inputData=Import_Excel()#Call the Python object Import_Excel
ProcessingTimes=inputData.Input_data(worksheet_ProcessingTimes,workbook)#Create the Processing Times dictionary with key Machines 1,2 and values the processing time data
##Get from the above dictionaries the M1 key and define the following lists with data
M1_ProcTime=ProcessingTimes.get('M1',[])
M2_ProcTime=ProcessingTimes.get('M2',[])
#Call the HandleMissingValues object and replace the missing values in the lists with the mean of the non-missing values
MLE=Distributions()#Call the Distributions object (Maximum Likelihood Estimation - MLE)
KS=DistFittest()#Call the DistFittest object (Kolmoghorov-Smirnov test)
M1ProcTime_dist=KS.ks_test(M1_ProcTime)
M2ProcTime_dist=MLE.Normal_distrfit(M2_ProcTime)
#======================= Output preparation: output the updated values in the JSON file of this example ================================#
#Read from the given directory the Excel document with the input data
ifnotworkbook:
workbook=xlrd.open_workbook(ExcelFileName)
worksheets=workbook.sheet_names()
worksheet_ProcessingTimes=worksheets[0]#Define the worksheet with the Processing times data
inputData=Import_Excel()#Call the Python object Import_Excel
ProcessingTimes=inputData.Input_data(worksheet_ProcessingTimes,workbook)#Create the Processing Times dictionary with key Machines 1,2 and values the processing time data
##Get from the above dictionaries the M1 key and define the following lists with data
M1_ProcTime=ProcessingTimes.get('M1',[])
M2_ProcTime=ProcessingTimes.get('M2',[])
#Call the HandleMissingValues object and replace the missing values in the lists with the mean of the non-missing values