Commit 87ba12ae authored by Yoni Fogel's avatar Yoni Fogel

Addresses #596

Renamed oma to omt in all instances

git-svn-id: file:///svn/tokudb@3521 c7de825b-a66e-492c-adef-691d508d4ae1
parent d0e8feb6
...@@ -52,80 +52,80 @@ ...@@ -52,80 +52,80 @@
// The programming API: // The programming API:
typedef struct value *OMTVALUE; // A slight improvement over using void*. typedef struct value *OMTVALUE; // A slight improvement over using void*.
typedef struct oma *OMT; typedef struct omt *OMT;
int toku_oma_create (OMT *omap); int toku_omt_create (OMT *omtp);
// Effect: Create an empty OMT. Stores it in *omap. // Effect: Create an empty OMT. Stores it in *omtp.
// Requires: omap != NULL // Requires: omtp != NULL
// Returns: // Returns:
// 0 success // 0 success
// ENOMEM out of memory (and doesn't modify *omap) // ENOMEM out of memory (and doesn't modify *omtp)
// Performance: constant time. // Performance: constant time.
int toku_oma_create_from_sorted_array(OMT* omap, OMTVALUE *values, u_int32_t numvalues); int toku_omt_create_from_sorted_array(OMT* omtp, OMTVALUE *values, u_int32_t numvalues);
// Effect: Create a OMT containing values. The number of values is in numvalues. // Effect: Create a OMT containing values. The number of values is in numvalues.
// Stores the new OMT in *omap. // Stores the new OMT in *omtp.
// Requires: omap != NULL // Requires: omtp != NULL
// Requires: values != NULL // Requires: values != NULL
// Returns: // Returns:
// 0 success // 0 success
// ENOMEM out of memory (and doesn't modify *omap) // ENOMEM out of memory (and doesn't modify *omtp)
// Performance: time=O(numvalues) // Performance: time=O(numvalues)
// Rational: Normally to insert N values takes O(N lg N) amortized time. // Rational: Normally to insert N values takes O(N lg N) amortized time.
// If the N values are known in advance, are sorted, and // If the N values are known in advance, are sorted, and
// the structure is empty, we can batch insert them much faster. // the structure is empty, we can batch insert them much faster.
// Hack: Can be temporarily implemented in O(numvalues * lg numvalues) // Hack: Can be temporarily implemented in O(numvalues * lg numvalues)
// by wrapping toku_oma_create and repeated toku_oma_insert_at // by wrapping toku_omt_create and repeated toku_omt_insert_at
// until we have time to implement properly. // until we have time to implement properly.
void toku_oma_destroy(OMT *omap); void toku_omt_destroy(OMT *omtp);
// Effect: Destroy an OMT, freeing all its memory. // Effect: Destroy an OMT, freeing all its memory.
// Does not free the OMTVALUEs stored in the OMT. // Does not free the OMTVALUEs stored in the OMT.
// Those values may be freed before or after calling toku_oma_destroy. // Those values may be freed before or after calling toku_omt_destroy.
// Also sets *omap=NULL. // Also sets *omtp=NULL.
// Requires: omap != NULL // Requires: omtp != NULL
// Requires: *omap != NULL // Requires: *omtp != NULL
// Rationale: The usage is to do something like // Rationale: The usage is to do something like
// toku_oma_destroy(&s->oma); // toku_omt_destroy(&s->omt);
// and now s->oma will have a NULL pointer instead of a dangling freed pointer. // and now s->omt will have a NULL pointer instead of a dangling freed pointer.
// Rationale: Returns no values since free() cannot fail. // Rationale: Returns no values since free() cannot fail.
// Rationale: Does not free the OMTVALUEs to reduce complexity. // Rationale: Does not free the OMTVALUEs to reduce complexity.
// Performance: time=O(toku_oma_size(*omap)) // Performance: time=O(toku_omt_size(*omtp))
u_int32_t toku_oma_size(OMT V); u_int32_t toku_omt_size(OMT V);
// Effect: return |V|. // Effect: return |V|.
// Requires: V != NULL // Requires: V != NULL
// Performance: time=O(1) // Performance: time=O(1)
int toku_oma_iterate(OMT oma, int (*f)(OMTVALUE, u_int32_t, void*), void*v); int toku_omt_iterate(OMT omt, int (*f)(OMTVALUE, u_int32_t, void*), void*v);
// Effect: Iterate over the values of the oma, from left to right, calling f on each value. // Effect: Iterate over the values of the omt, from left to right, calling f on each value.
// The second argument passed to f is the index of the value. // The second argument passed to f is the index of the value.
// The third argument passed to f is v. // The third argument passed to f is v.
