Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
dream
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
1
Issues
1
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
nexedi
dream
Commits
fc56bf36
Commit
fc56bf36
authored
Aug 18, 2014
by
Georgios Dagkakis
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Examples made much cleaner. SimPy is not visible and run simulation is done by one method call
parent
95b020d7
Changes
21
Hide whitespace changes
Inline
Side-by-side
Showing
21 changed files
with
230 additions
and
593 deletions
+230
-593
dream/simulation/Examples/AssemblyLine.py
dream/simulation/Examples/AssemblyLine.py
+9
-26
dream/simulation/Examples/ClearBatchLines.py
dream/simulation/Examples/ClearBatchLines.py
+19
-32
dream/simulation/Examples/DecompositionOfBatches.py
dream/simulation/Examples/DecompositionOfBatches.py
+12
-25
dream/simulation/Examples/JobShop1.py
dream/simulation/Examples/JobShop1.py
+10
-28
dream/simulation/Examples/JobShop1Trace.py
dream/simulation/Examples/JobShop1Trace.py
+10
-30
dream/simulation/Examples/JobShop2EDD.py
dream/simulation/Examples/JobShop2EDD.py
+9
-28
dream/simulation/Examples/JobShop2MC.py
dream/simulation/Examples/JobShop2MC.py
+9
-28
dream/simulation/Examples/JobShop2Priority.py
dream/simulation/Examples/JobShop2Priority.py
+9
-28
dream/simulation/Examples/JobShop2RPC.py
dream/simulation/Examples/JobShop2RPC.py
+9
-28
dream/simulation/Examples/ParallelServers1.py
dream/simulation/Examples/ParallelServers1.py
+10
-26
dream/simulation/Examples/ParallelServers2.py
dream/simulation/Examples/ParallelServers2.py
+10
-27
dream/simulation/Examples/ParallelServers3.py
dream/simulation/Examples/ParallelServers3.py
+10
-28
dream/simulation/Examples/SerialBatchProcessing.py
dream/simulation/Examples/SerialBatchProcessing.py
+19
-30
dream/simulation/Examples/ServerWithShift1.py
dream/simulation/Examples/ServerWithShift1.py
+10
-26
dream/simulation/Examples/ServerWithShift2.py
dream/simulation/Examples/ServerWithShift2.py
+10
-25
dream/simulation/Examples/ServerWithShift3.py
dream/simulation/Examples/ServerWithShift3.py
+10
-26
dream/simulation/Examples/ServerWithShift4.py
dream/simulation/Examples/ServerWithShift4.py
+11
-27
dream/simulation/Examples/SingleServer.py
dream/simulation/Examples/SingleServer.py
+9
-24
dream/simulation/Examples/TwoServers.py
dream/simulation/Examples/TwoServers.py
+10
-28
dream/simulation/Examples/TwoServersPlots.py
dream/simulation/Examples/TwoServersPlots.py
+13
-33
dream/simulation/Examples/TwoServersStochastic.py
dream/simulation/Examples/TwoServersStochastic.py
+12
-40
No files found.
dream/simulation/Examples/AssemblyLine.py
View file @
fc56bf36
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
Frame
,
Assembly
,
Failure
,
G
from
dream.simulation.imports
import
simpy
G
.
env
=
simpy
.
Environment
()
# define a simpy environment
# this is where all the simulation object 'live'
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
Frame
,
Assembly
,
Failure
from
dream.simulation.Globals
import
runSimulation
#define the objects of the model
Frame
.
capacity
=
4
...
...
@@ -14,10 +11,6 @@ E=Exit('E1','Exit')
F
=
Failure
(
victim
=
M
,
distribution
=
{
'distributionType'
:
'Fixed'
,
'MTTF'
:
60
,
'MTTR'
:
5
})
#add objects in lists so that they can be easier accessed later
G
.
ObjList
=
[
Sp
,
Sf
,
M
,
A
,
E
]
G
.
ObjectInterruptionList
=
[
F
]
#define predecessors and successors for the objects
Sp
.
defineRouting
([
A
])
Sf
.
defineRouting
([
A
])
...
...
@@ -26,26 +19,16 @@ M.defineRouting([A],[E])
E
.
defineRouting
([
M
])
def
main
():
#initialize all the objects
for
object
in
G
.
ObjList
+
G
.
ObjectInterruptionList
:
object
.
initialize
()
#activate all the objects
for
object
in
G
.
ObjList
+
G
.
ObjectInterruptionList
:
G
.
env
.
process
(
object
.
run
())
G
.
maxSimTime
=
1440.0
#set G.maxSimTime 1440.0 minutes (1 day)
G
.
env
.
run
(
until
=
G
.
maxSimTime
)
#run the simulation
#carry on the post processing operations for every object in the topology
for
object
in
G
.
ObjList
:
object
.
postProcessing
()
# add all the objects in a list
objectList
=
[
Sp
,
Sf
,
M
,
A
,
E
,
F
]
# set the length of the experiment
maxSimTime
=
1440.0
# call the runSimulation giving the objects and the length of the experiment
runSimulation
(
objectList
,
maxSimTime
)
#print the results
print
"the system produced"
,
E
.
numOfExits
,
"frames"
working_ratio
=
(
A
.
totalWorkingTime
/
G
.
maxSimTime
)
*
100
working_ratio
=
(
A
.
totalWorkingTime
/
maxSimTime
)
*
100
print
"the working ratio of"
,
A
.
objName
,
"is"
,
working_ratio
,
"%"
return
{
"frames"
:
E
.
numOfExits
,
"working_ratio"
:
working_ratio
}
...
...
dream/simulation/Examples/ClearBatchLines.py
View file @
fc56bf36
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Batch
,
BatchDecomposition
,
\
BatchSource
,
BatchReassembly
,
Queue
,
LineClearance
,
ExcelHandler
,
G
,
ExcelHandler
from
dream.simulation.
imports
import
simpy
BatchSource
,
BatchReassembly
,
Queue
,
LineClearance
,
ExcelHandler
,
ExcelHandler
from
dream.simulation.
Globals
import
runSimulation
G
.
env
=
simpy
.
Environment
()
# define a simpy environment
# this is where all the simulation object 'live'
# choose to output trace or not
G
.
trace
=
'Yes'
# define the objects of the model
S
=
BatchSource
(
'S'
,
'Source'
,
interarrivalTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
1.5
},
entity
=
'Dream.Batch'
,
batchNumberOfUnits
=
100
)
Q
=
Queue
(
'Q'
,
'StartQueue'
,
capacity
=
100000
)
...
...
@@ -17,8 +12,7 @@ M2=Machine('M2','Machine2',processingTime={'distributionType':'Fixed','mean':4})
BRA
=
BatchReassembly
(
'BRA'
,
'BatchReassembly'
,
numberOfSubBatches
=
4
,
processingTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
0
})
M3
=
Machine
(
'M3'
,
'Machine3'
,
processingTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
1
})
E
=
Exit
(
'E'
,
'Exit'
)
# add all the objects in the G.ObjList so that they can be easier accessed later
G
.
ObjList
=
[
S
,
Q
,
BD
,
M1
,
Q1
,
M2
,
BRA
,
M3
,
E
]
# define the predecessors and successors for the objects
S
.
defineRouting
([
Q
])
Q
.
defineRouting
([
S
],[
BD
])
...
...
@@ -32,41 +26,34 @@ E.defineRouting([M3])
def
main
():
# initialize all the objects
for
object
in
G
.
ObjList
:
object
.
initialize
()
#activate all the objects
for
object
in
G
.
ObjList
:
G
.
env
.
process
(
object
.
run
())
# add all the objects in a list
objectList
=
[
S
,
Q
,
BD
,
M1
,
Q1
,
M2
,
BRA
,
M3
,
E
]
# set the length of the experiment
maxSimTime
=
1440.0
# call the runSimulation giving the objects and the length of the experiment
runSimulation
(
objectList
,
maxSimTime
,
trace
=
'Yes'
)
# set G.maxSimTime 1440.0 minutes (1 day)
G
.
maxSimTime
=
1440.0
# run the simulation
G
.
env
.
run
(
until
=
G
.
maxSimTime
)
# carry on the post processing operations for every object in the topology
for
object
in
G
.
ObjList
:
object
.
postProcessing
()
# print the results
print
"the system produced"
,
E
.
numOfExits
,
"batches"
working_ratio_M1
=
(
M1
.
totalWorkingTime
/
G
.
maxSimTime
)
*
100
blockage_ratio_M1
=
(
M1
.
totalBlockageTime
/
G
.
maxSimTime
)
*
100
waiting_ratio_M1
=
(
M1
.
totalWaitingTime
/
G
.
maxSimTime
)
*
100
working_ratio_M1
=
(
M1
.
totalWorkingTime
/
maxSimTime
)
*
100
blockage_ratio_M1
=
(
M1
.
totalBlockageTime
/
maxSimTime
)
*
100
waiting_ratio_M1
=
(
M1
.
totalWaitingTime
/
maxSimTime
)
*
100
print
"the working ratio of"
,
M1
.
objName
,
"is"
,
working_ratio_M1
print
"the blockage ratio of"
,
M1
.
objName
,
'is'
,
blockage_ratio_M1
print
"the waiting ratio of"
,
M1
.
objName
,
'is'
,
waiting_ratio_M1
working_ratio_M2
=
(
M2
.
totalWorkingTime
/
G
.
maxSimTime
)
*
100
blockage_ratio_M2
=
(
M2
.
totalBlockageTime
/
G
.
maxSimTime
)
*
100
waiting_ratio_M2
=
(
M2
.
totalWaitingTime
/
G
.
maxSimTime
)
*
100
working_ratio_M2
=
(
M2
.
totalWorkingTime
/
maxSimTime
)
*
100
blockage_ratio_M2
=
(
M2
.
totalBlockageTime
/
maxSimTime
)
*
100
waiting_ratio_M2
=
(
M2
.
totalWaitingTime
/
maxSimTime
)
*
100
print
"the working ratio of"
,
M2
.
objName
,
"is"
,
working_ratio_M2
print
"the blockage ratio of"
,
M2
.
objName
,
'is'
,
blockage_ratio_M2
print
"the waiting ratio of"
,
M2
.
objName
,
'is'
,
waiting_ratio_M2
working_ratio_M3
=
(
M3
.
totalWorkingTime
/
G
.
maxSimTime
)
*
100
blockage_ratio_M3
=
(
M3
.
totalBlockageTime
/
G
.
maxSimTime
)
*
100
waiting_ratio_M3
=
(
M3
.
totalWaitingTime
/
G
.
maxSimTime
)
*
100
working_ratio_M3
=
(
M3
.
totalWorkingTime
/
maxSimTime
)
*
100
blockage_ratio_M3
=
(
M3
.
totalBlockageTime
/
maxSimTime
)
*
100
waiting_ratio_M3
=
(
M3
.
totalWaitingTime
/
maxSimTime
)
*
100
print
"the working ratio of"
,
M3
.
objName
,
"is"
,
working_ratio_M3
print
"the blockage ratio of"
,
M3
.
objName
,
'is'
,
blockage_ratio_M3
print
"the waiting ratio of"
,
M3
.
objName
,
'is'
,
waiting_ratio_M3
ExcelHandler
.
outputTrace
(
'TRACE'
)
return
{
"batches"
:
E
.
numOfExits
,
"working_ratio_M1"
:
working_ratio_M1
,
...
...
dream/simulation/Examples/DecompositionOfBatches.py
View file @
fc56bf36
from
dream.simulation.imports
import
Machine
,
BatchSource
,
Exit
,
Batch
,
BatchDecomposition
,
Queue
,
G
from
dream.simulation.imports
import
simpy
G
.
env
=
simpy
.
Environment
()
# define a simpy environment
# this is where all the simulation object 'live'
from
dream.simulation.imports
import
Machine
,
BatchSource
,
Exit
,
Batch
,
BatchDecomposition
,
Queue
from
dream.simulation.Globals
import
runSimulation
# define the objects of the model
S
=
BatchSource
(
'S'
,
'Source'
,
interarrivalTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
0.5
},
entity
=
'Dream.Batch'
,
batchNumberOfUnits
=
4
)
...
...
@@ -10,8 +7,7 @@ Q=Queue('Q','StartQueue',capacity=100000)
BD
=
BatchDecomposition
(
'BC'
,
'BatchDecomposition'
,
numberOfSubBatches
=
4
,
processingTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
1
})
M
=
Machine
(
'M'
,
'Machine'
,
processingTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
0.5
})
E
=
Exit
(
'E'
,
'Exit'
)
# add all the objects in the G.ObjList so that they can be easier accessed later
G
.
ObjList
=
[
S
,
Q
,
BD
,
M
,
E
]
# define the predecessors and successors for the objects
S
.
defineRouting
([
Q
])
Q
.
defineRouting
([
S
],[
BD
])
...
...
@@ -21,27 +17,18 @@ E.defineRouting([M])
def
main
():
# initialize all the objects
for
object
in
G
.
ObjList
:
object
.
initialize
()
#activate all the objects
for
object
in
G
.
ObjList
:
G
.
env
.
process
(
object
.
run
())
# set G.maxSimTime 1440.0 minutes (1 day)
G
.
maxSimTime
=
1440.0
# run the simulation
G
.
env
.
run
(
until
=
G
.
maxSimTime
)
# carry on the post processing operations for every object in the topology
for
object
in
G
.
ObjList
:
object
.
postProcessing
()
# add all the objects in a list
objectList
=
[
S
,
Q
,
BD
,
M
,
E
]
# set the length of the experiment
maxSimTime
=
1440.0
# call the runSimulation giving the objects and the length of the experiment
runSimulation
(
objectList
,
maxSimTime
)
# print the results
print
"the system produced"
,
E
.
numOfExits
,
"subbatches"
working_ratio
=
(
M
.
totalWorkingTime
/
G
.
maxSimTime
)
*
100
blockage_ratio
=
(
M
.
totalBlockageTime
/
G
.
maxSimTime
)
*
100
waiting_ratio
=
(
M
.
totalWaitingTime
/
G
.
maxSimTime
)
*
100
working_ratio
=
(
M
.
totalWorkingTime
/
maxSimTime
)
*
100
blockage_ratio
=
(
M
.
totalBlockageTime
/
maxSimTime
)
*
100
waiting_ratio
=
(
M
.
totalWaitingTime
/
maxSimTime
)
*
100
print
"the working ratio of"
,
M
.
objName
,
"is"
,
working_ratio
print
"the blockage ratio of"
,
M
.
objName
,
'is'
,
blockage_ratio
print
"the waiting ratio of"
,
M
.
objName
,
'is'
,
waiting_ratio
...
...
dream/simulation/Examples/JobShop1.py
View file @
fc56bf36
from
dream.simulation.imports
import
MachineJobShop
,
QueueJobShop
,
ExitJobShop
,
Globals
,
Job
,
G
from
dream.simulation.imports
import
simpy
G
.
env
=
simpy
.
Environment
()
# define a simpy environment
# this is where all the simulation object 'live'
from
dream.simulation.imports
import
MachineJobShop
,
QueueJobShop
,
ExitJobShop
,
Job
from
dream.simulation.Globals
import
runSimulation
#define the objects of the model
Q1
=
QueueJobShop
(
'Q1'
,
'Queue1'
,
capacity
=
float
(
"inf"
))
...
...
@@ -13,10 +10,8 @@ M2=MachineJobShop('M2','Machine2')
M3
=
MachineJobShop
(
'M3'
,
'Machine3'
)
E
=
ExitJobShop
(
'E'
,
'Exit'
)
G
.
ObjList
=
[
M1
,
M2
,
M3
,
Q1
,
Q2
,
Q3
,
E
]
#add all the objects in G.ObjList so that they can be easier accessed later
#define the route of the Job in the system
J1R
oute
=
[{
"stationIdsList"
:
[
"Q1"
]},
r
oute
=
[{
"stationIdsList"
:
[
"Q1"
]},
{
"stationIdsList"
:
[
"M1"
],
"processingTime"
:{
"distributionType"
:
"Fixed"
,
"mean"
:
"1"
}},
{
"stationIdsList"
:
[
"Q3"
]},
{
"stationIdsList"
:
[
"M3"
],
"processingTime"
:{
"distributionType"
:
"Fixed"
,
"mean"
:
"3"
}},
...
...
@@ -24,28 +19,15 @@ J1Route=[{"stationIdsList": ["Q1"]},
{
"stationIdsList"
:
[
"M2"
],
"processingTime"
:{
"distributionType"
:
"Fixed"
,
"mean"
:
"2"
}},
{
"stationIdsList"
:
[
"E"
],}]
#define the Jobs
J
=
Job
(
'J1'
,
'Job1'
,
route
=
J1Route
)
G
.
EntityList
=
[
J
]
#a list to hold all the entities
J
=
Job
(
'J1'
,
'Job1'
,
route
=
route
)
def
main
():
#initialize all the objects
for
object
in
G
.
ObjList
+
G
.
EntityList
:
object
.
initialize
()
#activate all the objects
for
object
in
G
.
ObjList
:
G
.
env
.
process
(
object
.
run
())
#set the WIP
Globals
.
setWIP
(
G
.
EntityList
)
G
.
env
.
run
(
until
=
float
(
"inf"
))
#run the simulation until there are no more events
G
.
maxSimTime
=
E
.
timeLastEntityLeft
#calculate the maxSimTime as the time that the last Job left
#carry on the post processing operations for every object in the topology
for
object
in
G
.
ObjList
:
object
.
postProcessing
()
# add all the objects in a list
objectList
=
[
M1
,
M2
,
M3
,
Q1
,
Q2
,
Q3
,
E
,
J
]
# set the length of the experiment
maxSimTime
=
float
(
'inf'
)
# call the runSimulation giving the objects and the length of the experiment
runSimulation
(
objectList
,
maxSimTime
)
#loop in the schedule to print the results
returnSchedule
=
[]
# dummy variable used just for returning values and testing
...
...
dream/simulation/Examples/JobShop1Trace.py
View file @
fc56bf36
from
dream.simulation.imports
import
MachineJobShop
,
QueueJobShop
,
ExitJobShop
,
Globals
,
Job
,
G
,
ExcelHandler
from
dream.simulation.imports
import
simpy
G
.
env
=
simpy
.
Environment
()
# define a simpy environment
# this is where all the simulation object 'live'
G
.
trace
=
"Yes"
from
dream.simulation.imports
import
MachineJobShop
,
QueueJobShop
,
ExitJobShop
,
Job
,
ExcelHandler
from
dream.simulation.Globals
import
runSimulation
#define the objects of the model
Q1
=
QueueJobShop
(
'Q1'
,
'Queue1'
,
capacity
=
float
(
"inf"
))
...
...
@@ -15,10 +10,8 @@ M2=MachineJobShop('M2','Machine2')
M3
=
MachineJobShop
(
'M3'
,
'Machine3'
)
E
=
ExitJobShop
(
'E'
,
'Exit'
)
G
.
ObjList
=
[
M1
,
M2
,
M3
,
Q1
,
Q2
,
Q3
,
E
]
#add all the objects in G.ObjList so that they can be easier accessed later
#define the route of the Job in the system
J1R
oute
=
[{
"stationIdsList"
:
[
"Q1"
]},
r
oute
=
[{
"stationIdsList"
:
[
"Q1"
]},
{
"stationIdsList"
:
[
"M1"
],
"processingTime"
:{
"distributionType"
:
"Fixed"
,
"mean"
:
"1"
}},
{
"stationIdsList"
:
[
"Q3"
]},
{
"stationIdsList"
:
[
"M3"
],
"processingTime"
:{
"distributionType"
:
"Fixed"
,
"mean"
:
"3"
}},
...
...
@@ -26,28 +19,15 @@ J1Route=[{"stationIdsList": ["Q1"]},
{
"stationIdsList"
:
[
"M2"
],
"processingTime"
:{
"distributionType"
:
"Fixed"
,
"mean"
:
"2"
}},
{
"stationIdsList"
:
[
"E"
],}]
#define the Jobs
J
=
Job
(
'J1'
,
'Job1'
,
route
=
J1Route
)
G
.
EntityList
=
[
J
]
#a list to hold all the jobs
J
=
Job
(
'J1'
,
'Job1'
,
route
=
route
)
def
main
():
#initialize all the objects
for
object
in
G
.
ObjList
+
G
.
EntityList
:
object
.
initialize
()
#activate all the objects
for
object
in
G
.
ObjList
:
G
.
env
.
process
(
object
.
run
())
#set the WIP
Globals
.
setWIP
(
G
.
EntityList
)
G
.
env
.
run
(
until
=
float
(
"inf"
))
#run the simulation until there are no more events
G
.
maxSimTime
=
E
.
timeLastEntityLeft
#calculate the maxSimTime as the time that the last Job left
#carry on the post processing operations for every object in the topology
for
object
in
G
.
ObjList
:
object
.
postProcessing
()
# add all the objects in a list
objectList
=
[
M1
,
M2
,
M3
,
Q1
,
Q2
,
Q3
,
E
,
J
]
# set the length of the experiment
maxSimTime
=
float
(
'inf'
)
# call the runSimulation giving the objects and the length of the experiment
runSimulation
(
objectList
,
maxSimTime
,
trace
=
'Yes'
)
#loop in the schedule to print the results
schedule
=
[]
...
...
dream/simulation/Examples/JobShop2EDD.py
View file @
fc56bf36
from
dream.simulation.imports
import
MachineJobShop
,
QueueJobShop
,
ExitJobShop
,
Globals
,
Job
,
G
from
dream.simulation.imports
import
simpy
G
.
env
=
simpy
.
Environment
()
# define a simpy environment
# this is where all the simulation object 'live'
from
dream.simulation.imports
import
MachineJobShop
,
QueueJobShop
,
ExitJobShop
,
Job
from
dream.simulation.Globals
import
runSimulation
#define the objects of the model
Q1
=
QueueJobShop
(
'Q1'
,
'Queue1'
,
capacity
=
float
(
"inf"
),
schedulingRule
=
"EDD"
)
...
...
@@ -13,8 +10,6 @@ M2=MachineJobShop('M2','Machine2')
M3
=
MachineJobShop
(
'M3'
,
'Machine3'
)
E
=
ExitJobShop
(
'E'
,
'Exit'
)
G
.
ObjList
=
[
M1
,
M2
,
M3
,
Q1
,
Q2
,
Q3
,
E
]
#add all the objects in G.ObjList so that they can be easier accessed later
#define predecessors and successors for the objects
Q1
.
defineRouting
(
successorList
=
[
M1
])
Q2
.
defineRouting
(
successorList
=
[
M2
])
...
...
@@ -48,32 +43,18 @@ J3Route=[{"stationIdsList": ["Q1"]},
J1
=
Job
(
'J1'
,
'Job1'
,
route
=
J1Route
,
priority
=
1
,
dueDate
=
100
)
J2
=
Job
(
'J2'
,
'Job2'
,
route
=
J2Route
,
priority
=
1
,
dueDate
=
90
)
J3
=
Job
(
'J3'
,
'Job3'
,
route
=
J3Route
,
priority
=
0
,
dueDate
=
110
)
G
.
EntityList
=
[
J1
,
J2
,
J3
]
#a list to hold all the entities
def
main
():
#initialize all the objects
for
object
in
G
.
ObjList
+
G
.
EntityList
:
object
.
initialize
()
#set the WIP
Globals
.
setWIP
(
G
.
EntityList
)
#activate all the objects
for
object
in
G
.
ObjList
:
G
.
env
.
process
(
object
.
run
())
G
.
env
.
run
(
until
=
float
(
"inf"
))
#run the simulation until there are no more events
G
.
maxSimTime
=
E
.
timeLastEntityLeft
#calculate the maxSimTime as the time that the last Job left
#carry on the post processing operations for every object in the topology
for
object
in
G
.
ObjList
:
object
.
postProcessing
()
# add all the objects in a list
objectList
=
[
M1
,
M2
,
M3
,
Q1
,
Q2
,
Q3
,
E
,
J1
,
J2
,
J3
]
# set the length of the experiment
maxSimTime
=
float
(
'inf'
)
# call the runSimulation giving the objects and the length of the experiment
runSimulation
(
objectList
,
maxSimTime
)
#output the schedule of every job
returnSchedule
=
[]
# dummy variable used just for returning values and testing
for
job
in
G
.
EntityList
:
for
job
in
[
J1
,
J2
,
J3
]
:
#loop in the schedule to print the results
for
record
in
job
.
schedule
:
#schedule holds ids of objects. The following loop will identify the name of the CoreObject with the given id
...
...
dream/simulation/Examples/JobShop2MC.py
View file @
fc56bf36
from
dream.simulation.imports
import
MachineJobShop
,
QueueJobShop
,
ExitJobShop
,
Globals
,
Job
,
G
from
dream.simulation.imports
import
simpy
G
.
env
=
simpy
.
Environment
()
# define a simpy environment
# this is where all the simulation object 'live'
from
dream.simulation.imports
import
MachineJobShop
,
QueueJobShop
,
ExitJobShop
,
Job
from
dream.simulation.Globals
import
runSimulation
#define the objects of the model
Q1
=
QueueJobShop
(
'Q1'
,
'Queue1'
,
capacity
=
float
(
"inf"
),
schedulingRule
=
"MC-Priority-EDD"
)
...
...
@@ -13,8 +10,6 @@ M2=MachineJobShop('M2','Machine2')
M3
=
MachineJobShop
(
'M3'
,
'Machine3'
)
E
=
ExitJobShop
(
'E'
,
'Exit'
)
G
.
ObjList
=
[
M1
,
M2
,
M3
,
Q1
,
Q2
,
Q3
,
E
]
#add all the objects in G.ObjList so that they can be easier accessed later
#define predecessors and successors for the objects
Q1
.
defineRouting
(
successorList
=
[
M1
])
Q2
.
defineRouting
(
successorList
=
[
M2
])
...
...
@@ -48,32 +43,18 @@ J3Route=[{"stationIdsList": ["Q1"]},
J1
=
Job
(
'J1'
,
'Job1'
,
route
=
J1Route
,
priority
=
1
,
dueDate
=
100
)
J2
=
Job
(
'J2'
,
'Job2'
,
route
=
J2Route
,
priority
=
1
,
dueDate
=
90
)
J3
=
Job
(
'J3'
,
'Job3'
,
route
=
J3Route
,
priority
=
0
,
dueDate
=
110
)
G
.
EntityList
=
[
J1
,
J2
,
J3
]
#a list to hold all the jobs
def
main
():
#initialize all the objects
for
object
in
G
.
ObjList
+
G
.
EntityList
:
object
.
initialize
()
#set the WIP
Globals
.
setWIP
(
G
.
EntityList
)
#activate all the objects
for
object
in
G
.
ObjList
:
G
.
env
.
process
(
object
.
run
())
G
.
env
.
run
(
until
=
float
(
"inf"
))
#run the simulation until there are no more events
G
.
maxSimTime
=
E
.
timeLastEntityLeft
#calculate the maxSimTime as the time that the last Job left
#carry on the post processing operations for every object in the topology
for
object
in
G
.
ObjList
:
object
.
postProcessing
()
# add all the objects in a list
objectList
=
[
M1
,
M2
,
M3
,
Q1
,
Q2
,
Q3
,
E
,
J1
,
J2
,
J3
]
# set the length of the experiment
maxSimTime
=
float
(
'inf'
)
# call the runSimulation giving the objects and the length of the experiment
runSimulation
(
objectList
,
maxSimTime
)
#output the schedule of every job
returnSchedule
=
[]
# dummy variable used just for returning values and testing
for
job
in
G
.
EntityList
:
for
job
in
[
J1
,
J2
,
J3
]
:
#loop in the schedule to print the results
for
record
in
job
.
schedule
:
#schedule holds ids of objects. The following loop will identify the name of the CoreObject with the given id
...
...
dream/simulation/Examples/JobShop2Priority.py
View file @
fc56bf36
from
dream.simulation.imports
import
MachineJobShop
,
QueueJobShop
,
ExitJobShop
,
Globals
,
Job
,
G
from
dream.simulation.imports
import
simpy
G
.
env
=
simpy
.
Environment
()
# define a simpy environment
# this is where all the simulation object 'live'
from
dream.simulation.imports
import
MachineJobShop
,
QueueJobShop
,
ExitJobShop
,
Job
from
dream.simulation.Globals
import
runSimulation
#define the objects of the model
Q1
=
QueueJobShop
(
'Q1'
,
'Queue1'
,
capacity
=
float
(
"inf"
),
schedulingRule
=
"Priority"
)
...
...
@@ -13,8 +10,6 @@ M2=MachineJobShop('M2','Machine2')
M3
=
MachineJobShop
(
'M3'
,
'Machine3'
)
E
=
ExitJobShop
(
'E'
,
'Exit'
)
G
.
ObjList
=
[
M1
,
M2
,
M3
,
Q1
,
Q2
,
Q3
,
E
]
#add all the objects in G.ObjList so that they can be easier accessed later
#define predecessors and successors for the objects
Q1
.
defineRouting
(
successorList
=
[
M1
])
Q2
.
defineRouting
(
successorList
=
[
M2
])
...
...
@@ -48,32 +43,18 @@ J3Route=[{"stationIdsList": ["Q1"]},
J1
=
Job
(
'J1'
,
'Job1'
,
route
=
J1Route
,
priority
=
1
,
dueDate
=
100
)
J2
=
Job
(
'J2'
,
'Job2'
,
route
=
J2Route
,
priority
=
1
,
dueDate
=
90
)
J3
=
Job
(
'J3'
,
'Job3'
,
route
=
J3Route
,
priority
=
0
,
dueDate
=
110
)
G
.
EntityList
=
[
J1
,
J2
,
J3
]
#a list to hold all the jobs
def
main
():
#initialize all the objects
for
object
in
G
.
ObjList
+
G
.
EntityList
:
object
.
initialize
()
#set the WIP
Globals
.
setWIP
(
G
.
EntityList
)
#activate all the objects
for
object
in
G
.
ObjList
:
G
.
env
.
process
(
object
.
run
())
G
.
env
.
run
(
until
=
float
(
"inf"
))
#run the simulation until there are no more events
G
.
maxSimTime
=
E
.
timeLastEntityLeft
#calculate the maxSimTime as the time that the last Job left
#carry on the post processing operations for every object in the topology
for
object
in
G
.
ObjList
:
object
.
postProcessing
()
# add all the objects in a list
objectList
=
[
M1
,
M2
,
M3
,
Q1
,
Q2
,
Q3
,
E
,
J1
,
J2
,
J3
]
# set the length of the experiment
maxSimTime
=
float
(
'inf'
)
# call the runSimulation giving the objects and the length of the experiment
runSimulation
(
objectList
,
maxSimTime
)
#output the schedule of every job
returnSchedule
=
[]
# dummy variable used just for returning values and testing
for
job
in
G
.
EntityList
:
for
job
in
[
J1
,
J2
,
J3
]
:
#loop in the schedule to print the results
for
record
in
job
.
schedule
:
#schedule holds ids of objects. The following loop will identify the name of the CoreObject with the given id
...
...
dream/simulation/Examples/JobShop2RPC.py
View file @
fc56bf36
from
dream.simulation.imports
import
MachineJobShop
,
QueueJobShop
,
ExitJobShop
,
Globals
,
Job
,
G
from
dream.simulation.imports
import
simpy
G
.
env
=
simpy
.
Environment
()
# define a simpy environment
# this is where all the simulation object 'live'
from
dream.simulation.imports
import
MachineJobShop
,
QueueJobShop
,
ExitJobShop
,
Job
from
dream.simulation.Globals
import
runSimulation
#define the objects of the model
Q1
=
QueueJobShop
(
'Q1'
,
'Queue1'
,
capacity
=
float
(
"inf"
),
schedulingRule
=
"RPC"
)
...
...
@@ -13,8 +10,6 @@ M2=MachineJobShop('M2','Machine2')
M3
=
MachineJobShop
(
'M3'
,
'Machine3'
)
E
=
ExitJobShop
(
'E'
,
'Exit'
)
G
.
ObjList
=
[
M1
,
M2
,
M3
,
Q1
,
Q2
,
Q3
,
E
]
#add all the objects in G.ObjList so that they can be easier accessed later
#define predecessors and successors for the objects
Q1
.
defineRouting
(
successorList
=
[
M1
])
Q2
.
defineRouting
(
successorList
=
[
M2
])
...
...
@@ -48,32 +43,18 @@ J3Route=[{"stationIdsList": ["Q1"]},
J1
=
Job
(
'J1'
,
'Job1'
,
route
=
J1Route
,
priority
=
1
,
dueDate
=
100
)
J2
=
Job
(
'J2'
,
'Job2'
,
route
=
J2Route
,
priority
=
1
,
dueDate
=
90
)
J3
=
Job
(
'J3'
,
'Job3'
,
route
=
J3Route
,
priority
=
0
,
dueDate
=
110
)
G
.
EntityList
=
[
J1
,
J2
,
J3
]
#a list to hold all the jobs
def
main
():
#initialize all the objects
for
object
in
G
.
ObjList
+
G
.
EntityList
:
object
.
initialize
()
#set the WIP
Globals
.
setWIP
(
G
.
EntityList
)
#activate all the objects
for
object
in
G
.
ObjList
:
G
.
env
.
process
(
object
.
run
())
G
.
env
.
run
(
until
=
float
(
"inf"
))
#run the simulation until there are no more events
G
.
maxSimTime
=
E
.
timeLastEntityLeft
#calculate the maxSimTime as the time that the last Job left
#carry on the post processing operations for every object in the topology
for
object
in
G
.
ObjList
:
object
.
postProcessing
()
# add all the objects in a list
objectList
=
[
M1
,
M2
,
M3
,
Q1
,
Q2
,
Q3
,
E
,
J1
,
J2
,
J3
]
# set the length of the experiment
maxSimTime
=
float
(
'inf'
)
# call the runSimulation giving the objects and the length of the experiment
runSimulation
(
objectList
,
maxSimTime
)
#output the schedule of every job
returnSchedule
=
[]
# dummy variable used just for returning values and testing
for
job
in
G
.
EntityList
:
for
job
in
[
J1
,
J2
,
J3
]
:
#loop in the schedule to print the results
for
record
in
job
.
schedule
:
#schedule holds ids of objects. The following loop will identify the name of the CoreObject with the given id
...
...
dream/simulation/Examples/ParallelServers1.py
View file @
fc56bf36
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
Queue
,
G
,
Failure
from
dream.simulation.
imports
import
simpy
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
Queue
,
Failure
from
dream.simulation.
Globals
import
runSimulation
G
.
env
=
simpy
.
Environment
()
# define a simpy environment
# this is where all the simulation object 'live'
#define the objects of the model
S
=
Source
(
'S'
,
'Source'
,
interarrivalTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
0.5
},
entity
=
'Dream.Part'
)
Q
=
Queue
(
'Q'
,
'Queue'
,
capacity
=
float
(
"inf"
))
M1
=
Machine
(
'M1'
,
'Milling1'
,
processingTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
0.25
})
M2
=
Machine
(
'M2'
,
'Milling2'
,
processingTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
0.25
})
E
=
Exit
(
'E1'
,
'Exit'
)
F
=
Failure
(
victim
=
M1
,
distribution
=
{
'distributionType'
:
'Fixed'
,
'MTTF'
:
60
,
'MTTR'
:
5
})
#add objects in lists so that they can be easier accessed later
G
.
ObjList
=
[
S
,
Q
,
M1
,
M2
,
E
]
G
.
ObjectInterruptionList
=
[
F
]
#define predecessors and successors for the objects
S
.
defineRouting
([
Q
])
Q
.
defineRouting
([
S
],[
M1
,
M2
])
...
...
@@ -25,26 +18,17 @@ E.defineRouting([M1,M2])
def
main
():
#initialize all the objects
for
object
in
G
.
ObjList
+
G
.
ObjectInterruptionList
:
object
.
initialize
()
#activate all the objects
for
object
in
G
.
ObjList
+
G
.
ObjectInterruptionList
:
G
.
env
.
process
(
object
.
run
())
G
.
maxSimTime
=
1440.0
#set G.maxSimTime 1440.0 minutes (1 day)
G
.
env
.
run
(
until
=
G
.
maxSimTime
)
#run the simulation
#carry on the post processing operations for every object in the topology
for
object
in
G
.
ObjList
:
object
.
postProcessing
()
# add all the objects in a list
objectList
=
[
S
,
Q
,
M1
,
M2
,
E
,
F
]
# set the length of the experiment
maxSimTime
=
1440.0
# call the runSimulation giving the objects and the length of the experiment
runSimulation
(
objectList
,
maxSimTime
)
#print the results
print
"the system produced"
,
E
.
numOfExits
,
"parts"
working_ratio_M1
=
(
M1
.
totalWorkingTime
/
G
.
maxSimTime
)
*
100
working_ratio_M2
=
(
M2
.
totalWorkingTime
/
G
.
maxSimTime
)
*
100
working_ratio_M1
=
(
M1
.
totalWorkingTime
/
maxSimTime
)
*
100
working_ratio_M2
=
(
M2
.
totalWorkingTime
/
maxSimTime
)
*
100
print
"the working ratio of"
,
M1
.
objName
,
"is"
,
working_ratio_M1
,
"%"
print
"the working ratio of"
,
M2
.
objName
,
"is"
,
working_ratio_M2
,
"%"
return
{
"parts"
:
E
.
numOfExits
,
...
...
dream/simulation/Examples/ParallelServers2.py
View file @
fc56bf36
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
Queue
,
G
,
Globals
,
Failure
from
dream.simulation.imports
import
simpy
G
.
env
=
simpy
.
Environment
()
# define a simpy environment
# this is where all the simulation object 'live'
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
Queue
,
Failure
from
dream.simulation.Globals
import
runSimulation
#the custom queue
class
SelectiveQueue
(
Queue
):
...
...
@@ -20,13 +17,8 @@ Q=SelectiveQueue('Q','Queue', capacity=float("inf"))
M1
=
Machine
(
'M1'
,
'Milling1'
,
processingTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
0.25
})
M2
=
Machine
(
'M2'
,
'Milling2'
,
processingTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
0.25
})
E
=
Exit
(
'E1'
,
'Exit'
)
F
=
Failure
(
victim
=
M1
,
distribution
=
{
'distributionType'
:
'Fixed'
,
'MTTF'
:
60
,
'MTTR'
:
5
})
#add objects in lists so that they can be easier accessed later
G
.
ObjList
=
[
S
,
Q
,
M1
,
M2
,
E
]
G
.
ObjectInterruptionList
=
[
F
]
#define predecessors and successors for the objects
S
.
defineRouting
([
Q
])
Q
.
defineRouting
([
S
],[
M1
,
M2
])
...
...
@@ -36,26 +28,17 @@ E.defineRouting([M1,M2])
def
main
():
#initialize all the objects
for
object
in
G
.
ObjList
+
G
.
ObjectInterruptionList
:
object
.
initialize
()
#activate all the objects
for
object
in
G
.
ObjList
+
G
.
ObjectInterruptionList
:
G
.
env
.
process
(
object
.
run
())
G
.
maxSimTime
=
1440.0
#set G.maxSimTime 1440.0 minutes (1 day)
G
.
env
.
run
(
until
=
G
.
maxSimTime
)
#run the simulation
#carry on the post processing operations for every object in the topology
for
object
in
G
.
ObjList
:
object
.
postProcessing
()
# add all the objects in a list
objectList
=
[
S
,
Q
,
M1
,
M2
,
E
,
F
]
# set the length of the experiment
maxSimTime
=
1440.0
# call the runSimulation giving the objects and the length of the experiment
runSimulation
(
objectList
,
maxSimTime
)
#print the results
print
"the system produced"
,
E
.
numOfExits
,
"parts"
working_ratio_M1
=
(
M1
.
totalWorkingTime
/
G
.
maxSimTime
)
*
100
working_ratio_M2
=
(
M2
.
totalWorkingTime
/
G
.
maxSimTime
)
*
100
working_ratio_M1
=
(
M1
.
totalWorkingTime
/
maxSimTime
)
*
100
working_ratio_M2
=
(
M2
.
totalWorkingTime
/
maxSimTime
)
*
100
print
"the working ratio of"
,
M1
.
objName
,
"is"
,
working_ratio_M1
,
"%"
print
"the working ratio of"
,
M2
.
objName
,
"is"
,
working_ratio_M2
,
"%"
return
{
"parts"
:
E
.
numOfExits
,
...
...
dream/simulation/Examples/ParallelServers3.py
View file @
fc56bf36
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
Queue
,
G
,
Globals
,
Failure
from
dream.simulation.imports
import
simpy
G
.
env
=
simpy
.
Environment
()
# define a simpy environment
# this is where all the simulation object 'live'
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
Queue
,
Globals
,
Failure
,
G
from
dream.simulation.Globals
import
runSimulation
#the custom queue
class
SelectiveQueue
(
Queue
):
...
...
@@ -40,13 +36,8 @@ Q=SelectiveQueue('Q','Queue', capacity=float("inf"))
M1
=
Milling
(
'M1'
,
'Milling1'
,
processingTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
0.25
})
M2
=
Milling
(
'M2'
,
'Milling2'
,
processingTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
0.25
})
E
=
CountingExit
(
'E1'
,
'Exit'
)
F
=
Failure
(
victim
=
M1
,
distribution
=
{
'distributionType'
:
'Fixed'
,
'MTTF'
:
60
,
'MTTR'
:
5
})
#add objects in lists so that they can be easier accessed later
G
.
ObjList
=
[
S
,
Q
,
M1
,
M2
,
E
]
G
.
ObjectInterruptionList
=
[
F
]
#create the global counter variables
G
.
NumM1
=
0
G
.
NumM2
=
0
...
...
@@ -60,26 +51,17 @@ E.defineRouting([M1,M2])
def
main
():
#initialize all the objects
for
object
in
G
.
ObjList
+
G
.
ObjectInterruptionList
:
object
.
initialize
()
#activate all the objects
for
object
in
G
.
ObjList
+
G
.
ObjectInterruptionList
:
G
.
env
.
process
(
object
.
run
())
G
.
maxSimTime
=
1440.0
#set G.maxSimTime 1440.0 minutes (1 day)
G
.
env
.
run
(
until
=
G
.
maxSimTime
)
#run the simulation
#carry on the post processing operations for every object in the topology
for
object
in
G
.
ObjList
:
object
.
postProcessing
()
# add all the objects in a list
objectList
=
[
S
,
Q
,
M1
,
M2
,
E
,
F
]
# set the length of the experiment
maxSimTime
=
1440.0
# call the runSimulation giving the objects and the length of the experiment
runSimulation
(
objectList
,
maxSimTime
)
#print the results
print
"the system produced"
,
E
.
numOfExits
,
"parts"
working_ratio_M1
=
(
M1
.
totalWorkingTime
/
G
.
maxSimTime
)
*
100
working_ratio_M2
=
(
M2
.
totalWorkingTime
/
G
.
maxSimTime
)
*
100
working_ratio_M1
=
(
M1
.
totalWorkingTime
/
maxSimTime
)
*
100
working_ratio_M2
=
(
M2
.
totalWorkingTime
/
maxSimTime
)
*
100
print
"the working ratio of"
,
M1
.
objName
,
"is"
,
working_ratio_M1
,
"%"
print
"the working ratio of"
,
M2
.
objName
,
"is"
,
working_ratio_M2
,
"%"
print
M1
.
objName
,
"produced"
,
G
.
NumM1
,
"parts"
...
...
dream/simulation/Examples/SerialBatchProcessing.py
View file @
fc56bf36
from
dream.simulation.imports
import
Machine
,
BatchSource
,
Exit
,
Batch
,
BatchDecomposition
,
BatchReassembly
,
Queue
,
G
from
dream.simulation.
imports
import
simpy
from
dream.simulation.imports
import
Machine
,
BatchSource
,
Exit
,
Batch
,
BatchDecomposition
,
BatchReassembly
,
Queue
from
dream.simulation.
Globals
import
runSimulation
G
.
env
=
simpy
.
Environment
()
# define a simpy environment
# this is where all the simulation object 'live'
# define the objects of the model
S
=
BatchSource
(
'S'
,
'Source'
,
interarrivalTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
1.5
},
entity
=
'Dream.Batch'
,
batchNumberOfUnits
=
100
)
Q
=
Queue
(
'Q'
,
'StartQueue'
,
capacity
=
100000
)
...
...
@@ -13,8 +11,7 @@ M2=Machine('M2','Machine2',processingTime={'distributionType':'Fixed','mean':1})
BRA
=
BatchReassembly
(
'BRA'
,
'BatchReassembly'
,
numberOfSubBatches
=
4
,
processingTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
0
})
M3
=
Machine
(
'M3'
,
'Machine3'
,
processingTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
1
})
E
=
Exit
(
'E'
,
'Exit'
)
# add all the objects in the G.ObjList so that they can be easier accessed later
G
.
ObjList
=
[
S
,
Q
,
BD
,
M1
,
Q1
,
M2
,
BRA
,
M3
,
E
]
# define the predecessors and successors for the objects
S
.
defineRouting
([
Q
])
Q
.
defineRouting
([
S
],[
BD
])
...
...
@@ -27,38 +24,30 @@ M3.defineRouting([BRA],[E])
E
.
defineRouting
([
M3
])
def
main
():
# initialize all the objects
for
object
in
G
.
ObjList
:
object
.
initialize
()
#activate all the objects
for
object
in
G
.
ObjList
:
G
.
env
.
process
(
object
.
run
())
# set G.maxSimTime 1440.0 minutes (1 day)
G
.
maxSimTime
=
1440.0
# run the simulation
G
.
env
.
run
(
until
=
G
.
maxSimTime
)
# carry on the post processing operations for every object in the topology
for
object
in
G
.
ObjList
:
object
.
postProcessing
()
# add all the objects in a list
objectList
=
[
S
,
Q
,
BD
,
M1
,
Q1
,
M2
,
BRA
,
M3
,
E
]
# set the length of the experiment
maxSimTime
=
1440.0
# call the runSimulation giving the objects and the length of the experiment
runSimulation
(
objectList
,
maxSimTime
)
# print the results
print
"the system produced"
,
E
.
numOfExits
,
"batches"
working_ratio_M1
=
(
M1
.
totalWorkingTime
/
G
.
maxSimTime
)
*
100
blockage_ratio_M1
=
(
M1
.
totalBlockageTime
/
G
.
maxSimTime
)
*
100
waiting_ratio_M1
=
(
M1
.
totalWaitingTime
/
G
.
maxSimTime
)
*
100
working_ratio_M1
=
(
M1
.
totalWorkingTime
/
maxSimTime
)
*
100
blockage_ratio_M1
=
(
M1
.
totalBlockageTime
/
maxSimTime
)
*
100
waiting_ratio_M1
=
(
M1
.
totalWaitingTime
/
maxSimTime
)
*
100
print
"the working ratio of"
,
M1
.
objName
,
"is"
,
working_ratio_M1
print
"the blockage ratio of"
,
M1
.
objName
,
'is'
,
blockage_ratio_M1
print
"the waiting ratio of"
,
M1
.
objName
,
'is'
,
waiting_ratio_M1
working_ratio_M2
=
(
M2
.
totalWorkingTime
/
G
.
maxSimTime
)
*
100
blockage_ratio_M2
=
(
M2
.
totalBlockageTime
/
G
.
maxSimTime
)
*
100
waiting_ratio_M2
=
(
M2
.
totalWaitingTime
/
G
.
maxSimTime
)
*
100
working_ratio_M2
=
(
M2
.
totalWorkingTime
/
maxSimTime
)
*
100
blockage_ratio_M2
=
(
M2
.
totalBlockageTime
/
maxSimTime
)
*
100
waiting_ratio_M2
=
(
M2
.
totalWaitingTime
/
maxSimTime
)
*
100
print
"the working ratio of"
,
M2
.
objName
,
"is"
,
working_ratio_M2
print
"the blockage ratio of"
,
M2
.
objName
,
'is'
,
blockage_ratio_M2
print
"the waiting ratio of"
,
M2
.
objName
,
'is'
,
waiting_ratio_M2
working_ratio_M3
=
(
M3
.
totalWorkingTime
/
G
.
maxSimTime
)
*
100
blockage_ratio_M3
=
(
M3
.
totalBlockageTime
/
G
.
maxSimTime
)
*
100
waiting_ratio_M3
=
(
M3
.
totalWaitingTime
/
G
.
maxSimTime
)
*
100
working_ratio_M3
=
(
M3
.
totalWorkingTime
/
maxSimTime
)
*
100
blockage_ratio_M3
=
(
M3
.
totalBlockageTime
/
maxSimTime
)
*
100
waiting_ratio_M3
=
(
M3
.
totalWaitingTime
/
maxSimTime
)
*
100
print
"the working ratio of"
,
M3
.
objName
,
"is"
,
working_ratio_M3
print
"the blockage ratio of"
,
M3
.
objName
,
'is'
,
blockage_ratio_M3
print
"the waiting ratio of"
,
M3
.
objName
,
'is'
,
waiting_ratio_M3
...
...
dream/simulation/Examples/ServerWithShift1.py
View file @
fc56bf36
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
G
,
ShiftScheduler
from
dream.simulation.imports
import
simpy
G
.
env
=
simpy
.
Environment
()
# define a simpy environment
# this is where all the simulation object 'live'
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
ShiftScheduler
from
dream.simulation.Globals
import
runSimulation
#define the objects of the model
S
=
Source
(
'S1'
,
'Source'
,
interarrivalTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
0.5
},
entity
=
'Dream.Part'
)
M
=
Machine
(
'M1'
,
'Machine'
,
processingTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
3
})
E
=
Exit
(
'E1'
,
'Exit'
)
G
.
ObjList
=
[
S
,
M
,
E
]
#add all the objects in a list so that they can be easier accessed later
#create the shift
SS
=
ShiftScheduler
(
victim
=
M
,
shiftPattern
=
[[
0
,
5
],[
10
,
15
]])
G
.
ObjectInterruptionList
=
[
SS
]
#add all the interruptions in a list so that they can be easier accessed later
#define predecessors and successors for the objects
S
.
defineRouting
(
successorList
=
[
M
])
...
...
@@ -22,26 +15,17 @@ E.defineRouting(predecessorList=[M])
def
main
():
#initialize all the objects
for
object
in
G
.
ObjList
+
G
.
ObjectInterruptionList
:
object
.
initialize
()
#activate all the objects
for
object
in
G
.
ObjList
+
G
.
ObjectInterruptionList
:
G
.
env
.
process
(
object
.
run
())
G
.
maxSimTime
=
20
#set G.maxSimTime 1440.0 minutes (1 day)
G
.
env
.
run
(
G
.
maxSimTime
)
#run the simulation
#carry on the post processing operations for every object in the topology
for
object
in
G
.
ObjList
:
object
.
postProcessing
()
# add all the objects in a list
objectList
=
[
S
,
M
,
E
,
SS
]
# set the length of the experiment
maxSimTime
=
20.0
# call the runSimulation giving the objects and the length of the experiment
runSimulation
(
objectList
,
maxSimTime
)
#print the results
print
"the system produced"
,
E
.
numOfExits
,
"parts"
working_ratio
=
(
M
.
totalWorkingTime
/
G
.
maxSimTime
)
*
100
off_shift_ratio
=
(
M
.
totalOffShiftTime
/
G
.
maxSimTime
)
*
100
working_ratio
=
(
M
.
totalWorkingTime
/
maxSimTime
)
*
100
off_shift_ratio
=
(
M
.
totalOffShiftTime
/
maxSimTime
)
*
100
print
"the total working ratio of the Machine is"
,
working_ratio
,
"%"
print
"the total off-shift ratio of the Machine is"
,
off_shift_ratio
,
"%"
return
{
"parts"
:
E
.
numOfExits
,
...
...
dream/simulation/Examples/ServerWithShift2.py
View file @
fc56bf36
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
G
,
ShiftScheduler
from
dream.simulation.imports
import
simpy
G
.
env
=
simpy
.
Environment
()
# define a simpy environment
# this is where all the simulation object 'live'
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
ShiftScheduler
from
dream.simulation.Globals
import
runSimulation
#define the objects of the model
S
=
Source
(
'S1'
,
'Source'
,
interarrivalTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
0.5
},
entity
=
'Dream.Part'
)
M
=
Machine
(
'M1'
,
'Machine'
,
processingTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
3
})
E
=
Exit
(
'E1'
,
'Exit'
)
G
.
ObjList
=
[
S
,
M
,
E
]
#add all the objects in a list so that they can be easier accessed later
# create a repeated shift pattern
shiftPattern
=
[]
i
=
0
...
...
@@ -21,7 +16,6 @@ print shiftPattern
#create the shift
SS
=
ShiftScheduler
(
victim
=
M
,
shiftPattern
=
shiftPattern
)
G
.
ObjectInterruptionList
=
[
SS
]
#add all the interruptions in a list so that they can be easier accessed later
#define predecessors and successors for the objects
S
.
defineRouting
(
successorList
=
[
M
])
...
...
@@ -30,26 +24,17 @@ E.defineRouting(predecessorList=[M])
def
main
():
#initialize all the objects
for
object
in
G
.
ObjList
+
G
.
ObjectInterruptionList
:
object
.
initialize
()
#activate all the objects
for
object
in
G
.
ObjList
+
G
.
ObjectInterruptionList
:
G
.
env
.
process
(
object
.
run
())
G
.
maxSimTime
=
100
#set G.maxSimTime 1440.0 minutes (1 day)
G
.
env
.
run
(
G
.
maxSimTime
)
#run the simulation
#carry on the post processing operations for every object in the topology
for
object
in
G
.
ObjList
:
object
.
postProcessing
()
# add all the objects in a list
objectList
=
[
S
,
M
,
E
,
SS
]
# set the length of the experiment
maxSimTime
=
100.0
# call the runSimulation giving the objects and the length of the experiment
runSimulation
(
objectList
,
maxSimTime
)
#print the results
print
"the system produced"
,
E
.
numOfExits
,
"parts"
working_ratio
=
(
M
.
totalWorkingTime
/
G
.
maxSimTime
)
*
100
off_shift_ratio
=
(
M
.
totalOffShiftTime
/
G
.
maxSimTime
)
*
100
working_ratio
=
(
M
.
totalWorkingTime
/
maxSimTime
)
*
100
off_shift_ratio
=
(
M
.
totalOffShiftTime
/
maxSimTime
)
*
100
print
"the total working ratio of the Machine is"
,
working_ratio
,
"%"
print
"the total off-shift ratio of the Machine is"
,
off_shift_ratio
,
"%"
return
{
"parts"
:
E
.
numOfExits
,
...
...
dream/simulation/Examples/ServerWithShift3.py
View file @
fc56bf36
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
G
,
ShiftScheduler
from
dream.simulation.imports
import
simpy
G
.
env
=
simpy
.
Environment
()
# define a simpy environment
# this is where all the simulation object 'live'
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
ShiftScheduler
from
dream.simulation.Globals
import
runSimulation
#define the objects of the model
S
=
Source
(
'S1'
,
'Source'
,
interarrivalTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
0.5
},
entity
=
'Dream.Part'
)
M
=
Machine
(
'M1'
,
'Machine'
,
processingTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
3
})
E
=
Exit
(
'E1'
,
'Exit'
)
G
.
ObjList
=
[
S
,
M
,
E
]
#add all the objects in a list so that they can be easier accessed later
#create the shift
SS
=
ShiftScheduler
(
victim
=
M
,
shiftPattern
=
[[
0
,
5
],[
10
,
15
]],
endUnfinished
=
True
)
G
.
ObjectInterruptionList
=
[
SS
]
#add all the interruptions in a list so that they can be easier accessed later
#define predecessors and successors for the objects
S
.
defineRouting
(
successorList
=
[
M
])
...
...
@@ -22,26 +15,17 @@ E.defineRouting(predecessorList=[M])
def
main
():
#initialize all the objects
for
object
in
G
.
ObjList
+
G
.
ObjectInterruptionList
:
object
.
initialize
()
#activate all the objects
for
object
in
G
.
ObjList
+
G
.
ObjectInterruptionList
:
G
.
env
.
process
(
object
.
run
())
G
.
maxSimTime
=
20
#set G.maxSimTime 1440.0 minutes (1 day)
G
.
env
.
run
(
G
.
maxSimTime
)
#run the simulation
#carry on the post processing operations for every object in the topology
for
object
in
G
.
ObjList
:
object
.
postProcessing
()
# add all the objects in a list
objectList
=
[
S
,
M
,
E
,
SS
]
# set the length of the experiment
maxSimTime
=
20.0
# call the runSimulation giving the objects and the length of the experiment
runSimulation
(
objectList
,
maxSimTime
)
#print the results
print
"the system produced"
,
E
.
numOfExits
,
"parts"
working_ratio
=
(
M
.
totalWorkingTime
/
G
.
maxSimTime
)
*
100
off_shift_ratio
=
(
M
.
totalOffShiftTime
/
G
.
maxSimTime
)
*
100
working_ratio
=
(
M
.
totalWorkingTime
/
maxSimTime
)
*
100
off_shift_ratio
=
(
M
.
totalOffShiftTime
/
maxSimTime
)
*
100
print
"the total working ratio of the Machine is"
,
working_ratio
,
"%"
print
"the total off-shift ratio of the Machine is"
,
off_shift_ratio
,
"%"
return
{
"parts"
:
E
.
numOfExits
,
...
...
dream/simulation/Examples/ServerWithShift4.py
View file @
fc56bf36
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
G
,
ShiftScheduler
from
dream.simulation.imports
import
simpy
G
.
env
=
simpy
.
Environment
()
# define a simpy environment
# this is where all the simulation object 'live'
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
ShiftScheduler
from
dream.simulation.Globals
import
runSimulation
#define the objects of the model
S
=
Source
(
'S1'
,
'Source'
,
interarrivalTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
0.5
},
entity
=
'Dream.Part'
)
M
=
Machine
(
'M1'
,
'Machine'
,
processingTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
3
})
E
=
Exit
(
'E1'
,
'Exit'
)
G
.
ObjList
=
[
S
,
M
,
E
]
#add all the objects in a list so that they can be easier accessed later
#create the shift
SS
=
ShiftScheduler
(
victim
=
M
,
shiftPattern
=
[[
0
,
5
],[
10
,
15
]],
receiveBeforeEndThreshold
=
3
)
G
.
ObjectInterruptionList
=
[
SS
]
#add all the interruptions in a list so that they can be easier accessed later
SS
=
ShiftScheduler
(
victim
=
M
,
shiftPattern
=
[[
0
,
5
],[
10
,
15
]],
receiveBeforeEndThreshold
=
3
)
#define predecessors and successors for the objects
S
.
defineRouting
(
successorList
=
[
M
])
...
...
@@ -22,26 +15,17 @@ E.defineRouting(predecessorList=[M])
def
main
():
#initialize all the objects
for
object
in
G
.
ObjList
+
G
.
ObjectInterruptionList
:
object
.
initialize
()
#activate all the objects
for
object
in
G
.
ObjList
+
G
.
ObjectInterruptionList
:
G
.
env
.
process
(
object
.
run
())
G
.
maxSimTime
=
20
#set G.maxSimTime 1440.0 minutes (1 day)
G
.
env
.
run
(
G
.
maxSimTime
)
#run the simulation
#carry on the post processing operations for every object in the topology
for
object
in
G
.
ObjList
:
object
.
postProcessing
()
# add all the objects in a list
objectList
=
[
S
,
M
,
E
,
SS
]
# set the length of the experiment
maxSimTime
=
20.0
# call the runSimulation giving the objects and the length of the experiment
runSimulation
(
objectList
,
maxSimTime
)
#print the results
print
"the system produced"
,
E
.
numOfExits
,
"parts"
working_ratio
=
(
M
.
totalWorkingTime
/
G
.
maxSimTime
)
*
100
off_shift_ratio
=
(
M
.
totalOffShiftTime
/
G
.
maxSimTime
)
*
100
working_ratio
=
(
M
.
totalWorkingTime
/
maxSimTime
)
*
100
off_shift_ratio
=
(
M
.
totalOffShiftTime
/
maxSimTime
)
*
100
print
"the total working ratio of the Machine is"
,
working_ratio
,
"%"
print
"the total off-shift ratio of the Machine is"
,
off_shift_ratio
,
"%"
return
{
"parts"
:
E
.
numOfExits
,
...
...
dream/simulation/Examples/SingleServer.py
View file @
fc56bf36
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
G
from
dream.simulation.imports
import
simpy
G
.
env
=
simpy
.
Environment
()
# define a simpy environment
# this is where all the simulation object 'live'
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
from
dream.simulation.Globals
import
runSimulation
#define the objects of the model
S
=
Source
(
'S1'
,
'Source'
,
interarrivalTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
0.5
},
entity
=
'Dream.Part'
)
M
=
Machine
(
'M1'
,
'Machine'
,
processingTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
0.25
})
E
=
Exit
(
'E1'
,
'Exit'
)
G
.
ObjList
=
[
S
,
M
,
E
]
#add all the objects in G.ObjList so that they can be easier accessed later
#define predecessors and successors for the objects
S
.
defineRouting
(
successorList
=
[
M
])
M
.
defineRouting
(
predecessorList
=
[
S
],
successorList
=
[
E
])
E
.
defineRouting
(
predecessorList
=
[
M
])
def
main
():
#initialize all the objects
for
object
in
G
.
ObjList
:
object
.
initialize
()
#activate all the objects
for
object
in
G
.
ObjList
:
G
.
env
.
process
(
object
.
run
())
G
.
maxSimTime
=
1440.0
#set G.maxSimTime 1440.0 minutes (1 day)
G
.
env
.
run
(
G
.
maxSimTime
)
#run the simulation
#carry on the post processing operations for every object in the topology
for
object
in
G
.
ObjList
:
object
.
postProcessing
()
# add all the objects in a list
objectList
=
[
S
,
M
,
E
]
# set the length of the experiment
maxSimTime
=
1440.0
# call the runSimulation giving the objects and the length of the experiment
runSimulation
(
objectList
,
maxSimTime
)
#print the results
print
"the system produced"
,
E
.
numOfExits
,
"parts"
working_ratio
=
(
M
.
totalWorkingTime
/
G
.
maxSimTime
)
*
100
working_ratio
=
(
M
.
totalWorkingTime
/
maxSimTime
)
*
100
print
"the total working ratio of the Machine is"
,
working_ratio
,
"%"
return
{
"parts"
:
E
.
numOfExits
,
"working_ratio"
:
working_ratio
}
...
...
dream/simulation/Examples/TwoServers.py
View file @
fc56bf36
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
G
,
Repairman
,
Queue
,
Failure
from
dream.simulation.imports
import
simpy
G
.
env
=
simpy
.
Environment
()
# define a simpy environment
# this is where all the simulation object 'live'
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
Repairman
,
Queue
,
Failure
from
dream.simulation.Globals
import
runSimulation
#define the objects of the model
R
=
Repairman
(
'R1'
,
'Bob'
)
...
...
@@ -11,16 +8,10 @@ M1=Machine('M1','Machine1', processingTime={'distributionType':'Fixed','mean':0.
Q
=
Queue
(
'Q1'
,
'Queue'
)
M2
=
Machine
(
'M2'
,
'Machine2'
,
processingTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
1.5
})
E
=
Exit
(
'E1'
,
'Exit'
)
#create failures
F1
=
Failure
(
victim
=
M1
,
distribution
=
{
'distributionType'
:
'Fixed'
,
'MTTF'
:
60
,
'MTTR'
:
5
},
repairman
=
R
)
F2
=
Failure
(
victim
=
M2
,
distribution
=
{
'distributionType'
:
'Fixed'
,
'MTTF'
:
40
,
'MTTR'
:
10
},
repairman
=
R
)
#add objects in lists so that they can be easier accessed later
G
.
ObjList
=
[
S
,
M1
,
M2
,
E
,
Q
]
G
.
ObjectResourceList
=
[
R
]
G
.
ObjectInterruptionList
=
[
F1
,
F2
]
#define predecessors and successors for the objects
S
.
defineRouting
([
M1
])
M1
.
defineRouting
([
S
],[
Q
])
...
...
@@ -30,26 +21,17 @@ E.defineRouting([M2])
def
main
():
#initialize all the objects
for
object
in
G
.
ObjList
+
G
.
ObjectInterruptionList
+
G
.
ObjectResourceList
:
object
.
initialize
()
#activate all the objects
for
object
in
G
.
ObjList
+
G
.
ObjectInterruptionList
:
G
.
env
.
process
(
object
.
run
())
G
.
maxSimTime
=
1440.0
#set G.maxSimTime 1440.0 minutes (1 day)
G
.
env
.
run
(
until
=
G
.
maxSimTime
)
#run the simulation
#carry on the post processing operations for every object in the topology
for
object
in
G
.
ObjList
+
G
.
ObjectResourceList
:
object
.
postProcessing
()
# add all the objects in a list
objectList
=
[
S
,
M1
,
M2
,
E
,
Q
,
R
,
F1
,
F2
]
# set the length of the experiment
maxSimTime
=
1440.0
# call the runSimulation giving the objects and the length of the experiment
runSimulation
(
objectList
,
maxSimTime
)
#print the results
print
"the system produced"
,
E
.
numOfExits
,
"parts"
blockage_ratio
=
(
M1
.
totalBlockageTime
/
G
.
maxSimTime
)
*
100
working_ratio
=
(
R
.
totalWorkingTime
/
G
.
maxSimTime
)
*
100
blockage_ratio
=
(
M1
.
totalBlockageTime
/
maxSimTime
)
*
100
working_ratio
=
(
R
.
totalWorkingTime
/
maxSimTime
)
*
100
print
"the blockage ratio of"
,
M1
.
objName
,
"is"
,
blockage_ratio
,
"%"
print
"the working ratio of"
,
R
.
objName
,
"is"
,
working_ratio
,
"%"
return
{
"parts"
:
E
.
numOfExits
,
...
...
dream/simulation/Examples/TwoServersPlots.py
View file @
fc56bf36
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
G
,
Repairman
,
Queue
,
Failure
from
dream.simulation.imports
import
simpy
#import Graphs
from
dream.KnowledgeExtraction.Plots
import
Graphs
G
.
env
=
simpy
.
Environment
()
# define a simpy environment
# this is where all the simulation object 'live'
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
Repairman
,
Queue
,
Failure
from
dream.simulation.Globals
import
runSimulation
#define the objects of the model
R
=
Repairman
(
'R1'
,
'Bob'
)
...
...
@@ -14,16 +8,10 @@ M1=Machine('M1','Machine1', processingTime={'distributionType':'Fixed','mean':0.
Q
=
Queue
(
'Q1'
,
'Queue'
)
M2
=
Machine
(
'M2'
,
'Machine2'
,
processingTime
=
{
'distributionType'
:
'Fixed'
,
'mean'
:
1.5
})
E
=
Exit
(
'E1'
,
'Exit'
)
#create failures
F1
=
Failure
(
victim
=
M1
,
distribution
=
{
'distributionType'
:
'Fixed'
,
'MTTF'
:
60
,
'MTTR'
:
5
},
repairman
=
R
)
F2
=
Failure
(
victim
=
M2
,
distribution
=
{
'distributionType'
:
'Fixed'
,
'MTTF'
:
40
,
'MTTR'
:
10
},
repairman
=
R
)
#add objects in lists so that they can be easier accessed later
G
.
ObjList
=
[
S
,
M1
,
M2
,
E
,
Q
]
G
.
ObjectResourceList
=
[
R
]
G
.
ObjectInterruptionList
=
[
F1
,
F2
]
#define predecessors and successors for the objects
S
.
defineRouting
([
M1
])
M1
.
defineRouting
([
S
],[
Q
])
...
...
@@ -31,34 +19,26 @@ Q.defineRouting([M1],[M2])
M2
.
defineRouting
([
Q
],[
E
])
E
.
defineRouting
([
M2
])
def
main
():
#initialize all the objects
for
object
in
G
.
ObjList
+
G
.
ObjectInterruptionList
+
G
.
ObjectResourceList
:
object
.
initialize
()
#activate all the objects
for
object
in
G
.
ObjList
+
G
.
ObjectInterruptionList
:
G
.
env
.
process
(
object
.
run
())
G
.
maxSimTime
=
1440.0
#set G.maxSimTime 1440.0 minutes (1 day)
G
.
env
.
run
(
until
=
G
.
maxSimTime
)
#run the simulation
#carry on the post processing operations for every object in the topology
for
object
in
G
.
ObjList
+
G
.
ObjectResourceList
:
object
.
postProcessing
()
# add all the objects in a list
objectList
=
[
S
,
M1
,
M2
,
E
,
Q
,
R
,
F1
,
F2
]
# set the length of the experiment
maxSimTime
=
1440.0
# call the runSimulation giving the objects and the length of the experiment
runSimulation
(
objectList
,
maxSimTime
)
#print the results
print
"the system produced"
,
E
.
numOfExits
,
"parts"
blockage_ratio
=
(
M1
.
totalBlockageTime
/
G
.
maxSimTime
)
*
100
working_ratio
=
(
R
.
totalWorkingTime
/
G
.
maxSimTime
)
*
100
waiting_ratio
=
(
R
.
totalWaitingTime
/
G
.
maxSimTime
)
*
100
blockage_ratio
=
(
M1
.
totalBlockageTime
/
maxSimTime
)
*
100
blockage_ratio
=
(
M1
.
totalBlockageTime
/
maxSimTime
)
*
100
working_ratio
=
(
R
.
totalWorkingTime
/
maxSimTime
)
*
100
waiting_ratio
=
(
R
.
totalWaitingTime
/
maxSimTime
)
*
100
print
"the blockage ratio of"
,
M1
.
objName
,
"is"
,
blockage_ratio
,
"%"
print
"the working ratio of"
,
R
.
objName
,
"is"
,
working_ratio
,
"%"
#create a graph object
from
dream.KnowledgeExtraction.Plots
import
Graphs
graph
=
Graphs
()
#create the pie
graph
.
Pie
([
working_ratio
,
waiting_ratio
],
"repairmanPie.jpg"
)
...
...
dream/simulation/Examples/TwoServersStochastic.py
View file @
fc56bf36
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
G
,
Repairman
,
Queue
,
Failure
from
dream.simulation.
imports
import
simpy
from
dream.simulation.imports
import
Machine
,
Source
,
Exit
,
Part
,
Repairman
,
Queue
,
Failure
from
dream.simulation.
Globals
import
runSimulation
#define the objects of the model
R
=
Repairman
(
'R1'
,
'Bob'
)
...
...
@@ -8,15 +8,9 @@ M1=Machine('M1','Machine1', processingTime={'distributionType':'Normal','mean':0
M2
=
Machine
(
'M2'
,
'Machine2'
,
processingTime
=
{
'distributionType'
:
'Normal'
,
'mean'
:
1.5
,
'stdev'
:
0.3
,
'min'
:
0.5
,
'max'
:
5
})
Q
=
Queue
(
'Q1'
,
'Queue'
)
E
=
Exit
(
'E1'
,
'Exit'
)
#create failures
F1
=
Failure
(
victim
=
M1
,
distribution
=
{
'distributionType'
:
'Fixed'
,
'MTTF'
:
60
,
'MTTR'
:
5
},
repairman
=
R
)
F2
=
Failure
(
victim
=
M2
,
distribution
=
{
'distributionType'
:
'Fixed'
,
'MTTF'
:
40
,
'MTTR'
:
10
},
repairman
=
R
)
#add objects in lists so that they can be easier accessed later
G
.
ObjList
=
[
S
,
M1
,
M2
,
E
,
Q
]
G
.
ObjectResourceList
=
[
R
]
G
.
ObjectInterruptionList
=
[
F1
,
F2
]
F2
=
Failure
(
victim
=
M2
,
distribution
=
{
'distributionType'
:
'Fixed'
,
'MTTF'
:
40
,
'MTTR'
:
10
},
repairman
=
R
)
#define predecessors and successors for the objects
S
.
defineRouting
([
M1
])
...
...
@@ -25,48 +19,26 @@ Q.defineRouting([M1],[M2])
M2
.
defineRouting
([
Q
],[
E
])
E
.
defineRouting
([
M2
])
G
.
maxSimTime
=
1440.0
#set G.maxSimTime 1440.0 minutes (1 day)
G
.
numberOfReplications
=
10
#set 10 replications
G
.
confidenceLevel
=
0.99
#set the confidence level. 0.99=99%
def
main
():
throughputList
=
[]
# a list to hold the throughput of each replication
#run the replications
for
i
in
range
(
G
.
numberOfReplications
):
G
.
seed
+=
1
#increment the seed so that we get different random numbers in each run.
G
.
env
=
simpy
.
Environment
()
# define a simpy environment
# this is where all the simulation object 'live'
#initialize all the objects
for
object
in
G
.
ObjList
+
G
.
ObjectInterruptionList
+
G
.
ObjectResourceList
:
object
.
initialize
()
#activate all the objects
for
object
in
G
.
ObjList
+
G
.
ObjectInterruptionList
:
G
.
env
.
process
(
object
.
run
())
G
.
env
.
run
(
until
=
G
.
maxSimTime
)
#run the simulation
#carry on the post processing operations for every object in the topology
for
object
in
G
.
ObjList
+
G
.
ObjectResourceList
:
object
.
postProcessing
()
# append the number of exits in the throughputLis
t
throughputList
.
append
(
E
.
numOfExits
)
# add all the objects in a list
objectList
=
[
S
,
M1
,
M2
,
E
,
Q
,
R
,
F1
,
F2
]
# set the length of the experiment
maxSimTime
=
1440.0
# call the runSimulation giving the objects and the length of the experimen
t
runSimulation
(
objectList
,
maxSimTime
,
numberOfReplications
=
10
,
seed
=
1
)
print
'The exit of each replication is:'
print
throughputList
print
E
.
Exits
# calculate confidence interval using the Knowledge Extraction tool
from
dream.KnowledgeExtraction.ConfidenceIntervals
import
Intervals
from
dream.KnowledgeExtraction.StatisticalMeasures
import
BasicStatisticalMeasures
BSM
=
BasicStatisticalMeasures
()
lb
,
ub
=
Intervals
().
ConfidIntervals
(
throughputList
,
0.95
)
lb
,
ub
=
Intervals
().
ConfidIntervals
(
E
.
Exits
,
0.95
)
print
'the 95% confidence interval for the throughput is:'
print
'lower bound:'
,
lb
print
'mean:'
,
BSM
.
mean
(
throughputList
)
print
'mean:'
,
BSM
.
mean
(
E
.
Exits
)
print
'upper bound:'
,
ub
if
__name__
==
'__main__'
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment