RETURN(error);
2752 2753
  }
  no_subparts= part_info->no_subparts;
2754 2755
  sub_part_id= get_part_id_hash(no_subparts, part_info->subpart_expr,
                                &local_func_value);
2756
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
unknown's avatar
unknown committed
2757
  DBUG_RETURN(0);
2758 2759 2760
}


unknown's avatar
unknown committed
2761
int get_partition_id_list_sub_linear_hash(partition_info *part_info,
2762 2763
                                           uint32 *part_id,
                                           longlong *func_value)
2764 2765 2766
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
2767
  longlong local_func_value;
unknown's avatar
unknown committed
2768
  int error;
2769
  DBUG_ENTER("get_partition_id_list_sub_linear_hash");
unknown's avatar
unknown committed
2770

2771 2772
  if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
                                             func_value))))
2773
  {
unknown's avatar
unknown committed
2774
    DBUG_RETURN(error);
2775 2776
  }
  no_subparts= part_info->no_subparts;
2777 2778 2779
  sub_part_id= get_part_id_linear_hash(part_info, no_subparts,
                                       part_info->subpart_expr,
                                       &local_func_value);
2780
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
unknown's avatar
unknown committed
2781
  DBUG_RETURN(0);
2782 2783 2784
}


unknown's avatar
unknown committed
2785
int get_partition_id_list_sub_key(partition_info *part_info,
2786 2787
                                   uint32 *part_id,
                                   longlong *func_value)
2788 2789 2790
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
2791
  longlong local_func_value;
unknown's avatar
unknown committed
2792
  int error;
2793
  DBUG_ENTER("get_partition_id_range_sub_key");
unknown's avatar
unknown committed
2794

2795 2796
  if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
                                             func_value))))
2797
  {
unknown's avatar
unknown committed
2798
    DBUG_RETURN(error);
2799 2800
  }
  no_subparts= part_info->no_subparts;
2801 2802
  sub_part_id= get_part_id_key(part_info->subpart_field_array,
                               no_subparts, &local_func_value);
2803
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
unknown's avatar
unknown committed
2804
  DBUG_RETURN(0);
2805 2806 2807
}


unknown's avatar
unknown committed
2808
int get_partition_id_list_sub_linear_key(partition_info *part_info,
2809 2810
                                          uint32 *part_id,
                                          longlong *func_value)
2811 2812 2813
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
2814
  longlong local_func_value;
unknown's avatar
unknown committed
2815
  int error;
2816
  DBUG_ENTER("get_partition_id_list_sub_linear_key");
unknown's avatar
unknown committed
2817

2818 2819
  if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
                                             func_value))))
2820
  {
unknown's avatar
unknown committed
2821
    DBUG_RETURN(error);
2822 2823 2824 2825
  }
  no_subparts= part_info->no_subparts;
  sub_part_id= get_part_id_linear_key(part_info,
                                      part_info->subpart_field_array,
2826
                                      no_subparts, &local_func_value);
2827
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
unknown's avatar
unknown committed
2828
  DBUG_RETURN(0);
2829 2830 2831 2832 2833
}


/*
  This function is used to calculate the subpartition id
unknown's avatar
unknown committed
2834

2835 2836 2837 2838
  SYNOPSIS
    get_subpartition_id()
    part_info           A reference to the partition_info struct where all the
                        desired information is given
unknown's avatar
unknown committed
2839

2840
  RETURN VALUE
unknown's avatar
unknown committed
2841 2842
    part_id             The subpartition identity

2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
  DESCRIPTION
    A routine used in some SELECT's when only partial knowledge of the
    partitions is known.
    
    It is actually 4 different variants of this function which are called
    through a function pointer.

    get_partition_id_hash_sub
    get_partition_id_key_sub
    get_partition_id_linear_hash_sub
    get_partition_id_linear_key_sub
*/

uint32 get_partition_id_hash_sub(partition_info *part_info)
{
2858 2859 2860
  longlong func_value;
  return get_part_id_hash(part_info->no_subparts, part_info->subpart_expr,
                          &func_value);
2861 2862 2863 2864 2865
}


uint32 get_partition_id_linear_hash_sub(partition_info *part_info)
{
2866
  longlong func_value;
2867
  return get_part_id_linear_hash(part_info, part_info->no_subparts,
2868
                                 part_info->subpart_expr, &func_value);
2869 2870 2871 2872 2873
}


uint32 get_partition_id_key_sub(partition_info *part_info)
{
2874
  longlong func_value;
2875
  return get_part_id_key(part_info->subpart_field_array,
2876
                         part_info->no_subparts, &func_value);
2877 2878 2879 2880 2881
}


uint32 get_partition_id_linear_key_sub(partition_info *part_info)
{
2882
  longlong func_value;
2883 2884
  return get_part_id_linear_key(part_info,
                                part_info->subpart_field_array,
2885
                                part_info->no_subparts, &func_value);
2886 2887 2888 2889
}


/*
unknown's avatar
unknown committed
2890 2891
  Set an indicator on all partition fields that are set by the key

2892 2893 2894 2895
  SYNOPSIS
    set_PF_fields_in_key()
    key_info                   Information about the index
    key_length                 Length of key
unknown's avatar
unknown committed
2896

2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
  RETURN VALUE
    TRUE                       Found partition field set by key
    FALSE                      No partition field set by key
*/

static bool set_PF_fields_in_key(KEY *key_info, uint key_length)
{
  KEY_PART_INFO *key_part;
  bool found_part_field= FALSE;
  DBUG_ENTER("set_PF_fields_in_key");

  for (key_part= key_info->key_part; (int)key_length > 0; key_part++)
  {
    if (key_part->null_bit)
      key_length--;
    if (key_part->type == HA_KEYTYPE_BIT)
    {
      if (((Field_bit*)key_part->field)->bit_len)
        key_length--;
    }
    if (key_part->key_part_flag & (HA_BLOB_PART + HA_VAR_LENGTH_PART))
    {
      key_length-= HA_KEY_BLOB_LENGTH;
    }
    if (key_length < key_part->length)
      break;
    key_length-= key_part->length;
    if (key_part->field->flags & FIELD_IN_PART_FUNC_FLAG)
    {
      found_part_field= TRUE;
      key_part->field->flags|= GET_FIXED_FIELDS_FLAG;
    }
  }
  DBUG_RETURN(found_part_field);
}


/*
  We have found that at least one partition field was set by a key, now
  check if a partition function has all its fields bound or not.
unknown's avatar
unknown committed
2937

2938 2939 2940
  SYNOPSIS
    check_part_func_bound()
    ptr                     Array of fields NULL terminated (partition fields)
unknown's avatar
unknown committed
2941

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
  RETURN VALUE
    TRUE                    All fields in partition function are set
    FALSE                   Not all fields in partition function are set
*/

static bool check_part_func_bound(Field **ptr)
{
  bool result= TRUE;
  DBUG_ENTER("check_part_func_bound");

  for (; *ptr; ptr++)
  {
    if (!((*ptr)->flags & GET_FIXED_FIELDS_FLAG))
    {
      result= FALSE;
      break;
    }
  }
  DBUG_RETURN(result);
}


/*
  Get the id of the subpartitioning part by using the key buffer of the
  index scan.
unknown's avatar
unknown committed
2967

2968 2969 2970 2971 2972 2973
  SYNOPSIS
    get_sub_part_id_from_key()
    table         The table object
    buf           A buffer that can be used to evaluate the partition function
    key_info      The index object
    key_spec      A key_range containing key and key length
unknown's avatar
unknown committed
2974

2975 2976
  RETURN VALUES
    part_id       Subpartition id to use
unknown's avatar
unknown committed
2977

2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
  DESCRIPTION
    Use key buffer to set-up record in buf, move field pointers and
    get the partition identity and restore field pointers afterwards.
*/

static uint32 get_sub_part_id_from_key(const TABLE *table,byte *buf,
                                       KEY *key_info,
                                       const key_range *key_spec)
{
  byte *rec0= table->record[0];
unknown's avatar
unknown committed
2988
  partition_info *part_info= table->part_info;
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
  uint32 part_id;
  DBUG_ENTER("get_sub_part_id_from_key");

  key_restore(buf, (byte*)key_spec->key, key_info, key_spec->length);
  if (likely(rec0 == buf))
    part_id= part_info->get_subpartition_id(part_info);
  else
  {
    Field **part_field_array= part_info->subpart_field_array;
    set_field_ptr(part_field_array, buf, rec0);
    part_id= part_info->get_subpartition_id(part_info);
    set_field_ptr(part_field_array, rec0, buf);
  }
  DBUG_RETURN(part_id);
}

/*
  Get the id of the partitioning part by using the key buffer of the
  index scan.
unknown's avatar
unknown committed
3008

3009 3010 3011 3012 3013 3014
  SYNOPSIS
    get_part_id_from_key()
    table         The table object
    buf           A buffer that can be used to evaluate the partition function
    key_info      The index object
    key_spec      A key_range containing key and key length
unknown's avatar
unknown committed
3015 3016
    out:part_id   Partition to use

3017 3018 3019
  RETURN VALUES
    TRUE          Partition to use not found
    FALSE         Ok, part_id indicates partition to use
unknown's avatar
unknown committed
3020

3021 3022 3023 3024
  DESCRIPTION
    Use key buffer to set-up record in buf, move field pointers and
    get the partition identity and restore field pointers afterwards.
*/
unknown's avatar
unknown committed
3025

3026 3027 3028 3029 3030
bool get_part_id_from_key(const TABLE *table, byte *buf, KEY *key_info,
                          const key_range *key_spec, uint32 *part_id)
{
  bool result;
  byte *rec0= table->record[0];
unknown's avatar
unknown committed
3031
  partition_info *part_info= table->part_info;
3032
  longlong func_value;
3033 3034 3035 3036
  DBUG_ENTER("get_part_id_from_key");

  key_restore(buf, (byte*)key_spec->key, key_info, key_spec->length);
  if (likely(rec0 == buf))
3037 3038
    result= part_info->get_part_partition_id(part_info, part_id,
                                             &func_value);
3039 3040 3041 3042
  else
  {
    Field **part_field_array= part_info->part_field_array;
    set_field_ptr(part_field_array, buf, rec0);
3043 3044
    result= part_info->get_part_partition_id(part_info, part_id,
                                             &func_value);
3045 3046 3047 3048 3049 3050 3051 3052
    set_field_ptr(part_field_array, rec0, buf);
  }
  DBUG_RETURN(result);
}

/*
  Get the partitioning id of the full PF by using the key buffer of the
  index scan.
unknown's avatar
unknown committed
3053

3054 3055 3056 3057 3058 3059
  SYNOPSIS
    get_full_part_id_from_key()
    table         The table object
    buf           A buffer that is used to evaluate the partition function
    key_info      The index object
    key_spec      A key_range containing key and key length
unknown's avatar
unknown committed
3060 3061
    out:part_spec A partition id containing start part and end part

3062 3063 3064
  RETURN VALUES
    part_spec
    No partitions to scan is indicated by end_part > start_part when returning
unknown's avatar
unknown committed
3065

3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
  DESCRIPTION
    Use key buffer to set-up record in buf, move field pointers if needed and
    get the partition identity and restore field pointers afterwards.
*/

void get_full_part_id_from_key(const TABLE *table, byte *buf,
                               KEY *key_info,
                               const key_range *key_spec,
                               part_id_range *part_spec)
{
  bool result;
unknown's avatar
unknown committed
3077
  partition_info *part_info= table->part_info;
3078
  byte *rec0= table->record[0];
3079
  longlong func_value;
3080 3081 3082 3083
  DBUG_ENTER("get_full_part_id_from_key");

  key_restore(buf, (byte*)key_spec->key, key_info, key_spec->length);
  if (likely(rec0 == buf))
3084 3085
    result= part_info->get_partition_id(part_info, &part_spec->start_part,
                                        &func_value);
3086 3087 3088 3089
  else
  {
    Field **part_field_array= part_info->full_part_field_array;
    set_field_ptr(part_field_array, buf, rec0);
3090 3091
    result= part_info->get_partition_id(part_info, &part_spec->start_part,
                                        &func_value);
3092 3093 3094 3095 3096 3097 3098
    set_field_ptr(part_field_array, rec0, buf);
  }
  part_spec->end_part= part_spec->start_part;
  if (unlikely(result))
    part_spec->start_part++;
  DBUG_VOID_RETURN;
}
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

/*
  Prune the set of partitions to use in query 

  SYNOPSIS
    prune_partition_set()
    table         The table object
    out:part_spec Contains start part, end part 

  DESCRIPTION
    This function is called to prune the range of partitions to scan by
    checking the used_partitions bitmap.
    If start_part > end_part at return it means no partition needs to be
    scanned. If start_part == end_part it always means a single partition
    needs to be scanned.

  RETURN VALUE
    part_spec
*/
void prune_partition_set(const TABLE *table, part_id_range *part_spec)
{
  int last_partition= -1;
  uint i;
  partition_info *part_info= table->part_info;

  DBUG_ENTER("prune_partition_set");
  for (i= part_spec->start_part; i <= part_spec->end_part; i++)
  {
    if (bitmap_is_set(&(part_info->used_partitions), i))
    {
      DBUG_PRINT("info", ("Partition %d is set", i));
      if (last_partition == -1)
        /* First partition found in set and pruned bitmap */
        part_spec->start_part= i;
      last_partition= i;
    }
  }
unknown's avatar
unknown committed
3136 3137 3138 3139
  if (last_partition == -1)
    /* No partition found in pruned bitmap */
    part_spec->start_part= part_spec->end_part + 1;  
  else //if (last_partition != -1)
3140 3141 3142 3143 3144
    part_spec->end_part= last_partition;

  DBUG_VOID_RETURN;
}

3145 3146
/*
  Get the set of partitions to use in query.
unknown's avatar
unknown committed
3147

3148 3149 3150 3151 3152 3153
  SYNOPSIS
    get_partition_set()
    table         The table object
    buf           A buffer that can be used to evaluate the partition function
    index         The index of the key used, if MAX_KEY no index used
    key_spec      A key_range containing key and key length
unknown's avatar
unknown committed
3154
    out:part_spec Contains start part, end part and indicator if bitmap is
3155
                  used for which partitions to scan
unknown's avatar
unknown committed
3156

3157 3158 3159 3160 3161 3162 3163 3164 3165
  DESCRIPTION
    This function is called to discover which partitions to use in an index
    scan or a full table scan.
    It returns a range of partitions to scan. If there are holes in this
    range with partitions that are not needed to scan a bit array is used
    to signal which partitions to use and which not to use.
    If start_part > end_part at return it means no partition needs to be
    scanned. If start_part == end_part it always means a single partition
    needs to be scanned.
unknown's avatar
unknown committed
3166

3167 3168 3169 3170 3171 3172
  RETURN VALUE
    part_spec
*/
void get_partition_set(const TABLE *table, byte *buf, const uint index,
                       const key_range *key_spec, part_id_range *part_spec)
{
unknown's avatar
unknown committed
3173
  partition_info *part_info= table->part_info;
3174
  uint no_parts= part_info->get_tot_partitions();
unknown's avatar
unknown committed
3175
  uint i, part_id;
3176 3177
  uint sub_part= no_parts;
  uint32 part_part= no_parts;
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
  KEY *key_info= NULL;
  bool found_part_field= FALSE;
  DBUG_ENTER("get_partition_set");

  part_spec->start_part= 0;
  part_spec->end_part= no_parts - 1;
  if ((index < MAX_KEY) && 
       key_spec->flag == (uint)HA_READ_KEY_EXACT &&
       part_info->some_fields_in_PF.is_set(index))
  {
    key_info= table->key_info+index;
    /*
      The index can potentially provide at least one PF-field (field in the
      partition function). Thus it is interesting to continue our probe.
    */
    if (key_spec->length == key_info->key_length)
    {
      /*
        The entire key is set so we can check whether we can immediately
        derive either the complete PF or if we can derive either
        the top PF or the subpartitioning PF. This can be established by
        checking precalculated bits on each index.
      */
      if (part_info->all_fields_in_PF.is_set(index))
      {
        /*
          We can derive the exact partition to use, no more than this one
          is needed.
        */
        get_full_part_id_from_key(table,buf,key_info,key_spec,part_spec);
3208 3209 3210 3211
        /*
          Check if range can be adjusted by looking in used_partitions
        */
        prune_partition_set(table, part_spec);
3212 3213
        DBUG_VOID_RETURN;
      }
3214
      else if (part_info->is_sub_partitioned())
3215 3216 3217 3218 3219
      {
        if (part_info->all_fields_in_SPF.is_set(index))
          sub_part= get_sub_part_id_from_key(table, buf, key_info, key_spec);
        else if (part_info->all_fields_in_PPF.is_set(index))
        {
unknown's avatar
unknown committed
3220 3221
          if (get_part_id_from_key(table,buf,key_info,
                                   key_spec,(uint32*)&part_part))
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
          {
            /*
              The value of the RANGE or LIST partitioning was outside of
              allowed values. Thus it is certain that the result of this
              scan will be empty.
            */
            part_spec->start_part= no_parts;
            DBUG_VOID_RETURN;
          }
        }
      }
    }
    else
    {
      /*
        Set an indicator on all partition fields that are bound.
        If at least one PF-field was bound it pays off to check whether
        the PF or PPF or SPF has been bound.
        (PF = Partition Function, SPF = Subpartition Function and
         PPF = Partition Function part of subpartitioning)
      */
      if ((found_part_field= set_PF_fields_in_key(key_info,
                                                  key_spec->length)))
      {
        if (check_part_func_bound(part_info->full_part_field_array))
        {
          /*
            We were able to bind all fields in the partition function even
            by using only a part of the key. Calculate the partition to use.
          */
          get_full_part_id_from_key(table,buf,key_info,key_spec,part_spec);
          clear_indicator_in_key_fields(key_info);
3254 3255 3256 3257
          /*
            Check if range can be adjusted by looking in used_partitions
          */
          prune_partition_set(table, part_spec);
3258 3259
          DBUG_VOID_RETURN; 
        }
3260
        else if (part_info->is_sub_partitioned())
3261
        {
unknown's avatar
unknown committed
3262 3263 3264
          if (check_part_func_bound(part_info->subpart_field_array))
            sub_part= get_sub_part_id_from_key(table, buf, key_info, key_spec);
          else if (check_part_func_bound(part_info->part_field_array))
3265
          {
unknown's avatar
unknown committed
3266 3267 3268 3269 3270 3271
            if (get_part_id_from_key(table,buf,key_info,key_spec,&part_part))
            {
              part_spec->start_part= no_parts;
              clear_indicator_in_key_fields(key_info);
              DBUG_VOID_RETURN;
            }
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
          }
        }
      }
    }
  }
  {
    /*
      The next step is to analyse the table condition to see whether any
      information about which partitions to scan can be derived from there.
      Currently not implemented.
    */
  }
  /*
    If we come here we have found a range of sorts we have either discovered
    nothing or we have discovered a range of partitions with possible holes
    in it. We need a bitvector to further the work here.
  */
  if (!(part_part == no_parts && sub_part == no_parts))
  {
    /*
      We can only arrive here if we are using subpartitioning.
    */
    if (part_part != no_parts)
    {
      /*
        We know the top partition and need to scan all underlying
        subpartitions. This is a range without holes.
      */
      DBUG_ASSERT(sub_part == no_parts);
3301
      part_spec->start_part= part_part * part_info->no_subparts;
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
      part_spec->end_part= part_spec->start_part+part_info->no_subparts - 1;
    }
    else
    {
      DBUG_ASSERT(sub_part != no_parts);
      part_spec->start_part= sub_part;
      part_spec->end_part=sub_part+
                           (part_info->no_subparts*(part_info->no_parts-1));
      for (i= 0, part_id= sub_part; i < part_info->no_parts;
           i++, part_id+= part_info->no_subparts)
        ; //Set bit part_id in bit array
    }
  }
  if (found_part_field)
    clear_indicator_in_key_fields(key_info);
3317 3318 3319 3320
  /*
    Check if range can be adjusted by looking in used_partitions
  */
  prune_partition_set(table, part_spec);
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
  DBUG_VOID_RETURN;
}

/*
   If the table is partitioned we will read the partition info into the
   .frm file here.
   -------------------------------
   |  Fileinfo     64 bytes      |
   -------------------------------
   | Formnames     7 bytes       |
   -------------------------------
   | Not used    4021 bytes      |
   -------------------------------
   | Keyinfo + record            |
   -------------------------------
   | Padded to next multiple     |
   | of IO_SIZE                  |
   -------------------------------
   | Forminfo     288 bytes      |
   -------------------------------
   | Screen buffer, to make      |
unknown's avatar
unknown committed
3342
   |field names readable        |
3343 3344
   -------------------------------
   | Packed field info           |
unknown's avatar
unknown committed
3345
   |17 + 1 + strlen(field_name) |
3346 3347 3348 3349 3350 3351 3352 3353
   | + 1 end of file character   |
   -------------------------------
   | Partition info              |
   -------------------------------
   We provide the length of partition length in Fileinfo[55-58].

   Read the partition syntax from the frm file and parse it to get the
   data structures of the partitioning.
unknown's avatar
unknown committed
3354

3355 3356 3357
   SYNOPSIS
     mysql_unpack_partition()
     thd                           Thread object
unknown's avatar
unknown committed
3358
     part_buf                      Partition info from frm file
3359 3360
     part_info_len                 Length of partition syntax
     table                         Table object of partitioned table
unknown's avatar
unknown committed
3361 3362 3363
     create_table_ind              Is it called from CREATE TABLE
     default_db_type               What is the default engine of the table

3364 3365 3366
   RETURN VALUE
     TRUE                          Error
     FALSE                         Sucess
unknown's avatar
unknown committed
3367

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
   DESCRIPTION
     Read the partition syntax from the current position in the frm file.
     Initiate a LEX object, save the list of item tree objects to free after
     the query is done. Set-up partition info object such that parser knows
     it is called from internally. Call parser to create data structures
     (best possible recreation of item trees and so forth since there is no
     serialisation of these objects other than in parseable text format).
     We need to save the text of the partition functions since it is not
     possible to retrace this given an item tree.
*/

unknown's avatar
unknown committed
3379
bool mysql_unpack_partition(THD *thd, const uchar *part_buf,
unknown's avatar
unknown committed
3380 3381 3382
                            uint part_info_len,
                            uchar *part_state, uint part_state_len,
                            TABLE* table, bool is_create_table_ind,
unknown's avatar
unknown committed
3383
                            handlerton *default_db_type)
3384 3385 3386
{
  bool result= TRUE;
  partition_info *part_info;
3387
  CHARSET_INFO *old_character_set_client= thd->variables.character_set_client;
unknown's avatar
unknown committed
3388 3389
  LEX *old_lex= thd->lex;
  LEX lex;
3390
  DBUG_ENTER("mysql_unpack_partition");
unknown's avatar
unknown committed
3391

3392
  thd->lex= &lex;
3393
  thd->variables.character_set_client= system_charset_info;
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
  lex_start(thd, part_buf, part_info_len);
  /*
    We need to use the current SELECT_LEX since I need to keep the
    Name_resolution_context object which is referenced from the
    Item_field objects.
    This is not a nice solution since if the parser uses current_select
    for anything else it will corrupt the current LEX object.
  */
  thd->lex->current_select= old_lex->current_select; 
  /*
    All Items created is put into a free list on the THD object. This list
    is used to free all Item objects after completing a query. We don't
    want that to happen with the Item tree created as part of the partition
    info. This should be attached to the table object and remain so until
    the table object is released.
    Thus we move away the current list temporarily and start a new list that
    we then save in the partition info structure.
  */
3412
  lex.part_info= new partition_info();/* Indicates MYSQLparse from this place */
unknown's avatar
unknown committed
3413 3414 3415 3416 3417 3418 3419 3420
  if (!lex.part_info)
  {
    mem_alloc_error(sizeof(partition_info));
    goto end;
  }
  lex.part_info->part_state= part_state;
  lex.part_info->part_state_len= part_state_len;
  DBUG_PRINT("info", ("Parse: %s", part_buf));
3421
  if (MYSQLparse((void*)thd) || thd->is_fatal_error)
3422
  {
3423
    thd->free_items();
3424 3425
    goto end;
  }
unknown's avatar
unknown committed
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
  /*
    The parsed syntax residing in the frm file can still contain defaults.
    The reason is that the frm file is sometimes saved outside of this
    MySQL Server and used in backup and restore of clusters or partitioned
    tables. It is not certain that the restore will restore exactly the
    same default partitioning.
    
    The easiest manner of handling this is to simply continue using the
    part_info we already built up during mysql_create_table if we are
    in the process of creating a table. If the table already exists we
    need to discover the number of partitions for the default parts. Since
    the handler object hasn't been created here yet we need to postpone this
    to the fix_partition_func method.
  */

  DBUG_PRINT("info", ("Successful parse"));
3442
  part_info= lex.part_info;
unknown's avatar
unknown committed
3443 3444 3445
  DBUG_PRINT("info", ("default engine = %d, default_db_type = %d",
             ha_legacy_type(part_info->default_engine_type),
             ha_legacy_type(default_db_type)));
3446
  if (is_create_table_ind && old_lex->sql_command == SQLCOM_CREATE_TABLE)
unknown's avatar
unknown committed
3447
  {
unknown's avatar
unknown committed
3448
    if (old_lex->like_name)
unknown's avatar
unknown committed
3449 3450 3451
    {
      /*
        This code is executed when we do a CREATE TABLE t1 LIKE t2
unknown's avatar
unknown committed
3452
        old_lex->like_name contains the t2 and the table we are opening has 
unknown's avatar
unknown committed
3453 3454
        name t1.
      */
unknown's avatar
unknown committed
3455
      Table_ident *table_ident= old_lex->like_name;
3456 3457 3458
      char *src_db= table_ident->db.str ? table_ident->db.str : thd->db;
      char *src_table= table_ident->table.str;
      char buf[FN_REFLEN];
3459
      build_table_filename(buf, sizeof(buf), src_db, src_table, "", 0);
3460 3461
      if (partition_default_handling(table, part_info,
                                     FALSE, buf))
unknown's avatar
unknown committed
3462
      {
3463 3464
        result= TRUE;
        goto end;
unknown's avatar
unknown committed
3465 3466 3467
      }
    }
    else
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
    {
      /*
        When we come here we are doing a create table. In this case we
        have already done some preparatory work on the old part_info
        object. We don't really need this new partition_info object.
        Thus we go back to the old partition info object.
        We need to free any memory objects allocated on item_free_list
        by the parser since we are keeping the old info from the first
        parser call in CREATE TABLE.
        We'll ensure that this object isn't put into table cache also
        just to ensure we don't get into strange situations with the
        item objects.
      */
3481
      thd->free_items();
3482
      part_info= thd->work_part_info;
3483 3484
      table->s->version= 0UL;
    }
unknown's avatar
unknown committed
3485
  }
unknown's avatar
unknown committed
3486
  table->part_info= part_info;
3487
  table->file->set_part_info(part_info);
3488
  if (!part_info->default_engine_type)
3489
    part_info->default_engine_type= default_db_type;
3490
  DBUG_ASSERT(part_info->default_engine_type == default_db_type);
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503

  {
  /*
    This code part allocates memory for the serialised item information for
    the partition functions. In most cases this is not needed but if the
    table is used for SHOW CREATE TABLES or ALTER TABLE that modifies
    partition information it is needed and the info is lost if we don't
    save it here so unfortunately we have to do it here even if in most
    cases it is not needed. This is a consequence of that item trees are
    not serialisable.
  */
    uint part_func_len= part_info->part_func_len;
    uint subpart_func_len= part_info->subpart_func_len; 
unknown's avatar
unknown committed
3504 3505 3506 3507
    char *part_func_string= NULL;
    char *subpart_func_string= NULL;
    if ((part_func_len &&
        !((part_func_string= thd->alloc(part_func_len)))) ||
3508
        (subpart_func_len &&
unknown's avatar
unknown committed
3509
        !((subpart_func_string= thd->alloc(subpart_func_len)))))
3510
    {
unknown's avatar
unknown committed
3511
      mem_alloc_error(part_func_len);
3512
      thd->free_items();
3513 3514
      goto end;
    }
unknown's avatar
unknown committed
3515 3516
    if (part_func_len)
      memcpy(part_func_string, part_info->part_func_string, part_func_len);
3517 3518 3519 3520 3521 3522 3523 3524 3525
    if (subpart_func_len)
      memcpy(subpart_func_string, part_info->subpart_func_string,
             subpart_func_len);
    part_info->part_func_string= part_func_string;
    part_info->subpart_func_string= subpart_func_string;
  }

  result= FALSE;
end:
unknown's avatar
unknown committed
3526
  lex_end(thd->lex);
3527
  thd->lex= old_lex;
3528
  thd->variables.character_set_client= old_character_set_client;
3529 3530
  DBUG_RETURN(result);
}
unknown's avatar
unknown committed
3531

3532

unknown's avatar
unknown committed
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
/*
  Set engine type on all partition element objects
  SYNOPSIS
    set_engine_all_partitions()
    part_info                  Partition info
    engine_type                Handlerton reference of engine
  RETURN VALUES
    NONE
*/

static
void
set_engine_all_partitions(partition_info *part_info,
                          handlerton *engine_type)
{
  uint i= 0;
  List_iterator<partition_element> part_it(part_info->partitions);
  do
  {
    partition_element *part_elem= part_it++;

    part_elem->engine_type= engine_type;
    if (part_info->is_sub_partitioned())
    {
      List_iterator<partition_element> sub_it(part_elem->subpartitions);
      uint j= 0;

      do
      {
        partition_element *sub_elem= sub_it++;

        sub_elem->engine_type= engine_type;
      } while (++j < part_info->no_subparts);
    }
  } while (++i < part_info->no_parts);
}
3569 3570
/*
  SYNOPSIS
unknown's avatar
unknown committed
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
    fast_end_partition()
    thd                           Thread object
    out:copied                    Number of records copied
    out:deleted                   Number of records deleted
    table_list                    Table list with the one table in it
    empty                         Has nothing been done
    lpt                           Struct to be used by error handler

  RETURN VALUES
    FALSE                         Success
    TRUE                          Failure

3583
  DESCRIPTION
unknown's avatar
unknown committed
3584 3585
    Support routine to handle the successful cases for partition
    management.
3586 3587
*/

unknown's avatar
unknown committed
3588 3589
static int fast_end_partition(THD *thd, ulonglong copied,
                              ulonglong deleted,
3590
                              TABLE *table,
unknown's avatar
unknown committed
3591 3592 3593
                              TABLE_LIST *table_list, bool is_empty,
                              ALTER_PARTITION_PARAM_TYPE *lpt,
                              bool written_bin_log)
3594
{
unknown's avatar
unknown committed
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
  int error;
  DBUG_ENTER("fast_end_partition");

  thd->proc_info="end";
  if (!is_empty)
    query_cache_invalidate3(thd, table_list, 0);
  error= ha_commit_stmt(thd);
  if (ha_commit(thd))
    error= 1;
  if (!error || is_empty)
  {
    char tmp_name[80];
    if ((!is_empty) && (!written_bin_log) &&
        (!thd->lex->no_write_to_binlog))
      write_bin_log(thd, FALSE, thd->query, thd->query_length);
    close_thread_tables(thd);
    my_snprintf(tmp_name, sizeof(tmp_name), ER(ER_INSERT_INFO),
                (ulong) (copied + deleted),
                (ulong) deleted,
                (ulong) 0);
    send_ok(thd,copied+deleted,0L,tmp_name);
    DBUG_RETURN(FALSE);
  }
3618
  table->file->print_error(error, MYF(0));
unknown's avatar
unknown committed
3619 3620 3621 3622
  DBUG_RETURN(TRUE);
}


3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
/*
  Check engine mix that it is correct
  SYNOPSIS
    check_engine_condition()
    p_elem                   Partition element
    default_engine           Have user specified engine on table level
    inout::engine_type       Current engine used
    inout::first             Is it first partition
  RETURN VALUE
    TRUE                     Failed check
    FALSE                    Ok
  DESCRIPTION
    (specified partition handler ) specified table handler
    (NDB, NDB) NDB           OK
    (MYISAM, MYISAM) -       OK
    (MYISAM, -)      -       NOT OK
    (MYISAM, -)    MYISAM    OK
    (- , MYISAM)   -         NOT OK
    (- , -)        MYISAM    OK
    (-,-)          -         OK
    (NDB, MYISAM) *          NOT OK
*/

static bool check_engine_condition(partition_element *p_elem,
                                   bool default_engine,
                                   handlerton **engine_type,
                                   bool *first)
{
unknown's avatar
unknown committed
3651 3652 3653
  DBUG_ENTER("check_engine_condition");

  DBUG_PRINT("enter", ("def_eng = %u, first = %u", default_engine, *first));
3654
  if (*first && default_engine)
unknown's avatar
unknown committed
3655
  {
3656
    *engine_type= p_elem->engine_type;
unknown's avatar
unknown committed
3657
  }
3658 3659
  *first= FALSE;
  if ((!default_engine &&
unknown's avatar
unknown committed
3660 3661
      (p_elem->engine_type != (*engine_type) &&
       p_elem->engine_type)) ||
3662
      (default_engine &&
unknown's avatar
unknown committed
3663 3664 3665 3666
       p_elem->engine_type != (*engine_type)))
  {
    DBUG_RETURN(TRUE);
  }
3667
  else
unknown's avatar
unknown committed
3668 3669 3670
  {
    DBUG_RETURN(FALSE);
  }
3671 3672
}

unknown's avatar
unknown committed
3673 3674 3675
/*
  We need to check if engine used by all partitions can handle
  partitioning natively.
3676

unknown's avatar
unknown committed
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
  SYNOPSIS
    check_native_partitioned()
    create_info            Create info in CREATE TABLE
    out:ret_val            Return value
    part_info              Partition info
    thd                    Thread object

  RETURN VALUES
  Value returned in bool ret_value
    TRUE                   Native partitioning supported by engine
    FALSE                  Need to use partition handler

  Return value from function
    TRUE                   Error
    FALSE                  Success
*/

static bool check_native_partitioned(HA_CREATE_INFO *create_info,bool *ret_val,
                                     partition_info *part_info, THD *thd)
{
  List_iterator<partition_element> part_it(part_info->partitions);
  bool first= TRUE;
  bool default_engine;
  handlerton *engine_type= create_info->db_type;
3701
  handlerton *old_engine_type= engine_type;
unknown's avatar
unknown committed
3702 3703
  uint i= 0;
  handler *file;
3704
  uint no_parts= part_info->partitions.elements;
unknown's avatar
unknown committed
3705 3706
  DBUG_ENTER("check_native_partitioned");

unknown's avatar
unknown committed
3707 3708
  default_engine= (create_info->used_fields & HA_CREATE_USED_ENGINE) ?
                   FALSE : TRUE;
unknown's avatar
unknown committed
3709 3710 3711
  DBUG_PRINT("info", ("engine_type = %u, default = %u",
                       ha_legacy_type(engine_type),
                       default_engine));
3712
  if (no_parts)
3713
  {
3714
    do
unknown's avatar
unknown committed
3715
    {
3716
      partition_element *part_elem= part_it++;
3717
      if (part_info->is_sub_partitioned() &&
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
          part_elem->subpartitions.elements)
      {
        uint no_subparts= part_elem->subpartitions.elements;
        uint j= 0;
        List_iterator<partition_element> sub_it(part_elem->subpartitions);
        do
        {
          partition_element *sub_elem= sub_it++;
          if (check_engine_condition(sub_elem, default_engine,
                                     &engine_type, &first))
            goto error;
        } while (++j < no_subparts);
        /*
          In case of subpartitioning and defaults we allow that only
          subparts have specified engines, as long as the parts haven't
          specified the wrong engine it's ok.
        */
        if (check_engine_condition(part_elem, FALSE,
                                   &engine_type, &first))
          goto error;
      }
      else if (check_engine_condition(part_elem, default_engine,
                                      &engine_type, &first))
        goto error;
    } while (++i < no_parts);
  }

unknown's avatar
unknown committed
3745 3746 3747 3748
  /*
    All engines are of the same type. Check if this engine supports
    native partitioning.
  */
3749 3750 3751 3752 3753

  if (!engine_type)
    engine_type= old_engine_type;
  DBUG_PRINT("info", ("engine_type = %s",
              ha_resolve_storage_engine_name(engine_type)));
unknown's avatar
unknown committed
3754 3755 3756 3757 3758 3759 3760 3761
  if (engine_type->partition_flags &&
      (engine_type->partition_flags() & HA_CAN_PARTITION))
  {
    create_info->db_type= engine_type;
    DBUG_PRINT("info", ("Changed to native partitioning"));
    *ret_val= TRUE;
  }
  DBUG_RETURN(FALSE);
3762 3763 3764 3765 3766
error:
  /*
    Mixed engines not yet supported but when supported it will need
    the partition handler
  */
unknown's avatar
unknown committed
3767
  my_error(ER_MIX_HANDLER_ERROR, MYF(0));
3768 3769
  *ret_val= FALSE;
  DBUG_RETURN(TRUE);
unknown's avatar
unknown committed
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
}


/*
  Prepare for ALTER TABLE of partition structure

  SYNOPSIS
    prep_alter_part_table()
    thd                        Thread object
    table                      Table object
    inout:alter_info           Alter information
    inout:create_info          Create info for CREATE TABLE
    old_db_type                Old engine type
    out:partition_changed      Boolean indicating whether partition changed
    out:fast_alter_partition   Boolean indicating whether fast partition
                               change is requested

  RETURN VALUES
    TRUE                       Error
    FALSE                      Success
    partition_changed
    fast_alter_partition

  DESCRIPTION
    This method handles all preparations for ALTER TABLE for partitioned
    tables
    We need to handle both partition management command such as Add Partition
    and others here as well as an ALTER TABLE that completely changes the
    partitioning and yet others that don't change anything at all. We start
    by checking the partition management variants and then check the general
    change patterns.
*/

uint prep_alter_part_table(THD *thd, TABLE *table, ALTER_INFO *alter_info,
                           HA_CREATE_INFO *create_info,
                           handlerton *old_db_type,
                           bool *partition_changed,
                           uint *fast_alter_partition)
{
  DBUG_ENTER("prep_alter_part_table");

3811 3812 3813 3814 3815 3816 3817 3818 3819
  /*
    We are going to manipulate the partition info on the table object
    so we need to ensure that the data structure of the table object
    is freed by setting version to 0. table->s->version= 0 forces a
    flush of the table object in close_thread_tables().
  */
  if (table->part_info)
    table->s->version= 0L;

3820 3821 3822
  thd->work_part_info= thd->lex->part_info;
  if (thd->work_part_info &&
      !(thd->work_part_info= thd->lex->part_info->get_clone()))
unknown's avatar
unknown committed
3823 3824
    DBUG_RETURN(TRUE);

unknown's avatar
unknown committed
3825 3826 3827 3828 3829 3830 3831 3832
  if (alter_info->flags &
      (ALTER_ADD_PARTITION | ALTER_DROP_PARTITION |
       ALTER_COALESCE_PARTITION | ALTER_REORGANIZE_PARTITION |
       ALTER_TABLE_REORG | ALTER_OPTIMIZE_PARTITION |
       ALTER_CHECK_PARTITION | ALTER_ANALYZE_PARTITION |
       ALTER_REPAIR_PARTITION | ALTER_REBUILD_PARTITION))
  {
    partition_info *tab_part_info= table->part_info;
unknown's avatar
unknown committed
3833
    partition_info *alt_part_info= thd->work_part_info;
3834
    uint flags= 0;
unknown's avatar
unknown committed
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
    if (!tab_part_info)
    {
      my_error(ER_PARTITION_MGMT_ON_NONPARTITIONED, MYF(0));
      DBUG_RETURN(TRUE);
    }
    if (alter_info->flags == ALTER_TABLE_REORG)
    {
      uint new_part_no, curr_part_no;
      if (tab_part_info->part_type != HASH_PARTITION ||
          tab_part_info->use_default_no_partitions)
      {
        my_error(ER_REORG_NO_PARAM_ERROR, MYF(0));
        DBUG_RETURN(TRUE);
      }
3849
      new_part_no= table->file->get_default_no_partitions(create_info);
unknown's avatar
unknown committed
3850 3851 3852 3853 3854 3855 3856 3857
      curr_part_no= tab_part_info->no_parts;
      if (new_part_no == curr_part_no)
      {
        /*
          No change is needed, we will have the same number of partitions
          after the change as before. Thus we can reply ok immediately
          without any changes at all.
        */
3858 3859
        DBUG_RETURN(fast_end_partition(thd, ULL(0), ULL(0),
                                       table, NULL,
unknown's avatar
unknown committed
3860 3861 3862 3863 3864 3865 3866 3867 3868
                                       TRUE, NULL, FALSE));
      }
      else if (new_part_no > curr_part_no)
      {
        /*
          We will add more partitions, we use the ADD PARTITION without
          setting the flag for no default number of partitions
        */
        alter_info->flags|= ALTER_ADD_PARTITION;
unknown's avatar
unknown committed
3869
        thd->work_part_info->no_parts= new_part_no - curr_part_no;
unknown's avatar
unknown committed
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
      }
      else
      {
        /*
          We will remove hash partitions, we use the COALESCE PARTITION
          without setting the flag for no default number of partitions
        */
        alter_info->flags|= ALTER_COALESCE_PARTITION;
        alter_info->no_parts= curr_part_no - new_part_no;
      }
    }
    if (table->s->db_type->alter_table_flags &&
        (!(flags= table->s->db_type->alter_table_flags(alter_info->flags))))
    {
      my_error(ER_PARTITION_FUNCTION_FAILURE, MYF(0));
      DBUG_RETURN(1);
    }
3887 3888 3889 3890
    *fast_alter_partition=
      ((flags & (HA_FAST_CHANGE_PARTITION | HA_PARTITION_ONE_PHASE)) != 0);
    DBUG_PRINT("info", ("*fast_alter_partition: %d  flags: 0x%x",
                        *fast_alter_partition, flags));
3891 3892
    if (((alter_info->flags & ALTER_ADD_PARTITION) ||
         (alter_info->flags & ALTER_REORGANIZE_PARTITION)) &&
unknown's avatar
unknown committed
3893 3894
         (thd->work_part_info->part_type != tab_part_info->part_type) &&
         (thd->work_part_info->part_type != NOT_A_PARTITION))
3895
    {
unknown's avatar
unknown committed
3896
      if (thd->work_part_info->part_type == RANGE_PARTITION)
3897 3898 3899 3900
      {
        my_error(ER_PARTITION_WRONG_VALUES_ERROR, MYF(0),
                 "RANGE", "LESS THAN");
      }
unknown's avatar
unknown committed
3901
      else if (thd->work_part_info->part_type == LIST_PARTITION)
3902
      {
unknown's avatar
unknown committed
3903
        DBUG_ASSERT(thd->work_part_info->part_type == LIST_PARTITION);
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
        my_error(ER_PARTITION_WRONG_VALUES_ERROR, MYF(0),
                 "LIST", "IN");
      }
      else if (tab_part_info->part_type == RANGE_PARTITION)
      {
        my_error(ER_PARTITION_REQUIRES_VALUES_ERROR, MYF(0),
                 "RANGE", "LESS THAN");
      }
      else
      {
        DBUG_ASSERT(tab_part_info->part_type == LIST_PARTITION);
        my_error(ER_PARTITION_REQUIRES_VALUES_ERROR, MYF(0),
                 "LIST", "IN");
      }
      DBUG_RETURN(TRUE);
    }
unknown's avatar
unknown committed
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
    if (alter_info->flags & ALTER_ADD_PARTITION)
    {
      /*
        We start by moving the new partitions to the list of temporary
        partitions. We will then check that the new partitions fit in the
        partitioning scheme as currently set-up.
        Partitions are always added at the end in ADD PARTITION.
      */
      uint no_new_partitions= alt_part_info->no_parts;
      uint no_orig_partitions= tab_part_info->no_parts;
      uint check_total_partitions= no_new_partitions + no_orig_partitions;
      uint new_total_partitions= check_total_partitions;
      /*
        We allow quite a lot of values to be supplied by defaults, however we
        must know the number of new partitions in this case.
      */
      if (thd->lex->no_write_to_binlog &&
          tab_part_info->part_type != HASH_PARTITION)
      {
        my_error(ER_NO_BINLOG_ERROR, MYF(0));
        DBUG_RETURN(TRUE);
      } 
      if (no_new_partitions == 0)
      {
        my_error(ER_ADD_PARTITION_NO_NEW_PARTITION, MYF(0));
        DBUG_RETURN(TRUE);
      }
3947
      if (tab_part_info->is_sub_partitioned())
unknown's avatar
unknown committed
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
      {
        if (alt_part_info->no_subparts == 0)
          alt_part_info->no_subparts= tab_part_info->no_subparts;
        else if (alt_part_info->no_subparts != tab_part_info->no_subparts)
        {
          my_error(ER_ADD_PARTITION_SUBPART_ERROR, MYF(0));
          DBUG_RETURN(TRUE);
        }
        check_total_partitions= new_total_partitions*
                                alt_part_info->no_subparts;
      }
      if (check_total_partitions > MAX_PARTITIONS)
      {
        my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
        DBUG_RETURN(TRUE);
      }
      alt_part_info->part_type= tab_part_info->part_type;
3965
      alt_part_info->subpart_type= tab_part_info->subpart_type;
3966 3967 3968
      if (alt_part_info->set_up_defaults_for_partitioning(table->file,
                                                          ULL(0), 
                                                          tab_part_info->no_parts))
unknown's avatar
unknown committed
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
      {
        DBUG_RETURN(TRUE);
      }
/*
Handling of on-line cases:

ADD PARTITION for RANGE/LIST PARTITIONING:
------------------------------------------
For range and list partitions add partition is simply adding a
new empty partition to the table. If the handler support this we
will use the simple method of doing this. The figure below shows
an example of this and the states involved in making this change.
            
Existing partitions                                     New added partitions
------       ------        ------        ------      |  ------    ------
|    |       |    |        |    |        |    |      |  |    |    |    |
| p0 |       | p1 |        | p2 |        | p3 |      |  | p4 |    | p5 |
------       ------        ------        ------      |  ------    ------
PART_NORMAL  PART_NORMAL   PART_NORMAL   PART_NORMAL    PART_TO_BE_ADDED*2
PART_NORMAL  PART_NORMAL   PART_NORMAL   PART_NORMAL    PART_IS_ADDED*2

The first line is the states before adding the new partitions and the 
second line is after the new partitions are added. All the partitions are
in the partitions list, no partitions are placed in the temp_partitions
list.

ADD PARTITION for HASH PARTITIONING
-----------------------------------
This little figure tries to show the various partitions involved when
adding two new partitions to a linear hash based partitioned table with
four partitions to start with, which lists are used and the states they
pass through. Adding partitions to a normal hash based is similar except
that it is always all the existing partitions that are reorganised not
only a subset of them.

Existing partitions                                     New added partitions
------       ------        ------        ------      |  ------    ------
|    |       |    |        |    |        |    |      |  |    |    |    |
| p0 |       | p1 |        | p2 |        | p3 |      |  | p4 |    | p5 |
------       ------        ------        ------      |  ------    ------
PART_CHANGED PART_CHANGED  PART_NORMAL   PART_NORMAL    PART_TO_BE_ADDED
PART_IS_CHANGED*2          PART_NORMAL   PART_NORMAL    PART_IS_ADDED
PART_NORMAL  PART_NORMAL   PART_NORMAL   PART_NORMAL    PART_IS_ADDED

Reorganised existing partitions
------      ------
|    |      |    |
| p0'|      | p1'|
------      ------

p0 - p5 will be in the partitions list of partitions.
p0' and p1' will actually not exist as separate objects, there presence can
be deduced from the state of the partition and also the names of those
partitions can be deduced this way.

After adding the partitions and copying the partition data to p0', p1',
p4 and p5 from p0 and p1 the states change to adapt for the new situation
where p0 and p1 is dropped and replaced by p0' and p1' and the new p4 and
p5 are in the table again.

The first line above shows the states of the partitions before we start
adding and copying partitions, the second after completing the adding
and copying and finally the third line after also dropping the partitions
that are reorganised.
*/
      if (*fast_alter_partition &&
          tab_part_info->part_type == HASH_PARTITION)
      {
        uint part_no= 0, start_part= 1, start_sec_part= 1;
        uint end_part= 0, end_sec_part= 0;
        uint upper_2n= tab_part_info->linear_hash_mask + 1;
        uint lower_2n= upper_2n >> 1;
        bool all_parts= TRUE;
        if (tab_part_info->linear_hash_ind &&
            no_new_partitions < upper_2n)
        {
          /*
            An analysis of which parts needs reorganisation shows that it is
            divided into two intervals. The first interval is those parts
            that are reorganised up until upper_2n - 1. From upper_2n and
            onwards it starts again from partition 0 and goes on until
            it reaches p(upper_2n - 1). If the last new partition reaches
            beyond upper_2n - 1 then the first interval will end with
            p(lower_2n - 1) and start with p(no_orig_partitions - lower_2n).
            If lower_2n partitions are added then p0 to p(lower_2n - 1) will
            be reorganised which means that the two interval becomes one
            interval at this point. Thus only when adding less than
            lower_2n partitions and going beyond a total of upper_2n we
            actually get two intervals.

            To exemplify this assume we have 6 partitions to start with and
            add 1, 2, 3, 5, 6, 7, 8, 9 partitions.
            The first to add after p5 is p6 = 110 in bit numbers. Thus we
            can see that 10 = p2 will be partition to reorganise if only one
            partition.
            If 2 partitions are added we reorganise [p2, p3]. Those two
            cases are covered by the second if part below.
            If 3 partitions are added we reorganise [p2, p3] U [p0,p0]. This
            part is covered by the else part below.
            If 5 partitions are added we get [p2,p3] U [p0, p2] = [p0, p3].
            This is covered by the first if part where we need the max check
            to here use lower_2n - 1.
            If 7 partitions are added we get [p2,p3] U [p0, p4] = [p0, p4].
            This is covered by the first if part but here we use the first
            calculated end_part.
            Finally with 9 new partitions we would also reorganise p6 if we
            used the method below but we cannot reorganise more partitions
            than what we had from the start and thus we simply set all_parts
            to TRUE. In this case we don't get into this if-part at all.
          */
          all_parts= FALSE;
          if (no_new_partitions >= lower_2n)
          {
            /*
              In this case there is only one interval since the two intervals
              overlap and this starts from zero to last_part_no - upper_2n
            */
            start_part= 0;
            end_part= new_total_partitions - (upper_2n + 1);
            end_part= max(lower_2n - 1, end_part);
          }
          else if (new_total_partitions <= upper_2n)
          {
            /*
              Also in this case there is only one interval since we are not
              going over a 2**n boundary
            */
            start_part= no_orig_partitions - lower_2n;
            end_part= start_part + (no_new_partitions - 1);
          }
          else
          {
            /* We have two non-overlapping intervals since we are not
               passing a 2**n border and we have not at least lower_2n
               new parts that would ensure that the intervals become
               overlapping.
            */
            start_part= no_orig_partitions - lower_2n;
            end_part= upper_2n - 1;
            start_sec_part= 0;
            end_sec_part= new_total_partitions - (upper_2n + 1);
          }
        }
        List_iterator<partition_element> tab_it(tab_part_info->partitions);
        part_no= 0;
        do
        {
          partition_element *p_elem= tab_it++;
          if (all_parts ||
              (part_no >= start_part && part_no <= end_part) ||
              (part_no >= start_sec_part && part_no <= end_sec_part))
          {
            p_elem->part_state= PART_CHANGED;
          }
        } while (++part_no < no_orig_partitions);
      }
      /*
        Need to concatenate the lists here to make it possible to check the
        partition info for correctness using check_partition_info.
        For on-line add partition we set the state of this partition to
        PART_TO_BE_ADDED to ensure that it is known that it is not yet
        usable (becomes usable when partition is created and the switch of
        partition configuration is made.
      */
      {
        List_iterator<partition_element> alt_it(alt_part_info->partitions);
        uint part_count= 0;
        do
        {
          partition_element *part_elem= alt_it++;
          if (*fast_alter_partition)
            part_elem->part_state= PART_TO_BE_ADDED;
          if (tab_part_info->partitions.push_back(part_elem))
          {
            mem_alloc_error(1);
            DBUG_RETURN(TRUE);
          }
        } while (++part_count < no_new_partitions);
        tab_part_info->no_parts+= no_new_partitions;
      }
      /*
        If we specify partitions explicitly we don't use defaults anymore.
        Using ADD PARTITION also means that we don't have the default number
        of partitions anymore. We use this code also for Table reorganisations
        and here we don't set any default flags to FALSE.
      */
      if (!(alter_info->flags & ALTER_TABLE_REORG))
      {
        if (!alt_part_info->use_default_partitions)
        {
          DBUG_PRINT("info", ("part_info= %x", tab_part_info));
          tab_part_info->use_default_partitions= FALSE;
        }
        tab_part_info->use_default_no_partitions= FALSE;
4163
        tab_part_info->is_auto_partitioned= FALSE;
unknown's avatar
unknown committed
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
      }
    }
    else if (alter_info->flags == ALTER_DROP_PARTITION)
    {
      /*
        Drop a partition from a range partition and list partitioning is
        always safe and can be made more or less immediate. It is necessary
        however to ensure that the partition to be removed is safely removed
        and that REPAIR TABLE can remove the partition if for some reason the
        command to drop the partition failed in the middle.
      */
      uint part_count= 0;
      uint no_parts_dropped= alter_info->partition_names.elements;
      uint no_parts_found= 0;
      List_iterator<partition_element> part_it(tab_part_info->partitions);
4179 4180

      tab_part_info->is_auto_partitioned= FALSE;
unknown's avatar
unknown committed
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
      if (!(tab_part_info->part_type == RANGE_PARTITION ||
            tab_part_info->part_type == LIST_PARTITION))
      {
        my_error(ER_ONLY_ON_RANGE_LIST_PARTITION, MYF(0), "DROP");
        DBUG_RETURN(TRUE);
      }
      if (no_parts_dropped >= tab_part_info->no_parts)
      {
        my_error(ER_DROP_LAST_PARTITION, MYF(0));
        DBUG_RETURN(TRUE);
      }
      do
      {
        partition_element *part_elem= part_it++;
        if (is_name_in_list(part_elem->partition_name,
                            alter_info->partition_names))
        {
          /*
            Set state to indicate that the partition is to be dropped.
          */
          no_parts_found++;
          part_elem->part_state= PART_TO_BE_DROPPED;
        }
      } while (++part_count < tab_part_info->no_parts);
      if (no_parts_found != no_parts_dropped)
      {
        my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "DROP");
        DBUG_RETURN(TRUE);
      }
      if (table->file->is_fk_defined_on_table_or_index(MAX_KEY))
      {
        my_error(ER_ROW_IS_REFERENCED, MYF(0));
        DBUG_RETURN(TRUE);
      }
4215
      tab_part_info->no_parts-= no_parts_dropped;
unknown's avatar
unknown committed
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
    }
    else if ((alter_info->flags & ALTER_OPTIMIZE_PARTITION) ||
             (alter_info->flags & ALTER_ANALYZE_PARTITION) ||
             (alter_info->flags & ALTER_CHECK_PARTITION) ||
             (alter_info->flags & ALTER_REPAIR_PARTITION) ||
             (alter_info->flags & ALTER_REBUILD_PARTITION))
    {
      uint no_parts_opt= alter_info->partition_names.elements;
      uint part_count= 0;
      uint no_parts_found= 0;
      List_iterator<partition_element> part_it(tab_part_info->partitions);

      do
      {
        partition_element *part_elem= part_it++;
        if ((alter_info->flags & ALTER_ALL_PARTITION) ||
            (is_name_in_list(part_elem->partition_name,
                             alter_info->partition_names)))
        {
          /*
            Mark the partition as a partition to be "changed" by
            analyzing/optimizing/rebuilding/checking/repairing
          */
          no_parts_found++;
          part_elem->part_state= PART_CHANGED;
        }
      } while (++part_count < tab_part_info->no_parts);
      if (no_parts_found != no_parts_opt &&
          (!(alter_info->flags & ALTER_ALL_PARTITION)))
      {
        const char *ptr;
        if (alter_info->flags & ALTER_OPTIMIZE_PARTITION)
          ptr= "OPTIMIZE";
        else if (alter_info->flags & ALTER_ANALYZE_PARTITION)
          ptr= "ANALYZE";
        else if (alter_info->flags & ALTER_CHECK_PARTITION)
          ptr= "CHECK";
        else if (alter_info->flags & ALTER_REPAIR_PARTITION)
          ptr= "REPAIR";
        else
          ptr= "REBUILD";
        my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), ptr);
        DBUG_RETURN(TRUE);
      }
4260 4261 4262 4263 4264
      if (!(*fast_alter_partition))
      {
        table->file->print_error(HA_ERR_WRONG_COMMAND, MYF(0));
        DBUG_RETURN(TRUE);
      }
unknown's avatar
unknown committed
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
    }
    else if (alter_info->flags & ALTER_COALESCE_PARTITION)
    {
      uint no_parts_coalesced= alter_info->no_parts;
      uint no_parts_remain= tab_part_info->no_parts - no_parts_coalesced;
      List_iterator<partition_element> part_it(tab_part_info->partitions);
      if (tab_part_info->part_type != HASH_PARTITION)
      {
        my_error(ER_COALESCE_ONLY_ON_HASH_PARTITION, MYF(0));
        DBUG_RETURN(TRUE);
      }
      if (no_parts_coalesced == 0)
      {
        my_error(ER_COALESCE_PARTITION_NO_PARTITION, MYF(0));
        DBUG_RETURN(TRUE);
      }
      if (no_parts_coalesced >= tab_part_info->no_parts)
      {
        my_error(ER_DROP_LAST_PARTITION, MYF(0));
        DBUG_RETURN(TRUE);
      }
/*
Online handling:
COALESCE PARTITION:
-------------------
The figure below shows the manner in which partitions are handled when
performing an on-line coalesce partition and which states they go through
at start, after adding and copying partitions and finally after dropping
the partitions to drop. The figure shows an example using four partitions
to start with, using linear hash and coalescing one partition (always the
last partition).

Using linear hash then all remaining partitions will have a new reorganised
part.

Existing partitions                     Coalesced partition 
------       ------              ------   |      ------
|    |       |    |              |    |   |      |    |
| p0 |       | p1 |              | p2 |   |      | p3 |
------       ------              ------   |      ------
PART_NORMAL  PART_CHANGED        PART_NORMAL     PART_REORGED_DROPPED
PART_NORMAL  PART_IS_CHANGED     PART_NORMAL     PART_TO_BE_DROPPED
PART_NORMAL  PART_NORMAL         PART_NORMAL     PART_IS_DROPPED

Reorganised existing partitions
            ------
            |    |
            | p1'|
            ------

p0 - p3 is in the partitions list.
The p1' partition will actually not be in any list it is deduced from the
state of p1.
*/
      {
        uint part_count= 0, start_part= 1, start_sec_part= 1;
        uint end_part= 0, end_sec_part= 0;
        bool all_parts= TRUE;
        if (*fast_alter_partition &&
            tab_part_info->linear_hash_ind)
        {
          uint upper_2n= tab_part_info->linear_hash_mask + 1;
          uint lower_2n= upper_2n >> 1;
          all_parts= FALSE;
          if (no_parts_coalesced >= lower_2n)
          {
            all_parts= TRUE;
          }
          else if (no_parts_remain >= lower_2n)
          {
            end_part= tab_part_info->no_parts - (lower_2n + 1);
            start_part= no_parts_remain - lower_2n;
          }
          else
          {
            start_part= 0;
            end_part= tab_part_info->no_parts - (lower_2n + 1);
            end_sec_part= (lower_2n >> 1) - 1;
            start_sec_part= end_sec_part - (lower_2n - (no_parts_remain + 1));
          }
        }
        do
        {
          partition_element *p_elem= part_it++;
          if (*fast_alter_partition &&
              (all_parts ||
              (part_count >= start_part && part_count <= end_part) ||
              (part_count >= start_sec_part && part_count <= end_sec_part)))
            p_elem->part_state= PART_CHANGED;
          if (++part_count > no_parts_remain)
          {
            if (*fast_alter_partition)
              p_elem->part_state= PART_REORGED_DROPPED;
            else
              part_it.remove();
          }
        } while (part_count < tab_part_info->no_parts);
        tab_part_info->no_parts= no_parts_remain;
      }
      if (!(alter_info->flags & ALTER_TABLE_REORG))
4365
      {
unknown's avatar
unknown committed
4366
        tab_part_info->use_default_no_partitions= FALSE;
4367 4368
        tab_part_info->is_auto_partitioned= FALSE;
      }
unknown's avatar
unknown committed
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
    }
    else if (alter_info->flags == ALTER_REORGANIZE_PARTITION)
    {
      /*
        Reorganise partitions takes a number of partitions that are next
        to each other (at least for RANGE PARTITIONS) and then uses those
        to create a set of new partitions. So data is copied from those
        partitions into the new set of partitions. Those new partitions
        can have more values in the LIST value specifications or less both
        are allowed. The ranges can be different but since they are 
        changing a set of consecutive partitions they must cover the same
        range as those changed from.
        This command can be used on RANGE and LIST partitions.
      */
      uint no_parts_reorged= alter_info->partition_names.elements;
unknown's avatar
unknown committed
4384 4385
      uint no_parts_new= thd->work_part_info->partitions.elements;
      partition_info *alt_part_info= thd->work_part_info;
unknown's avatar
unknown committed
4386
      uint check_total_partitions;
4387 4388

      tab_part_info->is_auto_partitioned= FALSE;
unknown's avatar
unknown committed
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
      if (no_parts_reorged > tab_part_info->no_parts)
      {
        my_error(ER_REORG_PARTITION_NOT_EXIST, MYF(0));
        DBUG_RETURN(TRUE);
      }
      if (!(tab_part_info->part_type == RANGE_PARTITION ||
            tab_part_info->part_type == LIST_PARTITION) &&
           (no_parts_new != no_parts_reorged))
      {
        my_error(ER_REORG_HASH_ONLY_ON_SAME_NO, MYF(0));
        DBUG_RETURN(TRUE);
      }
4401 4402 4403 4404 4405 4406 4407
      if (tab_part_info->is_sub_partitioned() &&
          alt_part_info->no_subparts &&
          alt_part_info->no_subparts != tab_part_info->no_subparts)
      {
        my_error(ER_PARTITION_WRONG_NO_SUBPART_ERROR, MYF(0));
        DBUG_RETURN(TRUE);
      }
unknown's avatar
unknown committed
4408 4409 4410 4411 4412 4413 4414
      check_total_partitions= tab_part_info->no_parts + no_parts_new;
      check_total_partitions-= no_parts_reorged;
      if (check_total_partitions > MAX_PARTITIONS)
      {
        my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
        DBUG_RETURN(TRUE);
      }
4415 4416 4417 4418 4419 4420 4421 4422 4423
      alt_part_info->part_type= tab_part_info->part_type;
      alt_part_info->subpart_type= tab_part_info->subpart_type;
      DBUG_ASSERT(!alt_part_info->use_default_partitions);
      if (alt_part_info->set_up_defaults_for_partitioning(table->file,
                                                          ULL(0), 
                                                          0))
      {
        DBUG_RETURN(TRUE);
      }
unknown's avatar
unknown committed
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
/*
Online handling:
REORGANIZE PARTITION:
---------------------
The figure exemplifies the handling of partitions, their state changes and
how they are organised. It exemplifies four partitions where two of the
partitions are reorganised (p1 and p2) into two new partitions (p4 and p5).
The reason of this change could be to change range limits, change list
values or for hash partitions simply reorganise the partition which could
also involve moving them to new disks or new node groups (MySQL Cluster).

Existing partitions                                  
------       ------        ------        ------
|    |       |    |        |    |        |    |
| p0 |       | p1 |        | p2 |        | p3 |
------       ------        ------        ------
PART_NORMAL  PART_TO_BE_REORGED          PART_NORMAL
PART_NORMAL  PART_TO_BE_DROPPED          PART_NORMAL
PART_NORMAL  PART_IS_DROPPED             PART_NORMAL

Reorganised new partitions (replacing p1 and p2)
------      ------
|    |      |    |
| p4 |      | p5 |
------      ------
PART_TO_BE_ADDED
PART_IS_ADDED
PART_IS_ADDED

All unchanged partitions and the new partitions are in the partitions list
in the order they will have when the change is completed. The reorganised
partitions are placed in the temp_partitions list. PART_IS_ADDED is only a
temporary state not written in the frm file. It is used to ensure we write
the generated partition syntax in a correct manner.
*/
      {
        List_iterator<partition_element> tab_it(tab_part_info->partitions);
        uint part_count= 0;
        bool found_first= FALSE;
        bool found_last= FALSE;
        bool is_last_partition_reorged;
        uint drop_count= 0;
        longlong tab_max_range= 0, alt_max_range= 0;
        do
        {
          partition_element *part_elem= tab_it++;
          is_last_partition_reorged= FALSE;
          if (is_name_in_list(part_elem->partition_name,
                              alter_info->partition_names))
          {
            is_last_partition_reorged= TRUE;
            drop_count++;
            tab_max_range= part_elem->range_value;
            if (*fast_alter_partition &&
                tab_part_info->temp_partitions.push_back(part_elem))
            {
              mem_alloc_error(1);
              DBUG_RETURN(TRUE);
            }
            if (*fast_alter_partition)
              part_elem->part_state= PART_TO_BE_REORGED;
            if (!found_first)
            {
              uint alt_part_count= 0;
              found_first= TRUE;
              List_iterator<partition_element>
                                 alt_it(alt_part_info->partitions);
              do
              {
                partition_element *alt_part_elem= alt_it++;
                alt_max_range= alt_part_elem->range_value;
                if (*fast_alter_partition)
                  alt_part_elem->part_state= PART_TO_BE_ADDED;
                if (alt_part_count == 0)
                  tab_it.replace(alt_part_elem);
                else
                  tab_it.after(alt_part_elem);
              } while (++alt_part_count < no_parts_new);
            }
            else if (found_last)
            {
              my_error(ER_CONSECUTIVE_REORG_PARTITIONS, MYF(0));
              DBUG_RETURN(TRUE);
            }
            else
              tab_it.remove();
          }
          else
          {
            if (found_first)
              found_last= TRUE;
          }
        } while (++part_count < tab_part_info->no_parts);
        if (drop_count != no_parts_reorged)
        {
          my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "REORGANIZE");
          DBUG_RETURN(TRUE);
        }
        if (tab_part_info->part_type == RANGE_PARTITION &&
            ((is_last_partition_reorged &&
               alt_max_range < tab_max_range) ||
              (!is_last_partition_reorged &&
               alt_max_range != tab_max_range)))
        {
          /*
            For range partitioning the total resulting range before and
            after the change must be the same except in one case. This is
            when the last partition is reorganised, in this case it is
            acceptable to increase the total range.
            The reason is that it is not allowed to have "holes" in the
            middle of the ranges and thus we should not allow to reorganise
            to create "holes". Also we should not allow using REORGANIZE
            to drop data.
          */
          my_error(ER_REORG_OUTSIDE_RANGE, MYF(0));
          DBUG_RETURN(TRUE);
        }
        tab_part_info->no_parts= check_total_partitions;
      }
    }
    else
    {
      DBUG_ASSERT(FALSE);
    }
    *partition_changed= TRUE;
unknown's avatar
unknown committed
4549
    thd->work_part_info= tab_part_info;
unknown's avatar
unknown committed
4550 4551 4552
    if (alter_info->flags == ALTER_ADD_PARTITION ||
        alter_info->flags == ALTER_REORGANIZE_PARTITION)
    {
4553
      if (tab_part_info->use_default_subpartitions &&
4554 4555 4556 4557 4558
          !alt_part_info->use_default_subpartitions)
      {
        tab_part_info->use_default_subpartitions= FALSE;
        tab_part_info->use_default_no_subpartitions= FALSE;
      }
4559
      if (tab_part_info->check_partition_info(thd, (handlerton**)NULL,
4560
                                              table->file, ULL(0)))
unknown's avatar
unknown committed
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
      {
        DBUG_RETURN(TRUE);
      }
    }
  }
  else
  {
    /*
     When thd->lex->part_info has a reference to a partition_info the
     ALTER TABLE contained a definition of a partitioning.

     Case I:
       If there was a partition before and there is a new one defined.
       We use the new partitioning. The new partitioning is already
       defined in the correct variable so no work is needed to
       accomplish this.
       We do however need to update partition_changed to ensure that not
       only the frm file is changed in the ALTER TABLE command.

     Case IIa:
       There was a partitioning before and there is no new one defined.
unknown's avatar
unknown committed
4582
       Also the user has not specified to remove partitioning explicitly.
unknown's avatar
unknown committed
4583 4584 4585 4586 4587 4588 4589 4590

       We use the old partitioning also for the new table. We do this
       by assigning the partition_info from the table loaded in
       open_ltable to the partition_info struct used by mysql_create_table
       later in this method.

     Case IIb:
       There was a partitioning before and there is no new one defined.
unknown's avatar
unknown committed
4591
       The user has specified explicitly to remove partitioning
unknown's avatar
unknown committed
4592

unknown's avatar
unknown committed
4593 4594 4595
       Since the user has specified explicitly to remove partitioning
       we override the old partitioning info and create a new table using
       the specified engine.
unknown's avatar
unknown committed
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
       In this case the partition also is changed.

     Case III:
       There was no partitioning before altering the table, there is
       partitioning defined in the altered table. Use the new partitioning.
       No work needed since the partitioning info is already in the
       correct variable.

       In this case we discover one case where the new partitioning is using
       the same partition function as the default (PARTITION BY KEY or
       PARTITION BY LINEAR KEY with the list of fields equal to the primary
       key fields OR PARTITION BY [LINEAR] KEY() for tables without primary
       key)
       Also here partition has changed and thus a new table must be
       created.

     Case IV:
       There was no partitioning before and no partitioning defined.
       Obviously no work needed.
    */
    if (table->part_info)
    {
4618
      if (alter_info->flags & ALTER_REMOVE_PARTITIONING)
unknown's avatar
unknown committed
4619 4620
      {
        DBUG_PRINT("info", ("Remove partitioning"));
4621
        if (!(create_info->used_fields & HA_CREATE_USED_ENGINE))
unknown's avatar
unknown committed
4622 4623 4624 4625
        {
          DBUG_PRINT("info", ("No explicit engine used"));
          create_info->db_type= table->part_info->default_engine_type;
        }
unknown's avatar
unknown committed
4626 4627
        DBUG_PRINT("info", ("New engine type: %s",
                   hton2plugin[create_info->db_type->slot]->name.str));
4628
        thd->work_part_info= NULL;
unknown's avatar
unknown committed
4629 4630
        *partition_changed= TRUE;
      }
4631
      else if (!thd->work_part_info)
unknown's avatar
unknown committed
4632 4633 4634 4635 4636
      {
        /*
          Retain partitioning but possibly with a new storage engine
          beneath.
        */
unknown's avatar
unknown committed
4637
        thd->work_part_info= table->part_info;
4638
        if (create_info->used_fields & HA_CREATE_USED_ENGINE &&
unknown's avatar
unknown committed
4639 4640 4641 4642 4643
            create_info->db_type != table->part_info->default_engine_type)
        {
          /*
            Make sure change of engine happens to all partitions.
          */
4644
          DBUG_PRINT("info", ("partition changed"));
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
          if (table->part_info->is_auto_partitioned)
          {
            /*
              If the user originally didn't specify partitioning to be
              used we can remove it now.
            */
            thd->work_part_info= NULL;
          }
          else
          {
            /*
              Ensure that all partitions have the proper engine set-up
            */
            set_engine_all_partitions(thd->work_part_info,
                                      create_info->db_type);
          }
unknown's avatar
unknown committed
4661 4662 4663
          *partition_changed= TRUE;
        }
      }
unknown's avatar
unknown committed
4664
    }
unknown's avatar
unknown committed
4665
    if (thd->work_part_info)
unknown's avatar
unknown committed
4666
    {
unknown's avatar
unknown committed
4667
      partition_info *part_info= thd->work_part_info;
unknown's avatar
unknown committed
4668
      bool is_native_partitioned= FALSE;
unknown's avatar
unknown committed
4669 4670 4671 4672
      /*
        Need to cater for engine types that can handle partition without
        using the partition handler.
      */
unknown's avatar
unknown committed
4673
      if (thd->work_part_info != table->part_info)
4674 4675
      {
        DBUG_PRINT("info", ("partition changed"));
unknown's avatar
unknown committed
4676
        *partition_changed= TRUE;
4677
      }
4678
      if (create_info->db_type == partition_hton)
unknown's avatar
unknown committed
4679 4680 4681 4682 4683
        part_info->default_engine_type= table->part_info->default_engine_type;
      else
        part_info->default_engine_type= create_info->db_type;
      if (check_native_partitioned(create_info, &is_native_partitioned,
                                   part_info, thd))
unknown's avatar
unknown committed
4684
      {
unknown's avatar
unknown committed
4685
        DBUG_RETURN(TRUE);
unknown's avatar
unknown committed
4686
      }
unknown's avatar
unknown committed
4687
      if (!is_native_partitioned)
unknown's avatar
unknown committed
4688
      {
unknown's avatar
unknown committed
4689
        DBUG_ASSERT(create_info->db_type);
4690
        create_info->db_type= partition_hton;
unknown's avatar
unknown committed
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
      }
    }
  }
  DBUG_RETURN(FALSE);
}


/*
  Change partitions, used to implement ALTER TABLE ADD/REORGANIZE/COALESCE
  partitions. This method is used to implement both single-phase and multi-
  phase implementations of ADD/REORGANIZE/COALESCE partitions.

  SYNOPSIS
    mysql_change_partitions()
    lpt                        Struct containing parameters

  RETURN VALUES
    TRUE                          Failure
    FALSE                         Success

  DESCRIPTION
    Request handler to add partitions as set in states of the partition

    Elements of the lpt parameters used:
    create_info                Create information used to create partitions
    db                         Database name
    table_name                 Table name
    copied                     Output parameter where number of copied
                               records are added
    deleted                    Output parameter where number of deleted
                               records are added
*/

static bool mysql_change_partitions(ALTER_PARTITION_PARAM_TYPE *lpt)
{
  char path[FN_REFLEN+1];
4727 4728
  int error;
  handler *file= lpt->table->file;
unknown's avatar
unknown committed
4729 4730
  DBUG_ENTER("mysql_change_partitions");

4731
  build_table_filename(path, sizeof(path), lpt->db, lpt->table_name, "", 0);
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
  if ((error= file->change_partitions(lpt->create_info, path, &lpt->copied,
                                      &lpt->deleted, lpt->pack_frm_data,
                                      lpt->pack_frm_len)))
  {
    if (error != ER_OUTOFMEMORY)
      file->print_error(error, MYF(0));
    else
      lpt->thd->fatal_error();
    DBUG_RETURN(TRUE);
  }
  DBUG_RETURN(FALSE);
unknown's avatar
unknown committed
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
}


/*
  Rename partitions in an ALTER TABLE of partitions

  SYNOPSIS
    mysql_rename_partitions()
    lpt                        Struct containing parameters

  RETURN VALUES
    TRUE                          Failure
    FALSE                         Success

  DESCRIPTION
    Request handler to rename partitions as set in states of the partition

    Parameters used:
    db                         Database name
    table_name                 Table name
*/

static bool mysql_rename_partitions(ALTER_PARTITION_PARAM_TYPE *lpt)
{
  char path[FN_REFLEN+1];
4768
  int error;
unknown's avatar
unknown committed
4769 4770
  DBUG_ENTER("mysql_rename_partitions");

4771
  build_table_filename(path, sizeof(path), lpt->db, lpt->table_name, "", 0);
4772 4773 4774 4775 4776 4777 4778
  if ((error= lpt->table->file->rename_partitions(path)))
  {
    if (error != 1)
      lpt->table->file->print_error(error, MYF(0));
    DBUG_RETURN(TRUE);
  }
  DBUG_RETURN(FALSE);
unknown's avatar
unknown committed
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
}


/*
  Drop partitions in an ALTER TABLE of partitions

  SYNOPSIS
    mysql_drop_partitions()
    lpt                        Struct containing parameters

  RETURN VALUES
    TRUE                          Failure
    FALSE                         Success
  DESCRIPTION
    Drop the partitions marked with PART_TO_BE_DROPPED state and remove
    those partitions from the list.

    Parameters used:
    table                       Table object
    db                          Database name
    table_name                  Table name
*/

static bool mysql_drop_partitions(ALTER_PARTITION_PARAM_TYPE *lpt)
{
  char path[FN_REFLEN+1];
  partition_info *part_info= lpt->table->part_info;
  List_iterator<partition_element> part_it(part_info->partitions);
  uint i= 0;
  uint remove_count= 0;
4809
  int error;
unknown's avatar
unknown committed
4810 4811
  DBUG_ENTER("mysql_drop_partitions");

4812
  build_table_filename(path, sizeof(path), lpt->db, lpt->table_name, "", 0);
4813
  if ((error= lpt->table->file->drop_partitions(path)))
unknown's avatar
unknown committed
4814
  {
4815
    lpt->table->file->print_error(error, MYF(0));
unknown's avatar
unknown committed
4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
    DBUG_RETURN(TRUE);
  }
  do
  {
    partition_element *part_elem= part_it++;
    if (part_elem->part_state == PART_IS_DROPPED)
    {
      part_it.remove();
      remove_count++;
    }
  } while (++i < part_info->no_parts);
  part_info->no_parts-= remove_count;
  DBUG_RETURN(FALSE);
}


4832 4833 4834 4835 4836 4837 4838 4839 4840
/*
  Insert log entry into list
  SYNOPSIS
    insert_part_info_log_entry_list()
    log_entry
  RETURN VALUES
    NONE
*/

4841 4842
static void insert_part_info_log_entry_list(partition_info *part_info,
                                            DDL_LOG_MEMORY_ENTRY *log_entry)
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
{
  log_entry->next_active_log_entry= part_info->first_log_entry;
  part_info->first_log_entry= log_entry;
}


/*
  Release all log entries for this partition info struct
  SYNOPSIS
    release_part_info_log_entries()
    first_log_entry                 First log entry in list to release
  RETURN VALUES
    NONE
*/

4858
static void release_part_info_log_entries(DDL_LOG_MEMORY_ENTRY *log_entry)
4859 4860 4861 4862 4863
{
  DBUG_ENTER("release_part_info_log_entries");

  while (log_entry)
  {
4864
    release_ddl_log_memory_entry(log_entry);
4865
    log_entry= log_entry->next_active_log_entry;
4866 4867 4868 4869 4870
  }
  DBUG_VOID_RETURN;
}


unknown's avatar
unknown committed
4871
/*
4872
  Log an delete/rename frm file
unknown's avatar
unknown committed
4873
  SYNOPSIS
4874
    write_log_replace_delete_frm()
4875 4876
    lpt                            Struct for parameters
    next_entry                     Next reference to use in log record
4877 4878 4879
    from_path                      Name to rename from
    to_path                        Name to rename to
    replace_flag                   TRUE if replace, else delete
unknown's avatar
unknown committed
4880
  RETURN VALUES
4881 4882
    TRUE                           Error
    FALSE                          Success
unknown's avatar
unknown committed
4883
  DESCRIPTION
4884
    Support routine that writes a replace or delete of an frm file into the
4885
    ddl log. It also inserts an entry that keeps track of used space into
4886
    the partition info object
unknown's avatar
unknown committed
4887 4888
*/

4889 4890 4891 4892 4893
static bool write_log_replace_delete_frm(ALTER_PARTITION_PARAM_TYPE *lpt,
                                         uint next_entry,
                                         const char *from_path,
                                         const char *to_path,
                                         bool replace_flag)
unknown's avatar
unknown committed
4894
{
4895 4896
  DDL_LOG_ENTRY ddl_log_entry;
  DDL_LOG_MEMORY_ENTRY *log_entry;
4897
  DBUG_ENTER("write_log_replace_delete_frm");
unknown's avatar
unknown committed
4898

4899
  if (replace_flag)
4900
    ddl_log_entry.action_type= DDL_LOG_REPLACE_ACTION;
4901
  else
4902 4903
    ddl_log_entry.action_type= DDL_LOG_DELETE_ACTION;
  ddl_log_entry.next_entry= next_entry;
4904
  ddl_log_entry.handler_name= reg_ext;
4905
  ddl_log_entry.name= to_path;
4906
  if (replace_flag)
4907 4908
    ddl_log_entry.from_name= from_path;
  if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
4909 4910 4911
  {
    DBUG_RETURN(TRUE);
  }
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
  insert_part_info_log_entry_list(lpt->part_info, log_entry);
  DBUG_RETURN(FALSE);
}


/*
  Log final partition changes in change partition
  SYNOPSIS
    write_log_changed_partitions()
    lpt                      Struct containing parameters
  RETURN VALUES
    TRUE                     Error
    FALSE                    Success
4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
  DESCRIPTION
    This code is used to perform safe ADD PARTITION for HASH partitions
    and COALESCE for HASH partitions and REORGANIZE for any type of
    partitions.
    We prepare entries for all partitions except the reorganised partitions
    in REORGANIZE partition, those are handled by
    write_log_dropped_partitions. For those partitions that are replaced
    special care is needed to ensure that this is performed correctly and
    this requires a two-phased approach with this log as a helper for this.

    This code is closely intertwined with the code in rename_partitions in
    the partition handler.
4937 4938
*/

4939 4940
static bool write_log_changed_partitions(ALTER_PARTITION_PARAM_TYPE *lpt,
                                         uint *next_entry, const char *path)
4941
{
4942
  DDL_LOG_ENTRY ddl_log_entry;
4943
  partition_info *part_info= lpt->part_info;
4944
  DDL_LOG_MEMORY_ENTRY *log_entry;
4945 4946 4947 4948 4949 4950
  char tmp_path[FN_LEN];
  char normal_path[FN_LEN];
  List_iterator<partition_element> part_it(part_info->partitions);
  uint temp_partitions= part_info->temp_partitions.elements;
  uint no_elements= part_info->partitions.elements;
  uint i= 0;
4951
  DBUG_ENTER("write_log_changed_partitions");
4952 4953 4954 4955 4956 4957 4958

  do
  {
    partition_element *part_elem= part_it++;
    if (part_elem->part_state == PART_IS_CHANGED ||
        (part_elem->part_state == PART_IS_ADDED && temp_partitions))
    {
unknown's avatar
unknown committed
4959
      if (part_info->is_sub_partitioned())
4960 4961 4962 4963 4964 4965 4966
      {
        List_iterator<partition_element> sub_it(part_elem->subpartitions);
        uint no_subparts= part_info->no_subparts;
        uint j= 0;
        do
        {
          partition_element *sub_elem= sub_it++;
4967 4968
          ddl_log_entry.next_entry= *next_entry;
          ddl_log_entry.handler_name=
4969 4970 4971 4972 4973 4974 4975 4976 4977
               ha_resolve_storage_engine_name(sub_elem->engine_type);
          create_subpartition_name(tmp_path, path,
                                   part_elem->partition_name,
                                   sub_elem->partition_name,
                                   TEMP_PART_NAME);
          create_subpartition_name(normal_path, path,
                                   part_elem->partition_name,
                                   sub_elem->partition_name,
                                   NORMAL_PART_NAME);
4978 4979
          ddl_log_entry.name= normal_path;
          ddl_log_entry.from_name= tmp_path;
4980
          if (part_elem->part_state == PART_IS_CHANGED)
4981
            ddl_log_entry.action_type= DDL_LOG_REPLACE_ACTION;
4982
          else
4983 4984
            ddl_log_entry.action_type= DDL_LOG_RENAME_ACTION;
          if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
          {
            DBUG_RETURN(TRUE);
          }
          *next_entry= log_entry->entry_pos;
          sub_elem->log_entry= log_entry;
          insert_part_info_log_entry_list(part_info, log_entry);
        } while (++j < no_subparts);
      }
      else
      {
4995 4996
        ddl_log_entry.next_entry= *next_entry;
        ddl_log_entry.handler_name=
4997 4998 4999 5000 5001 5002 5003
               ha_resolve_storage_engine_name(part_elem->engine_type);
        create_partition_name(tmp_path, path,
                              part_elem->partition_name,
                              TEMP_PART_NAME, TRUE);
        create_partition_name(normal_path, path,
                              part_elem->partition_name,
                              NORMAL_PART_NAME, TRUE);
5004 5005
        ddl_log_entry.name= normal_path;
        ddl_log_entry.from_name= tmp_path;
5006
        if (part_elem->part_state == PART_IS_CHANGED)
5007
          ddl_log_entry.action_type= DDL_LOG_REPLACE_ACTION;
5008
        else
5009 5010
          ddl_log_entry.action_type= DDL_LOG_RENAME_ACTION;
        if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
5011 5012 5013 5014
        {
          DBUG_RETURN(TRUE);
        }
        *next_entry= log_entry->entry_pos;
unknown's avatar
unknown committed
5015
        part_elem->log_entry= log_entry;
5016 5017 5018
        insert_part_info_log_entry_list(part_info, log_entry);
      }
    }
unknown's avatar
unknown committed
5019
  } while (++i < no_elements);
5020
  DBUG_RETURN(FALSE);
5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033
}


/*
  Log dropped partitions
  SYNOPSIS
    write_log_dropped_partitions()
    lpt                      Struct containing parameters
  RETURN VALUES
    TRUE                     Error
    FALSE                    Success
*/

5034 5035 5036 5037
static bool write_log_dropped_partitions(ALTER_PARTITION_PARAM_TYPE *lpt,
                                         uint *next_entry,
                                         const char *path,
                                         bool temp_list)
5038
{
5039
  DDL_LOG_ENTRY ddl_log_entry;
5040
  partition_info *part_info= lpt->part_info;
5041
  DDL_LOG_MEMORY_ENTRY *log_entry;
5042 5043
  char tmp_path[FN_LEN];
  List_iterator<partition_element> part_it(part_info->partitions);
5044 5045
  List_iterator<partition_element> temp_it(part_info->temp_partitions);
  uint no_temp_partitions= part_info->temp_partitions.elements;
5046
  uint no_elements= part_info->partitions.elements;
5047
  uint i= 0;
5048 5049
  DBUG_ENTER("write_log_dropped_partitions");

5050
  ddl_log_entry.action_type= DDL_LOG_DELETE_ACTION;
5051 5052 5053
  if (temp_list)
    no_elements= no_temp_partitions;
  while (no_elements--)
5054
  {
5055 5056 5057 5058 5059
    partition_element *part_elem;
    if (temp_list)
      part_elem= temp_it++;
    else
      part_elem= part_it++;
5060
    if (part_elem->part_state == PART_TO_BE_DROPPED ||
5061 5062
        part_elem->part_state == PART_TO_BE_ADDED ||
        part_elem->part_state == PART_CHANGED)
5063
    {
5064 5065 5066 5067 5068 5069 5070
      uint name_variant;
      if (part_elem->part_state == PART_CHANGED ||
          (part_elem->part_state == PART_TO_BE_ADDED &&
           no_temp_partitions))
        name_variant= TEMP_PART_NAME;
      else
        name_variant= NORMAL_PART_NAME;
unknown's avatar
unknown committed
5071
      if (part_info->is_sub_partitioned())
5072 5073 5074
      {
        List_iterator<partition_element> sub_it(part_elem->subpartitions);
        uint no_subparts= part_info->no_subparts;
5075
        uint j= 0;
5076 5077 5078
        do
        {
          partition_element *sub_elem= sub_it++;
5079 5080
          ddl_log_entry.next_entry= *next_entry;
          ddl_log_entry.handler_name=
5081
               ha_resolve_storage_engine_name(sub_elem->engine_type);
5082 5083 5084
          create_subpartition_name(tmp_path, path,
                                   part_elem->partition_name,
                                   sub_elem->partition_name,
5085
                                   name_variant);
5086 5087
          ddl_log_entry.name= tmp_path;
          if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
5088 5089 5090 5091
          {
            DBUG_RETURN(TRUE);
          }
          *next_entry= log_entry->entry_pos;
5092
          sub_elem->log_entry= log_entry;
5093
          insert_part_info_log_entry_list(part_info, log_entry);
5094
        } while (++j < no_subparts);
5095 5096 5097
      }
      else
      {
5098 5099
        ddl_log_entry.next_entry= *next_entry;
        ddl_log_entry.handler_name=
5100 5101 5102
               ha_resolve_storage_engine_name(part_elem->engine_type);
        create_partition_name(tmp_path, path,
                              part_elem->partition_name,
5103
                              name_variant, TRUE);
5104 5105
        ddl_log_entry.name= tmp_path;
        if (write_ddl_log_entry(&ddl_log_entry, &log_entry))
5106 5107 5108 5109
        {
          DBUG_RETURN(TRUE);
        }
        *next_entry= log_entry->entry_pos;
5110
        part_elem->log_entry= log_entry;
5111 5112 5113
        insert_part_info_log_entry_list(part_info, log_entry);
      }
    }
5114
  }
unknown's avatar
unknown committed
5115 5116 5117 5118
  DBUG_RETURN(FALSE);
}


5119
/*
5120
  Set execute log entry in ddl log for this partitioned table
5121 5122 5123 5124 5125 5126 5127 5128
  SYNOPSIS
    set_part_info_exec_log_entry()
    part_info                      Partition info object
    exec_log_entry                 Log entry
  RETURN VALUES
    NONE
*/

5129 5130
static void set_part_info_exec_log_entry(partition_info *part_info,
                                         DDL_LOG_MEMORY_ENTRY *exec_log_entry)
5131 5132 5133 5134 5135 5136
{
  part_info->exec_log_entry= exec_log_entry;
  exec_log_entry->next_active_log_entry= NULL;
}


unknown's avatar
unknown committed
5137
/*
5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
  Write the log entry to ensure that the shadow frm file is removed at
  crash.
  SYNOPSIS
    write_log_drop_shadow_frm()
    lpt                      Struct containing parameters
    install_frm              Should we log action to install shadow frm or should
                             the action be to remove the shadow frm file.
  RETURN VALUES
    TRUE                     Error
    FALSE                    Success
  DESCRIPTION
5149
    Prepare an entry to the ddl log indicating a drop/install of the shadow frm
5150 5151 5152
    file and its corresponding handler file.
*/

5153
static bool write_log_drop_shadow_frm(ALTER_PARTITION_PARAM_TYPE *lpt)
5154
{
5155
  DDL_LOG_ENTRY ddl_log_entry;
5156
  partition_info *part_info= lpt->part_info;
5157 5158
  DDL_LOG_MEMORY_ENTRY *log_entry;
  DDL_LOG_MEMORY_ENTRY *exec_log_entry= NULL;
5159 5160
  char shadow_path[FN_LEN];
  DBUG_ENTER("write_log_drop_shadow_frm");
unknown's avatar
unknown committed
5161

5162
  build_table_filename(shadow_path, sizeof(shadow_path), lpt->db,
5163
                       lpt->table_name, "#", 0);
5164
  pthread_mutex_lock(&LOCK_gdl);
5165 5166 5167 5168 5169 5170 5171
  if (write_log_replace_delete_frm(lpt, 0UL, NULL,
                                  (const char*)shadow_path, FALSE))
    goto error;
  log_entry= part_info->first_log_entry;
  if (write_execute_ddl_log_entry(log_entry->entry_pos,
                                    FALSE, &exec_log_entry))
    goto error;
5172
  pthread_mutex_unlock(&LOCK_gdl);
5173 5174 5175 5176
  set_part_info_exec_log_entry(part_info, exec_log_entry);
  DBUG_RETURN(FALSE);

error:
5177
  release_part_info_log_entries(part_info->first_log_entry);
5178
  pthread_mutex_unlock(&LOCK_gdl);
5179
  part_info->first_log_entry= NULL;
5180
  my_error(ER_DDL_LOG_ERROR, MYF(0));
5181 5182 5183 5184 5185 5186
  DBUG_RETURN(TRUE);
}


/*
  Log renaming of shadow frm to real frm name and dropping of old frm
unknown's avatar
unknown committed
5187
  SYNOPSIS
5188
    write_log_rename_frm()
unknown's avatar
unknown committed
5189 5190 5191 5192 5193
    lpt                      Struct containing parameters
  RETURN VALUES
    TRUE                     Error
    FALSE                    Success
  DESCRIPTION
5194 5195
    Prepare an entry to ensure that we complete the renaming of the frm
    file if failure occurs in the middle of the rename process.
unknown's avatar
unknown committed
5196 5197
*/

5198
static bool write_log_rename_frm(ALTER_PARTITION_PARAM_TYPE *lpt)
unknown's avatar
unknown committed
5199
{
5200
  DDL_LOG_ENTRY ddl_log_entry;
5201
  partition_info *part_info= lpt->part_info;
5202 5203
  DDL_LOG_MEMORY_ENTRY *log_entry;
  DDL_LOG_MEMORY_ENTRY *exec_log_entry= part_info->exec_log_entry;
5204
  char path[FN_LEN];
5205
  char shadow_path[FN_LEN];
5206
  DDL_LOG_MEMORY_ENTRY *old_first_log_entry= part_info->first_log_entry;
5207
  DBUG_ENTER("write_log_rename_frm");
unknown's avatar
unknown committed
5208

5209 5210
  part_info->first_log_entry= NULL;
  build_table_filename(path, sizeof(path), lpt->db,
5211
                       lpt->table_name, "", 0);
5212
  build_table_filename(shadow_path, sizeof(shadow_path), lpt->db,
5213
                       lpt->table_name, "#", 0);
5214
  pthread_mutex_lock(&LOCK_gdl);
5215
  if (write_log_replace_delete_frm(lpt, 0UL, shadow_path, path, TRUE))
5216 5217 5218 5219 5220 5221 5222
    goto error;
  log_entry= part_info->first_log_entry;
  part_info->frm_log_entry= log_entry;
  if (write_execute_ddl_log_entry(log_entry->entry_pos,
                                    FALSE, &exec_log_entry))
    goto error;
  release_part_info_log_entries(old_first_log_entry);
5223
  pthread_mutex_unlock(&LOCK_gdl);
5224 5225 5226
  DBUG_RETURN(FALSE);

error:
5227
  release_part_info_log_entries(part_info->first_log_entry);
5228
  pthread_mutex_unlock(&LOCK_gdl);
5229
  part_info->first_log_entry= old_first_log_entry;
5230
  part_info->frm_log_entry= NULL;
5231
  my_error(ER_DDL_LOG_ERROR, MYF(0));
5232
  DBUG_RETURN(TRUE);
unknown's avatar
unknown committed
5233 5234 5235 5236
}


/*
5237 5238
  Write the log entries to ensure that the drop partition command is completed
  even in the presence of a crash.
unknown's avatar
unknown committed
5239 5240

  SYNOPSIS
5241
    write_log_drop_partition()
unknown's avatar
unknown committed
5242 5243 5244 5245 5246
    lpt                      Struct containing parameters
  RETURN VALUES
    TRUE                     Error
    FALSE                    Success
  DESCRIPTION
5247
    Prepare entries to the ddl log indicating all partitions to drop and to
5248
    install the shadow frm file and remove the old frm file.
unknown's avatar
unknown committed
5249 5250
*/

5251
static bool write_log_drop_partition(ALTER_PARTITION_PARAM_TYPE *lpt)
unknown's avatar
unknown committed
5252
{
5253
  DDL_LOG_ENTRY ddl_log_entry;
5254
  partition_info *part_info= lpt->part_info;
5255 5256
  DDL_LOG_MEMORY_ENTRY *log_entry;
  DDL_LOG_MEMORY_ENTRY *exec_log_entry= part_info->exec_log_entry;
5257 5258
  char tmp_path[FN_LEN];
  char path[FN_LEN];
5259
  uint next_entry= 0;
5260
  DDL_LOG_MEMORY_ENTRY *old_first_log_entry= part_info->first_log_entry;
5261
  DBUG_ENTER("write_log_drop_partition");
unknown's avatar
unknown committed
5262

5263 5264
  part_info->first_log_entry= NULL;
  build_table_filename(path, sizeof(path), lpt->db,
5265
                       lpt->table_name, "", 0);
5266
  build_table_filename(tmp_path, sizeof(tmp_path), lpt->db,
5267
                       lpt->table_name, "#", 0);
5268
  pthread_mutex_lock(&LOCK_gdl);
5269 5270 5271
  if (write_log_dropped_partitions(lpt, &next_entry, (const char*)path,
                                   FALSE))
    goto error;
5272 5273
  if (write_log_replace_delete_frm(lpt, next_entry, (const char*)tmp_path,
                                  (const char*)path, TRUE))
5274 5275 5276 5277 5278 5279 5280
    goto error;
  log_entry= part_info->first_log_entry;
  part_info->frm_log_entry= log_entry;
  if (write_execute_ddl_log_entry(log_entry->entry_pos,
                                    FALSE, &exec_log_entry))
    goto error;
  release_part_info_log_entries(old_first_log_entry);
5281
  pthread_mutex_unlock(&LOCK_gdl);
5282 5283 5284
  DBUG_RETURN(FALSE);

error:
5285
  release_part_info_log_entries(part_info->first_log_entry);
5286
  pthread_mutex_unlock(&LOCK_gdl);
5287
  part_info->first_log_entry= old_first_log_entry;
5288
  part_info->frm_log_entry= NULL;
5289
  my_error(ER_DDL_LOG_ERROR, MYF(0));
5290
  DBUG_RETURN(TRUE);
unknown's avatar
unknown committed
5291 5292 5293 5294
}


/*
5295 5296 5297
  Write the log entries to ensure that the add partition command is not
  executed at all if a crash before it has completed

unknown's avatar
unknown committed
5298
  SYNOPSIS
5299
    write_log_add_change_partition()
unknown's avatar
unknown committed
5300 5301 5302 5303 5304
    lpt                      Struct containing parameters
  RETURN VALUES
    TRUE                     Error
    FALSE                    Success
  DESCRIPTION
5305
    Prepare entries to the ddl log indicating all partitions to drop and to
5306
    remove the shadow frm file.
5307
    We always inject entries backwards in the list in the ddl log since we
5308
    don't know the entry position until we have written it.
unknown's avatar
unknown committed
5309 5310
*/

5311
static bool write_log_add_change_partition(ALTER_PARTITION_PARAM_TYPE *lpt)
unknown's avatar
unknown committed
5312
{
5313
  partition_info *part_info= lpt->part_info;
5314 5315
  DDL_LOG_MEMORY_ENTRY *log_entry;
  DDL_LOG_MEMORY_ENTRY *exec_log_entry= NULL;
5316 5317 5318 5319
  char tmp_path[FN_LEN];
  char path[FN_LEN];
  uint next_entry= 0;
  DBUG_ENTER("write_log_add_change_partition");
unknown's avatar
unknown committed
5320

5321
  build_table_filename(path, sizeof(path), lpt->db,
5322
                       lpt->table_name, "", 0);
5323
  build_table_filename(tmp_path, sizeof(tmp_path), lpt->db,
5324
                       lpt->table_name, "#", 0);
5325
  pthread_mutex_lock(&LOCK_gdl);
5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
  if (write_log_dropped_partitions(lpt, &next_entry, (const char*)path,
                                   FALSE))
    goto error;
  if (write_log_replace_delete_frm(lpt, next_entry, NULL, tmp_path,
                                  FALSE))
    goto error;
  log_entry= part_info->first_log_entry;
  if (write_execute_ddl_log_entry(log_entry->entry_pos,
                                    FALSE, &exec_log_entry))
    goto error;
5336
  pthread_mutex_unlock(&LOCK_gdl);
5337 5338 5339 5340
  set_part_info_exec_log_entry(part_info, exec_log_entry);
  DBUG_RETURN(FALSE);

error:
5341
  release_part_info_log_entries(part_info->first_log_entry);
5342
  pthread_mutex_unlock(&LOCK_gdl);
5343
  part_info->first_log_entry= NULL;
5344
  my_error(ER_DDL_LOG_ERROR, MYF(0));
5345
  DBUG_RETURN(TRUE);
unknown's avatar
unknown committed
5346 5347 5348 5349 5350 5351 5352 5353
}


/*
  Write description of how to complete the operation after first phase of
  change partitions.

  SYNOPSIS
5354
    write_log_final_change_partition()
unknown's avatar
unknown committed
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
    lpt                      Struct containing parameters
  RETURN VALUES
    TRUE                     Error
    FALSE                    Success
  DESCRIPTION
    We will write log entries that specify to remove all partitions reorganised,
    to rename others to reflect the new naming scheme and to install the shadow
    frm file.
*/

5365
static bool write_log_final_change_partition(ALTER_PARTITION_PARAM_TYPE *lpt)
unknown's avatar
unknown committed
5366
{
5367
  DDL_LOG_ENTRY ddl_log_entry;
5368
  partition_info *part_info= lpt->part_info;
5369 5370
  DDL_LOG_MEMORY_ENTRY *log_entry;
  DDL_LOG_MEMORY_ENTRY *exec_log_entry= part_info->exec_log_entry;
5371
  char path[FN_LEN];
5372
  char shadow_path[FN_LEN];
5373
  DDL_LOG_MEMORY_ENTRY *old_first_log_entry= part_info->first_log_entry;
5374 5375
  uint next_entry= 0;
  DBUG_ENTER("write_log_final_change_partition");
unknown's avatar
unknown committed
5376

5377 5378
  part_info->first_log_entry= NULL;
  build_table_filename(path, sizeof(path), lpt->db,
5379
                       lpt->table_name, "", 0);
5380
  build_table_filename(shadow_path, sizeof(shadow_path), lpt->db,
5381
                       lpt->table_name, "#", 0);
5382
  pthread_mutex_lock(&LOCK_gdl);
5383
  if (write_log_dropped_partitions(lpt, &next_entry, (const char*)path,
5384
                      lpt->alter_info->flags & ALTER_REORGANIZE_PARTITION))
5385 5386 5387
    goto error;
  if (write_log_changed_partitions(lpt, &next_entry, (const char*)path))
    goto error;
5388
  if (write_log_replace_delete_frm(lpt, 0UL, shadow_path, path, TRUE))
5389 5390 5391 5392 5393 5394 5395
    goto error;
  log_entry= part_info->first_log_entry;
  part_info->frm_log_entry= log_entry;
  if (write_execute_ddl_log_entry(log_entry->entry_pos,
                                    FALSE, &exec_log_entry))
    goto error;
  release_part_info_log_entries(old_first_log_entry);
5396
  pthread_mutex_unlock(&LOCK_gdl);
5397 5398 5399
  DBUG_RETURN(FALSE);

error:
5400
  release_part_info_log_entries(part_info->first_log_entry);
5401
  pthread_mutex_unlock(&LOCK_gdl);
5402
  part_info->first_log_entry= old_first_log_entry;
5403
  part_info->frm_log_entry= NULL;
5404
  my_error(ER_DDL_LOG_ERROR, MYF(0));
5405
  DBUG_RETURN(TRUE);
unknown's avatar
unknown committed
5406 5407 5408
}


5409
/*
5410
  Remove entry from ddl log and release resources for others to use
5411 5412 5413 5414 5415 5416 5417 5418

  SYNOPSIS
    write_log_completed()
    lpt                      Struct containing parameters
  RETURN VALUES
    TRUE                     Error
    FALSE                    Success
*/
5419

5420 5421
static void write_log_completed(ALTER_PARTITION_PARAM_TYPE *lpt,
                                bool dont_crash)
5422
{
5423
  partition_info *part_info= lpt->part_info;
5424
  uint count_loop= 0;
5425
  bool not_success;
5426
  DDL_LOG_MEMORY_ENTRY *log_entry= part_info->exec_log_entry;
5427
  DBUG_ENTER("write_log_completed");
unknown's avatar
unknown committed
5428

5429
  DBUG_ASSERT(log_entry);
5430
  pthread_mutex_lock(&LOCK_gdl);
5431
  if (write_execute_ddl_log_entry(0UL, TRUE, &log_entry))
5432 5433
  {
    /*
5434
      Failed to write, Bad...
5435 5436
      We have completed the operation but have log records to REMOVE
      stuff that shouldn't be removed. What clever things could one do
5437 5438
      here? An error output was written to the error output by the
      above method so we don't do anything here.
5439
    */
5440
    ;
5441 5442 5443
  }
  release_part_info_log_entries(part_info->first_log_entry);
  release_part_info_log_entries(part_info->exec_log_entry);
5444
  pthread_mutex_unlock(&LOCK_gdl);
5445 5446
  part_info->exec_log_entry= NULL;
  part_info->first_log_entry= NULL;
5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
  DBUG_VOID_RETURN;
}


/*
   Release all log entries
   SYNOPSIS
     release_log_entries()
     part_info                  Partition info struct
   RETURN VALUES
     NONE
*/

5460
static void release_log_entries(partition_info *part_info)
5461
{
5462
  pthread_mutex_lock(&LOCK_gdl);
5463 5464
  release_part_info_log_entries(part_info->first_log_entry);
  release_part_info_log_entries(part_info->exec_log_entry);
5465
  pthread_mutex_unlock(&LOCK_gdl);
5466 5467
  part_info->first_log_entry= NULL;
  part_info->exec_log_entry= NULL;
5468 5469 5470
}


5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
/*
  Get a lock on table name to avoid that anyone can open the table in
  a critical part of the ALTER TABLE.
  SYNOPSIS
    get_name_lock()
    lpt                        Struct carrying parameters
  RETURN VALUES
    FALSE                      Success
    TRUE                       Failure
*/

static int get_name_lock(ALTER_PARTITION_PARAM_TYPE *lpt)
{
  int error= 0;
  DBUG_ENTER("get_name_lock");

  bzero(&lpt->table_list, sizeof(lpt->table_list));
5488
  lpt->table_list.db= (char*)lpt->db;
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
  lpt->table_list.table= lpt->table;
  lpt->table_list.table_name= (char*)lpt->table_name;
  pthread_mutex_lock(&LOCK_open);
  error= lock_table_name(lpt->thd, &lpt->table_list, FALSE);
  pthread_mutex_unlock(&LOCK_open);
  DBUG_RETURN(error);
}


/*
  Unlock and close table before renaming and dropping partitions
  SYNOPSIS
    alter_close_tables()
    lpt                        Struct carrying parameters
  RETURN VALUES
    0
*/

static int alter_close_tables(ALTER_PARTITION_PARAM_TYPE *lpt)
{
  THD *thd= lpt->thd;
  TABLE *table= lpt->table;
  DBUG_ENTER("alter_close_tables");
  /*
    We need to also unlock tables and close all handlers.
    We set lock to zero to ensure we don't do this twice
    and we set db_stat to zero to ensure we don't close twice.
  */
  mysql_unlock_tables(thd, thd->lock);
  thd->lock= 0;
  table->file->close();
  table->db_stat= 0;
  DBUG_RETURN(0);
}


/*
  Release a lock name
  SYNOPSIS
    release_name_lock()
    lpt
  RETURN VALUES
    0
*/

static int release_name_lock(ALTER_PARTITION_PARAM_TYPE *lpt)
{
  DBUG_ENTER("release_name_lock");
  pthread_mutex_lock(&LOCK_open);
  unlock_table_name(lpt->thd, &lpt->table_list);
  pthread_mutex_unlock(&LOCK_open);
  DBUG_RETURN(0);
}


5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
/*
  Handle errors for ALTER TABLE for partitioning
  SYNOPSIS
    handle_alter_part_error()
    lpt                        Struct carrying parameters
    not_completed              Was request in complete phase when error occurred
  RETURN VALUES
    NONE
*/

5554 5555 5556 5557
void handle_alter_part_error(ALTER_PARTITION_PARAM_TYPE *lpt,
                             bool not_completed,
                             bool drop_partition,
                             bool frm_install)
5558 5559 5560 5561 5562
{
  partition_info *part_info= lpt->part_info;
  DBUG_ENTER("handle_alter_part_error");

  if (!part_info->first_log_entry &&
unknown's avatar
Fixes  
unknown committed
5563 5564
      execute_ddl_log_entry(current_thd,
                            part_info->first_log_entry->entry_pos))
5565 5566
  {
    /*
5567 5568
      We couldn't recover from error, most likely manual interaction
      is required.
5569
    */
5570 5571
    write_log_completed(lpt, FALSE);
    release_log_entries(part_info);
5572 5573 5574 5575 5576
    if (not_completed)
    {
      if (drop_partition)
      {
        /* Table is still ok, but we left a shadow frm file behind. */
5577
        push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
5578 5579 5580
                            "%s %s",
           "Operation was unsuccessful, table is still intact,",
           "but it is possible that a shadow frm file was left behind");
5581 5582 5583 5584
      }
      else
      {
        push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
5585 5586 5587 5588 5589
                            "%s %s %s %s",
           "Operation was unsuccessful, table is still intact,",
           "but it is possible that a shadow frm file was left behind.",
           "It is also possible that temporary partitions are left behind,",
           "these could be empty or more or less filled with records");
5590 5591 5592 5593
      }
    }
    else
    {
5594
      if (frm_install)
5595 5596 5597 5598 5599
      {
        /*
           Failed during install of shadow frm file, table isn't intact
           and dropped partitions are still there
        */
5600
        push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
5601 5602 5603 5604
                            "%s %s %s",
          "Failed during alter of partitions, table is no longer intact.",
          "The frm file is in an unknown state, and a backup",
          "is required.");
5605 5606 5607 5608
      }
      else if (drop_partition)
      {
        /*
5609 5610 5611 5612
          Table is ok, we have switched to new table but left dropped
          partitions still in their places. We remove the log records and
          ask the user to perform the action manually. We remove the log
          records and ask the user to perform the action manually.
5613
        */
5614
        push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
5615 5616 5617
                            "%s %s",
              "Failed during drop of partitions, table is intact.",
              "Manual drop of remaining partitions is required");
5618
      }
5619
      else
5620
      {
5621
        /*
5622 5623 5624
          We failed during renaming of partitions. The table is most
          certainly in a very bad state so we give user warning and disable
          the table by writing an ancient frm version into it.
5625
        */
5626
        push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,
5627 5628 5629 5630
                            "%s %s %s",
           "Failed during renaming of partitions. We are now in a position",
           "where table is not reusable",
           "Table is disabled by writing ancient frm file version into it");
5631 5632
      }
    }
5633 5634 5635
  }
  else
  {
5636
    release_log_entries(part_info);
5637 5638 5639 5640
    if (not_completed)
    {
      /*
        We hit an error before things were completed but managed
5641 5642
        to recover from the error. An error occurred and we have
        restored things to original so no need for further action.
5643
      */
5644
      ;
5645 5646 5647 5648 5649 5650
    }
    else
    {
      /*
        We hit an error after we had completed most of the operation
        and were successful in a second attempt so the operation
5651 5652 5653
        actually is successful now. We need to issue a warning that
        even though we reported an error the operation was successfully
        completed.
5654
      */
5655 5656 5657
      push_warning_printf(lpt->thd, MYSQL_ERROR::WARN_LEVEL_WARN, 1,"%s %s",
         "Operation was successfully completed by failure handling,",
         "after failure of normal operation");
5658 5659 5660 5661 5662 5663
    }
  }
  DBUG_VOID_RETURN;
}


unknown's avatar
unknown committed
5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693
/*
  Actually perform the change requested by ALTER TABLE of partitions
  previously prepared.

  SYNOPSIS
    fast_alter_partition_table()
    thd                           Thread object
    table                         Table object
    alter_info                    ALTER TABLE info
    create_info                   Create info for CREATE TABLE
    table_list                    List of the table involved
    create_list                   The fields in the resulting table
    key_list                      The keys in the resulting table
    db                            Database name of new table
    table_name                    Table name of new table

  RETURN VALUES
    TRUE                          Error
    FALSE                         Success

  DESCRIPTION
    Perform all ALTER TABLE operations for partitioned tables that can be
    performed fast without a full copy of the original table.
*/

uint fast_alter_partition_table(THD *thd, TABLE *table,
                                ALTER_INFO *alter_info,
                                HA_CREATE_INFO *create_info,
                                TABLE_LIST *table_list,
                                List<create_field> *create_list,
5694
                                List<Key> *key_list, char *db,
unknown's avatar
unknown committed
5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
                                const char *table_name,
                                uint fast_alter_partition)
{
  /* Set-up struct used to write frm files */
  ulonglong copied= 0;
  ulonglong deleted= 0;
  partition_info *part_info= table->part_info;
  ALTER_PARTITION_PARAM_TYPE lpt_obj;
  ALTER_PARTITION_PARAM_TYPE *lpt= &lpt_obj;
  bool written_bin_log= TRUE;
5705 5706
  bool not_completed= TRUE;
  bool frm_install= FALSE;
unknown's avatar
unknown committed
5707 5708 5709
  DBUG_ENTER("fast_alter_partition_table");

  lpt->thd= thd;
5710
  lpt->part_info= part_info;
5711
  lpt->alter_info= alter_info;
unknown's avatar
unknown committed
5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
  lpt->create_info= create_info;
  lpt->create_list= create_list;
  lpt->key_list= key_list;
  lpt->db_options= create_info->table_options;
  if (create_info->row_type == ROW_TYPE_DYNAMIC)
    lpt->db_options|= HA_OPTION_PACK_RECORD;
  lpt->table= table;
  lpt->key_info_buffer= 0;
  lpt->key_count= 0;
  lpt->db= db;
  lpt->table_name= table_name;
  lpt->copied= 0;
  lpt->deleted= 0;
  lpt->pack_frm_data= NULL;
  lpt->pack_frm_len= 0;
unknown's avatar
unknown committed
5727
  thd->work_part_info= part_info;
unknown's avatar
unknown committed
5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742

  if (alter_info->flags & ALTER_OPTIMIZE_PARTITION ||
      alter_info->flags & ALTER_ANALYZE_PARTITION ||
      alter_info->flags & ALTER_CHECK_PARTITION ||
      alter_info->flags & ALTER_REPAIR_PARTITION)
  {
    /*
      In this case the user has specified that he wants a set of partitions
      to be optimised and the partition engine can handle optimising
      partitions natively without requiring a full rebuild of the
      partitions.

      In this case it is enough to call optimise_partitions, there is no
      need to change frm files or anything else.
    */
5743
    int error;
unknown's avatar
unknown committed
5744 5745
    written_bin_log= FALSE;
    if (((alter_info->flags & ALTER_OPTIMIZE_PARTITION) &&
5746
         (error= table->file->optimize_partitions(thd))) ||
unknown's avatar
unknown committed
5747
        ((alter_info->flags & ALTER_ANALYZE_PARTITION) &&
5748
         (error= table->file->analyze_partitions(thd))) ||
unknown's avatar
unknown committed
5749
        ((alter_info->flags & ALTER_CHECK_PARTITION) &&
5750
         (error= table->file->check_partitions(thd))) ||
unknown's avatar
unknown committed
5751
        ((alter_info->flags & ALTER_REPAIR_PARTITION) &&
5752
         (error= table->file->repair_partitions(thd))))
unknown's avatar
unknown committed
5753
    {
5754
      table->file->print_error(error, MYF(0));
unknown's avatar
unknown committed
5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798
      DBUG_RETURN(TRUE);
    }
  }
  else if (fast_alter_partition & HA_PARTITION_ONE_PHASE)
  {
    /*
      In the case where the engine supports one phase online partition
      changes it is not necessary to have any exclusive locks. The
      correctness is upheld instead by transactions being aborted if they
      access the table after its partition definition has changed (if they
      are still using the old partition definition).

      The handler is in this case responsible to ensure that all users
      start using the new frm file after it has changed. To implement
      one phase it is necessary for the handler to have the master copy
      of the frm file and use discovery mechanisms to renew it. Thus
      write frm will write the frm, pack the new frm and finally
      the frm is deleted and the discovery mechanisms will either restore
      back to the old or installing the new after the change is activated.

      Thus all open tables will be discovered that they are old, if not
      earlier as soon as they try an operation using the old table. One
      should ensure that this is checked already when opening a table,
      even if it is found in the cache of open tables.

      change_partitions will perform all operations and it is the duty of
      the handler to ensure that the frm files in the system gets updated
      in synch with the changes made and if an error occurs that a proper
      error handling is done.

      If the MySQL Server crashes at this moment but the handler succeeds
      in performing the change then the binlog is not written for the
      change. There is no way to solve this as long as the binlog is not
      transactional and even then it is hard to solve it completely.
 
      The first approach here was to downgrade locks. Now a different approach
      is decided upon. The idea is that the handler will have access to the
      ALTER_INFO when store_lock arrives with TL_WRITE_ALLOW_READ. So if the
      handler knows that this functionality can be handled with a lower lock
      level it will set the lock level to TL_WRITE_ALLOW_WRITE immediately.
      Thus the need to downgrade the lock disappears.
      1) Write the new frm, pack it and then delete it
      2) Perform the change within the handler
    */
5799 5800
    if (mysql_write_frm(lpt, WFRM_WRITE_SHADOW | WFRM_PACK_FRM) ||
        mysql_change_partitions(lpt))
unknown's avatar
unknown committed
5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828
    {
      DBUG_RETURN(TRUE);
    }
  }
  else if (alter_info->flags == ALTER_DROP_PARTITION)
  {
    /*
      Now after all checks and setting state on dropped partitions we can
      start the actual dropping of the partitions.

      Drop partition is actually two things happening. The first is that
      a lot of records are deleted. The second is that the behaviour of
      subsequent updates and writes and deletes will change. The delete
      part can be handled without any particular high lock level by
      transactional engines whereas non-transactional engines need to
      ensure that this change is done with an exclusive lock on the table.
      The second part, the change of partitioning does however require
      an exclusive lock to install the new partitioning as one atomic
      operation. If this is not the case, it is possible for two
      transactions to see the change in a different order than their
      serialisation order. Thus we need an exclusive lock for both
      transactional and non-transactional engines.

      For LIST partitions it could be possible to avoid the exclusive lock
      (and for RANGE partitions if they didn't rearrange range definitions
      after a DROP PARTITION) if one ensured that failed accesses to the
      dropped partitions was aborted for sure (thus only possible for
      transactional engines).
5829 5830 5831

      0) Write an entry that removes the shadow frm file if crash occurs 
      1) Write the new frm file as a shadow frm
5832
      2) Write the ddl log to ensure that the operation is completed
5833 5834
         even in the presence of a MySQL Server crash
      3) Lock the table in TL_WRITE_ONLY to ensure all other accesses to
5835 5836 5837 5838 5839 5840 5841
         the table have completed. This ensures that other threads can not
         execute on the table in parallel.
      4) Get a name lock on the table. This ensures that we can release all
         locks on the table and since no one can open the table, there can
         be no new threads accessing the table. They will be hanging on the
         name lock.
      5) Close all tables that have already been opened but didn't stumble on
5842 5843
         the abort locked previously. This is done as part of the
         get_name_lock call.
5844 5845
      6) We are now ready to release all locks we got in this thread.
      7) Write the bin log
5846 5847 5848 5849 5850 5851
         Unfortunately the writing of the binlog is not synchronised with
         other logging activities. So no matter in which order the binlog
         is written compared to other activities there will always be cases
         where crashes make strange things occur. In this placement it can
         happen that the ALTER TABLE DROP PARTITION gets performed in the
         master but not in the slaves if we have a crash, after writing the
5852 5853
         ddl log but before writing the binlog. A solution to this would
         require writing the statement first in the ddl log and then
5854 5855
         when recovering from the crash read the binlog and insert it into
         the binlog if not written already.
5856 5857 5858 5859 5860 5861 5862
      8) Install the previously written shadow frm file
      9) Prepare handlers for drop of partitions
      10) Drop the partitions
      11) Remove entries from ddl log
      12) Release name lock so that all other threads can access the table
          again.
      13) Complete query
5863 5864 5865

      We insert Error injections at all places where it could be interesting
      to test if recovery is properly done.
unknown's avatar
unknown committed
5866
    */
5867
    if (write_log_drop_shadow_frm(lpt) ||
5868
        ERROR_INJECT_CRASH("crash_drop_partition_1") ||
5869
        mysql_write_frm(lpt, WFRM_WRITE_SHADOW) ||
5870
        ERROR_INJECT_CRASH("crash_drop_partition_2") ||
5871
        write_log_drop_partition(lpt) ||
5872
        ERROR_INJECT_CRASH("crash_drop_partition_3") ||
5873 5874
        (not_completed= FALSE) ||
        abort_and_upgrade_lock(lpt) || /* Always returns 0 */
5875
        ERROR_INJECT_CRASH("crash_drop_partition_4") ||
5876 5877 5878 5879
        get_name_lock(lpt) ||
        ERROR_INJECT_CRASH("crash_drop_partition_5") ||
        alter_close_tables(lpt) ||
        ERROR_INJECT_CRASH("crash_drop_partition_6") ||
unknown's avatar
unknown committed
5880 5881
        ((!thd->lex->no_write_to_binlog) &&
         (write_bin_log(thd, FALSE,
5882
                        thd->query, thd->query_length), FALSE)) ||
5883
        ERROR_INJECT_CRASH("crash_drop_partition_7") ||
5884
        ((frm_install= TRUE), FALSE) ||
5885
        mysql_write_frm(lpt, WFRM_INSTALL_SHADOW) ||
5886
        ((frm_install= FALSE), FALSE) ||
5887
        ERROR_INJECT_CRASH("crash_drop_partition_8") ||
5888
        mysql_drop_partitions(lpt) ||
5889
        ERROR_INJECT_CRASH("crash_drop_partition_9") ||
5890
        (write_log_completed(lpt, FALSE), FALSE) ||
5891
        ERROR_INJECT_CRASH("crash_drop_partition_10") ||
5892
        (release_name_lock(lpt), FALSE)) 
unknown's avatar
unknown committed
5893
    {
5894
      handle_alter_part_error(lpt, not_completed, TRUE, frm_install);
unknown's avatar
unknown committed
5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
      DBUG_RETURN(TRUE);
    }
  }
  else if ((alter_info->flags & ALTER_ADD_PARTITION) &&
           (part_info->part_type == RANGE_PARTITION ||
            part_info->part_type == LIST_PARTITION))
  {
    /*
      ADD RANGE/LIST PARTITIONS
      In this case there are no tuples removed and no tuples are added.
      Thus the operation is merely adding a new partition. Thus it is
      necessary to perform the change as an atomic operation. Otherwise
      someone reading without seeing the new partition could potentially
      miss updates made by a transaction serialised before it that are
      inserted into the new partition.

5911 5912
      0) Write an entry that removes the shadow frm file if crash occurs 
      1) Write the new frm file as a shadow frm file
5913
      2) Log the changes to happen in ddl log
unknown's avatar
unknown committed
5914 5915 5916 5917
      2) Add the new partitions
      3) Lock all partitions in TL_WRITE_ONLY to ensure that no users
         are still using the old partitioning scheme. Wait until all
         ongoing users have completed before progressing.
5918 5919 5920 5921 5922 5923 5924 5925 5926 5927
      4) Get a name lock on the table. This ensures that we can release all
         locks on the table and since no one can open the table, there can
         be no new threads accessing the table. They will be hanging on the
         name lock.
      5) Close all tables that have already been opened but didn't stumble on
         the abort locked previously. This is done as part of the
         get_name_lock call.
      6) Close all table handlers and unlock all handlers but retain name lock
      7) Write binlog
      8) Now the change is completed except for the installation of the
unknown's avatar
unknown committed
5928 5929
         new frm file. We thus write an action in the log to change to
         the shadow frm file
5930
      9) Install the new frm file of the table where the partitions are
5931
         added to the table.
5932 5933 5934 5935
      10)Wait until all accesses using the old frm file has completed
      11)Remove entries from ddl log
      12)Release name lock
      13)Complete query
unknown's avatar
unknown committed
5936
    */
5937
    if (write_log_add_change_partition(lpt) ||
5938
        ERROR_INJECT_CRASH("crash_add_partition_1") ||
5939
        mysql_write_frm(lpt, WFRM_WRITE_SHADOW) ||
5940
        ERROR_INJECT_CRASH("crash_add_partition_2") ||
5941
        mysql_change_partitions(lpt) ||
5942
        ERROR_INJECT_CRASH("crash_add_partition_3") ||
5943
        abort_and_upgrade_lock(lpt) || /* Always returns 0 */
5944 5945 5946 5947 5948
        ERROR_INJECT_CRASH("crash_add_partition_3") ||
        get_name_lock(lpt) ||
        ERROR_INJECT_CRASH("crash_add_partition_4") ||
        alter_close_tables(lpt) ||
        ERROR_INJECT_CRASH("crash_add_partition_5") ||
unknown's avatar
unknown committed
5949 5950 5951
        ((!thd->lex->no_write_to_binlog) &&
         (write_bin_log(thd, FALSE,
                        thd->query, thd->query_length), FALSE)) ||
5952
        ERROR_INJECT_CRASH("crash_add_partition_6") ||
5953
        write_log_rename_frm(lpt) ||
5954
        (not_completed= FALSE) ||
5955
        ERROR_INJECT_CRASH("crash_add_partition_7") ||
5956
        ((frm_install= TRUE), FALSE) ||
unknown's avatar
unknown committed
5957
        mysql_write_frm(lpt, WFRM_INSTALL_SHADOW) ||
5958
        ERROR_INJECT_CRASH("crash_add_partition_8") ||
5959
        (write_log_completed(lpt, FALSE), FALSE) ||
5960 5961
        ERROR_INJECT_CRASH("crash_add_partition_9") ||
        (release_name_lock(lpt), FALSE)) 
unknown's avatar
unknown committed
5962
    {
5963
      handle_alter_part_error(lpt, not_completed, FALSE, frm_install);
unknown's avatar
unknown committed
5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999
      DBUG_RETURN(TRUE);
    }
  }
  else
  {
    /*
      ADD HASH PARTITION/
      COALESCE PARTITION/
      REBUILD PARTITION/
      REORGANIZE PARTITION
 
      In this case all records are still around after the change although
      possibly organised into new partitions, thus by ensuring that all
      updates go to both the old and the new partitioning scheme we can
      actually perform this operation lock-free. The only exception to
      this is when REORGANIZE PARTITION adds/drops ranges. In this case
      there needs to be an exclusive lock during the time when the range
      changes occur.
      This is only possible if the handler can ensure double-write for a
      period. The double write will ensure that it doesn't matter where the
      data is read from since both places are updated for writes. If such
      double writing is not performed then it is necessary to perform the
      change with the usual exclusive lock. With double writes it is even
      possible to perform writes in parallel with the reorganisation of
      partitions.

      Without double write procedure we get the following procedure.
      The only difference with using double write is that we can downgrade
      the lock to TL_WRITE_ALLOW_WRITE. Double write in this case only
      double writes from old to new. If we had double writing in both
      directions we could perform the change completely without exclusive
      lock for HASH partitions.
      Handlers that perform double writing during the copy phase can actually
      use a lower lock level. This can be handled inside store_lock in the
      respective handler.

6000 6001 6002 6003 6004
      0) Write an entry that removes the shadow frm file if crash occurs 
      1) Write the shadow frm file of new partitioning
      2) Log such that temporary partitions added in change phase are
         removed in a crash situation
      3) Add the new partitions
unknown's avatar
unknown committed
6005
         Copy from the reorganised partitions to the new partitions
6006 6007 6008
      4) Log that operation is completed and log all complete actions
         needed to complete operation from here
      5) Lock all partitions in TL_WRITE_ONLY to ensure that no users
unknown's avatar
unknown committed
6009 6010
         are still using the old partitioning scheme. Wait until all
         ongoing users have completed before progressing.
6011 6012 6013 6014
      6) Get a name lock of the table
      7) Close all tables opened but not yet locked, after this call we are
         certain that no other thread is in the lock wait queue or has
         opened the table. The name lock will ensure that they are blocked
6015
         on the open call. This is achieved also by get_name_lock call.
6016 6017 6018 6019 6020 6021 6022 6023 6024
      8) Close all partitions opened by this thread, but retain name lock.
      9) Write bin log
      10) Prepare handlers for rename and delete of partitions
      11) Rename and drop the reorged partitions such that they are no
          longer used and rename those added to their real new names.
      12) Install the shadow frm file
      13) Release the name lock to enable other threads to start using the
          table again.
      14) Complete query
unknown's avatar
unknown committed
6025
    */
6026
    if (write_log_add_change_partition(lpt) ||
6027
        ERROR_INJECT_CRASH("crash_change_partition_1") ||
6028
        mysql_write_frm(lpt, WFRM_WRITE_SHADOW) ||
6029
        ERROR_INJECT_CRASH("crash_change_partition_2") ||
6030
        mysql_change_partitions(lpt) ||
6031 6032
        ERROR_INJECT_CRASH("crash_change_partition_3") ||
        write_log_final_change_partition(lpt) ||
6033
        ERROR_INJECT_CRASH("crash_change_partition_4") ||
6034 6035
        (not_completed= FALSE) ||
        abort_and_upgrade_lock(lpt) || /* Always returns 0 */
6036
        ERROR_INJECT_CRASH("crash_change_partition_5") ||
6037
        get_name_lock(lpt) ||
6038
        ERROR_INJECT_CRASH("crash_change_partition_6") ||
6039
        alter_close_tables(lpt) ||
6040
        ERROR_INJECT_CRASH("crash_change_partition_7") ||
unknown's avatar
unknown committed
6041 6042 6043
        ((!thd->lex->no_write_to_binlog) &&
         (write_bin_log(thd, FALSE,
                        thd->query, thd->query_length), FALSE)) ||
6044
        ERROR_INJECT_CRASH("crash_change_partition_8") ||
6045
        mysql_write_frm(lpt, WFRM_INSTALL_SHADOW) ||
6046
        ERROR_INJECT_CRASH("crash_change_partition_9") ||
6047
        mysql_drop_partitions(lpt) ||
6048
        ERROR_INJECT_CRASH("crash_change_partition_10") ||
6049
        mysql_rename_partitions(lpt) ||
6050
        ((frm_install= TRUE), FALSE) ||
6051
        ERROR_INJECT_CRASH("crash_change_partition_11") ||
6052
        (write_log_completed(lpt, FALSE), FALSE) ||
6053
        ERROR_INJECT_CRASH("crash_change_partition_12") ||
6054
        (release_name_lock(lpt), FALSE))
unknown's avatar
unknown committed
6055
    {
6056
      handle_alter_part_error(lpt, not_completed, FALSE, frm_install);
6057
      DBUG_RETURN(TRUE);
unknown's avatar
unknown committed
6058 6059 6060 6061 6062 6063 6064
    }
  }
  /*
    A final step is to write the query to the binlog and send ok to the
    user
  */
  DBUG_RETURN(fast_end_partition(thd, lpt->copied, lpt->deleted,
6065
                                 table, table_list, FALSE, lpt,
unknown's avatar
unknown committed
6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158
                                 written_bin_log));
}
#endif


/*
  Prepare for calling val_int on partition function by setting fields to
  point to the record where the values of the PF-fields are stored.

  SYNOPSIS
    set_field_ptr()
    ptr                 Array of fields to change ptr
    new_buf             New record pointer
    old_buf             Old record pointer

  DESCRIPTION
    Set ptr in field objects of field array to refer to new_buf record
    instead of previously old_buf. Used before calling val_int and after
    it is used to restore pointers to table->record[0].
    This routine is placed outside of partition code since it can be useful
    also for other programs.
*/

void set_field_ptr(Field **ptr, const byte *new_buf,
                   const byte *old_buf)
{
  my_ptrdiff_t diff= (new_buf - old_buf);
  DBUG_ENTER("set_field_ptr");

  do
  {
    (*ptr)->move_field_offset(diff);
  } while (*(++ptr));
  DBUG_VOID_RETURN;
}


/*
  Prepare for calling val_int on partition function by setting fields to
  point to the record where the values of the PF-fields are stored.
  This variant works on a key_part reference.
  It is not required that all fields are NOT NULL fields.

  SYNOPSIS
    set_key_field_ptr()
    key_info            key info with a set of fields to change ptr
    new_buf             New record pointer
    old_buf             Old record pointer

  DESCRIPTION
    Set ptr in field objects of field array to refer to new_buf record
    instead of previously old_buf. Used before calling val_int and after
    it is used to restore pointers to table->record[0].
    This routine is placed outside of partition code since it can be useful
    also for other programs.
*/

void set_key_field_ptr(KEY *key_info, const byte *new_buf,
                       const byte *old_buf)
{
  KEY_PART_INFO *key_part= key_info->key_part;
  uint key_parts= key_info->key_parts;
  uint i= 0;
  my_ptrdiff_t diff= (new_buf - old_buf);
  DBUG_ENTER("set_key_field_ptr");

  do
  {
    key_part->field->move_field_offset(diff);
    key_part++;
  } while (++i < key_parts);
  DBUG_VOID_RETURN;
}


/*
  SYNOPSIS
    mem_alloc_error()
    size                Size of memory attempted to allocate
    None

  RETURN VALUES
    None

  DESCRIPTION
    A routine to use for all the many places in the code where memory
    allocation error can happen, a tremendous amount of them, needs
    simple routine that signals this error.
*/

void mem_alloc_error(size_t size)
{
  my_error(ER_OUTOFMEMORY, MYF(0), size);
6159
}
unknown's avatar
unknown committed
6160

6161
#ifdef WITH_PARTITION_STORAGE_ENGINE
unknown's avatar
unknown committed
6162
/*
6163 6164
  Return comma-separated list of used partitions in the provided given string

unknown's avatar
unknown committed
6165 6166 6167 6168
  SYNOPSIS
    make_used_partitions_str()
      part_info  IN  Partitioning info
      parts_str  OUT The string to fill
6169 6170 6171 6172 6173 6174 6175

  DESCRIPTION
    Generate a list of used partitions (from bits in part_info->used_partitions
    bitmap), asd store it into the provided String object.
    
  NOTE
    The produced string must not be longer then MAX_PARTITIONS * (1 + FN_LEN).
unknown's avatar
unknown committed
6176 6177 6178 6179 6180 6181 6182 6183 6184
*/

void make_used_partitions_str(partition_info *part_info, String *parts_str)
{
  parts_str->length(0);
  partition_element *pe;
  uint partition_id= 0;
  List_iterator<partition_element> it(part_info->partitions);
  
6185
  if (part_info->is_sub_partitioned())
unknown's avatar
unknown committed
6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
  {
    partition_element *head_pe;
    while ((head_pe= it++))
    {
      List_iterator<partition_element> it2(head_pe->subpartitions);
      while ((pe= it2++))
      {
        if (bitmap_is_set(&part_info->used_partitions, partition_id))
        {
          if (parts_str->length())
            parts_str->append(',');
          parts_str->append(head_pe->partition_name,
                           strlen(head_pe->partition_name),
                           system_charset_info);
          parts_str->append('_');
          parts_str->append(pe->partition_name,
                           strlen(pe->partition_name),
                           system_charset_info);
        }
        partition_id++;
      }
    }
  }
  else
  {
    while ((pe= it++))
    {
      if (bitmap_is_set(&part_info->used_partitions, partition_id))
      {
        if (parts_str->length())
          parts_str->append(',');
        parts_str->append(pe->partition_name, strlen(pe->partition_name),
                         system_charset_info);
      }
      partition_id++;
    }
  }
}
6224
#endif
unknown's avatar
unknown committed
6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261

/****************************************************************************
 * Partition interval analysis support
 ***************************************************************************/

/*
  Setup partition_info::* members related to partitioning range analysis

  SYNOPSIS
    set_up_partition_func_pointers()
      part_info  Partitioning info structure

  DESCRIPTION
    Assuming that passed partition_info structure already has correct values
    for members that specify [sub]partitioning type, table fields, and
    functions, set up partition_info::* members that are related to
    Partitioning Interval Analysis (see get_partitions_in_range_iter for its
    definition)

  IMPLEMENTATION
    There are two available interval analyzer functions:
    (1) get_part_iter_for_interval_via_mapping 
    (2) get_part_iter_for_interval_via_walking

    They both have limited applicability:
    (1) is applicable for "PARTITION BY <RANGE|LIST>(func(t.field))", where
    func is a monotonic function.
    
    (2) is applicable for 
      "[SUB]PARTITION BY <any-partitioning-type>(any_func(t.integer_field))"
      
    If both are applicable, (1) is preferred over (2).
    
    This function sets part_info::get_part_iter_for_interval according to
    this criteria, and also sets some auxilary fields that the function
    uses.
*/
6262
#ifdef WITH_PARTITION_STORAGE_ENGINE
unknown's avatar
unknown committed
6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291
static void set_up_range_analysis_info(partition_info *part_info)
{
  enum_monotonicity_info minfo;

  /* Set the catch-all default */
  part_info->get_part_iter_for_interval= NULL;
  part_info->get_subpart_iter_for_interval= NULL;

  /* 
    Check if get_part_iter_for_interval_via_mapping() can be used for 
    partitioning
  */
  switch (part_info->part_type) {
  case RANGE_PARTITION:
  case LIST_PARTITION:
    minfo= part_info->part_expr->get_monotonicity_info();
    if (minfo != NON_MONOTONIC)
    {
      part_info->range_analysis_include_bounds=
        test(minfo == MONOTONIC_INCREASING);
      part_info->get_part_iter_for_interval=
        get_part_iter_for_interval_via_mapping;
      goto setup_subparts;
    }
  default:
    ;
  }
   
  /*
6292
    Check if get_part_iter_for_interval_via_walking() can be used for
unknown's avatar
unknown committed
6293 6294 6295 6296 6297 6298 6299 6300
    partitioning
  */
  if (part_info->no_part_fields == 1)
  {
    Field *field= part_info->part_field_array[0];
    switch (field->type()) {
    case MYSQL_TYPE_TINY:
    case MYSQL_TYPE_SHORT:
6301
    case MYSQL_TYPE_INT24:
unknown's avatar
unknown committed
6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313
    case MYSQL_TYPE_LONG:
    case MYSQL_TYPE_LONGLONG:
      part_info->get_part_iter_for_interval=
        get_part_iter_for_interval_via_walking;
      break;
    default:
      ;
    }
  }

setup_subparts:
  /*
6314
    Check if get_part_iter_for_interval_via_walking() can be used for
unknown's avatar
unknown committed
6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
    subpartitioning
  */
  if (part_info->no_subpart_fields == 1)
  {
    Field *field= part_info->subpart_field_array[0];
    switch (field->type()) {
    case MYSQL_TYPE_TINY:
    case MYSQL_TYPE_SHORT:
    case MYSQL_TYPE_LONG:
    case MYSQL_TYPE_LONGLONG:
      part_info->get_subpart_iter_for_interval=
        get_part_iter_for_interval_via_walking;
      break;
    default:
      ;
    }
  }
}


typedef uint32 (*get_endpoint_func)(partition_info*, bool left_endpoint,
                                    bool include_endpoint);

/*
  Partitioning Interval Analysis: Initialize the iterator for "mapping" case

  SYNOPSIS
    get_part_iter_for_interval_via_mapping()
      part_info   Partition info
      is_subpart  TRUE  - act for subpartitioning
                  FALSE - act for partitioning
      min_value   minimum field value, in opt_range key format.
      max_value   minimum field value, in opt_range key format.
      flags       Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
                  NO_MAX_RANGE.
      part_iter   Iterator structure to be initialized

  DESCRIPTION
    Initialize partition set iterator to walk over the interval in
6354 6355
    ordered-array-of-partitions (for RANGE partitioning) or 
    ordered-array-of-list-constants (for LIST partitioning) space.
unknown's avatar
unknown committed
6356 6357

  IMPLEMENTATION
6358
    This function is used when partitioning is done by
unknown's avatar
unknown committed
6359 6360 6361 6362 6363 6364 6365 6366
    <RANGE|LIST>(ascending_func(t.field)), and we can map an interval in
    t.field space into a sub-array of partition_info::range_int_array or
    partition_info::list_array (see get_partition_id_range_for_endpoint,
    get_list_array_idx_for_endpoint for details).
    
    The function performs this interval mapping, and sets the iterator to
    traverse the sub-array and return appropriate partitions.
    
6367
  RETURN
unknown's avatar
unknown committed
6368 6369 6370 6371 6372 6373 6374
    0 - No matching partitions (iterator not initialized)
    1 - Ok, iterator intialized for traversal of matching partitions.
   -1 - All partitions would match (iterator not initialized)
*/

int get_part_iter_for_interval_via_mapping(partition_info *part_info,
                                           bool is_subpart,
6375
                                           char *min_value, char *max_value,
unknown's avatar
unknown committed
6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396
                                           uint flags,
                                           PARTITION_ITERATOR *part_iter)
{
  DBUG_ASSERT(!is_subpart);
  Field *field= part_info->part_field_array[0];
  uint32             max_endpoint_val;
  get_endpoint_func  get_endpoint;
  uint field_len= field->pack_length_in_rec();

  if (part_info->part_type == RANGE_PARTITION)
  {
    get_endpoint=        get_partition_id_range_for_endpoint;
    max_endpoint_val=    part_info->no_parts;
    part_iter->get_next= get_next_partition_id_range;
  }
  else if (part_info->part_type == LIST_PARTITION)
  {
    get_endpoint=        get_list_array_idx_for_endpoint;
    max_endpoint_val=    part_info->no_list_values;
    part_iter->get_next= get_next_partition_id_list;
    part_iter->part_info= part_info;
6397
    part_iter->ret_null_part= part_iter->ret_null_part_orig= FALSE;
6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409
    if (max_endpoint_val == 0)
    {
      /*
        We handle this special case without optimisations since it is
        of little practical value but causes a great number of complex
        checks later in the code.
      */
      part_iter->part_nums.start= part_iter->part_nums.end= 0;
      part_iter->part_nums.cur= 0;
      part_iter->ret_null_part= part_iter->ret_null_part_orig= TRUE;
      return -1;
    }
unknown's avatar
unknown committed
6410 6411 6412 6413
  }
  else
    DBUG_ASSERT(0);

6414 6415 6416 6417 6418 6419
  /* 
    Find minimum: Do special handling if the interval has left bound in form
     " NULL <= X ":
  */
  if (field->real_maybe_null() && part_info->has_null_value && 
      !(flags & (NO_MIN_RANGE | NEAR_MIN)) && *min_value)
6420
  {
6421 6422 6423
    part_iter->ret_null_part= part_iter->ret_null_part_orig= TRUE;
    part_iter->part_nums.start= part_iter->part_nums.cur= 0;
    if (*max_value && !(flags & NO_MAX_RANGE))
6424
    {
6425 6426 6427
      /* The right bound is X <= NULL, i.e. it is a "X IS NULL" interval */
      part_iter->part_nums.end= 0;
      return 1;
6428 6429
    }
  }
unknown's avatar
unknown committed
6430 6431
  else
  {
6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449
    if (flags & NO_MIN_RANGE)
      part_iter->part_nums.start= part_iter->part_nums.cur= 0;
    else
    {
      /*
        Store the interval edge in the record buffer, and call the
        function that maps the edge in table-field space to an edge
        in ordered-set-of-partitions (for RANGE partitioning) or 
        index-in-ordered-array-of-list-constants (for LIST) space.
      */
      store_key_image_to_rec(field, min_value, field_len);
      bool include_endp= part_info->range_analysis_include_bounds ||
                         !test(flags & NEAR_MIN);
      part_iter->part_nums.start= get_endpoint(part_info, 1, include_endp);
      part_iter->part_nums.cur= part_iter->part_nums.start;
      if (part_iter->part_nums.start == max_endpoint_val)
        return 0; /* No partitions */
    }
unknown's avatar
unknown committed
6450 6451 6452 6453
  }

  /* Find maximum, do the same as above but for right interval bound */
  if (flags & NO_MAX_RANGE)
6454
    part_iter->part_nums.end= max_endpoint_val;
unknown's avatar
unknown committed
6455 6456 6457 6458 6459
  else
  {
    store_key_image_to_rec(field, max_value, field_len);
    bool include_endp= part_info->range_analysis_include_bounds ||
                       !test(flags & NEAR_MAX);
6460
    part_iter->part_nums.end= get_endpoint(part_info, 0, include_endp);
6461 6462
    if (part_iter->part_nums.start == part_iter->part_nums.end &&
        !part_iter->ret_null_part)
unknown's avatar
unknown committed
6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473
      return 0; /* No partitions */
  }
  return 1; /* Ok, iterator initialized */
}


/* See get_part_iter_for_interval_via_walking for definition of what this is */
#define MAX_RANGE_TO_WALK 10


/*
6474
  Partitioning Interval Analysis: Initialize iterator to walk field interval
unknown's avatar
unknown committed
6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489

  SYNOPSIS
    get_part_iter_for_interval_via_walking()
      part_info   Partition info
      is_subpart  TRUE  - act for subpartitioning
                  FALSE - act for partitioning
      min_value   minimum field value, in opt_range key format.
      max_value   minimum field value, in opt_range key format.
      flags       Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
                  NO_MAX_RANGE.
      part_iter   Iterator structure to be initialized

  DESCRIPTION
    Initialize partition set iterator to walk over interval in integer field
    space. That is, for "const1 <=? t.field <=? const2" interval, initialize 
6490 6491
    the iterator to return a set of [sub]partitions obtained with the
    following procedure:
unknown's avatar
unknown committed
6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504
      get partition id for t.field = const1,   return it
      get partition id for t.field = const1+1, return it
       ...                 t.field = const1+2, ...
       ...                           ...       ...
       ...                 t.field = const2    ...

  IMPLEMENTATION
    See get_partitions_in_range_iter for general description of interval
    analysis. We support walking over the following intervals: 
      "t.field IS NULL" 
      "c1 <=? t.field <=? c2", where c1 and c2 are finite. 
    Intervals with +inf/-inf, and [NULL, c1] interval can be processed but
    that is more tricky and I don't have time to do it right now.
6505

unknown's avatar
unknown committed
6506 6507 6508 6509 6510 6511 6512 6513
    Additionally we have these requirements:
    * number of values in the interval must be less then number of
      [sub]partitions, and 
    * Number of values in the interval must be less then MAX_RANGE_TO_WALK.
    
    The rationale behind these requirements is that if they are not met
    we're likely to hit most of the partitions and traversing the interval
    will only add overhead. So it's better return "all partitions used" in
6514
    that case.
unknown's avatar
unknown committed
6515 6516 6517 6518 6519 6520 6521 6522 6523

  RETURN
    0 - No matching partitions, iterator not initialized
    1 - Some partitions would match, iterator intialized for traversing them
   -1 - All partitions would match, iterator not initialized
*/

int get_part_iter_for_interval_via_walking(partition_info *part_info,
                                           bool is_subpart,
6524
                                           char *min_value, char *max_value,
unknown's avatar
unknown committed
6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562
                                           uint flags,
                                           PARTITION_ITERATOR *part_iter)
{
  Field *field;
  uint total_parts;
  partition_iter_func get_next_func;
  if (is_subpart)
  {
    field= part_info->subpart_field_array[0];
    total_parts= part_info->no_subparts;
    get_next_func=  get_next_subpartition_via_walking;
  }
  else
  {
    field= part_info->part_field_array[0];
    total_parts= part_info->no_parts;
    get_next_func=  get_next_partition_via_walking;
  }

  /* Handle the "t.field IS NULL" interval, it is a special case */
  if (field->real_maybe_null() && !(flags & (NO_MIN_RANGE | NO_MAX_RANGE)) &&
      *min_value && *max_value)
  {
    /* 
      We don't have a part_iter->get_next() function that would find which
      partition "t.field IS NULL" belongs to, so find partition that contains 
      NULL right here, and return an iterator over singleton set.
    */
    uint32 part_id;
    field->set_null();
    if (is_subpart)
    {
      part_id= part_info->get_subpartition_id(part_info);
      init_single_partition_iterator(part_id, part_iter);
      return 1; /* Ok, iterator initialized */
    }
    else
    {
unknown's avatar
unknown committed
6563
      longlong dummy;
6564 6565 6566 6567 6568
      int res= part_info->is_sub_partitioned() ?
                  part_info->get_part_partition_id(part_info, &part_id,
                                                   &dummy):
                  part_info->get_partition_id(part_info, &part_id, &dummy);
      if (!res)
unknown's avatar
unknown committed
6569 6570 6571 6572 6573 6574 6575 6576
      {
        init_single_partition_iterator(part_id, part_iter);
        return 1; /* Ok, iterator initialized */
      }
    }
    return 0; /* No partitions match */
  }

6577 6578 6579 6580 6581
  if ((field->real_maybe_null() && 
       ((!(flags & NO_MIN_RANGE) && *min_value) ||  // NULL <? X
        (!(flags & NO_MAX_RANGE) && *max_value))) ||  // X <? NULL
      (flags & (NO_MIN_RANGE | NO_MAX_RANGE)))    // -inf at any bound
  {
unknown's avatar
unknown committed
6582
    return -1; /* Can't handle this interval, have to use all partitions */
6583
  }
unknown's avatar
unknown committed
6584 6585 6586 6587 6588 6589 6590 6591 6592
  
  /* Get integers for left and right interval bound */
  longlong a, b;
  uint len= field->pack_length_in_rec();
  store_key_image_to_rec(field, min_value, len);
  a= field->val_int();
  
  store_key_image_to_rec(field, max_value, len);
  b= field->val_int();
6593 6594 6595 6596 6597 6598 6599 6600 6601
  
  /* 
    Handle a special case where the distance between interval bounds is 
    exactly 4G-1. This interval is too big for range walking, and if it is an
    (x,y]-type interval then the following "b +=..." code will convert it to 
    an empty interval by "wrapping around" a + 4G-1 + 1 = a. 
  */
  if ((ulonglong)b - (ulonglong)a == ~0ULL)
    return -1;
unknown's avatar
unknown committed
6602 6603 6604

  a += test(flags & NEAR_MIN);
  b += test(!(flags & NEAR_MAX));
6605
  ulonglong n_values= b - a;
unknown's avatar
unknown committed
6606 6607 6608 6609
  
  if (n_values > total_parts || n_values > MAX_RANGE_TO_WALK)
    return -1;

6610
  part_iter->field_vals.start= part_iter->field_vals.cur= a;
6611
  part_iter->field_vals.end=   b;
unknown's avatar
unknown committed
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621
  part_iter->part_info= part_info;
  part_iter->get_next=  get_next_func;
  return 1;
}


/*
  PARTITION_ITERATOR::get_next implementation: enumerate partitions in range

  SYNOPSIS
6622
    get_next_partition_id_range()
unknown's avatar
unknown committed
6623 6624 6625 6626 6627
      part_iter  Partition set iterator structure

  DESCRIPTION
    This is implementation of PARTITION_ITERATOR::get_next() that returns
    [sub]partition ids in [min_partition_id, max_partition_id] range.
6628
    The function conforms to partition_iter_func type.
unknown's avatar
unknown committed
6629 6630 6631 6632 6633 6634 6635 6636

  RETURN
    partition id
    NOT_A_PARTITION_ID if there are no more partitions
*/

uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter)
{
6637 6638 6639
  if (part_iter->part_nums.cur == part_iter->part_nums.end)
  {
    part_iter->part_nums.cur= part_iter->part_nums.start;
unknown's avatar
unknown committed
6640
    return NOT_A_PARTITION_ID;
6641
  }
unknown's avatar
unknown committed
6642
  else
6643
    return part_iter->part_nums.cur++;
unknown's avatar
unknown committed
6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654
}


/*
  PARTITION_ITERATOR::get_next implementation for LIST partitioning

  SYNOPSIS
    get_next_partition_id_list()
      part_iter  Partition set iterator structure

  DESCRIPTION
6655
    This implementation of PARTITION_ITERATOR::get_next() is special for 
unknown's avatar
unknown committed
6656 6657
    LIST partitioning: it enumerates partition ids in 
    part_info->list_array[i] where i runs over [min_idx, max_idx] interval.
6658
    The function conforms to partition_iter_func type.
unknown's avatar
unknown committed
6659 6660 6661 6662 6663 6664 6665 6666

  RETURN 
    partition id
    NOT_A_PARTITION_ID if there are no more partitions
*/

uint32 get_next_partition_id_list(PARTITION_ITERATOR *part_iter)
{
6667
  if (part_iter->part_nums.cur == part_iter->part_nums.end)
6668
  {
6669
    if (part_iter->ret_null_part)
6670
    {
6671
      part_iter->ret_null_part= FALSE;
6672 6673
      return part_iter->part_info->has_null_part_id;
    }
6674 6675
    part_iter->part_nums.cur= part_iter->part_nums.start;
    part_iter->ret_null_part= part_iter->ret_null_part_orig;
unknown's avatar
unknown committed
6676
    return NOT_A_PARTITION_ID;
6677
  }
unknown's avatar
unknown committed
6678 6679
  else
    return part_iter->part_info->list_array[part_iter->
6680
                                            part_nums.cur++].partition_id;
unknown's avatar
unknown committed
6681 6682 6683 6684
}


/*
6685
  PARTITION_ITERATOR::get_next implementation: walk over field-space interval
unknown's avatar
unknown committed
6686 6687 6688 6689 6690 6691

  SYNOPSIS
    get_next_partition_via_walking()
      part_iter  Partitioning iterator

  DESCRIPTION
6692 6693 6694
    This implementation of PARTITION_ITERATOR::get_next() returns ids of
    partitions that contain records with partitioning field value within
    [start_val, end_val] interval.
6695
    The function conforms to partition_iter_func type.
unknown's avatar
unknown committed
6696 6697 6698 6699 6700 6701 6702 6703 6704 6705

  RETURN 
    partition id
    NOT_A_PARTITION_ID if there are no more partitioning.
*/

static uint32 get_next_partition_via_walking(PARTITION_ITERATOR *part_iter)
{
  uint32 part_id;
  Field *field= part_iter->part_info->part_field_array[0];
6706
  while (part_iter->field_vals.cur != part_iter->field_vals.end)
unknown's avatar
unknown committed
6707
  {
unknown's avatar
unknown committed
6708
    longlong dummy;
6709 6710
    field->store(part_iter->field_vals.cur++,
                 ((Field_num*)field)->unsigned_flag);
6711
    if (part_iter->part_info->is_sub_partitioned() &&
6712 6713 6714
        !part_iter->part_info->get_part_partition_id(part_iter->part_info,
                                                     &part_id, &dummy) ||
        !part_iter->part_info->get_partition_id(part_iter->part_info,
unknown's avatar
unknown committed
6715
                                                &part_id, &dummy))
unknown's avatar
unknown committed
6716 6717
      return part_id;
  }
6718
  part_iter->field_vals.cur= part_iter->field_vals.start;
unknown's avatar
unknown committed
6719 6720 6721 6722 6723 6724 6725 6726 6727 6728
  return NOT_A_PARTITION_ID;
}


/* Same as get_next_partition_via_walking, but for subpartitions */

static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR *part_iter)
{
  uint32 part_id;
  Field *field= part_iter->part_info->subpart_field_array[0];
6729 6730 6731
  if (part_iter->field_vals.cur == part_iter->field_vals.end)
  {
    part_iter->field_vals.cur= part_iter->field_vals.start;
unknown's avatar
unknown committed
6732
    return NOT_A_PARTITION_ID;
6733 6734
  }
  field->store(part_iter->field_vals.cur++, FALSE);
unknown's avatar
unknown committed
6735 6736
  return part_iter->part_info->get_subpartition_id(part_iter->part_info);
}
6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756


/*
  Create partition names

  SYNOPSIS
    create_partition_name()
    out:out                   Created partition name string
    in1                       First part
    in2                       Second part
    name_variant              Normal, temporary or renamed partition name

  RETURN VALUE
    NONE

  DESCRIPTION
    This method is used to calculate the partition name, service routine to
    the del_ren_cre_table method.
*/

6757 6758 6759
void create_partition_name(char *out, const char *in1,
                           const char *in2, uint name_variant,
                           bool translate)
6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798
{
  char transl_part_name[FN_REFLEN];
  const char *transl_part;

  if (translate)
  {
    tablename_to_filename(in2, transl_part_name, FN_REFLEN);
    transl_part= transl_part_name;
  }
  else
    transl_part= in2;
  if (name_variant == NORMAL_PART_NAME)
    strxmov(out, in1, "#P#", transl_part, NullS);
  else if (name_variant == TEMP_PART_NAME)
    strxmov(out, in1, "#P#", transl_part, "#TMP#", NullS);
  else if (name_variant == RENAMED_PART_NAME)
    strxmov(out, in1, "#P#", transl_part, "#REN#", NullS);
}


/*
  Create subpartition name

  SYNOPSIS
    create_subpartition_name()
    out:out                   Created partition name string
    in1                       First part
    in2                       Second part
    in3                       Third part
    name_variant              Normal, temporary or renamed partition name

  RETURN VALUE
    NONE

  DESCRIPTION
  This method is used to calculate the subpartition name, service routine to
  the del_ren_cre_table method.
*/

6799 6800 6801
void create_subpartition_name(char *out, const char *in1,
                              const char *in2, const char *in3,
                              uint name_variant)
6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816
{
  char transl_part_name[FN_REFLEN], transl_subpart_name[FN_REFLEN];

  tablename_to_filename(in2, transl_part_name, FN_REFLEN);
  tablename_to_filename(in3, transl_subpart_name, FN_REFLEN);
  if (name_variant == NORMAL_PART_NAME)
    strxmov(out, in1, "#P#", transl_part_name,
            "#SP#", transl_subpart_name, NullS);
  else if (name_variant == TEMP_PART_NAME)
    strxmov(out, in1, "#P#", transl_part_name,
            "#SP#", transl_subpart_name, "#TMP#", NullS);
  else if (name_variant == RENAMED_PART_NAME)
    strxmov(out, in1, "#P#", transl_part_name,
            "#SP#", transl_subpart_name, "#REN#", NullS);
}
6817
#endif
unknown's avatar
unknown committed
6818