// The indices run from 0 (inclusive) to toku_oma_size(oma) (exclusive). // The indices run from 0 (inclusive) to toku_omt_size(omt) (exclusive).
// Requires: oma != NULL // Requires: omt != NULL
// Requires: f != NULL // Requires: f != NULL
// Returns: // Returns:
// If f ever returns nonzero, then the iteration stops, and the value returned by f is returned by toku_oma_iterate. // If f ever returns nonzero, then the iteration stops, and the value returned by f is returned by toku_omt_iterate.
// If f always returns zero, then toku_oma_iterate returns 0. // If f always returns zero, then toku_omt_iterate returns 0.
// Requires: Don't modify oma while running. (E.g., f may not insert or delete values form oma.) // Requires: Don't modify omt while running. (E.g., f may not insert or delete values form omt.)
// Performance: time=O(i+\log N) where i is the number of times f is called, and N is the number of elements in oma. // Performance: time=O(i+\log N) where i is the number of times f is called, and N is the number of elements in omt.
// Rational: Although the functional iterator requires defining another function (as opposed to C++ style iterator), it is much easier to read. // Rational: Although the functional iterator requires defining another function (as opposed to C++ style iterator), it is much easier to read.
int toku_oma_insert_at(OMT oma, OMTVALUE value, u_int32_t index); int toku_omt_insert_at(OMT omt, OMTVALUE value, u_int32_t index);
// Effect: Increases indexes of all items at slot >= index by 1. // Effect: Increases indexes of all items at slot >= index by 1.
// Insert value into the position at index. // Insert value into the position at index.
// Requires: oma != NULL // Requires: omt != NULL
// Requires: value != NULL // Requires: value != NULL
// //
// Returns: // Returns:
// 0 success // 0 success
// ERANGE if index>toku_oma_size(oma) // ERANGE if index>toku_omt_size(omt)
// ENOMEM // ENOMEM
// On error, oma is unchanged. // On error, omt is unchanged.
// Performance: time=O(\log N) amortized time. // Performance: time=O(\log N) amortized time.
// Rationale: Some future implementation may be O(\log N) worst-case time, but O(\log N) amortized is good enough for now. // Rationale: Some future implementation may be O(\log N) worst-case time, but O(\log N) amortized is good enough for now.
int toku_oma_insert(OMT oma, OMTVALUE value, int(*h)(OMTVALUE, void*v), void *v, u_int32_t* index); int toku_omt_insert(OMT omt, OMTVALUE value, int(*h)(OMTVALUE, void*v), void *v, u_int32_t* index);
// Effect: Insert value into the OMT. // Effect: Insert value into the OMT.
// If there is some i such that $h(V_i, v)=0$ then returns DB_KEYEXIST. // If there is some i such that $h(V_i, v)=0$ then returns DB_KEYEXIST.
// Otherwise, let i be the minimum value such that $h(V_i, v)>0$. // Otherwise, let i be the minimum value such that $h(V_i, v)>0$.
...@@ -133,7 +133,7 @@ int toku_oma_insert(OMT oma, OMTVALUE value, int(*h)(OMTVALUE, void*v), void *v, ...@@ -133,7 +133,7 @@ int toku_oma_insert(OMT oma, OMTVALUE value, int(*h)(OMTVALUE, void*v), void *v,
// Then this has the same effect as // Then this has the same effect as
// oma_insert_at(tree, value, i); // oma_insert_at(tree, value, i);
// i is stored in *index // i is stored in *index
// Requires: oma != NULL // Requires: omt != NULL
// Requires: value != NULL // Requires: value != NULL
// Requires: index != NULL // Requires: index != NULL
// Requires: The signum of h must be monotonically increasing. // Requires: The signum of h must be monotonically increasing.
...@@ -141,26 +141,26 @@ int toku_oma_insert(OMT oma, OMTVALUE value, int(*h)(OMTVALUE, void*v), void *v, ...@@ -141,26 +141,26 @@ int toku_oma_insert(OMT oma, OMTVALUE value, int(*h)(OMTVALUE, void*v), void *v,
// 0 success // 0 success
// DB_KEYEXIST the key is present (h was equal to zero for some value) // DB_KEYEXIST the key is present (h was equal to zero for some value)
// ENOMEM // ENOMEM
// On nonzero return, oma is unchanged. // On nonzero return, omt is unchanged.
// On nonzero non-DB_KEYEXIST return, *index is unchanged. // On nonzero non-DB_KEYEXIST return, *index is unchanged.
// Performance: time=O(\log N) amortized. // Performance: time=O(\log N) amortized.
// Rationale: Some future implementation may be O(\log N) worst-case time, but O(\log N) amortized is good enough for now. // Rationale: Some future implementation may be O(\log N) worst-case time, but O(\log N) amortized is good enough for now.
int toku_oma_delete_at(OMT oma, u_int32_t index); int toku_omt_delete_at(OMT omt, u_int32_t index);
// Effect: Delete the item in slot index. // Effect: Delete the item in slot index.
// Decreases indexes of all items at slot >= index by 1. // Decreases indexes of all items at slot >= index by 1.
// Requires: oma != NULL // Requires: omt != NULL
// Returns // Returns
// 0 success // 0 success
// ERANGE if index>=toku_oma_size(oma) // ERANGE if index>=toku_omt_size(omt)
// On error, oma is unchanged. // On error, omt is unchanged.
// Rationale: To delete an item, first find its index using toku_oma_find, then delete it. // Rationale: To delete an item, first find its index using toku_omt_find, then delete it.
// Performance: time=O(\log N) amortized. // Performance: time=O(\log N) amortized.
int toku_oma_find_index (OMT V, u_int32_t i, VALUE *v); int toku_omt_find_index (OMT V, u_int32_t i, VALUE *v);
// Effect: Set *v=V_i // Effect: Set *v=V_i
// Requires: oma != NULL // Requires: omt != NULL
// Requires: v != NULL // Requires: v != NULL
// Returns // Returns
// 0 success // 0 success
...@@ -168,7 +168,7 @@ int toku_oma_find_index (OMT V, u_int32_t i, VALUE *v); ...@@ -168,7 +168,7 @@ int toku_oma_find_index (OMT V, u_int32_t i, VALUE *v);
// On nonzero return, *v is unchanged. // On nonzero return, *v is unchanged.
// Performance: time=O(\log N) // Performance: time=O(\log N)
int toku_oma_find(OMT V, int (*h)(VALUE, void*extra), void*extra, int direction, VALUE *value, u_int32_t *index); int toku_omt_find(OMT V, int (*h)(VALUE, void*extra), void*extra, int direction, VALUE *value, u_int32_t *index);
// Effect: // Effect:
// If direction==0 then find the smallest i such that h(V_i,extra)==0. // If direction==0 then find the smallest i such that h(V_i,extra)==0.
// If direction >0 then find the smallest i such that h(V_i,extra)>0. // If direction >0 then find the smallest i such that h(V_i,extra)>0.
...@@ -185,23 +185,23 @@ int toku_oma_find(OMT V, int (*h)(VALUE, void*extra), void*extra, int direction, ...@@ -185,23 +185,23 @@ int toku_oma_find(OMT V, int (*h)(VALUE, void*extra), void*extra, int direction,
// On nonzero return, *value and *index are unchanged. // On nonzero return, *value and *index are unchanged.
// Performance: time=O(\log N) // Performance: time=O(\log N)
int toku_oma_split_at(OMT oma, OMT *newoma, u_int32_t index); int toku_omt_split_at(OMT omt, OMT *newoma, u_int32_t index);
// Effect: Create a new OMT, storing it in *newoma. // Effect: Create a new OMT, storing it in *newoma.
// The values to the right of index (starting at index) are moved to *newoma. // The values to the right of index (starting at index) are moved to *newoma.
// Requires: oma != NULL // Requires: omt != NULL
// Requires: newoma != NULL // Requires: newoma != NULL
// Returns // Returns
// 0 success, // 0 success,
// ERANGE if index >= toku_oma_size(oma) // ERANGE if index >= toku_omt_size(omt)
// ENOMEM // ENOMEM
// On nonzero return, oma and *newoma are unmodified. // On nonzero return, omt and *newoma are unmodified.
// Performance: time=O(n) // Performance: time=O(n)
// Rationale: We don't need a split-evenly operation. We need to split items so that their total sizes // Rationale: We don't need a split-evenly operation. We need to split items so that their total sizes
// are even, and other similar splitting criteria. It's easy to split evenly by calling toku_oma_size(), and dividing by two. // are even, and other similar splitting criteria. It's easy to split evenly by calling toku_omt_size(), and dividing by two.
int toku_oma_merge(OMT leftoma, OMT rightoma, OMT *newoma); int toku_omt_merge(OMT leftoma, OMT rightoma, OMT *newoma);
// Effect: Appends leftoma and rightoma to produce a new oma. // Effect: Appends leftoma and rightoma to produce a new omt.
// Sets *newoma to the new oma. // Sets *newoma to the new omt.
// leftoma and rightoma are left unchanged. // leftoma and rightoma are left unchanged.
// Requires: leftoma != NULL // Requires: leftoma != NULL
// Requires: rightoma != NULL // Requires: rightoma != NULL
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment