-
Kirill Smelkov authored
Structured creates view of the array interpreting its minor axis as fully covered by a dtype. It is similar to arr.view(dtype) + corresponding reshape, but does not have limitations of ndarray.view(). For example: In [1]: a = np.arange(3*3, dtype=np.int32).reshape((3,3)) In [2]: a Out[2]: array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype=int32) In [3]: b = a[:2,:2] In [4]: b Out[4]: array([[0, 1], [3, 4]], dtype=int32) In [5]: dtxy = np.dtype([('x', np.int32), ('y', np.int32)]) In [6]: dtxy Out[6]: dtype([('x', '<i4'), ('y', '<i4')]) In [7]: b.view(dtxy) --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-66-af98529aa150> in <module>() ----> 1 b.view(dtxy) ValueError: To change to a dtype of a different size, the array must be C-contiguous In [8]: stru...
32ca80e2