Jupyter: Added experimental integration between pivottablejs and Pandas.DataFrame
pivottablejs is a very useful pivot table implementation in Javascript that alllows the user to create his own tables and charts. And also they had examples of integration with Pandas.DataFrame objects and Jupyter. So this is highly based on that. **ATTENTION**: this is an experimental integration and does not follow the ERP5 Javascript standards. It will be refactored in the future to use RenderJS and JIO. The integration generates an HTML page template which starts the pivot table and have a placeholder for the data, that will be later replaced with a Data Frame data as CSV. After this replacement the page is stored in the memcached server and then served from there, through a Script (Python) object, inside an HTML iframe. The iframe is necessary because a lot of Javascript libraries that are not included in the Jupyter web page are loaded. A web page with id "PivotTableJs_getMovementHistoryList" was created to demo how pivottablejs can be integrated within ERP5, either using AJAX or not. In the process of this integration a simple external method to render iPython's display classes (Images, Video, Youtube, IFrame, etc) was created. It will be refactored and polished along with the kernel itself in the future.
... | @@ -14,6 +14,110 @@ mime_type = 'text/plain' | ... | @@ -14,6 +14,110 @@ mime_type = 'text/plain' |
status = u'ok' | status = u'ok' | ||
ename, evalue, tb_list = None, None, None | ename, evalue, tb_list = None, None, None | ||
def Base_executeJupyter(self, python_expression=None, reference=None, title=None, request_reference=False, **kw): | |||
|
|||
context = self | |||
portal = context.getPortalObject() | |||
# Check permissions for current user and display message to non-authorized user | |||
if not portal.Base_checkPermission('portal_components', 'Manage Portal'): | |||
return "You are not authorized to access the script" | |||
import json | |||
# Convert the request_reference argument string to their respeced boolean values | |||
request_reference = {'True': True, 'False': False}.get(request_reference, False) | |||
|
|||
# Return python dictionary with title and reference of all notebooks | |||
# for request_reference=True | |||
if request_reference: | |||
data_notebook_list = portal.portal_catalog(portal_type='Data Notebook') | |||
notebook_detail_list = [{'reference': obj.getReference(), 'title': obj.getTitle()} for obj in data_notebook_list] | |||
|
|||
return notebook_detail_list | |||
if not reference: | |||
message = "Please set or use reference for the notebook you want to use" | |||
return message | |||
# Take python_expression as '' for empty code from jupyter frontend | |||
if not python_expression: | |||
python_expression = '' | |||
# Get Data Notebook with the specific reference | |||
data_notebook = portal.portal_catalog.getResultValue(portal_type='Data Notebook', | |||
reference=reference) | |||
# Create new Data Notebook if reference doesn't match with any from existing ones | |||
if not data_notebook: | |||
notebook_module = portal.getDefaultModule(portal_type='Data Notebook') | |||
data_notebook = notebook_module.DataNotebookModule_addDataNotebook( | |||
title=title, | |||
reference=reference, | |||
batch_mode=True | |||
) | |||
# Add new Data Notebook Line to the Data Notebook | |||
data_notebook_line = data_notebook.DataNotebook_addDataNotebookLine( | |||
notebook_code=python_expression, | |||
batch_mode=True | |||
) | |||
# Get active_process associated with data_notebook object | |||
process_id = data_notebook.getProcess() | |||
active_process = portal.portal_activities[process_id] | |||
# Add a result object to Active Process object | |||
result_list = active_process.getResultList() | |||
# Get local variables saves in Active Result, local varibales are saved as | |||
# persistent mapping object | |||
old_local_variable_dict = result_list[0].summary | |||
if not old_local_variable_dict: | |||
old_local_variable_dict = context.Base_addLocalVariableDict() | |||
# Pass all to code Base_runJupyter external function which would execute the code | |||
# and returns a dict of result | |||
final_result = Base_compileJupyterCode(self, python_expression, old_local_variable_dict) | |||
code_result = final_result['result_string'] | |||
new_local_variable_dict = final_result['local_variable_dict'] | |||
ename = final_result['ename'] | |||
evalue = final_result['evalue'] | |||
traceback = final_result['traceback'] | |||
status = final_result['status'] | |||
mime_type = final_result['mime_type'] | |||
# Call to function to update persistent mapping object with new local variables | |||
# and save the variables in the Active Result pertaining to the current Data Notebook | |||
new_dict = context.Base_updateLocalVariableDict(new_local_variable_dict) | |||
result_list[0].edit(summary=new_dict) | |||
result = { | |||
u'code_result': code_result, | |||
u'ename': ename, | |||
u'evalue': evalue, | |||
u'traceback': traceback, | |||
u'status': status, | |||
u'mime_type': mime_type | |||
} | |||
# Catch exception while seriaizing the result to be passed to jupyter frontend | |||
# and in case of error put code_result as None and status as 'error' which would | |||
# be shown by Jupyter frontend | |||
try: | |||
serialized_result = json.dumps(result) | |||
except UnicodeDecodeError: | |||
result = { | |||
u'code_result': None, | |||
u'ename': u'UnicodeDecodeError', | |||
u'evalue': None, | |||
u'traceback': None, | |||
u'status': u'error', | |||
u'mime_type': mime_type | |||
} | |||
serialized_result = json.dumps(result) | |||
data_notebook_line.edit(notebook_code_result=code_result, mime_type=mime_type) | |||
return serialized_result | |||
def Base_compileJupyterCode(self, jupyter_code, old_local_variable_dict): | def Base_compileJupyterCode(self, jupyter_code, old_local_variable_dict): | ||
""" | """ | ||
Function to execute jupyter code and update the local_varibale dictionary. | Function to execute jupyter code and update the local_varibale dictionary. | ||
... | @@ -122,6 +226,7 @@ def Base_compileJupyterCode(self, jupyter_code, old_local_variable_dict): | ... | @@ -122,6 +226,7 @@ def Base_compileJupyterCode(self, jupyter_code, old_local_variable_dict): |
for node in to_run_interactive: | for node in to_run_interactive: | ||
mod = ast.Interactive([node]) | mod = ast.Interactive([node]) | ||
code = compile(mod, '<string>', "single") | code = compile(mod, '<string>', "single") | ||
context = self | |||
exec(code, g, g) | exec(code, g, g) | ||
# Letting the code fail in case of error while executing the python script/code | # Letting the code fail in case of error while executing the python script/code | ||
... | @@ -189,6 +294,22 @@ def UpdateLocalVariableDict(self, existing_dict): | ... | @@ -189,6 +294,22 @@ def UpdateLocalVariableDict(self, existing_dict): |
for key, val in existing_dict['imports'].iteritems(): | for key, val in existing_dict['imports'].iteritems(): | ||
new_dict['imports'][key] = val | new_dict['imports'][key] = val | ||
return new_dict | return new_dict | ||
def Base_displayHTML(self, node): | |||
""" | |||
External function to identify Jupyter display classes and render them as | |||
HTML. There are many classes from IPython.core.display or IPython.lib.display | |||
that we can use to display media, like audios, videos, images and generic | |||
HTML/CSS/Javascript. All of them hold their HTML representation in the | |||
`_repr_html_` method. | |||
""" | |||
if getattr(node, '_repr_html_'): | |||
global mime_type | |||
mime_type = 'text/html' | |||
html = node._repr_html_() | |||
print html | |||
return | |||
def Base_displayImage(self, image_object=None): | def Base_displayImage(self, image_object=None): | ||
""" | """ | ||
... | @@ -324,3 +445,82 @@ def getError(self, previous=1): | ... | @@ -324,3 +445,82 @@ def getError(self, previous=1): |
tb_list = [l+'\n' for l in error['tb_text'].split('\n')] | tb_list = [l+'\n' for l in error['tb_text'].split('\n')] | ||
return None | return None | ||
def storeIFrame(self, html, key): | |||
memcached_tool = self.getPortalObject().portal_memcached | |||
memcached_dict = memcached_tool.getMemcachedDict(key_prefix='pivottablejs', plugin_path='portal_memcached/default_memcached_plugin') | |||
memcached_dict[key] = html | |||
return True | |||
def erp5PivotTableUI(self, df, erp5_url): | |||
from IPython.display import IFrame | |||
template = """ | |||
<!DOCTYPE html> | |||
<html> | |||
<head> | |||
<title>PivotTable.js</title> | |||
<!-- external libs from cdnjs --> | |||
<link rel="stylesheet" type="text/css" href="https://cdnjs.cloudflare.com/ajax/libs/c3/0.4.10/c3.min.css"> | |||
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/jquery/1.11.2/jquery.min.js"></script> | |||
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/jqueryui/1.11.4/jquery-ui.min.js"></script> | |||
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min.js"></script> | |||
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/jquery-csv/0.71/jquery.csv-0.71.min.js"></script> | |||
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/c3/0.4.10/c3.min.js"></script> | |||
<link rel="stylesheet" type="text/css" href="https://cdnjs.cloudflare.com/ajax/libs/pivottable/2.0.2/pivot.min.css"> | |||
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/pivottable/2.0.2/pivot.min.js"></script> | |||
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/pivottable/2.0.2/d3_renderers.min.js"></script> | |||
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/pivottable/2.0.2/c3_renderers.min.js"></script> | |||
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/pivottable/2.0.2/export_renderers.min.js"></script> | |||
<style> | |||
body {font-family: Verdana;} | |||
.node { | |||
border: solid 1px white; | |||
font: 10px sans-serif; | |||
line-height: 12px; | |||
overflow: hidden; | |||
position: absolute; | |||
text-indent: 2px; | |||
} | |||
.c3-line, .c3-focused {stroke-width: 3px !important;} | |||
.c3-bar {stroke: white !important; stroke-width: 1;} | |||
.c3 text { font-size: 12px; color: grey;} | |||
.tick line {stroke: white;} | |||
.c3-axis path {stroke: grey;} | |||
.c3-circle { opacity: 1 !important; } | |||
</style> | |||
</head> | |||
<body> | |||
<script type="text/javascript"> | |||
$(function(){ | |||
if(window.location != window.parent.location) | |||
$("<a>", {target:"_blank", href:""}) | |||
.text("[pop out]").prependTo($("body")); | |||
$("#output").pivotUI( | |||
$.csv.toArrays($("#output").text()), | |||
{ | |||
renderers: $.extend( | |||
$.pivotUtilities.renderers, | |||
$.pivotUtilities.c3_renderers, | |||
$.pivotUtilities.d3_renderers, | |||
$.pivotUtilities.export_renderers | |||
), | |||
hiddenAttributes: [""] | |||
} | |||
).show(); | |||
}); | |||
</script> | |||
<div id="output" style="display: none;">%s</div> | |||
</body> | |||
</html> | |||
""" | |||
html_string = template % df.to_csv() | |||
from hashlib import sha512 | |||
key = sha512(html_string).hexdigest() | |||
storeIFrame(self, html_string, key) | |||
url = "%s/Base_displayPivotTableFrame?key=%s" % (erp5_url, key) | |||
iframe = IFrame(src=url, width='100%', height='500') | |||
return Base_displayHTML(self, iframe) |