Commit b99e5c3d authored by Lisa Casino's avatar Lisa Casino

promise/plugin/check_free_disk_space: add options

Thanks to the new options in the software release,
it is now possible to have a customizable threshold.
Moreover, we can display the 3 biggest partitions if the
remaining space is smaller than the threshold. Finally,
we can have a prediction of the remaining disk space in 10 days (by default).
parent 240a9308
...@@ -6,14 +6,20 @@ from slapos.grid.promise.generic import GenericPromise ...@@ -6,14 +6,20 @@ from slapos.grid.promise.generic import GenericPromise
import os import os
import sys import sys
import pandas as pd
import numpy as np
import sqlite3 import sqlite3
import argparse import argparse
import datetime import datetime
import psutil import psutil
import itertools
import warnings
from slapos.collect.db import Database from slapos.collect.db import Database
from statsmodels.tsa.arima_model import ARIMA
@implementer(interface.IPromise) @implementer(interface.IPromise)
class RunPromise(GenericPromise): class RunPromise(GenericPromise):
...@@ -22,8 +28,6 @@ class RunPromise(GenericPromise): ...@@ -22,8 +28,6 @@ class RunPromise(GenericPromise):
# check disk space at least every 3 minutes # check disk space at least every 3 minutes
self.setPeriodicity(minute=3) self.setPeriodicity(minute=3)
def getDiskSize(self, disk_partition, database): def getDiskSize(self, disk_partition, database):
database = Database(database, create=False, timeout=10) database = Database(database, create=False, timeout=10)
try: try:
...@@ -78,6 +82,122 @@ class RunPromise(GenericPromise): ...@@ -78,6 +82,122 @@ class RunPromise(GenericPromise):
pass pass
return int(disk_free) return int(disk_free)
def getBiggestPartitions(self, database, date, time):
# displays the 3 biggest partitions thanks to disk usage
limit = 3
database = Database(database, create=False, timeout=10)
try:
database.connect()
date_time = date + ' ' + time
# gets the data recorded between the current date (date_time) and 24 hours earlier
where_query = "datetime(date || ' ' || time) >= datetime('%s', '-1 days') AND datetime(date || ' ' || time) <= datetime('%s')"
# gets only the most recent data for each partition
result = database.select(
"folder",
columns = "partition, disk_used*1024, max(datetime(date || ' ' || time))",
where = where_query % (date_time, date_time),
group = "partition",
order = "disk_used DESC",
limit = limit).fetchall()
if not result or not result[0]:
self.logger.info("No result from collector database in table folder: skipped")
return None
except sqlite3.OperationalError as e:
# if database is still locked after timeout expiration (another process is using it)
# we print warning message and try the promise at next run until max warn count
locked_message = "database is locked"
if locked_message in str(e) and \
not self.raiseOnDatabaseLocked(locked_message):
return None
raise
finally:
try:
database.close()
except Exception:
pass
return result
def diskSpacePrediction(self, disk_partition, database, date, time, day_range):
"""
Returns an estimation of free disk space left depending on
the day_range parameter.
It uses Arima in order to predict data thanks to the 15 days before.
"""
database = Database(database, create=False, timeout=10)
try:
database.connect()
# get one data per day, where each data is at the same time
where_query = "time between '%s:00' and '%s:30' and partition='%s'" % (
time, time, disk_partition)
result = database.select(
"disk",
columns = "free, datetime(date || ' ' || time)",
where = where_query,
order = "datetime(date || ' ' || time) ASC"
).fetchall()
# checks that there are 15 days of data
if not result or len(result) < 15:
self.logger.info("No or not enough results from collector database in table disk: no predection")
return None
# put the list in pandas dataframe format and set the right types
df = pd.DataFrame(data=result, columns=['free', 'date'])
df.loc[:,'date'] = pd.to_datetime(df.date)
df = df.astype({'free': np.float})
df = df.set_index('date')
# find the best configuration by trying different combinations
p = d = q = range(0,5)
pdq = list(itertools.product(p,d,q))
best_score = float("inf")
best_cfg = None
for param in pdq:
try:
# ignore the warnings during the ARIMA calculation
warnings.filterwarnings("ignore")
model_arima = ARIMA(df, order=param)
model_arima_fit = model_arima.fit(disp=False)
if model_arima_fit.aic < best_score:
best_cfg = param
best_score = model_arima_fit.aic
# reset warnings
warnings.filterwarnings("ignore")
except:
continue
# set the days to be predicted
max_date_predicted = day_range+1
future_index_date = pd.date_range(df.index[-1], freq='24H', periods=max_date_predicted)
try:
model_arima = ARIMA(df, order=best_cfg)
# disp < 0 means no output about convergence information
model_arima_fit = model_arima.fit(disp=-1)
# save ARIMA predictions
fcast, _, conf = model_arima_fit.forecast(max_date_predicted, alpha=0.05)
# pass the same index as the others
fcast = pd.Series(fcast, index=future_index_date)
if fcast.empty:
self.logger.info("Arima prediction: none. Skipped prediction")
return None
except:
self.logger.info("Arima prediction error: skipped prediction")
return None
# get results with 95% confidence
lower_series = pd.Series(conf[:, 0], index=future_index_date)
upper_series = pd.Series(conf[:, 1], index=future_index_date)
return fcast, lower_series, upper_series
except sqlite3.OperationalError as e:
# if database is still locked after timeout expiration (another process is using it)
# we print warning message and try the promise at next run until max warn count
locked_message = "database is locked"
if locked_message in str(e) and \
not self.raiseOnDatabaseLocked(locked_message):
return None
raise
finally:
try:
database.close()
except Exception:
pass
def raiseOnDatabaseLocked(self, locked_message): def raiseOnDatabaseLocked(self, locked_message):
max_warn = 10 max_warn = 10
latest_result_list = self.getLastPromiseResultList(result_count=max_warn) latest_result_list = self.getLastPromiseResultList(result_count=max_warn)
...@@ -149,7 +269,7 @@ class RunPromise(GenericPromise): ...@@ -149,7 +269,7 @@ class RunPromise(GenericPromise):
disk_partition = self.getConfig('test-disk-partition', '/dev/sda1') disk_partition = self.getConfig('test-disk-partition', '/dev/sda1')
else: else:
# get last minute # get last minute
now = datetime.datetime.now() now = datetime.datetime.utcnow()
currentdate = now.strftime('%Y-%m-%d') currentdate = now.strftime('%Y-%m-%d')
currenttime = now - datetime.timedelta(minutes=1) currenttime = now - datetime.timedelta(minutes=1)
currenttime = currenttime.time().strftime('%H:%M') currenttime = currenttime.time().strftime('%H:%M')
...@@ -158,8 +278,8 @@ class RunPromise(GenericPromise): ...@@ -158,8 +278,8 @@ class RunPromise(GenericPromise):
default_threshold = None default_threshold = None
if disk_size is not None: if disk_size is not None:
default_threshold = round(disk_size/(1024*1024*1024) * 0.05, 2) default_threshold = round(disk_size/(1024*1024*1024) * 0.05, 2)
threshold = float(self.getConfig('threshold', default_threshold) or 2.0) threshold = float(self.getConfig('threshold', default_threshold) or default_threshold)
threshold_days = float(self.getConfig('threshold-days', '30')) threshold_days = float(self.getConfig('threshold-days', '30') or '30')
free_space = self.getFreeSpace(disk_partition, db_path, currentdate, free_space = self.getFreeSpace(disk_partition, db_path, currentdate,
currenttime) currenttime)
...@@ -170,15 +290,48 @@ class RunPromise(GenericPromise): ...@@ -170,15 +290,48 @@ class RunPromise(GenericPromise):
if inode_usage: if inode_usage:
self.logger.error(inode_usage) self.logger.error(inode_usage)
else: else:
self.logger.info("Disk usage: OK") self.logger.info("Current disk usage: OK")
return # if the option is enabled and the current disk size is large enough,
# we check the predicted remaining disk space
display_prediction = bool(int(self.getConfig('display-prediction'), 0))
self.logger.info("Enable to display disk space predictions: %s" % display_prediction)
if display_prediction:
nb_days_predicted = int(self.getConfig('nb-days-predicted', 10) or 10)
fcast, lower_series, upper_series = self.diskSpacePrediction(
disk_partition, db_path, currentdate, currenttime, nb_days_predicted)
space_left_predicted = fcast.iloc[-1]
last_date_predicted = datetime.datetime.strptime(str(fcast.index[-1]),
"%Y-%m-%d %H:%M:%S")
delta_days = (last_date_predicted.date() - \
datetime.datetime.strptime(currentdate, "%Y-%m-%d").date()).days
self.logger.info("Prediction: there will be %.2f G left on %s (%s days)." % (
space_left_predicted/(1024*1024*1024), last_date_predicted, delta_days))
if space_left_predicted <= threshold*1024*1024*1024:
self.logger.warning("The free disk space will be too low. " \
"(disk size: %.2f G, threshold: %s G)" % (
disk_size/(1024*1024*1024), threshold))
return
else:
return
message = "Free disk space low: remaining %.2f G (disk size: %.2f G, threshold: %s G)." % (
free_space/(1024*1024*1024), disk_size/(1024*1024*1024), threshold)
free_space = round(free_space/(1024*1024*1024), 2) display_partition = bool(int(self.getConfig('display-partition'), 0))
self.logger.error('Free disk space low: remaining %s G (threshold: %s G)' % ( self.logger.info("Enable to display the 3 biggest partitions: %s" % display_partition)
free_space, threshold)) if display_partition:
# display the 3 partitions that have the most storage capacity on the disk
big_partitions = self.getBiggestPartitions(db_path, currentdate, currenttime)
if big_partitions is not None:
for partition in big_partitions:
user_name, size_partition, date_checked = partition
message += " The partition %s uses %.2f G (date checked: %s)." % (
user_name, size_partition/(1024*1024*1024), date_checked)
# display the final error message
self.logger.error(message)
def test(self): def test(self):
return self._test(result_count=1, failure_amount=1) return self._test(result_count=1, failure_amount=1)
def anomaly(self): def anomaly(self):
return self._test(result_count=3, failure_amount=3) return self._test(result_count=3, failure_amount=3)
\ No newline at end of file
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment