disk-io.c 128 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
Chris Mason's avatar
Chris Mason committed
2 3 4 5
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 */

Chris Mason's avatar
Chris Mason committed
6
#include <linux/fs.h>
7
#include <linux/blkdev.h>
8
#include <linux/radix-tree.h>
9
#include <linux/writeback.h>
10
#include <linux/workqueue.h>
11
#include <linux/kthread.h>
12
#include <linux/slab.h>
13
#include <linux/migrate.h>
14
#include <linux/ratelimit.h>
15
#include <linux/uuid.h>
16
#include <linux/semaphore.h>
17
#include <linux/error-injection.h>
18
#include <linux/crc32c.h>
19
#include <linux/sched/mm.h>
20
#include <asm/unaligned.h>
21
#include <crypto/hash.h>
22 23
#include "ctree.h"
#include "disk-io.h"
24
#include "transaction.h"
25
#include "btrfs_inode.h"
26
#include "volumes.h"
27
#include "print-tree.h"
28
#include "locking.h"
29
#include "tree-log.h"
30
#include "free-space-cache.h"
31
#include "free-space-tree.h"
32
#include "inode-map.h"
33
#include "check-integrity.h"
34
#include "rcu-string.h"
35
#include "dev-replace.h"
David Woodhouse's avatar
David Woodhouse committed
36
#include "raid56.h"
37
#include "sysfs.h"
38
#include "qgroup.h"
39
#include "compression.h"
40
#include "tree-checker.h"
41
#include "ref-verify.h"
42
#include "block-group.h"
43
#include "discard.h"
44
#include "space-info.h"
45

46 47 48 49
#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
				 BTRFS_HEADER_FLAG_RELOC |\
				 BTRFS_SUPER_FLAG_ERROR |\
				 BTRFS_SUPER_FLAG_SEEDING |\
50 51
				 BTRFS_SUPER_FLAG_METADUMP |\
				 BTRFS_SUPER_FLAG_METADUMP_V2)
52

53
static const struct extent_io_ops btree_extent_io_ops;
54
static void end_workqueue_fn(struct btrfs_work *work);
55
static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57
				      struct btrfs_fs_info *fs_info);
58
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59
static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 61
					struct extent_io_tree *dirty_pages,
					int mark);
62
static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63
				       struct extent_io_tree *pinned_extents);
64 65
static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66

67
/*
68 69
 * btrfs_end_io_wq structs are used to do processing in task context when an IO
 * is complete.  This is used during reads to verify checksums, and it is used
70 71
 * by writes to insert metadata for new file extents after IO is complete.
 */
72
struct btrfs_end_io_wq {
73 74 75 76
	struct bio *bio;
	bio_end_io_t *end_io;
	void *private;
	struct btrfs_fs_info *info;
77
	blk_status_t status;
78
	enum btrfs_wq_endio_type metadata;
79
	struct btrfs_work work;
80
};
81

82 83 84 85 86 87 88
static struct kmem_cache *btrfs_end_io_wq_cache;

int __init btrfs_end_io_wq_init(void)
{
	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
					sizeof(struct btrfs_end_io_wq),
					0,
89
					SLAB_MEM_SPREAD,
90 91 92 93 94 95
					NULL);
	if (!btrfs_end_io_wq_cache)
		return -ENOMEM;
	return 0;
}

96
void __cold btrfs_end_io_wq_exit(void)
97
{
98
	kmem_cache_destroy(btrfs_end_io_wq_cache);
99 100
}

101 102 103 104 105 106
static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
{
	if (fs_info->csum_shash)
		crypto_free_shash(fs_info->csum_shash);
}

107 108 109 110 111
/*
 * async submit bios are used to offload expensive checksumming
 * onto the worker threads.  They checksum file and metadata bios
 * just before they are sent down the IO stack.
 */
112
struct async_submit_bio {
113
	void *private_data;
114
	struct bio *bio;
115
	extent_submit_bio_start_t *submit_bio_start;
116
	int mirror_num;
117 118 119 120 121
	/*
	 * bio_offset is optional, can be used if the pages in the bio
	 * can't tell us where in the file the bio should go
	 */
	u64 bio_offset;
122
	struct btrfs_work work;
123
	blk_status_t status;
124 125
};

126 127 128 129 130 131 132 133
/*
 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 * the level the eb occupies in the tree.
 *
 * Different roots are used for different purposes and may nest inside each
 * other and they require separate keysets.  As lockdep keys should be
 * static, assign keysets according to the purpose of the root as indicated
134 135
 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 * roots have separate keysets.
136
 *
137 138 139
 * Lock-nesting across peer nodes is always done with the immediate parent
 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 * subclass to avoid triggering lockdep warning in such cases.
140
 *
141 142 143
 * The key is set by the readpage_end_io_hook after the buffer has passed
 * csum validation but before the pages are unlocked.  It is also set by
 * btrfs_init_new_buffer on freshly allocated blocks.
144
 *
145 146 147
 * We also add a check to make sure the highest level of the tree is the
 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 * needs update as well.
148 149 150 151 152
 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
# if BTRFS_MAX_LEVEL != 8
#  error
# endif
153 154 155 156 157 158 159 160 161 162 163 164 165

static struct btrfs_lockdep_keyset {
	u64			id;		/* root objectid */
	const char		*name_stem;	/* lock name stem */
	char			names[BTRFS_MAX_LEVEL + 1][20];
	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
} btrfs_lockdep_keysets[] = {
	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
166
	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
167 168 169
	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
170
	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
171
	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
172
	{ .id = 0,				.name_stem = "tree"	},
173
};
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

void __init btrfs_init_lockdep(void)
{
	int i, j;

	/* initialize lockdep class names */
	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];

		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
			snprintf(ks->names[j], sizeof(ks->names[j]),
				 "btrfs-%s-%02d", ks->name_stem, j);
	}
}

void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
				    int level)
{
	struct btrfs_lockdep_keyset *ks;

	BUG_ON(level >= ARRAY_SIZE(ks->keys));

	/* find the matching keyset, id 0 is the default entry */
	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
		if (ks->id == objectid)
			break;

	lockdep_set_class_and_name(&eb->lock,
				   &ks->keys[level], ks->names[level]);
}

205 206
#endif

207 208 209 210
/*
 * extents on the btree inode are pretty simple, there's one extent
 * that covers the entire device
 */
211
struct extent_map *btree_get_extent(struct btrfs_inode *inode,
212 213
				    struct page *page, size_t pg_offset,
				    u64 start, u64 len)
214
{
215
	struct extent_map_tree *em_tree = &inode->extent_tree;
216 217 218
	struct extent_map *em;
	int ret;

219
	read_lock(&em_tree->lock);
220
	em = lookup_extent_mapping(em_tree, start, len);
221
	if (em) {
222
		read_unlock(&em_tree->lock);
223
		goto out;
224
	}
225
	read_unlock(&em_tree->lock);
226

227
	em = alloc_extent_map();
228 229 230 231 232
	if (!em) {
		em = ERR_PTR(-ENOMEM);
		goto out;
	}
	em->start = 0;
233
	em->len = (u64)-1;
234
	em->block_len = (u64)-1;
235
	em->block_start = 0;
236

237
	write_lock(&em_tree->lock);
Josef Bacik's avatar
Josef Bacik committed
238
	ret = add_extent_mapping(em_tree, em, 0);
239 240
	if (ret == -EEXIST) {
		free_extent_map(em);
241
		em = lookup_extent_mapping(em_tree, start, len);
242
		if (!em)
243
			em = ERR_PTR(-EIO);
244
	} else if (ret) {
245
		free_extent_map(em);
246
		em = ERR_PTR(ret);
247
	}
248
	write_unlock(&em_tree->lock);
249

250 251
out:
	return em;
252 253
}

254
/*
255
 * Compute the csum of a btree block and store the result to provided buffer.
256
 */
257
static void csum_tree_block(struct extent_buffer *buf, u8 *result)
258
{
259
	struct btrfs_fs_info *fs_info = buf->fs_info;
260
	const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
261
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
262
	char *kaddr;
263
	int i;
264 265 266

	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
267 268 269
	kaddr = page_address(buf->pages[0]);
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
			    PAGE_SIZE - BTRFS_CSUM_SIZE);
270

271 272 273
	for (i = 1; i < num_pages; i++) {
		kaddr = page_address(buf->pages[i]);
		crypto_shash_update(shash, kaddr, PAGE_SIZE);
274
	}
275
	memset(result, 0, BTRFS_CSUM_SIZE);
276
	crypto_shash_final(shash, result);
277 278
}

279 280 281 282 283 284
/*
 * we can't consider a given block up to date unless the transid of the
 * block matches the transid in the parent node's pointer.  This is how we
 * detect blocks that either didn't get written at all or got written
 * in the wrong place.
 */
285
static int verify_parent_transid(struct extent_io_tree *io_tree,
286 287
				 struct extent_buffer *eb, u64 parent_transid,
				 int atomic)
288
{
289
	struct extent_state *cached_state = NULL;
290
	int ret;
291
	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
292 293 294 295

	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
		return 0;

296 297 298
	if (atomic)
		return -EAGAIN;

299 300
	if (need_lock) {
		btrfs_tree_read_lock(eb);
301
		btrfs_set_lock_blocking_read(eb);
302 303
	}

304
	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
305
			 &cached_state);
306
	if (extent_buffer_uptodate(eb) &&
307 308 309 310
	    btrfs_header_generation(eb) == parent_transid) {
		ret = 0;
		goto out;
	}
311 312 313
	btrfs_err_rl(eb->fs_info,
		"parent transid verify failed on %llu wanted %llu found %llu",
			eb->start,
314
			parent_transid, btrfs_header_generation(eb));
315
	ret = 1;
316 317 318 319

	/*
	 * Things reading via commit roots that don't have normal protection,
	 * like send, can have a really old block in cache that may point at a
320
	 * block that has been freed and re-allocated.  So don't clear uptodate
321 322 323 324 325 326
	 * if we find an eb that is under IO (dirty/writeback) because we could
	 * end up reading in the stale data and then writing it back out and
	 * making everybody very sad.
	 */
	if (!extent_buffer_under_io(eb))
		clear_extent_buffer_uptodate(eb);
327
out:
328
	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
329
			     &cached_state);
330 331
	if (need_lock)
		btrfs_tree_read_unlock_blocking(eb);
332 333 334
	return ret;
}

335 336 337 338
static bool btrfs_supported_super_csum(u16 csum_type)
{
	switch (csum_type) {
	case BTRFS_CSUM_TYPE_CRC32:
339
	case BTRFS_CSUM_TYPE_XXHASH:
340
	case BTRFS_CSUM_TYPE_SHA256:
341
	case BTRFS_CSUM_TYPE_BLAKE2:
342 343 344 345 346 347
		return true;
	default:
		return false;
	}
}

348 349 350 351
/*
 * Return 0 if the superblock checksum type matches the checksum value of that
 * algorithm. Pass the raw disk superblock data.
 */
352 353
static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
				  char *raw_disk_sb)
354 355 356
{
	struct btrfs_super_block *disk_sb =
		(struct btrfs_super_block *)raw_disk_sb;
357
	char result[BTRFS_CSUM_SIZE];
358 359 360 361
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);

	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
362

363 364 365 366 367
	/*
	 * The super_block structure does not span the whole
	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
	 * filled with zeros and is included in the checksum.
	 */
368 369 370
	crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
	crypto_shash_final(shash, result);
371

372 373
	if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
		return 1;
374

375
	return 0;
376 377
}

378
int btrfs_verify_level_key(struct extent_buffer *eb, int level,
379
			   struct btrfs_key *first_key, u64 parent_transid)
380
{
381
	struct btrfs_fs_info *fs_info = eb->fs_info;
382 383 384 385 386 387
	int found_level;
	struct btrfs_key found_key;
	int ret;

	found_level = btrfs_header_level(eb);
	if (found_level != level) {
388 389
		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
		     KERN_ERR "BTRFS: tree level check failed\n");
390 391 392 393 394 395 396 397 398
		btrfs_err(fs_info,
"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
			  eb->start, level, found_level);
		return -EIO;
	}

	if (!first_key)
		return 0;

399 400 401 402 403 404 405 406
	/*
	 * For live tree block (new tree blocks in current transaction),
	 * we need proper lock context to avoid race, which is impossible here.
	 * So we only checks tree blocks which is read from disk, whose
	 * generation <= fs_info->last_trans_committed.
	 */
	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
		return 0;
407 408 409 410 411 412 413 414 415 416

	/* We have @first_key, so this @eb must have at least one item */
	if (btrfs_header_nritems(eb) == 0) {
		btrfs_err(fs_info,
		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
			  eb->start);
		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
		return -EUCLEAN;
	}

417 418 419 420 421 422 423
	if (found_level)
		btrfs_node_key_to_cpu(eb, &found_key, 0);
	else
		btrfs_item_key_to_cpu(eb, &found_key, 0);
	ret = btrfs_comp_cpu_keys(first_key, &found_key);

	if (ret) {
424 425
		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
		     KERN_ERR "BTRFS: tree first key check failed\n");
426
		btrfs_err(fs_info,
427 428 429 430 431
"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
			  eb->start, parent_transid, first_key->objectid,
			  first_key->type, first_key->offset,
			  found_key.objectid, found_key.type,
			  found_key.offset);
432 433 434 435
	}
	return ret;
}

436 437 438
/*
 * helper to read a given tree block, doing retries as required when
 * the checksums don't match and we have alternate mirrors to try.
439 440 441 442
 *
 * @parent_transid:	expected transid, skip check if 0
 * @level:		expected level, mandatory check
 * @first_key:		expected key of first slot, skip check if NULL
443
 */
444
static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
445 446
					  u64 parent_transid, int level,
					  struct btrfs_key *first_key)
447
{
448
	struct btrfs_fs_info *fs_info = eb->fs_info;
449
	struct extent_io_tree *io_tree;
450
	int failed = 0;
451 452 453
	int ret;
	int num_copies = 0;
	int mirror_num = 0;
454
	int failed_mirror = 0;
455

456
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
457
	while (1) {
458
		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
459
		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
460
		if (!ret) {
461
			if (verify_parent_transid(io_tree, eb,
462
						   parent_transid, 0))
463
				ret = -EIO;
464
			else if (btrfs_verify_level_key(eb, level,
465
						first_key, parent_transid))
466 467 468
				ret = -EUCLEAN;
			else
				break;
469
		}
470

471
		num_copies = btrfs_num_copies(fs_info,
472
					      eb->start, eb->len);
473
		if (num_copies == 1)
474
			break;
475

476 477 478 479 480
		if (!failed_mirror) {
			failed = 1;
			failed_mirror = eb->read_mirror;
		}

481
		mirror_num++;
482 483 484
		if (mirror_num == failed_mirror)
			mirror_num++;

485
		if (mirror_num > num_copies)
486
			break;
487
	}
488

489
	if (failed && !ret && failed_mirror)
490
		btrfs_repair_eb_io_failure(eb, failed_mirror);
491 492

	return ret;
493
}
494

495
/*
496 497
 * checksum a dirty tree block before IO.  This has extra checks to make sure
 * we only fill in the checksum field in the first page of a multi-page block
498
 */
499

500
static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
501
{
Miao Xie's avatar
Miao Xie committed
502
	u64 start = page_offset(page);
503
	u64 found_start;
504 505
	u8 result[BTRFS_CSUM_SIZE];
	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
506
	struct extent_buffer *eb;
507
	int ret;
508

509 510 511
	eb = (struct extent_buffer *)page->private;
	if (page != eb->pages[0])
		return 0;
512

513
	found_start = btrfs_header_bytenr(eb);
514 515 516 517 518 519 520 521 522
	/*
	 * Please do not consolidate these warnings into a single if.
	 * It is useful to know what went wrong.
	 */
	if (WARN_ON(found_start != start))
		return -EUCLEAN;
	if (WARN_ON(!PageUptodate(page)))
		return -EUCLEAN;

523
	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
524 525
				    offsetof(struct btrfs_header, fsid),
				    BTRFS_FSID_SIZE) == 0);
526

527
	csum_tree_block(eb, result);
528

529 530 531 532 533 534
	if (btrfs_header_level(eb))
		ret = btrfs_check_node(eb);
	else
		ret = btrfs_check_leaf_full(eb);

	if (ret < 0) {
535
		btrfs_print_tree(eb, 0);
536 537 538
		btrfs_err(fs_info,
		"block=%llu write time tree block corruption detected",
			  eb->start);
539
		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
540 541
		return ret;
	}
542
	write_extent_buffer(eb, result, 0, csum_size);
543

544
	return 0;
545 546
}

547
static int check_tree_block_fsid(struct extent_buffer *eb)
Yan Zheng's avatar
Yan Zheng committed
548
{
549
	struct btrfs_fs_info *fs_info = eb->fs_info;
550
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
551
	u8 fsid[BTRFS_FSID_SIZE];
Yan Zheng's avatar
Yan Zheng committed
552 553
	int ret = 1;

554 555
	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
			   BTRFS_FSID_SIZE);
Yan Zheng's avatar
Yan Zheng committed
556
	while (fs_devices) {
557 558 559 560 561 562 563 564 565 566 567 568 569 570
		u8 *metadata_uuid;

		/*
		 * Checking the incompat flag is only valid for the current
		 * fs. For seed devices it's forbidden to have their uuid
		 * changed so reading ->fsid in this case is fine
		 */
		if (fs_devices == fs_info->fs_devices &&
		    btrfs_fs_incompat(fs_info, METADATA_UUID))
			metadata_uuid = fs_devices->metadata_uuid;
		else
			metadata_uuid = fs_devices->fsid;

		if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
Yan Zheng's avatar
Yan Zheng committed
571 572 573 574 575 576 577 578
			ret = 0;
			break;
		}
		fs_devices = fs_devices->seed;
	}
	return ret;
}

579 580 581
static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
				      u64 phy_offset, struct page *page,
				      u64 start, u64 end, int mirror)
582 583 584 585
{
	u64 found_start;
	int found_level;
	struct extent_buffer *eb;
586 587
	struct btrfs_fs_info *fs_info;
	u16 csum_size;
588
	int ret = 0;
589
	u8 result[BTRFS_CSUM_SIZE];
590
	int reads_done;
591 592 593

	if (!page->private)
		goto out;
594

595
	eb = (struct extent_buffer *)page->private;
596 597
	fs_info = eb->fs_info;
	csum_size = btrfs_super_csum_size(fs_info->super_copy);
598

599 600 601
	/* the pending IO might have been the only thing that kept this buffer
	 * in memory.  Make sure we have a ref for all this other checks
	 */
602
	atomic_inc(&eb->refs);
603 604

	reads_done = atomic_dec_and_test(&eb->io_pages);
605 606
	if (!reads_done)
		goto err;
607

608
	eb->read_mirror = mirror;
609
	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
610 611 612 613
		ret = -EIO;
		goto err;
	}

614
	found_start = btrfs_header_bytenr(eb);
615
	if (found_start != eb->start) {
616 617
		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
			     eb->start, found_start);
618
		ret = -EIO;
619 620
		goto err;
	}
621
	if (check_tree_block_fsid(eb)) {
622 623
		btrfs_err_rl(fs_info, "bad fsid on block %llu",
			     eb->start);
624 625 626
		ret = -EIO;
		goto err;
	}
627
	found_level = btrfs_header_level(eb);
628
	if (found_level >= BTRFS_MAX_LEVEL) {
629 630
		btrfs_err(fs_info, "bad tree block level %d on %llu",
			  (int)btrfs_header_level(eb), eb->start);
631 632 633
		ret = -EIO;
		goto err;
	}
634

635 636
	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
				       eb, found_level);
637

638
	csum_tree_block(eb, result);
639

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
		u32 val;
		u32 found = 0;

		memcpy(&found, result, csum_size);

		read_extent_buffer(eb, &val, 0, csum_size);
		btrfs_warn_rl(fs_info,
		"%s checksum verify failed on %llu wanted %x found %x level %d",
			      fs_info->sb->s_id, eb->start,
			      val, found, btrfs_header_level(eb));
		ret = -EUCLEAN;
		goto err;
	}

655 656 657 658 659
	/*
	 * If this is a leaf block and it is corrupt, set the corrupt bit so
	 * that we don't try and read the other copies of this block, just
	 * return -EIO.
	 */
660
	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
661 662 663
		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
		ret = -EIO;
	}
664

665
	if (found_level > 0 && btrfs_check_node(eb))
Liu Bo's avatar
Liu Bo committed
666 667
		ret = -EIO;

668 669
	if (!ret)
		set_extent_buffer_uptodate(eb);
670 671 672 673
	else
		btrfs_err(fs_info,
			  "block=%llu read time tree block corruption detected",
			  eb->start);
674
err:
675 676
	if (reads_done &&
	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
677
		btree_readahead_hook(eb, ret);
Arne Jansen's avatar
Arne Jansen committed
678

David Woodhouse's avatar
David Woodhouse committed
679 680 681 682 683 684 685
	if (ret) {
		/*
		 * our io error hook is going to dec the io pages
		 * again, we have to make sure it has something
		 * to decrement
		 */
		atomic_inc(&eb->io_pages);
686
		clear_extent_buffer_uptodate(eb);
David Woodhouse's avatar
David Woodhouse committed
687
	}
688
	free_extent_buffer(eb);
689
out:
690
	return ret;
691 692
}

693
static void end_workqueue_bio(struct bio *bio)
694
{
695
	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
696
	struct btrfs_fs_info *fs_info;
697
	struct btrfs_workqueue *wq;
698 699

	fs_info = end_io_wq->info;
700
	end_io_wq->status = bio->bi_status;
701

702
	if (bio_op(bio) == REQ_OP_WRITE) {
703
		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
704
			wq = fs_info->endio_meta_write_workers;
705
		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
706
			wq = fs_info->endio_freespace_worker;
707
		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
708
			wq = fs_info->endio_raid56_workers;
709
		else
710
			wq = fs_info->endio_write_workers;
711
	} else {
712
		if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
713
			wq = fs_info->endio_repair_workers;
714
		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
715
			wq = fs_info->endio_raid56_workers;
716
		else if (end_io_wq->metadata)
717
			wq = fs_info->endio_meta_workers;
718
		else
719
			wq = fs_info->endio_workers;
720
	}
721

722
	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
723
	btrfs_queue_work(wq, &end_io_wq->work);
724 725
}

726
blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
727
			enum btrfs_wq_endio_type metadata)
728
{
729
	struct btrfs_end_io_wq *end_io_wq;
730

731
	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
732
	if (!end_io_wq)
733
		return BLK_STS_RESOURCE;
734 735 736

	end_io_wq->private = bio->bi_private;
	end_io_wq->end_io = bio->bi_end_io;
737
	end_io_wq->info = info;
738
	end_io_wq->status = 0;
739
	end_io_wq->bio = bio;
740
	end_io_wq->metadata = metadata;
741 742 743

	bio->bi_private = end_io_wq;
	bio->bi_end_io = end_workqueue_bio;
744 745 746
	return 0;
}

747 748 749
static void run_one_async_start(struct btrfs_work *work)
{
	struct async_submit_bio *async;
750
	blk_status_t ret;
751 752

	async = container_of(work, struct  async_submit_bio, work);
753
	ret = async->submit_bio_start(async->private_data, async->bio,
754 755
				      async->bio_offset);
	if (ret)
756
		async->status = ret;
757 758
}

759 760 761 762 763 764 765 766
/*
 * In order to insert checksums into the metadata in large chunks, we wait
 * until bio submission time.   All the pages in the bio are checksummed and
 * sums are attached onto the ordered extent record.
 *
 * At IO completion time the csums attached on the ordered extent record are
 * inserted into the tree.
 */
767
static void run_one_async_done(struct btrfs_work *work)
768 769
{
	struct async_submit_bio *async;
770 771
	struct inode *inode;
	blk_status_t ret;
772 773

	async = container_of(work, struct  async_submit_bio, work);
774
	inode = async->private_data;
775

776
	/* If an error occurred we just want to clean up the bio and move on */
777 778
	if (async->status) {
		async->bio->bi_status = async->status;
779
		bio_endio(async->bio);
780 781 782
		return;
	}

783 784 785 786 787 788
	/*
	 * All of the bios that pass through here are from async helpers.
	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
	 * This changes nothing when cgroups aren't in use.
	 */
	async->bio->bi_opf |= REQ_CGROUP_PUNT;
789
	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
790 791 792 793
	if (ret) {
		async->bio->bi_status = ret;
		bio_endio(async->bio);
	}
794 795 796 797 798 799 800
}

static void run_one_async_free(struct btrfs_work *work)
{
	struct async_submit_bio *async;

	async = container_of(work, struct  async_submit_bio, work);
801 802 803
	kfree(async);
}

804 805 806
blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
				 int mirror_num, unsigned long bio_flags,
				 u64 bio_offset, void *private_data,
807
				 extent_submit_bio_start_t *submit_bio_start)
808 809 810 811 812
{
	struct async_submit_bio *async;

	async = kmalloc(sizeof(*async), GFP_NOFS);
	if (!async)
813
		return BLK_STS_RESOURCE;
814

815
	async->private_data = private_data;
816 817
	async->bio = bio;
	async->mirror_num = mirror_num;
818 819
	async->submit_bio_start = submit_bio_start;

820 821
	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
			run_one_async_free);
822

823
	async->bio_offset = bio_offset;
824

825
	async->status = 0;
826

827
	if (op_is_sync(bio->bi_opf))
828
		btrfs_set_work_high_priority(&async->work);
829

830
	btrfs_queue_work(fs_info->workers, &async->work);
831 832 833
	return 0;
}

834
static blk_status_t btree_csum_one_bio(struct bio *bio)
835
{
836
	struct bio_vec *bvec;
837
	struct btrfs_root *root;
838
	int ret = 0;
839
	struct bvec_iter_all iter_all;
840

841
	ASSERT(!bio_flagged(bio, BIO_CLONED));
842
	bio_for_each_segment_all(bvec, bio, iter_all) {
843
		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
844
		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
845 846
		if (ret)
			break;
847
	}
848

849
	return errno_to_blk_status(ret);
850 851
}

852
static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
853
					     u64 bio_offset)
854
{
855 856
	/*
	 * when we're called for a write, we're already in the async
857
	 * submission context.  Just jump into btrfs_map_bio
858
	 */
859
	return btree_csum_one_bio(bio);
860
}
861

862 863
static int check_async_write(struct btrfs_fs_info *fs_info,
			     struct btrfs_inode *bi)
864
{
865 866
	if (atomic_read(&bi->sync_writers))
		return 0;
867
	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
868 869 870 871
		return 0;
	return 1;
}

872
static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
873 874
					  int mirror_num,
					  unsigned long bio_flags)
875
{
876
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
877
	int async = check_async_write(fs_info, BTRFS_I(inode));
878
	blk_status_t ret;
879

880
	if (bio_op(bio) != REQ_OP_WRITE) {
881 882 883 884
		/*
		 * called for a read, do the setup so that checksum validation
		 * can happen in the async kernel threads
		 */
885 886
		ret = btrfs_bio_wq_end_io(fs_info, bio,
					  BTRFS_WQ_ENDIO_METADATA);
887
		if (ret)
888
			goto out_w_error;
889
		ret = btrfs_map_bio(fs_info, bio, mirror_num);
890 891 892
	} else if (!async) {
		ret = btree_csum_one_bio(bio);
		if (ret)
893
			goto out_w_error;
894
		ret = btrfs_map_bio(fs_info, bio, mirror_num);
895 896 897 898 899
	} else {
		/*
		 * kthread helpers are used to submit writes so that
		 * checksumming can happen in parallel across all CPUs
		 */
900
		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
901
					  0, inode, btree_submit_bio_start);
902
	}
903

904 905 906 907
	if (ret)
		goto out_w_error;
	return 0;

908
out_w_error:
909
	bio->bi_status = ret;
910
	bio_endio(bio);
911
	return ret;
912 913
}

Jan Beulich's avatar
Jan Beulich committed
914
#ifdef CONFIG_MIGRATION
915
static int btree_migratepage(struct address_space *mapping,
916 917
			struct page *newpage, struct page *page,
			enum migrate_mode mode)
918 919 920 921 922 923 924 925 926 927 928 929 930 931
{
	/*
	 * we can't safely write a btree page from here,
	 * we haven't done the locking hook
	 */
	if (PageDirty(page))
		return -EAGAIN;
	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
	if (page_has_private(page) &&
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;
932
	return migrate_page(mapping, newpage, page, mode);
933
}
Jan Beulich's avatar
Jan Beulich committed
934
#endif
935

936 937 938 939

static int btree_writepages(struct address_space *mapping,
			    struct writeback_control *wbc)
{
940 941 942
	struct btrfs_fs_info *fs_info;
	int ret;

943
	if (wbc->sync_mode == WB_SYNC_NONE) {
944 945 946 947

		if (wbc->for_kupdate)
			return 0;

948
		fs_info = BTRFS_I(mapping->host)->root->fs_info;
949
		/* this is a bit racy, but that's ok */
950 951 952
		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
					     BTRFS_DIRTY_METADATA_THRESH,
					     fs_info->dirty_metadata_batch);
953
		if (ret < 0)
954 955
			return 0;
	}
956
	return btree_write_cache_pages(mapping, wbc);
957 958
}

959
static int btree_readpage(struct file *file, struct page *page)
960
{
961
	return extent_read_full_page(page, btree_get_extent, 0);
962
}
Chris Mason's avatar
Chris Mason committed
963

964
static int btree_releasepage(struct page *page, gfp_t gfp_flags)
965
{
966
	if (PageWriteback(page) || PageDirty(page))
967
		return 0;
968

969
	return try_release_extent_buffer(page);
970 971
}

972 973
static void btree_invalidatepage(struct page *page, unsigned int offset,
				 unsigned int length)
974
{
975 976
	struct extent_io_tree *tree;
	tree = &BTRFS_I(page->mapping->host)->io_tree;
977 978
	extent_invalidatepage(tree, page, offset);
	btree_releasepage(page, GFP_NOFS);
979
	if (PagePrivate(page)) {
980 981 982
		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
			   "page private not zero on page %llu",
			   (unsigned long long)page_offset(page));
983 984
		ClearPagePrivate(page);
		set_page_private(page, 0);
985
		put_page(page);
986
	}
987 988
}

989 990
static int btree_set_page_dirty(struct page *page)
{
991
#ifdef DEBUG
992 993 994 995 996 997 998 999
	struct extent_buffer *eb;

	BUG_ON(!PagePrivate(page));
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
	BUG_ON(!atomic_read(&eb->refs));
	btrfs_assert_tree_locked(eb);
1000
#endif
1001 1002 1003
	return __set_page_dirty_nobuffers(page);
}

1004
static const struct address_space_operations btree_aops = {
1005
	.readpage	= btree_readpage,
1006
	.writepages	= btree_writepages,
1007 1008
	.releasepage	= btree_releasepage,
	.invalidatepage = btree_invalidatepage,
1009
#ifdef CONFIG_MIGRATION
1010
	.migratepage	= btree_migratepage,
1011
#endif
1012
	.set_page_dirty = btree_set_page_dirty,
1013 1014
};

1015
void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
Chris Mason's avatar
Chris Mason committed
1016
{
1017
	struct extent_buffer *buf = NULL;
1018
	int ret;
Chris Mason's avatar
Chris Mason committed
1019

1020
	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1021
	if (IS_ERR(buf))
1022
		return;
1023

1024
	ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1025 1026 1027 1028
	if (ret < 0)
		free_extent_buffer_stale(buf);
	else
		free_extent_buffer(buf);
Chris Mason's avatar
Chris Mason committed
1029 1030
}

1031 1032 1033
struct extent_buffer *btrfs_find_create_tree_block(
						struct btrfs_fs_info *fs_info,
						u64 bytenr)
1034
{
1035 1036 1037
	if (btrfs_is_testing(fs_info))
		return alloc_test_extent_buffer(fs_info, bytenr);
	return alloc_extent_buffer(fs_info, bytenr);
1038 1039
}

1040 1041 1042 1043 1044 1045 1046 1047
/*
 * Read tree block at logical address @bytenr and do variant basic but critical
 * verification.
 *
 * @parent_transid:	expected transid of this tree block, skip check if 0
 * @level:		expected level, mandatory check
 * @first_key:		expected key in slot 0, skip check if NULL
 */
1048
struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1049 1050
				      u64 parent_transid, int level,
				      struct btrfs_key *first_key)
1051 1052 1053 1054
{
	struct extent_buffer *buf = NULL;
	int ret;

1055
	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1056 1057
	if (IS_ERR(buf))
		return buf;
1058

1059
	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1060
					     level, first_key);
1061
	if (ret) {
1062
		free_extent_buffer_stale(buf);
1063
		return ERR_PTR(ret);
1064
	}
1065
	return buf;
1066

1067 1068
}

1069
void btrfs_clean_tree_block(struct extent_buffer *buf)
1070
{
1071
	struct btrfs_fs_info *fs_info = buf->fs_info;
1072
	if (btrfs_header_generation(buf) ==
1073
	    fs_info->running_transaction->transid) {
1074
		btrfs_assert_tree_locked(buf);
1075

1076
		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1077 1078 1079
			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
						 -buf->len,
						 fs_info->dirty_metadata_batch);
1080
			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1081
			btrfs_set_lock_blocking_write(buf);
1082 1083
			clear_extent_buffer_dirty(buf);
		}
1084
	}
1085 1086
}

1087
static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1088
			 u64 objectid)
1089
{
1090
	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1091
	root->fs_info = fs_info;
Chris Mason's avatar
Chris Mason committed
1092
	root->node = NULL;
1093
	root->commit_root = NULL;
1094
	root->state = 0;
1095
	root->orphan_cleanup_state = 0;
1096

1097
	root->last_trans = 0;
1098
	root->highest_objectid = 0;
1099
	root->nr_delalloc_inodes = 0;
1100
	root->nr_ordered_extents = 0;
1101
	root->inode_tree = RB_ROOT;
1102
	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1103
	root->block_rsv = NULL;
1104 1105

	INIT_LIST_HEAD(&root->dirty_list);
1106
	INIT_LIST_HEAD(&root->root_list);
1107 1108
	INIT_LIST_HEAD(&root->delalloc_inodes);
	INIT_LIST_HEAD(&root->delalloc_root);
1109 1110
	INIT_LIST_HEAD(&root->ordered_extents);
	INIT_LIST_HEAD(&root->ordered_root);
1111
	INIT_LIST_HEAD(&root->reloc_dirty_list);
1112 1113
	INIT_LIST_HEAD(&root->logged_list[0]);
	INIT_LIST_HEAD(&root->logged_list[1]);
1114
	spin_lock_init(&root->inode_lock);
1115
	spin_lock_init(&root->delalloc_lock);
1116
	spin_lock_init(&root->ordered_extent_lock);
1117
	spin_lock_init(&root->accounting_lock);
1118 1119
	spin_lock_init(&root->log_extents_lock[0]);
	spin_lock_init(&root->log_extents_lock[1]);
1120
	spin_lock_init(&root->qgroup_meta_rsv_lock);
1121
	mutex_init(&root->objectid_mutex);
1122
	mutex_init(&root->log_mutex);
1123
	mutex_init(&root->ordered_extent_mutex);
1124
	mutex_init(&root->delalloc_mutex);
1125 1126 1127
	init_waitqueue_head(&root->log_writer_wait);
	init_waitqueue_head(&root->log_commit_wait[0]);
	init_waitqueue_head(&root->log_commit_wait[1]);
1128 1129
	INIT_LIST_HEAD(&root->log_ctxs[0]);
	INIT_LIST_HEAD(&root->log_ctxs[1]);
1130 1131 1132
	atomic_set(&root->log_commit[0], 0);
	atomic_set(&root->log_commit[1], 0);
	atomic_set(&root->log_writers, 0);
1133
	atomic_set(&root->log_batch, 0);
1134
	refcount_set(&root->refs, 1);
1135
	atomic_set(&root->snapshot_force_cow, 0);
1136
	atomic_set(&root->nr_swapfiles, 0);
1137
	root->log_transid = 0;
1138
	root->log_transid_committed = -1;
1139
	root->last_log_commit = 0;
1140
	if (!dummy)
1141 1142
		extent_io_tree_init(fs_info, &root->dirty_log_pages,
				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1143

1144 1145
	memset(&root->root_key, 0, sizeof(root->root_key));
	memset(&root->root_item, 0, sizeof(root->root_item));
1146
	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1147
	if (!dummy)
1148 1149 1150
		root->defrag_trans_start = fs_info->generation;
	else
		root->defrag_trans_start = 0;
1151
	root->root_key.objectid = objectid;
1152
	root->anon_dev = 0;
1153

1154
	spin_lock_init(&root->root_item_lock);
1155
	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1156 1157 1158 1159 1160 1161
#ifdef CONFIG_BTRFS_DEBUG
	INIT_LIST_HEAD(&root->leak_list);
	spin_lock(&fs_info->fs_roots_radix_lock);
	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
	spin_unlock(&fs_info->fs_roots_radix_lock);
#endif
1162 1163
}

1164
static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1165
					   u64 objectid, gfp_t flags)
1166
{
1167
	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1168
	if (root)
1169
		__setup_root(root, fs_info, objectid);
1170 1171 1172
	return root;
}

1173 1174
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
/* Should only be used by the testing infrastructure */
1175
struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1176 1177 1178
{
	struct btrfs_root *root;

1179 1180 1181
	if (!fs_info)
		return ERR_PTR(-EINVAL);

1182
	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1183 1184
	if (!root)
		return ERR_PTR(-ENOMEM);
1185

1186
	/* We don't use the stripesize in selftest, set it as sectorsize */
1187
	root->alloc_bytenr = 0;
1188 1189 1190 1191 1192

	return root;
}
#endif

1193 1194 1195
struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
				     u64 objectid)
{
1196
	struct btrfs_fs_info *fs_info = trans->fs_info;
1197 1198 1199 1200
	struct extent_buffer *leaf;
	struct btrfs_root *tree_root = fs_info->tree_root;
	struct btrfs_root *root;
	struct btrfs_key key;
1201
	unsigned int nofs_flag;
1202 1203
	int ret = 0;

1204 1205 1206 1207 1208
	/*
	 * We're holding a transaction handle, so use a NOFS memory allocation
	 * context to avoid deadlock if reclaim happens.
	 */
	nofs_flag = memalloc_nofs_save();
1209
	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1210
	memalloc_nofs_restore(nofs_flag);
1211 1212 1213 1214 1215 1216 1217
	if (!root)
		return ERR_PTR(-ENOMEM);

	root->root_key.objectid = objectid;
	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
	root->root_key.offset = 0;

1218
	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1219 1220
	if (IS_ERR(leaf)) {
		ret = PTR_ERR(leaf);
1221
		leaf = NULL;
1222 1223 1224 1225 1226 1227 1228
		goto fail;
	}

	root->node = leaf;
	btrfs_mark_buffer_dirty(leaf);

	root->commit_root = btrfs_root_node(root);
1229
	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239

	root->root_item.flags = 0;
	root->root_item.byte_limit = 0;
	btrfs_set_root_bytenr(&root->root_item, leaf->start);
	btrfs_set_root_generation(&root->root_item, trans->transid);
	btrfs_set_root_level(&root->root_item, 0);
	btrfs_set_root_refs(&root->root_item, 1);
	btrfs_set_root_used(&root->root_item, leaf->len);
	btrfs_set_root_last_snapshot(&root->root_item, 0);
	btrfs_set_root_dirid(&root->root_item, 0);
1240
	if (is_fstree(objectid))
1241 1242 1243
		generate_random_guid(root->root_item.uuid);
	else
		export_guid(root->root_item.uuid, &guid_null);
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	root->root_item.drop_level = 0;

	key.objectid = objectid;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = 0;
	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
	if (ret)
		goto fail;

	btrfs_tree_unlock(leaf);

1255 1256
	return root;

1257
fail:
1258 1259
	if (leaf) {
		btrfs_tree_unlock(leaf);
1260
		free_extent_buffer(root->commit_root);
1261 1262
		free_extent_buffer(leaf);
	}
1263
	btrfs_put_root(root);
1264

1265
	return ERR_PTR(ret);
1266 1267
}

1268 1269
static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
					 struct btrfs_fs_info *fs_info)
1270 1271
{
	struct btrfs_root *root;
1272
	struct extent_buffer *leaf;
1273

1274
	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1275
	if (!root)
1276
		return ERR_PTR(-ENOMEM);
1277 1278 1279 1280

	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1281

1282
	/*
1283 1284
	 * DON'T set REF_COWS for log trees
	 *
1285 1286 1287 1288 1289
	 * log trees do not get reference counted because they go away
	 * before a real commit is actually done.  They do store pointers
	 * to file data extents, and those reference counts still get
	 * updated (along with back refs to the log tree).
	 */
1290

1291 1292
	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
			NULL, 0, 0, 0);
1293
	if (IS_ERR(leaf)) {
1294
		btrfs_put_root(root);
1295 1296
		return ERR_CAST(leaf);
	}
1297

1298
	root->node = leaf;
1299 1300 1301

	btrfs_mark_buffer_dirty(root->node);
	btrfs_tree_unlock(root->node);
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	return root;
}

int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *log_root;

	log_root = alloc_log_tree(trans, fs_info);
	if (IS_ERR(log_root))
		return PTR_ERR(log_root);
	WARN_ON(fs_info->log_root_tree);
	fs_info->log_root_tree = log_root;
	return 0;
}

int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root)
{
1321
	struct btrfs_fs_info *fs_info = root->fs_info;
1322 1323 1324
	struct btrfs_root *log_root;
	struct btrfs_inode_item *inode_item;

1325
	log_root = alloc_log_tree(trans, fs_info);
1326 1327 1328 1329 1330 1331 1332
	if (IS_ERR(log_root))
		return PTR_ERR(log_root);

	log_root->last_trans = trans->transid;
	log_root->root_key.offset = root->root_key.objectid;

	inode_item = &log_root->root_item.inode;
1333 1334 1335
	btrfs_set_stack_inode_generation(inode_item, 1);
	btrfs_set_stack_inode_size(inode_item, 3);
	btrfs_set_stack_inode_nlink(inode_item, 1);
1336
	btrfs_set_stack_inode_nbytes(inode_item,
1337
				     fs_info->nodesize);
1338
	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1339

1340
	btrfs_set_root_node(&log_root->root_item, log_root->node);
1341 1342 1343 1344

	WARN_ON(root->log_root);
	root->log_root = log_root;
	root->log_transid = 0;
1345
	root->log_transid_committed = -1;
1346
	root->last_log_commit = 0;
1347 1348 1349
	return 0;
}

1350 1351
struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
					struct btrfs_key *key)
1352 1353 1354
{
	struct btrfs_root *root;
	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1355
	struct btrfs_path *path;
1356
	u64 generation;
1357
	int ret;
1358
	int level;
1359

1360 1361
	path = btrfs_alloc_path();
	if (!path)
1362
		return ERR_PTR(-ENOMEM);
1363

1364
	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1365 1366 1367
	if (!root) {
		ret = -ENOMEM;
		goto alloc_fail;
1368 1369
	}

1370 1371
	ret = btrfs_find_root(tree_root, key, path,
			      &root->root_item, &root->root_key);
1372
	if (ret) {
1373 1374
		if (ret > 0)
			ret = -ENOENT;
1375
		goto find_fail;
1376
	}
1377

1378
	generation = btrfs_root_generation(&root->root_item);
1379
	level = btrfs_root_level(&root->root_item);
1380 1381
	root->node = read_tree_block(fs_info,
				     btrfs_root_bytenr(&root->root_item),
1382
				     generation, level, NULL);
1383 1384
	if (IS_ERR(root->node)) {
		ret = PTR_ERR(root->node);
1385 1386 1387
		goto find_fail;
	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
		ret = -EIO;
1388 1389
		free_extent_buffer(root->node);
		goto find_fail;
1390
	}
1391
	root->commit_root = btrfs_root_node(root);
1392
out:
1393 1394 1395 1396
	btrfs_free_path(path);
	return root;

find_fail:
1397
	btrfs_put_root(root);
1398 1399 1400 1401 1402
alloc_fail:
	root = ERR_PTR(ret);
	goto out;
}

1403
static int btrfs_init_fs_root(struct btrfs_root *root)
1404 1405
{
	int ret;
1406
	unsigned int nofs_flag;
1407 1408 1409 1410 1411 1412 1413 1414 1415

	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
					GFP_NOFS);
	if (!root->free_ino_pinned || !root->free_ino_ctl) {
		ret = -ENOMEM;
		goto fail;
	}

1416 1417 1418 1419 1420 1421 1422 1423
	/*
	 * We might be called under a transaction (e.g. indirect backref
	 * resolution) which could deadlock if it triggers memory reclaim
	 */
	nofs_flag = memalloc_nofs_save();
	ret = btrfs_drew_lock_init(&root->snapshot_lock);
	memalloc_nofs_restore(nofs_flag);
	if (ret)
1424 1425
		goto fail;

1426 1427 1428 1429 1430
	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
		btrfs_check_and_init_root_item(&root->root_item);
	}

1431
	btrfs_init_free_ino_ctl(root);
1432 1433
	spin_lock_init(&root->ino_cache_lock);
	init_waitqueue_head(&root->ino_cache_wait);
1434 1435 1436

	ret = get_anon_bdev(&root->anon_dev);
	if (ret)
Liu Bo's avatar
Liu Bo committed
1437
		goto fail;
1438 1439 1440 1441 1442 1443

	mutex_lock(&root->objectid_mutex);
	ret = btrfs_find_highest_objectid(root,
					&root->highest_objectid);
	if (ret) {
		mutex_unlock(&root->objectid_mutex);
Liu Bo's avatar
Liu Bo committed
1444
		goto fail;
1445 1446 1447 1448 1449 1450
	}

	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);

	mutex_unlock(&root->objectid_mutex);

1451 1452
	return 0;
fail:
1453
	/* The caller is responsible to call btrfs_free_fs_root */
1454 1455 1456
	return ret;
}

1457 1458
static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
					       u64 root_id)
1459 1460 1461 1462 1463 1464
{
	struct btrfs_root *root;

	spin_lock(&fs_info->fs_roots_radix_lock);
	root = radix_tree_lookup(&fs_info->fs_roots_radix,
				 (unsigned long)root_id);
1465
	if (root)
1466
		root = btrfs_grab_root(root);
1467 1468 1469 1470 1471 1472 1473 1474 1475
	spin_unlock(&fs_info->fs_roots_radix_lock);
	return root;
}

int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
			 struct btrfs_root *root)
{
	int ret;

1476
	ret = radix_tree_preload(GFP_NOFS);
1477 1478 1479 1480 1481 1482 1483
	if (ret)
		return ret;

	spin_lock(&fs_info->fs_roots_radix_lock);
	ret = radix_tree_insert(&fs_info->fs_roots_radix,
				(unsigned long)root->root_key.objectid,
				root);
1484
	if (ret == 0) {
1485
		btrfs_grab_root(root);
1486
		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1487
	}
1488 1489 1490 1491 1492 1493
	spin_unlock(&fs_info->fs_roots_radix_lock);
	radix_tree_preload_end();

	return ret;
}

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
{
#ifdef CONFIG_BTRFS_DEBUG
	struct btrfs_root *root;

	while (!list_empty(&fs_info->allocated_roots)) {
		root = list_first_entry(&fs_info->allocated_roots,
					struct btrfs_root, leak_list);
		btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
			  root->root_key.objectid, root->root_key.offset,
			  refcount_read(&root->refs));
		while (refcount_read(&root->refs) > 1)
1506 1507
			btrfs_put_root(root);
		btrfs_put_root(root);
1508 1509 1510 1511
	}
#endif
}

1512 1513
void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
{
1514 1515 1516 1517 1518 1519 1520
	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
	percpu_counter_destroy(&fs_info->delalloc_bytes);
	percpu_counter_destroy(&fs_info->dio_bytes);
	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
	btrfs_free_csum_hash(fs_info);
	btrfs_free_stripe_hash_table(fs_info);
	btrfs_free_ref_cache(fs_info);
1521 1522
	kfree(fs_info->balance_ctl);
	kfree(fs_info->delayed_root);
1523 1524 1525 1526 1527 1528 1529 1530 1531
	btrfs_put_root(fs_info->extent_root);
	btrfs_put_root(fs_info->tree_root);
	btrfs_put_root(fs_info->chunk_root);
	btrfs_put_root(fs_info->dev_root);
	btrfs_put_root(fs_info->csum_root);
	btrfs_put_root(fs_info->quota_root);
	btrfs_put_root(fs_info->uuid_root);
	btrfs_put_root(fs_info->free_space_root);
	btrfs_put_root(fs_info->fs_root);
1532
	btrfs_check_leaked_roots(fs_info);
1533
	btrfs_extent_buffer_leak_debug_check(fs_info);
1534 1535 1536 1537 1538 1539
	kfree(fs_info->super_copy);
	kfree(fs_info->super_for_commit);
	kvfree(fs_info);
}


1540 1541 1542
struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
				     struct btrfs_key *location,
				     bool check_ref)
1543 1544
{
	struct btrfs_root *root;
1545
	struct btrfs_path *path;
1546
	struct btrfs_key key;
1547 1548
	int ret;

1549
	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1550
		return btrfs_grab_root(fs_info->tree_root);
1551
	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1552
		return btrfs_grab_root(fs_info->extent_root);
1553
	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1554
		return btrfs_grab_root(fs_info->chunk_root);
1555
	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1556
		return btrfs_grab_root(fs_info->dev_root);
1557
	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1558
		return btrfs_grab_root(fs_info->csum_root);
1559
	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1560
		return btrfs_grab_root(fs_info->quota_root) ?
1561
			fs_info->quota_root : ERR_PTR(-ENOENT);
1562
	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1563
		return btrfs_grab_root(fs_info->uuid_root) ?
1564
			fs_info->uuid_root : ERR_PTR(-ENOENT);
1565
	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1566
		return btrfs_grab_root(fs_info->free_space_root) ?
1567
			fs_info->free_space_root : ERR_PTR(-ENOENT);
1568
again:
1569
	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1570
	if (root) {
1571
		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1572
			btrfs_put_root(root);
1573
			return ERR_PTR(-ENOENT);
1574
		}
1575
		return root;
1576
	}
1577

1578
	root = btrfs_read_tree_root(fs_info->tree_root, location);
1579 1580
	if (IS_ERR(root))
		return root;
1581

1582
	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1583
		ret = -ENOENT;
1584
		goto fail;
1585
	}
1586

1587
	ret = btrfs_init_fs_root(root);
1588 1589
	if (ret)
		goto fail;
1590

1591 1592 1593 1594 1595
	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto fail;
	}
1596 1597 1598 1599 1600
	key.objectid = BTRFS_ORPHAN_OBJECTID;
	key.type = BTRFS_ORPHAN_ITEM_KEY;
	key.offset = location->objectid;

	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1601
	btrfs_free_path(path);
1602 1603 1604
	if (ret < 0)
		goto fail;
	if (ret == 0)
1605
		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1606

1607 1608 1609 1610 1611 1612 1613 1614
	/*
	 * All roots have two refs on them at all times, one for the mounted fs,
	 * and one for being in the radix tree.  This way we only free the root
	 * when we are unmounting or deleting the subvolume.  We get one ref
	 * from __setup_root, one for inserting it into the radix tree, and then
	 * we have the third for returning it, and the caller will put it when
	 * it's done with the root.
	 */
1615
	btrfs_grab_root(root);
1616
	ret = btrfs_insert_fs_root(fs_info, root);
1617
	if (ret) {
1618
		btrfs_put_root(root);
1619
		if (ret == -EEXIST) {
1620
			btrfs_free_fs_root(root);
1621 1622 1623
			goto again;
		}
		goto fail;
1624
	}
1625
	return root;
1626
fail:
1627
	btrfs_free_fs_root(root);
1628
	return ERR_PTR(ret);
1629 1630
}

1631 1632 1633 1634 1635 1636
static int btrfs_congested_fn(void *congested_data, int bdi_bits)
{
	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
	int ret = 0;
	struct btrfs_device *device;
	struct backing_dev_info *bdi;
Chris Mason's avatar
Chris Mason committed
1637

1638 1639
	rcu_read_lock();
	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1640 1641
		if (!device->bdev)
			continue;
1642
		bdi = device->bdev->bd_bdi;
1643
		if (bdi_congested(bdi, bdi_bits)) {
1644 1645 1646 1647
			ret = 1;
			break;
		}
	}
1648
	rcu_read_unlock();
1649 1650 1651
	return ret;
}

1652 1653 1654 1655 1656
/*
 * called by the kthread helper functions to finally call the bio end_io
 * functions.  This is where read checksum verification actually happens
 */
static void end_workqueue_fn(struct btrfs_work *work)
1657 1658
{
	struct bio *bio;
1659
	struct btrfs_end_io_wq *end_io_wq;
1660

1661
	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1662
	bio = end_io_wq->bio;
1663

1664
	bio->bi_status = end_io_wq->status;
1665 1666
	bio->bi_private = end_io_wq->private;
	bio->bi_end_io = end_io_wq->end_io;
1667
	bio_endio(bio);
1668
	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1669 1670
}

1671 1672 1673
static int cleaner_kthread(void *arg)
{
	struct btrfs_root *root = arg;
1674
	struct btrfs_fs_info *fs_info = root->fs_info;
1675
	int again;
1676

1677
	while (1) {
1678
		again = 0;
1679

1680 1681
		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);

1682
		/* Make the cleaner go to sleep early. */
1683
		if (btrfs_need_cleaner_sleep(fs_info))
1684 1685
			goto sleep;

1686 1687 1688 1689
		/*
		 * Do not do anything if we might cause open_ctree() to block
		 * before we have finished mounting the filesystem.
		 */
1690
		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1691 1692
			goto sleep;

1693
		if (!mutex_trylock(&fs_info->cleaner_mutex))
1694 1695
			goto sleep;

1696 1697 1698 1699
		/*
		 * Avoid the problem that we change the status of the fs
		 * during the above check and trylock.
		 */
1700
		if (btrfs_need_cleaner_sleep(fs_info)) {
1701
			mutex_unlock(&fs_info->cleaner_mutex);
1702
			goto sleep;
1703
		}
1704

1705
		btrfs_run_delayed_iputs(fs_info);
1706

1707
		again = btrfs_clean_one_deleted_snapshot(root);
1708
		mutex_unlock(&fs_info->cleaner_mutex);
1709 1710

		/*
1711 1712
		 * The defragger has dealt with the R/O remount and umount,
		 * needn't do anything special here.
1713
		 */
1714
		btrfs_run_defrag_inodes(fs_info);
1715 1716 1717 1718 1719 1720 1721 1722 1723

		/*
		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
		 * with relocation (btrfs_relocate_chunk) and relocation
		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
		 * unused block groups.
		 */
1724
		btrfs_delete_unused_bgs(fs_info);
1725
sleep:
1726
		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1727 1728 1729 1730
		if (kthread_should_park())
			kthread_parkme();
		if (kthread_should_stop())
			return 0;
1731
		if (!again) {
1732
			set_current_state(TASK_INTERRUPTIBLE);
1733
			schedule();
1734 1735
			__set_current_state(TASK_RUNNING);
		}
1736
	}
1737 1738 1739 1740 1741
}

static int transaction_kthread(void *arg)
{
	struct btrfs_root *root = arg;
1742
	struct btrfs_fs_info *fs_info = root->fs_info;
1743 1744
	struct btrfs_trans_handle *trans;
	struct btrfs_transaction *cur;
1745
	u64 transid;
1746
	time64_t now;
1747
	unsigned long delay;
1748
	bool cannot_commit;
1749 1750

	do {
1751
		cannot_commit = false;
1752 1753
		delay = HZ * fs_info->commit_interval;
		mutex_lock(&fs_info->transaction_kthread_mutex);
1754

1755 1756
		spin_lock(&fs_info->trans_lock);
		cur = fs_info->running_transaction;
1757
		if (!cur) {
1758
			spin_unlock(&fs_info->trans_lock);
1759 1760
			goto sleep;
		}
1761

1762
		now = ktime_get_seconds();
1763
		if (cur->state < TRANS_STATE_COMMIT_START &&
1764
		    !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1765
		    (now < cur->start_time ||
1766 1767
		     now - cur->start_time < fs_info->commit_interval)) {
			spin_unlock(&fs_info->trans_lock);
1768 1769 1770
			delay = HZ * 5;
			goto sleep;
		}
1771
		transid = cur->transid;
1772
		spin_unlock(&fs_info->trans_lock);
1773

1774
		/* If the file system is aborted, this will always fail. */
1775
		trans = btrfs_attach_transaction(root);
1776
		if (IS_ERR(trans)) {
1777 1778
			if (PTR_ERR(trans) != -ENOENT)
				cannot_commit = true;
1779
			goto sleep;
1780
		}
1781
		if (transid == trans->transid) {
1782
			btrfs_commit_transaction(trans);
1783
		} else {
1784
			btrfs_end_transaction(trans);
1785
		}
1786
sleep:
1787 1788
		wake_up_process(fs_info->cleaner_kthread);
		mutex_unlock(&fs_info->transaction_kthread_mutex);
1789

1790
		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1791
				      &fs_info->fs_state)))
1792
			btrfs_cleanup_transaction(fs_info);
1793
		if (!kthread_should_stop() &&
1794
				(!btrfs_transaction_blocked(fs_info) ||
1795
				 cannot_commit))
1796
			schedule_timeout_interruptible(delay);
1797 1798 1799 1800
	} while (!kthread_should_stop());
	return 0;
}

1801
/*
1802 1803 1804
 * This will find the highest generation in the array of root backups.  The
 * index of the highest array is returned, or -EINVAL if we can't find
 * anything.
1805 1806 1807 1808 1809
 *
 * We check to make sure the array is valid by comparing the
 * generation of the latest  root in the array with the generation
 * in the super block.  If they don't match we pitch it.
 */
1810
static int find_newest_super_backup(struct btrfs_fs_info *info)
1811
{
1812
	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1813 1814 1815 1816 1817 1818 1819 1820
	u64 cur;
	struct btrfs_root_backup *root_backup;
	int i;

	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
		root_backup = info->super_copy->super_roots + i;
		cur = btrfs_backup_tree_root_gen(root_backup);
		if (cur == newest_gen)
1821
			return i;
1822 1823
	}

1824
	return -EINVAL;
1825 1826 1827 1828 1829 1830 1831 1832 1833
}

/*
 * copy all the root pointers into the super backup array.
 * this will bump the backup pointer by one when it is
 * done
 */
static void backup_super_roots(struct btrfs_fs_info *info)
{
1834
	const int next_backup = info->backup_root_index;
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	struct btrfs_root_backup *root_backup;

	root_backup = info->super_for_commit->super_roots + next_backup;

	/*
	 * make sure all of our padding and empty slots get zero filled
	 * regardless of which ones we use today
	 */
	memset(root_backup, 0, sizeof(*root_backup));

	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;

	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
	btrfs_set_backup_tree_root_gen(root_backup,
			       btrfs_header_generation(info->tree_root->node));

	btrfs_set_backup_tree_root_level(root_backup,
			       btrfs_header_level(info->tree_root->node));

	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
	btrfs_set_backup_chunk_root_gen(root_backup,
			       btrfs_header_generation(info->chunk_root->node));
	btrfs_set_backup_chunk_root_level(root_backup,
			       btrfs_header_level(info->chunk_root->node));

	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
	btrfs_set_backup_extent_root_gen(root_backup,
			       btrfs_header_generation(info->extent_root->node));
	btrfs_set_backup_extent_root_level(root_backup,
			       btrfs_header_level(info->extent_root->node));

1866 1867 1868 1869 1870 1871 1872 1873
	/*
	 * we might commit during log recovery, which happens before we set
	 * the fs_root.  Make sure it is valid before we fill it in.
	 */
	if (info->fs_root && info->fs_root->node) {
		btrfs_set_backup_fs_root(root_backup,
					 info->fs_root->node->start);
		btrfs_set_backup_fs_root_gen(root_backup,
1874
			       btrfs_header_generation(info->fs_root->node));
1875
		btrfs_set_backup_fs_root_level(root_backup,
1876
			       btrfs_header_level(info->fs_root->node));
1877
	}
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906

	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
	btrfs_set_backup_dev_root_gen(root_backup,
			       btrfs_header_generation(info->dev_root->node));
	btrfs_set_backup_dev_root_level(root_backup,
				       btrfs_header_level(info->dev_root->node));

	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
	btrfs_set_backup_csum_root_gen(root_backup,
			       btrfs_header_generation(info->csum_root->node));
	btrfs_set_backup_csum_root_level(root_backup,
			       btrfs_header_level(info->csum_root->node));

	btrfs_set_backup_total_bytes(root_backup,
			     btrfs_super_total_bytes(info->super_copy));
	btrfs_set_backup_bytes_used(root_backup,
			     btrfs_super_bytes_used(info->super_copy));
	btrfs_set_backup_num_devices(root_backup,
			     btrfs_super_num_devices(info->super_copy));

	/*
	 * if we don't copy this out to the super_copy, it won't get remembered
	 * for the next commit
	 */
	memcpy(&info->super_copy->super_roots,
	       &info->super_for_commit->super_roots,
	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
}

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
/*
 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
 *
 * fs_info - filesystem whose backup roots need to be read
 * priority - priority of backup root required
 *
 * Returns backup root index on success and -EINVAL otherwise.
 */
static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
{
	int backup_index = find_newest_super_backup(fs_info);
	struct btrfs_super_block *super = fs_info->super_copy;
	struct btrfs_root_backup *root_backup;

	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
		if (priority == 0)
			return backup_index;

		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
	} else {
		return -EINVAL;
	}

	root_backup = super->super_roots + backup_index;

	btrfs_set_super_generation(super,
				   btrfs_backup_tree_root_gen(root_backup));
	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
	btrfs_set_super_root_level(super,
				   btrfs_backup_tree_root_level(root_backup));
	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));

	/*
	 * Fixme: the total bytes and num_devices need to match or we should
	 * need a fsck
	 */
	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));

	return backup_index;
}

Liu Bo's avatar
Liu Bo committed
1951 1952 1953
/* helper to cleanup workers */
static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
{
1954
	btrfs_destroy_workqueue(fs_info->fixup_workers);
1955
	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1956
	btrfs_destroy_workqueue(fs_info->workers);
1957 1958
	btrfs_destroy_workqueue(fs_info->endio_workers);
	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1959
	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
1960
	btrfs_destroy_workqueue(fs_info->rmw_workers);
1961 1962
	btrfs_destroy_workqueue(fs_info->endio_write_workers);
	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1963
	btrfs_destroy_workqueue(fs_info->delayed_workers);
1964
	btrfs_destroy_workqueue(fs_info->caching_workers);
1965
	btrfs_destroy_workqueue(fs_info->readahead_workers);
1966
	btrfs_destroy_workqueue(fs_info->flush_workers);
1967
	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1968 1969
	if (fs_info->discard_ctl.discard_workers)
		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1970 1971 1972 1973 1974 1975 1976
	/*
	 * Now that all other work queues are destroyed, we can safely destroy
	 * the queues used for metadata I/O, since tasks from those other work
	 * queues can do metadata I/O operations.
	 */
	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
Liu Bo's avatar
Liu Bo committed
1977 1978
}

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
static void free_root_extent_buffers(struct btrfs_root *root)
{
	if (root) {
		free_extent_buffer(root->node);
		free_extent_buffer(root->commit_root);
		root->node = NULL;
		root->commit_root = NULL;
	}
}

1989
/* helper to cleanup tree roots */
1990
static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1991
{
1992
	free_root_extent_buffers(info->tree_root);
1993

1994 1995 1996 1997 1998
	free_root_extent_buffers(info->dev_root);
	free_root_extent_buffers(info->extent_root);
	free_root_extent_buffers(info->csum_root);
	free_root_extent_buffers(info->quota_root);
	free_root_extent_buffers(info->uuid_root);
1999
	if (free_chunk_root)
2000
		free_root_extent_buffers(info->chunk_root);
2001
	free_root_extent_buffers(info->free_space_root);
2002 2003
}

2004
void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
{
	int ret;
	struct btrfs_root *gang[8];
	int i;

	while (!list_empty(&fs_info->dead_roots)) {
		gang[0] = list_entry(fs_info->dead_roots.next,
				     struct btrfs_root, root_list);
		list_del(&gang[0]->root_list);

2015
		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2016
			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2017 2018 2019
		} else {
			free_extent_buffer(gang[0]->node);
			free_extent_buffer(gang[0]->commit_root);
2020
			btrfs_put_root(gang[0]);
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
		}
	}

	while (1) {
		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
					     (void **)gang, 0,
					     ARRAY_SIZE(gang));
		if (!ret)
			break;
		for (i = 0; i < ret; i++)
2031
			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2032
	}
2033

2034
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
2035
		btrfs_free_log_root_tree(NULL, fs_info);
2036
}
2037

2038 2039 2040 2041 2042 2043 2044 2045
static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
{
	mutex_init(&fs_info->scrub_lock);
	atomic_set(&fs_info->scrubs_running, 0);
	atomic_set(&fs_info->scrub_pause_req, 0);
	atomic_set(&fs_info->scrubs_paused, 0);
	atomic_set(&fs_info->scrub_cancel_req, 0);
	init_waitqueue_head(&fs_info->scrub_pause_wait);
2046
	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2047 2048
}

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
{
	spin_lock_init(&fs_info->balance_lock);
	mutex_init(&fs_info->balance_mutex);
	atomic_set(&fs_info->balance_pause_req, 0);
	atomic_set(&fs_info->balance_cancel_req, 0);
	fs_info->balance_ctl = NULL;
	init_waitqueue_head(&fs_info->balance_wait_q);
}

2059
static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2060
{
2061 2062 2063 2064
	struct inode *inode = fs_info->btree_inode;

	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
	set_nlink(inode, 1);
2065 2066 2067 2068 2069
	/*
	 * we set the i_size on the btree inode to the max possible int.
	 * the real end of the address space is determined by all of
	 * the devices in the system
	 */
2070 2071
	inode->i_size = OFFSET_MAX;
	inode->i_mapping->a_ops = &btree_aops;
2072

2073
	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2074 2075
	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
			    IO_TREE_INODE_IO, inode);
2076
	BTRFS_I(inode)->io_tree.track_uptodate = false;
2077
	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2078

2079
	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2080

2081 2082 2083 2084
	BTRFS_I(inode)->root = fs_info->tree_root;
	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
	btrfs_insert_inode_hash(inode);
2085 2086
}

2087 2088 2089
static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
{
	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2090
	init_rwsem(&fs_info->dev_replace.rwsem);
2091
	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2092 2093
}

2094 2095 2096 2097 2098 2099 2100 2101
static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
{
	spin_lock_init(&fs_info->qgroup_lock);
	mutex_init(&fs_info->qgroup_ioctl_lock);
	fs_info->qgroup_tree = RB_ROOT;
	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
	fs_info->qgroup_seq = 1;
	fs_info->qgroup_ulist = NULL;
2102
	fs_info->qgroup_rescan_running = false;
2103 2104 2105
	mutex_init(&fs_info->qgroup_rescan_lock);
}

2106 2107 2108
static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
		struct btrfs_fs_devices *fs_devices)
{
2109
	u32 max_active = fs_info->thread_pool_size;
2110
	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2111 2112

	fs_info->workers =
2113 2114
		btrfs_alloc_workqueue(fs_info, "worker",
				      flags | WQ_HIGHPRI, max_active, 16);
2115 2116

	fs_info->delalloc_workers =
2117 2118
		btrfs_alloc_workqueue(fs_info, "delalloc",
				      flags, max_active, 2);
2119 2120

	fs_info->flush_workers =
2121 2122
		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
				      flags, max_active, 0);
2123 2124

	fs_info->caching_workers =
2125
		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2126 2127

	fs_info->fixup_workers =
2128
		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2129 2130 2131 2132 2133 2134

	/*
	 * endios are largely parallel and should have a very
	 * low idle thresh
	 */
	fs_info->endio_workers =
2135
		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2136
	fs_info->endio_meta_workers =
2137 2138
		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
				      max_active, 4);
2139
	fs_info->endio_meta_write_workers =
2140 2141
		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
				      max_active, 2);
2142
	fs_info->endio_raid56_workers =
2143 2144
		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
				      max_active, 4);
2145
	fs_info->endio_repair_workers =
2146
		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2147
	fs_info->rmw_workers =
2148
		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2149
	fs_info->endio_write_workers =
2150 2151
		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
				      max_active, 2);
2152
	fs_info->endio_freespace_worker =
2153 2154
		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
				      max_active, 0);
2155
	fs_info->delayed_workers =
2156 2157
		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
				      max_active, 0);
2158
	fs_info->readahead_workers =
2159 2160
		btrfs_alloc_workqueue(fs_info, "readahead", flags,
				      max_active, 2);
2161
	fs_info->qgroup_rescan_workers =
2162
		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2163 2164
	fs_info->discard_ctl.discard_workers =
		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2165 2166

	if (!(fs_info->workers && fs_info->delalloc_workers &&
2167
	      fs_info->flush_workers &&
2168 2169 2170 2171 2172 2173 2174
	      fs_info->endio_workers && fs_info->endio_meta_workers &&
	      fs_info->endio_meta_write_workers &&
	      fs_info->endio_repair_workers &&
	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
	      fs_info->caching_workers && fs_info->readahead_workers &&
	      fs_info->fixup_workers && fs_info->delayed_workers &&
2175 2176
	      fs_info->qgroup_rescan_workers &&
	      fs_info->discard_ctl.discard_workers)) {
2177 2178 2179 2180 2181 2182
		return -ENOMEM;
	}

	return 0;
}

2183 2184 2185
static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
{
	struct crypto_shash *csum_shash;
2186
	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2187

2188
	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2189 2190 2191

	if (IS_ERR(csum_shash)) {
		btrfs_err(fs_info, "error allocating %s hash for checksum",
2192
			  csum_driver);
2193 2194 2195 2196 2197 2198 2199 2200
		return PTR_ERR(csum_shash);
	}

	fs_info->csum_shash = csum_shash;

	return 0;
}

2201 2202 2203 2204 2205 2206 2207
static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
			    struct btrfs_fs_devices *fs_devices)
{
	int ret;
	struct btrfs_root *log_tree_root;
	struct btrfs_super_block *disk_super = fs_info->super_copy;
	u64 bytenr = btrfs_super_log_root(disk_super);
2208
	int level = btrfs_super_log_root_level(disk_super);
2209 2210

	if (fs_devices->rw_devices == 0) {
2211
		btrfs_warn(fs_info, "log replay required on RO media");
2212 2213 2214
		return -EIO;
	}

2215 2216
	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
					 GFP_KERNEL);
2217 2218 2219
	if (!log_tree_root)
		return -ENOMEM;

2220
	log_tree_root->node = read_tree_block(fs_info, bytenr,
2221 2222
					      fs_info->generation + 1,
					      level, NULL);
2223
	if (IS_ERR(log_tree_root->node)) {
2224
		btrfs_warn(fs_info, "failed to read log tree");
2225
		ret = PTR_ERR(log_tree_root->node);
2226
		btrfs_put_root(log_tree_root);
2227
		return ret;
2228
	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2229
		btrfs_err(fs_info, "failed to read log tree");
2230
		free_extent_buffer(log_tree_root->node);
2231
		btrfs_put_root(log_tree_root);
2232 2233 2234 2235 2236
		return -EIO;
	}
	/* returns with log_tree_root freed on success */
	ret = btrfs_recover_log_trees(log_tree_root);
	if (ret) {
2237 2238
		btrfs_handle_fs_error(fs_info, ret,
				      "Failed to recover log tree");
2239
		free_extent_buffer(log_tree_root->node);
2240
		btrfs_put_root(log_tree_root);
2241 2242 2243
		return ret;
	}

2244
	if (sb_rdonly(fs_info->sb)) {
2245
		ret = btrfs_commit_super(fs_info);
2246 2247 2248 2249 2250 2251 2252
		if (ret)
			return ret;
	}

	return 0;
}

2253
static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2254
{
2255
	struct btrfs_root *tree_root = fs_info->tree_root;
2256
	struct btrfs_root *root;
2257 2258 2259
	struct btrfs_key location;
	int ret;

2260 2261
	BUG_ON(!fs_info->tree_root);

2262 2263 2264 2265
	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
	location.type = BTRFS_ROOT_ITEM_KEY;
	location.offset = 0;

2266
	root = btrfs_read_tree_root(tree_root, &location);
2267 2268 2269 2270
	if (IS_ERR(root)) {
		ret = PTR_ERR(root);
		goto out;
	}
2271 2272
	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
	fs_info->extent_root = root;
2273 2274

	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2275
	root = btrfs_read_tree_root(tree_root, &location);
2276 2277 2278 2279
	if (IS_ERR(root)) {
		ret = PTR_ERR(root);
		goto out;
	}
2280 2281
	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
	fs_info->dev_root = root;
2282 2283 2284
	btrfs_init_devices_late(fs_info);

	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2285
	root = btrfs_read_tree_root(tree_root, &location);
2286 2287 2288 2289
	if (IS_ERR(root)) {
		ret = PTR_ERR(root);
		goto out;
	}
2290 2291
	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
	fs_info->csum_root = root;
2292 2293

	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2294 2295 2296
	root = btrfs_read_tree_root(tree_root, &location);
	if (!IS_ERR(root)) {
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2297
		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2298
		fs_info->quota_root = root;
2299 2300 2301
	}

	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2302 2303 2304
	root = btrfs_read_tree_root(tree_root, &location);
	if (IS_ERR(root)) {
		ret = PTR_ERR(root);
2305
		if (ret != -ENOENT)
2306
			goto out;
2307
	} else {
2308 2309
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		fs_info->uuid_root = root;
2310 2311
	}

2312 2313 2314
	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
		root = btrfs_read_tree_root(tree_root, &location);
2315 2316 2317 2318
		if (IS_ERR(root)) {
			ret = PTR_ERR(root);
			goto out;
		}
2319 2320 2321 2322
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		fs_info->free_space_root = root;
	}

2323
	return 0;
2324 2325 2326 2327
out:
	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
		   location.objectid, ret);
	return ret;
2328 2329
}

2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
/*
 * Real super block validation
 * NOTE: super csum type and incompat features will not be checked here.
 *
 * @sb:		super block to check
 * @mirror_num:	the super block number to check its bytenr:
 * 		0	the primary (1st) sb
 * 		1, 2	2nd and 3rd backup copy
 * 	       -1	skip bytenr check
 */
static int validate_super(struct btrfs_fs_info *fs_info,
			    struct btrfs_super_block *sb, int mirror_num)
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
{
	u64 nodesize = btrfs_super_nodesize(sb);
	u64 sectorsize = btrfs_super_sectorsize(sb);
	int ret = 0;

	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
		btrfs_err(fs_info, "no valid FS found");
		ret = -EINVAL;
	}
	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
		ret = -EINVAL;
	}
	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
		ret = -EINVAL;
	}
	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
		ret = -EINVAL;
	}
	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
		btrfs_err(fs_info, "log_root level too big: %d >= %d",
				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
		ret = -EINVAL;
	}

	/*
	 * Check sectorsize and nodesize first, other check will need it.
	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
	 */
	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
		ret = -EINVAL;
	}
	/* Only PAGE SIZE is supported yet */
	if (sectorsize != PAGE_SIZE) {
		btrfs_err(fs_info,
			"sectorsize %llu not supported yet, only support %lu",
			sectorsize, PAGE_SIZE);
		ret = -EINVAL;
	}
	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
		ret = -EINVAL;
	}
	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
			  le32_to_cpu(sb->__unused_leafsize), nodesize);
		ret = -EINVAL;
	}

	/* Root alignment check */
	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
			   btrfs_super_root(sb));
		ret = -EINVAL;
	}
	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
			   btrfs_super_chunk_root(sb));
		ret = -EINVAL;
	}
	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
		btrfs_warn(fs_info, "log_root block unaligned: %llu",
			   btrfs_super_log_root(sb));
		ret = -EINVAL;
	}

2416
	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2417
		   BTRFS_FSID_SIZE) != 0) {
2418
		btrfs_err(fs_info,
2419
			"dev_item UUID does not match metadata fsid: %pU != %pU",
2420
			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
		ret = -EINVAL;
	}

	/*
	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
	 * done later
	 */
	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
		btrfs_err(fs_info, "bytes_used is too small %llu",
			  btrfs_super_bytes_used(sb));
		ret = -EINVAL;
	}
	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
		btrfs_err(fs_info, "invalid stripesize %u",
			  btrfs_super_stripesize(sb));
		ret = -EINVAL;
	}
	if (btrfs_super_num_devices(sb) > (1UL << 31))
		btrfs_warn(fs_info, "suspicious number of devices: %llu",
			   btrfs_super_num_devices(sb));
	if (btrfs_super_num_devices(sb) == 0) {
		btrfs_err(fs_info, "number of devices is 0");
		ret = -EINVAL;
	}

2446 2447
	if (mirror_num >= 0 &&
	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
		btrfs_err(fs_info, "super offset mismatch %llu != %u",
			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
		ret = -EINVAL;
	}

	/*
	 * Obvious sys_chunk_array corruptions, it must hold at least one key
	 * and one chunk
	 */
	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
		btrfs_err(fs_info, "system chunk array too big %u > %u",
			  btrfs_super_sys_array_size(sb),
			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
		ret = -EINVAL;
	}
	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
			+ sizeof(struct btrfs_chunk)) {
		btrfs_err(fs_info, "system chunk array too small %u < %zu",
			  btrfs_super_sys_array_size(sb),
			  sizeof(struct btrfs_disk_key)
			  + sizeof(struct btrfs_chunk));
		ret = -EINVAL;
	}

	/*
	 * The generation is a global counter, we'll trust it more than the others
	 * but it's still possible that it's the one that's wrong.
	 */
	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
		btrfs_warn(fs_info,
			"suspicious: generation < chunk_root_generation: %llu < %llu",
			btrfs_super_generation(sb),
			btrfs_super_chunk_root_generation(sb));
	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
	    && btrfs_super_cache_generation(sb) != (u64)-1)
		btrfs_warn(fs_info,
			"suspicious: generation < cache_generation: %llu < %llu",
			btrfs_super_generation(sb),
			btrfs_super_cache_generation(sb));

	return ret;
}

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
/*
 * Validation of super block at mount time.
 * Some checks already done early at mount time, like csum type and incompat
 * flags will be skipped.
 */
static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
{
	return validate_super(fs_info, fs_info->super_copy, 0);
}

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
/*
 * Validation of super block at write time.
 * Some checks like bytenr check will be skipped as their values will be
 * overwritten soon.
 * Extra checks like csum type and incompat flags will be done here.
 */
static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
				      struct btrfs_super_block *sb)
{
	int ret;

	ret = validate_super(fs_info, sb, -1);
	if (ret < 0)
		goto out;
2515
	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
		ret = -EUCLEAN;
		btrfs_err(fs_info, "invalid csum type, has %u want %u",
			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
		goto out;
	}
	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
		ret = -EUCLEAN;
		btrfs_err(fs_info,
		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
			  btrfs_super_incompat_flags(sb),
			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
		goto out;
	}
out:
	if (ret < 0)
		btrfs_err(fs_info,
		"super block corruption detected before writing it to disk");
	return ret;
}

2536
static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2537
{
2538
	int backup_index = find_newest_super_backup(fs_info);
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
	struct btrfs_super_block *sb = fs_info->super_copy;
	struct btrfs_root *tree_root = fs_info->tree_root;
	bool handle_error = false;
	int ret = 0;
	int i;

	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
		u64 generation;
		int level;

		if (handle_error) {
			if (!IS_ERR(tree_root->node))
				free_extent_buffer(tree_root->node);
			tree_root->node = NULL;

			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
				break;

			free_root_pointers(fs_info, 0);

			/*
			 * Don't use the log in recovery mode, it won't be
			 * valid
			 */
			btrfs_set_super_log_root(sb, 0);

			/* We can't trust the free space cache either */
			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);

			ret = read_backup_root(fs_info, i);
2569
			backup_index = ret;
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
			if (ret < 0)
				return ret;
		}
		generation = btrfs_super_generation(sb);
		level = btrfs_super_root_level(sb);
		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
						  generation, level, NULL);
		if (IS_ERR(tree_root->node) ||
		    !extent_buffer_uptodate(tree_root->node)) {
			handle_error = true;

			if (IS_ERR(tree_root->node))
				ret = PTR_ERR(tree_root->node);
			else if (!extent_buffer_uptodate(tree_root->node))
				ret = -EUCLEAN;

			btrfs_warn(fs_info, "failed to read tree root");
			continue;
		}

		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
		tree_root->commit_root = btrfs_root_node(tree_root);
		btrfs_set_root_refs(&tree_root->root_item, 1);

2594 2595 2596 2597
		/*
		 * No need to hold btrfs_root::objectid_mutex since the fs
		 * hasn't been fully initialised and we are the only user
		 */
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
		ret = btrfs_find_highest_objectid(tree_root,
						&tree_root->highest_objectid);
		if (ret < 0) {
			handle_error = true;
			continue;
		}

		ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);

		ret = btrfs_read_roots(fs_info);
		if (ret < 0) {
			handle_error = true;
			continue;
		}

		/* All successful */
		fs_info->generation = generation;
		fs_info->last_trans_committed = generation;
2616 2617 2618 2619 2620 2621 2622 2623

		/* Always begin writing backup roots after the one being used */
		if (backup_index < 0) {
			fs_info->backup_root_index = 0;
		} else {
			fs_info->backup_root_index = backup_index + 1;
			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
		}
2624 2625 2626 2627 2628 2629
		break;
	}

	return ret;
}

2630
void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2631
{
2632
	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2633
	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
Chris Mason's avatar
Chris Mason committed
2634
	INIT_LIST_HEAD(&fs_info->trans_list);
2635
	INIT_LIST_HEAD(&fs_info->dead_roots);
Yan, Zheng's avatar
Yan, Zheng committed
2636
	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2637
	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2638
	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2639
	spin_lock_init(&fs_info->delalloc_root_lock);
Josef Bacik's avatar
Josef Bacik committed
2640
	spin_lock_init(&fs_info->trans_lock);
2641
	spin_lock_init(&fs_info->fs_roots_radix_lock);
Yan, Zheng's avatar
Yan, Zheng committed
2642
	spin_lock_init(&fs_info->delayed_iput_lock);
2643
	spin_lock_init(&fs_info->defrag_inodes_lock);
2644
	spin_lock_init(&fs_info->super_lock);
2645
	spin_lock_init(&fs_info->buffer_lock);
2646
	spin_lock_init(&fs_info->unused_bgs_lock);
2647
	rwlock_init(&fs_info->tree_mod_log_lock);
2648
	mutex_init(&fs_info->unused_bg_unpin_mutex);
2649
	mutex_init(&fs_info->delete_unused_bgs_mutex);
Chris Mason's avatar
Chris Mason committed
2650
	mutex_init(&fs_info->reloc_mutex);
2651
	mutex_init(&fs_info->delalloc_root_mutex);
2652
	seqlock_init(&fs_info->profiles_lock);
2653

2654
	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2655
	INIT_LIST_HEAD(&fs_info->space_info);
2656
	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2657
	INIT_LIST_HEAD(&fs_info->unused_bgs);
2658 2659
#ifdef CONFIG_BTRFS_DEBUG
	INIT_LIST_HEAD(&fs_info->allocated_roots);
2660 2661
	INIT_LIST_HEAD(&fs_info->allocated_ebs);
	spin_lock_init(&fs_info->eb_leak_lock);
2662
#endif
2663
	extent_map_tree_init(&fs_info->mapping_tree);
2664 2665 2666 2667 2668 2669 2670
	btrfs_init_block_rsv(&fs_info->global_block_rsv,
			     BTRFS_BLOCK_RSV_GLOBAL);
	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
			     BTRFS_BLOCK_RSV_DELOPS);
2671 2672 2673
	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
			     BTRFS_BLOCK_RSV_DELREFS);

2674
	atomic_set(&fs_info->async_delalloc_pages, 0);
2675
	atomic_set(&fs_info->defrag_running, 0);
2676
	atomic_set(&fs_info->reada_works_cnt, 0);
2677
	atomic_set(&fs_info->nr_delayed_iputs, 0);
2678
	atomic64_set(&fs_info->tree_mod_seq, 0);
2679
	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
Josef Bacik's avatar
Josef Bacik committed
2680
	fs_info->metadata_ratio = 0;
2681
	fs_info->defrag_inodes = RB_ROOT;
2682
	atomic64_set(&fs_info->free_chunk_space, 0);
2683
	fs_info->tree_mod_log = RB_ROOT;
2684
	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2685
	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2686
	/* readahead state */
2687
	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2688
	spin_lock_init(&fs_info->reada_lock);
2689
	btrfs_init_ref_verify(fs_info);
2690

2691 2692
	fs_info->thread_pool_size = min_t(unsigned long,
					  num_online_cpus() + 2, 8);
2693

2694 2695
	INIT_LIST_HEAD(&fs_info->ordered_roots);
	spin_lock_init(&fs_info->ordered_root_lock);
2696

2697
	btrfs_init_scrub(fs_info);
2698 2699 2700
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
	fs_info->check_integrity_print_mask = 0;
#endif
2701
	btrfs_init_balance(fs_info);
2702
	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
Arne Jansen's avatar
Arne Jansen committed
2703

2704
	spin_lock_init(&fs_info->block_group_cache_lock);
2705
	fs_info->block_group_cache_tree = RB_ROOT;
2706
	fs_info->first_logical_byte = (u64)-1;
2707

2708 2709
	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2710
	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
Chris Mason's avatar
Chris Mason committed
2711

2712
	mutex_init(&fs_info->ordered_operations_mutex);
2713
	mutex_init(&fs_info->tree_log_mutex);
2714
	mutex_init(&fs_info->chunk_mutex);
2715 2716
	mutex_init(&fs_info->transaction_kthread_mutex);
	mutex_init(&fs_info->cleaner_mutex);
2717
	mutex_init(&fs_info->ro_block_group_mutex);
2718
	init_rwsem(&fs_info->commit_root_sem);
2719
	init_rwsem(&fs_info->cleanup_work_sem);
2720
	init_rwsem(&fs_info->subvol_sem);
2721
	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2722

2723
	btrfs_init_dev_replace_locks(fs_info);
2724
	btrfs_init_qgroup(fs_info);
2725
	btrfs_discard_init(fs_info);
2726

2727 2728 2729
	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);

2730
	init_waitqueue_head(&fs_info->transaction_throttle);
2731
	init_waitqueue_head(&fs_info->transaction_wait);
Sage Weil's avatar
Sage Weil committed
2732
	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2733
	init_waitqueue_head(&fs_info->async_submit_wait);
2734
	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2735

2736 2737 2738 2739 2740
	/* Usable values until the real ones are cached from the superblock */
	fs_info->nodesize = 4096;
	fs_info->sectorsize = 4096;
	fs_info->stripesize = 4096;

2741 2742 2743
	spin_lock_init(&fs_info->swapfile_pins_lock);
	fs_info->swapfile_pins = RB_ROOT;

2744
	fs_info->send_in_progress = 0;
2745 2746 2747 2748 2749 2750 2751 2752 2753
}

static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
{
	int ret;

	fs_info->sb = sb;
	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2754

2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
	ret = init_srcu_struct(&fs_info->subvol_srcu);
	if (ret)
		return ret;

	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
	if (ret)
		goto fail;

	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
	if (ret)
		goto fail;

	fs_info->dirty_metadata_batch = PAGE_SIZE *
					(1 + ilog2(nr_cpu_ids));

	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
	if (ret)
		goto fail;

	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
			GFP_KERNEL);
	if (ret)
		goto fail;

	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
					GFP_KERNEL);
	if (!fs_info->delayed_root) {
		ret = -ENOMEM;
		goto fail;
	}
	btrfs_init_delayed_root(fs_info->delayed_root);

David Woodhouse's avatar
David Woodhouse committed
2787
	ret = btrfs_alloc_stripe_hash_table(fs_info);
2788 2789 2790 2791 2792 2793 2794 2795 2796
	if (ret)
		goto fail;

	return 0;
fail:
	cleanup_srcu_struct(&fs_info->subvol_srcu);
	return ret;
}

2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
static int btrfs_uuid_rescan_kthread(void *data)
{
	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
	int ret;

	/*
	 * 1st step is to iterate through the existing UUID tree and
	 * to delete all entries that contain outdated data.
	 * 2nd step is to add all missing entries to the UUID tree.
	 */
	ret = btrfs_uuid_tree_iterate(fs_info);
	if (ret < 0) {
2809 2810 2811
		if (ret != -EINTR)
			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
				   ret);
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
		up(&fs_info->uuid_tree_rescan_sem);
		return ret;
	}
	return btrfs_uuid_scan_kthread(data);
}

static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
{
	struct task_struct *task;

	down(&fs_info->uuid_tree_rescan_sem);
	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
	if (IS_ERR(task)) {
		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
		btrfs_warn(fs_info, "failed to start uuid_rescan task");
		up(&fs_info->uuid_tree_rescan_sem);
		return PTR_ERR(task);
	}

	return 0;
}

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
		      char *options)
{
	u32 sectorsize;
	u32 nodesize;
	u32 stripesize;
	u64 generation;
	u64 features;
	u16 csum_type;
	struct btrfs_key location;
	struct btrfs_super_block *disk_super;
	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
	struct btrfs_root *tree_root;
	struct btrfs_root *chunk_root;
	int ret;
	int err = -EINVAL;
	int clear_free_space_tree = 0;
	int level;

2853
	ret = init_mount_fs_info(fs_info, sb);
David Woodhouse's avatar
David Woodhouse committed
2854
	if (ret) {
2855
		err = ret;
2856
		goto fail;
David Woodhouse's avatar
David Woodhouse committed
2857 2858
	}

2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
	/* These need to be init'ed before we start creating inodes and such. */
	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
				     GFP_KERNEL);
	fs_info->tree_root = tree_root;
	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
				      GFP_KERNEL);
	fs_info->chunk_root = chunk_root;
	if (!tree_root || !chunk_root) {
		err = -ENOMEM;
		goto fail_srcu;
	}

	fs_info->btree_inode = new_inode(sb);
	if (!fs_info->btree_inode) {
		err = -ENOMEM;
		goto fail_srcu;
	}
	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
	btrfs_init_btree_inode(fs_info);

2879
	invalidate_bdev(fs_devices->latest_bdev);
2880 2881 2882 2883

	/*
	 * Read super block and check the signature bytes only
	 */
2884 2885 2886
	disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
	if (IS_ERR(disk_super)) {
		err = PTR_ERR(disk_super);
2887
		goto fail_alloc;
2888
	}
Chris Mason's avatar
Chris Mason committed
2889

2890 2891 2892 2893
	/*
	 * Verify the type first, if that or the the checksum value are
	 * corrupted, we'll find out
	 */
2894
	csum_type = btrfs_super_csum_type(disk_super);
2895
	if (!btrfs_supported_super_csum(csum_type)) {
2896
		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2897
			  csum_type);
2898
		err = -EINVAL;
2899
		btrfs_release_disk_super(disk_super);
2900 2901 2902
		goto fail_alloc;
	}

2903 2904 2905
	ret = btrfs_init_csum_hash(fs_info, csum_type);
	if (ret) {
		err = ret;
2906
		btrfs_release_disk_super(disk_super);
2907 2908 2909
		goto fail_alloc;
	}

2910 2911 2912 2913
	/*
	 * We want to check superblock checksum, the type is stored inside.
	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
	 */
2914
	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2915
		btrfs_err(fs_info, "superblock checksum mismatch");
2916
		err = -EINVAL;
2917
		btrfs_release_disk_super(disk_super);
2918
		goto fail_alloc;
2919 2920 2921 2922 2923 2924 2925
	}

	/*
	 * super_copy is zeroed at allocation time and we never touch the
	 * following bytes up to INFO_SIZE, the checksum is calculated from
	 * the whole block of INFO_SIZE
	 */
2926 2927
	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
	btrfs_release_disk_super(disk_super);
2928

2929 2930
	disk_super = fs_info->super_copy;

2931 2932 2933
	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
		       BTRFS_FSID_SIZE));

2934
	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2935 2936 2937
		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
				fs_info->super_copy->metadata_uuid,
				BTRFS_FSID_SIZE));
2938
	}
2939

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
	features = btrfs_super_flags(disk_super);
	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
		btrfs_set_super_flags(disk_super, features);
		btrfs_info(fs_info,
			"found metadata UUID change in progress flag, clearing");
	}

	memcpy(fs_info->super_for_commit, fs_info->super_copy,
	       sizeof(*fs_info->super_for_commit));
2950

2951
	ret = btrfs_validate_mount_super(fs_info);
2952
	if (ret) {
2953
		btrfs_err(fs_info, "superblock contains fatal errors");
2954
		err = -EINVAL;
2955
		goto fail_alloc;
2956 2957
	}

2958
	if (!btrfs_super_root(disk_super))
2959
		goto fail_alloc;
2960

2961
	/* check FS state, whether FS is broken. */
2962 2963
	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2964

2965 2966 2967 2968 2969 2970
	/*
	 * In the long term, we'll store the compression type in the super
	 * block, and it'll be used for per file compression control.
	 */
	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;

2971
	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
Yan Zheng's avatar
Yan Zheng committed
2972 2973
	if (ret) {
		err = ret;
2974
		goto fail_alloc;
Yan Zheng's avatar
Yan Zheng committed
2975
	}
2976

2977 2978 2979
	features = btrfs_super_incompat_flags(disk_super) &
		~BTRFS_FEATURE_INCOMPAT_SUPP;
	if (features) {
2980 2981 2982
		btrfs_err(fs_info,
		    "cannot mount because of unsupported optional features (%llx)",
		    features);
2983
		err = -EINVAL;
2984
		goto fail_alloc;
2985 2986
	}

2987
	features = btrfs_super_incompat_flags(disk_super);
2988
	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2989
	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2990
		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
Nick Terrell's avatar
Nick Terrell committed
2991 2992
	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2993

2994
	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2995
		btrfs_info(fs_info, "has skinny extents");
2996

2997 2998 2999 3000
	/*
	 * flag our filesystem as having big metadata blocks if
	 * they are bigger than the page size
	 */
3001
	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3002
		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3003 3004
			btrfs_info(fs_info,
				"flagging fs with big metadata feature");
3005 3006 3007
		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
	}

3008 3009
	nodesize = btrfs_super_nodesize(disk_super);
	sectorsize = btrfs_super_sectorsize(disk_super);
3010
	stripesize = sectorsize;
3011
	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3012
	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3013

3014 3015 3016 3017 3018
	/* Cache block sizes */
	fs_info->nodesize = nodesize;
	fs_info->sectorsize = sectorsize;
	fs_info->stripesize = stripesize;

3019 3020 3021 3022 3023
	/*
	 * mixed block groups end up with duplicate but slightly offset
	 * extent buffers for the same range.  It leads to corruptions
	 */
	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3024
	    (sectorsize != nodesize)) {
3025 3026 3027
		btrfs_err(fs_info,
"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
			nodesize, sectorsize);
3028
		goto fail_alloc;
3029 3030
	}

3031 3032 3033 3034
	/*
	 * Needn't use the lock because there is no other task which will
	 * update the flag.
	 */
3035
	btrfs_set_super_incompat_flags(disk_super, features);
3036

3037 3038
	features = btrfs_super_compat_ro_flags(disk_super) &
		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3039
	if (!sb_rdonly(sb) && features) {
3040 3041
		btrfs_err(fs_info,
	"cannot mount read-write because of unsupported optional features (%llx)",
3042
		       features);
3043
		err = -EINVAL;
3044
		goto fail_alloc;
3045
	}
3046

3047 3048 3049
	ret = btrfs_init_workqueues(fs_info, fs_devices);
	if (ret) {
		err = ret;
3050 3051
		goto fail_sb_buffer;
	}
3052

3053 3054 3055
	sb->s_bdi->congested_fn = btrfs_congested_fn;
	sb->s_bdi->congested_data = fs_info;
	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3056
	sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3057 3058
	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3059

3060 3061
	sb->s_blocksize = sectorsize;
	sb->s_blocksize_bits = blksize_bits(sectorsize);
3062
	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3063

3064
	mutex_lock(&fs_info->chunk_mutex);
3065
	ret = btrfs_read_sys_array(fs_info);
3066
	mutex_unlock(&fs_info->chunk_mutex);
3067
	if (ret) {
3068
		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3069
		goto fail_sb_buffer;
3070
	}
3071

3072
	generation = btrfs_super_chunk_root_generation(disk_super);
3073
	level = btrfs_super_chunk_root_level(disk_super);
3074

3075
	chunk_root->node = read_tree_block(fs_info,
3076
					   btrfs_super_chunk_root(disk_super),
3077
					   generation, level, NULL);
3078 3079
	if (IS_ERR(chunk_root->node) ||
	    !extent_buffer_uptodate(chunk_root->node)) {
3080
		btrfs_err(fs_info, "failed to read chunk root");
3081 3082
		if (!IS_ERR(chunk_root->node))
			free_extent_buffer(chunk_root->node);
3083
		chunk_root->node = NULL;
3084
		goto fail_tree_roots;
3085
	}
3086 3087
	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
	chunk_root->commit_root = btrfs_root_node(chunk_root);
3088

3089
	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3090 3091
			   offsetof(struct btrfs_header, chunk_tree_uuid),
			   BTRFS_UUID_SIZE);
3092

3093
	ret = btrfs_read_chunk_tree(fs_info);
Yan Zheng's avatar
Yan Zheng committed
3094
	if (ret) {
3095
		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3096
		goto fail_tree_roots;
Yan Zheng's avatar
Yan Zheng committed
3097
	}
3098

3099
	/*
3100 3101
	 * Keep the devid that is marked to be the target device for the
	 * device replace procedure
3102
	 */
3103
	btrfs_free_extra_devids(fs_devices, 0);
3104

3105
	if (!fs_devices->latest_bdev) {
3106
		btrfs_err(fs_info, "failed to read devices");
3107 3108 3109
		goto fail_tree_roots;
	}

3110
	ret = init_tree_roots(fs_info);
3111
	if (ret)
3112
		goto fail_tree_roots;
3113

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
	/*
	 * If we have a uuid root and we're not being told to rescan we need to
	 * check the generation here so we can set the
	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
	 * transaction during a balance or the log replay without updating the
	 * uuid generation, and then if we crash we would rescan the uuid tree,
	 * even though it was perfectly fine.
	 */
	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);

3126 3127 3128 3129 3130 3131 3132
	ret = btrfs_verify_dev_extents(fs_info);
	if (ret) {
		btrfs_err(fs_info,
			  "failed to verify dev extents against chunks: %d",
			  ret);
		goto fail_block_groups;
	}
3133 3134
	ret = btrfs_recover_balance(fs_info);
	if (ret) {
3135
		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3136 3137 3138
		goto fail_block_groups;
	}

3139 3140
	ret = btrfs_init_dev_stats(fs_info);
	if (ret) {
3141
		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3142 3143 3144
		goto fail_block_groups;
	}

3145 3146
	ret = btrfs_init_dev_replace(fs_info);
	if (ret) {
3147
		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3148 3149 3150
		goto fail_block_groups;
	}

3151
	btrfs_free_extra_devids(fs_devices, 1);
3152

3153
	ret = btrfs_sysfs_add_fsid(fs_devices);
3154
	if (ret) {
3155 3156
		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
				ret);
3157 3158 3159
		goto fail_block_groups;
	}

3160
	ret = btrfs_sysfs_add_mounted(fs_info);
3161
	if (ret) {
3162
		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3163
		goto fail_fsdev_sysfs;
3164 3165 3166 3167
	}

	ret = btrfs_init_space_info(fs_info);
	if (ret) {
3168
		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3169
		goto fail_sysfs;
3170 3171
	}

3172
	ret = btrfs_read_block_groups(fs_info);
3173
	if (ret) {
3174
		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3175
		goto fail_sysfs;
3176
	}
3177

3178
	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3179
		btrfs_warn(fs_info,
3180
		"writable mount is not allowed due to too many missing devices");
3181
		goto fail_sysfs;
3182
	}
3183

3184 3185
	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
					       "btrfs-cleaner");
3186
	if (IS_ERR(fs_info->cleaner_kthread))
3187
		goto fail_sysfs;
3188 3189 3190 3191

	fs_info->transaction_kthread = kthread_run(transaction_kthread,
						   tree_root,
						   "btrfs-transaction");
3192
	if (IS_ERR(fs_info->transaction_kthread))
3193
		goto fail_cleaner;
3194

3195
	if (!btrfs_test_opt(fs_info, NOSSD) &&
Chris Mason's avatar
Chris Mason committed
3196
	    !fs_info->fs_devices->rotating) {
3197
		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
Chris Mason's avatar
Chris Mason committed
3198 3199
	}

3200
	/*
3201
	 * Mount does not set all options immediately, we can do it now and do
3202 3203 3204
	 * not have to wait for transaction commit
	 */
	btrfs_apply_pending_changes(fs_info);
3205

3206
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3207
	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3208
		ret = btrfsic_mount(fs_info, fs_devices,
3209
				    btrfs_test_opt(fs_info,
3210 3211 3212 3213
					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
				    1 : 0,
				    fs_info->check_integrity_print_mask);
		if (ret)
3214 3215 3216
			btrfs_warn(fs_info,
				"failed to initialize integrity check module: %d",
				ret);
3217 3218
	}
#endif
3219 3220 3221
	ret = btrfs_read_qgroup_config(fs_info);
	if (ret)
		goto fail_trans_kthread;
3222

3223 3224 3225
	if (btrfs_build_ref_tree(fs_info))
		btrfs_err(fs_info, "couldn't build ref tree");

3226 3227
	/* do not make disk changes in broken FS or nologreplay is given */
	if (btrfs_super_log_root(disk_super) != 0 &&
3228
	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3229
		btrfs_info(fs_info, "start tree-log replay");
3230
		ret = btrfs_replay_log(fs_info, fs_devices);
3231
		if (ret) {
3232
			err = ret;
3233
			goto fail_qgroup;
3234
		}
3235
	}
3236

3237
	ret = btrfs_find_orphan_roots(fs_info);
3238
	if (ret)
3239
		goto fail_qgroup;
3240

3241
	if (!sb_rdonly(sb)) {
3242
		ret = btrfs_cleanup_fs_roots(fs_info);
3243
		if (ret)
3244
			goto fail_qgroup;
3245 3246

		mutex_lock(&fs_info->cleaner_mutex);
3247
		ret = btrfs_recover_relocation(tree_root);
3248
		mutex_unlock(&fs_info->cleaner_mutex);
3249
		if (ret < 0) {
3250 3251
			btrfs_warn(fs_info, "failed to recover relocation: %d",
					ret);
3252
			err = -EINVAL;
3253
			goto fail_qgroup;
3254
		}
3255
	}
3256

3257 3258
	location.objectid = BTRFS_FS_TREE_OBJECTID;
	location.type = BTRFS_ROOT_ITEM_KEY;
3259
	location.offset = 0;
3260

3261
	fs_info->fs_root = btrfs_get_fs_root(fs_info, &location, true);
3262 3263
	if (IS_ERR(fs_info->fs_root)) {
		err = PTR_ERR(fs_info->fs_root);
3264
		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3265
		fs_info->fs_root = NULL;
3266
		goto fail_qgroup;
3267
	}
Chris Mason's avatar
Chris Mason committed
3268

3269
	if (sb_rdonly(sb))
3270
		return 0;
3271

3272 3273
	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3274 3275 3276 3277 3278 3279 3280 3281
		clear_free_space_tree = 1;
	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
		btrfs_warn(fs_info, "free space tree is invalid");
		clear_free_space_tree = 1;
	}

	if (clear_free_space_tree) {
3282 3283 3284 3285 3286
		btrfs_info(fs_info, "clearing free space tree");
		ret = btrfs_clear_free_space_tree(fs_info);
		if (ret) {
			btrfs_warn(fs_info,
				   "failed to clear free space tree: %d", ret);
3287
			close_ctree(fs_info);
3288 3289 3290 3291
			return ret;
		}
	}

3292
	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3293
	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3294
		btrfs_info(fs_info, "creating free space tree");
3295 3296
		ret = btrfs_create_free_space_tree(fs_info);
		if (ret) {
3297 3298
			btrfs_warn(fs_info,
				"failed to create free space tree: %d", ret);
3299
			close_ctree(fs_info);
3300 3301 3302 3303
			return ret;
		}
	}

3304 3305 3306
	down_read(&fs_info->cleanup_work_sem);
	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3307
		up_read(&fs_info->cleanup_work_sem);
3308
		close_ctree(fs_info);
3309 3310 3311
		return ret;
	}
	up_read(&fs_info->cleanup_work_sem);
3312

3313 3314
	ret = btrfs_resume_balance_async(fs_info);
	if (ret) {
3315
		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3316
		close_ctree(fs_info);
3317
		return ret;
3318 3319
	}

3320 3321
	ret = btrfs_resume_dev_replace_async(fs_info);
	if (ret) {
3322
		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3323
		close_ctree(fs_info);
3324 3325 3326
		return ret;
	}

3327
	btrfs_qgroup_rescan_resume(fs_info);
3328
	btrfs_discard_resume(fs_info);
3329

3330
	if (!fs_info->uuid_root) {
3331
		btrfs_info(fs_info, "creating UUID tree");
3332 3333
		ret = btrfs_create_uuid_tree(fs_info);
		if (ret) {
3334 3335
			btrfs_warn(fs_info,
				"failed to create the UUID tree: %d", ret);
3336
			close_ctree(fs_info);
3337 3338
			return ret;
		}
3339
	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3340 3341
		   fs_info->generation !=
				btrfs_super_uuid_tree_generation(disk_super)) {
3342
		btrfs_info(fs_info, "checking UUID tree");
3343 3344
		ret = btrfs_check_uuid_tree(fs_info);
		if (ret) {
3345 3346
			btrfs_warn(fs_info,
				"failed to check the UUID tree: %d", ret);
3347
			close_ctree(fs_info);
3348 3349
			return ret;
		}
3350
	}
3351
	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3352

3353 3354 3355 3356 3357 3358
	/*
	 * backuproot only affect mount behavior, and if open_ctree succeeded,
	 * no need to keep the flag
	 */
	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);

3359
	return 0;
Chris Mason's avatar
Chris Mason committed
3360

3361 3362
fail_qgroup:
	btrfs_free_qgroup_config(fs_info);
3363 3364
fail_trans_kthread:
	kthread_stop(fs_info->transaction_kthread);
3365
	btrfs_cleanup_transaction(fs_info);
3366
	btrfs_free_fs_roots(fs_info);
3367
fail_cleaner:
3368
	kthread_stop(fs_info->cleaner_kthread);
3369 3370 3371 3372 3373 3374 3375

	/*
	 * make sure we're done with the btree inode before we stop our
	 * kthreads
	 */
	filemap_write_and_wait(fs_info->btree_inode->i_mapping);

3376
fail_sysfs:
3377
	btrfs_sysfs_remove_mounted(fs_info);
3378

3379 3380 3381
fail_fsdev_sysfs:
	btrfs_sysfs_remove_fsid(fs_info->fs_devices);

3382
fail_block_groups:
Josef Bacik's avatar
Josef Bacik committed
3383
	btrfs_put_block_group_cache(fs_info);
3384 3385

fail_tree_roots:
3386
	free_root_pointers(fs_info, true);
3387
	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3388

Chris Mason's avatar
Chris Mason committed
3389
fail_sb_buffer:
Liu Bo's avatar
Liu Bo committed
3390
	btrfs_stop_all_workers(fs_info);
3391
	btrfs_free_block_groups(fs_info);
3392
fail_alloc:
3393 3394
	btrfs_mapping_tree_free(&fs_info->mapping_tree);

3395
	iput(fs_info->btree_inode);
3396 3397
fail_srcu:
	cleanup_srcu_struct(&fs_info->subvol_srcu);
3398
fail:
3399
	btrfs_close_devices(fs_info->fs_devices);
3400
	return err;
3401
}
3402
ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3403

3404
static void btrfs_end_super_write(struct bio *bio)
3405
{
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
	struct btrfs_device *device = bio->bi_private;
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;
	struct page *page;

	bio_for_each_segment_all(bvec, bio, iter_all) {
		page = bvec->bv_page;

		if (bio->bi_status) {
			btrfs_warn_rl_in_rcu(device->fs_info,
				"lost page write due to IO error on %s (%d)",
				rcu_str_deref(device->name),
				blk_status_to_errno(bio->bi_status));
			ClearPageUptodate(page);
			SetPageError(page);
			btrfs_dev_stat_inc_and_print(device,
						     BTRFS_DEV_STAT_WRITE_ERRS);
		} else {
			SetPageUptodate(page);
		}

		put_page(page);
		unlock_page(page);
3429
	}
3430 3431

	bio_put(bio);
3432 3433
}

3434 3435
struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
						   int copy_num)
3436 3437
{
	struct btrfs_super_block *super;
3438
	struct page *page;
3439
	u64 bytenr;
3440
	struct address_space *mapping = bdev->bd_inode->i_mapping;
3441 3442 3443

	bytenr = btrfs_sb_offset(copy_num);
	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3444
		return ERR_PTR(-EINVAL);
3445

3446 3447 3448
	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
	if (IS_ERR(page))
		return ERR_CAST(page);
3449

3450
	super = page_address(page);
3451 3452
	if (btrfs_super_bytenr(super) != bytenr ||
		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3453 3454
		btrfs_release_disk_super(super);
		return ERR_PTR(-EINVAL);
3455 3456
	}

3457
	return super;
3458 3459 3460
}


3461
struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
Yan Zheng's avatar
Yan Zheng committed
3462
{
3463
	struct btrfs_super_block *super, *latest = NULL;
Yan Zheng's avatar
Yan Zheng committed
3464 3465 3466 3467 3468 3469 3470 3471 3472
	int i;
	u64 transid = 0;

	/* we would like to check all the supers, but that would make
	 * a btrfs mount succeed after a mkfs from a different FS.
	 * So, we need to add a special mount option to scan for
	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
	 */
	for (i = 0; i < 1; i++) {
3473 3474
		super = btrfs_read_dev_one_super(bdev, i);
		if (IS_ERR(super))
Yan Zheng's avatar
Yan Zheng committed
3475 3476 3477
			continue;

		if (!latest || btrfs_super_generation(super) > transid) {
3478 3479 3480 3481
			if (latest)
				btrfs_release_disk_super(super);

			latest = super;
Yan Zheng's avatar
Yan Zheng committed
3482 3483 3484
			transid = btrfs_super_generation(super);
		}
	}
3485

3486
	return super;
Yan Zheng's avatar
Yan Zheng committed
3487 3488
}

3489
/*
3490
 * Write superblock @sb to the @device. Do not wait for completion, all the
3491
 * pages we use for writing are locked.
3492
 *
3493 3494 3495
 * Write @max_mirrors copies of the superblock, where 0 means default that fit
 * the expected device size at commit time. Note that max_mirrors must be
 * same for write and wait phases.
3496
 *
3497
 * Return number of errors when page is not found or submission fails.
3498
 */
Yan Zheng's avatar
Yan Zheng committed
3499
static int write_dev_supers(struct btrfs_device *device,
3500
			    struct btrfs_super_block *sb, int max_mirrors)
Yan Zheng's avatar
Yan Zheng committed
3501
{
3502
	struct btrfs_fs_info *fs_info = device->fs_info;
3503
	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3504
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
Yan Zheng's avatar
Yan Zheng committed
3505 3506 3507 3508 3509 3510 3511
	int i;
	int errors = 0;
	u64 bytenr;

	if (max_mirrors == 0)
		max_mirrors = BTRFS_SUPER_MIRROR_MAX;

3512 3513
	shash->tfm = fs_info->csum_shash;

Yan Zheng's avatar
Yan Zheng committed
3514
	for (i = 0; i < max_mirrors; i++) {
3515 3516 3517 3518
		struct page *page;
		struct bio *bio;
		struct btrfs_super_block *disk_super;

Yan Zheng's avatar
Yan Zheng committed
3519
		bytenr = btrfs_sb_offset(i);
3520 3521
		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
		    device->commit_total_bytes)
Yan Zheng's avatar
Yan Zheng committed
3522 3523
			break;

3524
		btrfs_set_super_bytenr(sb, bytenr);
3525

3526 3527 3528 3529
		crypto_shash_init(shash);
		crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
		crypto_shash_final(shash, sb->csum);
3530

3531 3532 3533
		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
					   GFP_NOFS);
		if (!page) {
3534
			btrfs_err(device->fs_info,
3535
			    "couldn't get super block page for bytenr %llu",
3536 3537
			    bytenr);
			errors++;
3538
			continue;
3539
		}
3540

3541 3542
		/* Bump the refcount for wait_dev_supers() */
		get_page(page);
Yan Zheng's avatar
Yan Zheng committed
3543

3544 3545
		disk_super = page_address(page);
		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3546

3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
		/*
		 * Directly use bios here instead of relying on the page cache
		 * to do I/O, so we don't lose the ability to do integrity
		 * checking.
		 */
		bio = bio_alloc(GFP_NOFS, 1);
		bio_set_dev(bio, device->bdev);
		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
		bio->bi_private = device;
		bio->bi_end_io = btrfs_end_super_write;
		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
			       offset_in_page(bytenr));
Yan Zheng's avatar
Yan Zheng committed
3559

Chris Mason's avatar
Chris Mason committed
3560
		/*
3561 3562 3563
		 * We FUA only the first super block.  The others we allow to
		 * go down lazy and there's a short window where the on-disk
		 * copies might still contain the older version.
Chris Mason's avatar
Chris Mason committed
3564
		 */
3565
		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3566
		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3567 3568 3569
			bio->bi_opf |= REQ_FUA;

		btrfsic_submit_bio(bio);
Yan Zheng's avatar
Yan Zheng committed
3570 3571 3572 3573
	}
	return errors < i ? 0 : -1;
}

3574 3575 3576 3577
/*
 * Wait for write completion of superblocks done by write_dev_supers,
 * @max_mirrors same for write and wait phases.
 *
3578
 * Return number of errors when page is not found or not marked up to
3579 3580 3581 3582 3583 3584
 * date.
 */
static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
{
	int i;
	int errors = 0;
3585
	bool primary_failed = false;
3586 3587 3588 3589 3590 3591
	u64 bytenr;

	if (max_mirrors == 0)
		max_mirrors = BTRFS_SUPER_MIRROR_MAX;

	for (i = 0; i < max_mirrors; i++) {
3592 3593
		struct page *page;

3594 3595 3596 3597 3598
		bytenr = btrfs_sb_offset(i);
		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
		    device->commit_total_bytes)
			break;

3599 3600 3601
		page = find_get_page(device->bdev->bd_inode->i_mapping,
				     bytenr >> PAGE_SHIFT);
		if (!page) {
3602
			errors++;
3603 3604
			if (i == 0)
				primary_failed = true;
3605 3606
			continue;
		}
3607 3608 3609
		/* Page is submitted locked and unlocked once the IO completes */
		wait_on_page_locked(page);
		if (PageError(page)) {
3610
			errors++;
3611 3612 3613
			if (i == 0)
				primary_failed = true;
		}
3614

3615 3616
		/* Drop our reference */
		put_page(page);
3617

3618 3619
		/* Drop the reference from the writing run */
		put_page(page);
3620 3621
	}

3622 3623 3624 3625 3626 3627 3628
	/* log error, force error return */
	if (primary_failed) {
		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
			  device->devid);
		return -1;
	}

3629 3630 3631
	return errors < i ? 0 : -1;
}

Chris Mason's avatar
Chris Mason committed
3632 3633 3634 3635
/*
 * endio for the write_dev_flush, this will wake anyone waiting
 * for the barrier when it is done
 */
3636
static void btrfs_end_empty_barrier(struct bio *bio)
Chris Mason's avatar
Chris Mason committed
3637
{
3638
	complete(bio->bi_private);
Chris Mason's avatar
Chris Mason committed
3639 3640 3641
}

/*
3642 3643
 * Submit a flush request to the device if it supports it. Error handling is
 * done in the waiting counterpart.
Chris Mason's avatar
Chris Mason committed
3644
 */
3645
static void write_dev_flush(struct btrfs_device *device)
Chris Mason's avatar
Chris Mason committed
3646
{
3647
	struct request_queue *q = bdev_get_queue(device->bdev);
3648
	struct bio *bio = device->flush_bio;
Chris Mason's avatar
Chris Mason committed
3649

3650
	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3651
		return;
Chris Mason's avatar
Chris Mason committed
3652

3653
	bio_reset(bio);
Chris Mason's avatar
Chris Mason committed
3654
	bio->bi_end_io = btrfs_end_empty_barrier;
3655
	bio_set_dev(bio, device->bdev);
3656
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
Chris Mason's avatar
Chris Mason committed
3657 3658 3659
	init_completion(&device->flush_wait);
	bio->bi_private = &device->flush_wait;

3660
	btrfsic_submit_bio(bio);
3661
	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3662
}
Chris Mason's avatar
Chris Mason committed
3663

3664 3665 3666
/*
 * If the flush bio has been submitted by write_dev_flush, wait for it.
 */
3667
static blk_status_t wait_dev_flush(struct btrfs_device *device)
3668 3669
{
	struct bio *bio = device->flush_bio;
Chris Mason's avatar
Chris Mason committed
3670

3671
	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3672
		return BLK_STS_OK;
Chris Mason's avatar
Chris Mason committed
3673

3674
	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3675
	wait_for_completion_io(&device->flush_wait);
Chris Mason's avatar
Chris Mason committed
3676

3677
	return bio->bi_status;
Chris Mason's avatar
Chris Mason committed
3678 3679
}

3680
static int check_barrier_error(struct btrfs_fs_info *fs_info)
3681
{
3682
	if (!btrfs_check_rw_degradable(fs_info, NULL))
3683
		return -EIO;
Chris Mason's avatar
Chris Mason committed
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
	return 0;
}

/*
 * send an empty flush down to each device in parallel,
 * then wait for them
 */
static int barrier_all_devices(struct btrfs_fs_info *info)
{
	struct list_head *head;
	struct btrfs_device *dev;
3695
	int errors_wait = 0;
3696
	blk_status_t ret;
Chris Mason's avatar
Chris Mason committed
3697

3698
	lockdep_assert_held(&info->fs_devices->device_list_mutex);
Chris Mason's avatar
Chris Mason committed
3699 3700
	/* send down all the barriers */
	head = &info->fs_devices->devices;
3701
	list_for_each_entry(dev, head, dev_list) {
3702
		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3703
			continue;
3704
		if (!dev->bdev)
Chris Mason's avatar
Chris Mason committed
3705
			continue;
3706
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3707
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
Chris Mason's avatar
Chris Mason committed
3708 3709
			continue;

3710
		write_dev_flush(dev);
3711
		dev->last_flush_error = BLK_STS_OK;
Chris Mason's avatar
Chris Mason committed
3712 3713 3714
	}

	/* wait for all the barriers */
3715
	list_for_each_entry(dev, head, dev_list) {
3716
		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3717
			continue;
Chris Mason's avatar
Chris Mason committed
3718
		if (!dev->bdev) {
3719
			errors_wait++;
Chris Mason's avatar
Chris Mason committed
3720 3721
			continue;
		}
3722
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3723
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
Chris Mason's avatar
Chris Mason committed
3724 3725
			continue;

3726
		ret = wait_dev_flush(dev);
3727 3728
		if (ret) {
			dev->last_flush_error = ret;
3729 3730
			btrfs_dev_stat_inc_and_print(dev,
					BTRFS_DEV_STAT_FLUSH_ERRS);
3731
			errors_wait++;
3732 3733 3734
		}
	}

3735
	if (errors_wait) {
3736 3737 3738 3739 3740
		/*
		 * At some point we need the status of all disks
		 * to arrive at the volume status. So error checking
		 * is being pushed to a separate loop.
		 */
3741
		return check_barrier_error(info);
Chris Mason's avatar
Chris Mason committed
3742 3743 3744 3745
	}
	return 0;
}

3746 3747
int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
{
3748 3749
	int raid_type;
	int min_tolerated = INT_MAX;
3750

3751 3752
	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3753
		min_tolerated = min_t(int, min_tolerated,
3754 3755
				    btrfs_raid_array[BTRFS_RAID_SINGLE].
				    tolerated_failures);
3756

3757 3758 3759
	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
		if (raid_type == BTRFS_RAID_SINGLE)
			continue;
3760
		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3761
			continue;
3762
		min_tolerated = min_t(int, min_tolerated,
3763 3764 3765
				    btrfs_raid_array[raid_type].
				    tolerated_failures);
	}
3766

3767
	if (min_tolerated == INT_MAX) {
3768
		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3769 3770 3771 3772
		min_tolerated = 0;
	}

	return min_tolerated;
3773 3774
}

3775
int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3776
{
3777
	struct list_head *head;
3778
	struct btrfs_device *dev;
3779
	struct btrfs_super_block *sb;
3780 3781 3782
	struct btrfs_dev_item *dev_item;
	int ret;
	int do_barriers;
3783 3784
	int max_errors;
	int total_errors = 0;
3785
	u64 flags;
3786

3787
	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3788 3789 3790 3791 3792 3793 3794 3795

	/*
	 * max_mirrors == 0 indicates we're from commit_transaction,
	 * not from fsync where the tree roots in fs_info have not
	 * been consistent on disk.
	 */
	if (max_mirrors == 0)
		backup_super_roots(fs_info);
3796

3797
	sb = fs_info->super_for_commit;
3798
	dev_item = &sb->dev_item;
3799

3800 3801 3802
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	head = &fs_info->fs_devices->devices;
	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
Chris Mason's avatar
Chris Mason committed
3803

3804
	if (do_barriers) {
3805
		ret = barrier_all_devices(fs_info);
3806 3807
		if (ret) {
			mutex_unlock(
3808 3809 3810
				&fs_info->fs_devices->device_list_mutex);
			btrfs_handle_fs_error(fs_info, ret,
					      "errors while submitting device barriers.");
3811 3812 3813
			return ret;
		}
	}
Chris Mason's avatar
Chris Mason committed
3814

3815
	list_for_each_entry(dev, head, dev_list) {
3816 3817 3818 3819
		if (!dev->bdev) {
			total_errors++;
			continue;
		}
3820
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3821
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3822 3823
			continue;

Yan Zheng's avatar
Yan Zheng committed
3824
		btrfs_set_stack_device_generation(dev_item, 0);
3825 3826
		btrfs_set_stack_device_type(dev_item, dev->type);
		btrfs_set_stack_device_id(dev_item, dev->devid);
3827
		btrfs_set_stack_device_total_bytes(dev_item,
3828
						   dev->commit_total_bytes);
3829 3830
		btrfs_set_stack_device_bytes_used(dev_item,
						  dev->commit_bytes_used);
3831 3832 3833 3834
		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3835 3836
		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
		       BTRFS_FSID_SIZE);
Yan Zheng's avatar
Yan Zheng committed
3837

3838 3839 3840
		flags = btrfs_super_flags(sb);
		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);

3841 3842 3843 3844 3845 3846 3847 3848
		ret = btrfs_validate_write_super(fs_info, sb);
		if (ret < 0) {
			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
			btrfs_handle_fs_error(fs_info, -EUCLEAN,
				"unexpected superblock corruption detected");
			return -EUCLEAN;
		}

3849
		ret = write_dev_supers(dev, sb, max_mirrors);
3850 3851
		if (ret)
			total_errors++;
3852
	}
3853
	if (total_errors > max_errors) {
3854 3855 3856
		btrfs_err(fs_info, "%d errors while writing supers",
			  total_errors);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3857

3858
		/* FUA is masked off if unsupported and can't be the reason */
3859 3860 3861
		btrfs_handle_fs_error(fs_info, -EIO,
				      "%d errors while writing supers",
				      total_errors);
3862
		return -EIO;
3863
	}
3864

Yan Zheng's avatar
Yan Zheng committed
3865
	total_errors = 0;
3866
	list_for_each_entry(dev, head, dev_list) {
3867 3868
		if (!dev->bdev)
			continue;
3869
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3870
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3871 3872
			continue;

3873
		ret = wait_dev_supers(dev, max_mirrors);
Yan Zheng's avatar
Yan Zheng committed
3874 3875
		if (ret)
			total_errors++;
3876
	}
3877
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3878
	if (total_errors > max_errors) {
3879 3880 3881
		btrfs_handle_fs_error(fs_info, -EIO,
				      "%d errors while writing supers",
				      total_errors);
3882
		return -EIO;
3883
	}
3884 3885 3886
	return 0;
}

3887 3888 3889
/* Drop a fs root from the radix tree and free it. */
void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
				  struct btrfs_root *root)
Chris Mason's avatar
Chris Mason committed
3890
{
3891
	spin_lock(&fs_info->fs_roots_radix_lock);
Chris Mason's avatar
Chris Mason committed
3892 3893
	radix_tree_delete(&fs_info->fs_roots_radix,
			  (unsigned long)root->root_key.objectid);
3894
	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3895
		btrfs_put_root(root);
3896
	spin_unlock(&fs_info->fs_roots_radix_lock);
3897 3898 3899 3900

	if (btrfs_root_refs(&root->root_item) == 0)
		synchronize_srcu(&fs_info->subvol_srcu);

3901
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
Liu Bo's avatar
Liu Bo committed
3902
		btrfs_free_log(NULL, root);
3903 3904 3905
		if (root->reloc_root) {
			free_extent_buffer(root->reloc_root->node);
			free_extent_buffer(root->reloc_root->commit_root);
3906
			btrfs_put_root(root->reloc_root);
3907 3908 3909
			root->reloc_root = NULL;
		}
	}
Liu Bo's avatar
Liu Bo committed
3910

3911 3912 3913 3914
	if (root->free_ino_pinned)
		__btrfs_remove_free_space_cache(root->free_ino_pinned);
	if (root->free_ino_ctl)
		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3915 3916 3917 3918
	if (root->ino_cache_inode) {
		iput(root->ino_cache_inode);
		root->ino_cache_inode = NULL;
	}
3919
	btrfs_free_fs_root(root);
3920 3921
}

3922
void btrfs_free_fs_root(struct btrfs_root *root)
3923 3924
{
	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3925 3926
	if (root->anon_dev)
		free_anon_bdev(root->anon_dev);
3927
	btrfs_drew_lock_destroy(&root->snapshot_lock);
3928 3929
	free_extent_buffer(root->node);
	free_extent_buffer(root->commit_root);
3930 3931
	kfree(root->free_ino_ctl);
	kfree(root->free_ino_pinned);
3932
	btrfs_put_root(root);
Chris Mason's avatar
Chris Mason committed
3933 3934
}

3935
int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
Chris Mason's avatar
Chris Mason committed
3936
{
3937 3938
	u64 root_objectid = 0;
	struct btrfs_root *gang[8];
3939 3940 3941 3942
	int i = 0;
	int err = 0;
	unsigned int ret = 0;
	int index;
3943

3944
	while (1) {
3945
		index = srcu_read_lock(&fs_info->subvol_srcu);
3946 3947 3948
		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
					     (void **)gang, root_objectid,
					     ARRAY_SIZE(gang));
3949 3950
		if (!ret) {
			srcu_read_unlock(&fs_info->subvol_srcu, index);
3951
			break;
3952
		}
3953
		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3954

3955
		for (i = 0; i < ret; i++) {
3956 3957 3958 3959 3960 3961
			/* Avoid to grab roots in dead_roots */
			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
				gang[i] = NULL;
				continue;
			}
			/* grab all the search result for later use */
3962
			gang[i] = btrfs_grab_root(gang[i]);
3963 3964
		}
		srcu_read_unlock(&fs_info->subvol_srcu, index);
3965

3966 3967 3968
		for (i = 0; i < ret; i++) {
			if (!gang[i])
				continue;
3969
			root_objectid = gang[i]->root_key.objectid;
3970 3971
			err = btrfs_orphan_cleanup(gang[i]);
			if (err)
3972
				break;
3973
			btrfs_put_root(gang[i]);
3974 3975 3976
		}
		root_objectid++;
	}
3977 3978 3979 3980

	/* release the uncleaned roots due to error */
	for (; i < ret; i++) {
		if (gang[i])
3981
			btrfs_put_root(gang[i]);
3982 3983
	}
	return err;
3984
}
3985

3986
int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3987
{
3988
	struct btrfs_root *root = fs_info->tree_root;
3989
	struct btrfs_trans_handle *trans;
3990

3991
	mutex_lock(&fs_info->cleaner_mutex);
3992
	btrfs_run_delayed_iputs(fs_info);
3993 3994
	mutex_unlock(&fs_info->cleaner_mutex);
	wake_up_process(fs_info->cleaner_kthread);
3995 3996

	/* wait until ongoing cleanup work done */
3997 3998
	down_write(&fs_info->cleanup_work_sem);
	up_write(&fs_info->cleanup_work_sem);
3999

4000
	trans = btrfs_join_transaction(root);
4001 4002
	if (IS_ERR(trans))
		return PTR_ERR(trans);
4003
	return btrfs_commit_transaction(trans);
4004 4005
}

4006
void __cold close_ctree(struct btrfs_fs_info *fs_info)
4007 4008 4009
{
	int ret;

4010
	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4011 4012 4013 4014 4015 4016 4017
	/*
	 * We don't want the cleaner to start new transactions, add more delayed
	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
	 * because that frees the task_struct, and the transaction kthread might
	 * still try to wake up the cleaner.
	 */
	kthread_park(fs_info->cleaner_kthread);
4018

4019
	/* wait for the qgroup rescan worker to stop */
4020
	btrfs_qgroup_wait_for_completion(fs_info, false);
4021

4022 4023 4024 4025 4026
	/* wait for the uuid_scan task to finish */
	down(&fs_info->uuid_tree_rescan_sem);
	/* avoid complains from lockdep et al., set sem back to initial state */
	up(&fs_info->uuid_tree_rescan_sem);

4027
	/* pause restriper - we want to resume on mount */
4028
	btrfs_pause_balance(fs_info);
4029

4030 4031
	btrfs_dev_replace_suspend_for_unmount(fs_info);

4032
	btrfs_scrub_cancel(fs_info);
4033 4034 4035 4036 4037 4038

	/* wait for any defraggers to finish */
	wait_event(fs_info->transaction_wait,
		   (atomic_read(&fs_info->defrag_running) == 0));

	/* clear out the rbtree of defraggable inodes */
4039
	btrfs_cleanup_defrag_inodes(fs_info);
4040

4041 4042
	cancel_work_sync(&fs_info->async_reclaim_work);

4043 4044 4045
	/* Cancel or finish ongoing discard work */
	btrfs_discard_cleanup(fs_info);

4046
	if (!sb_rdonly(fs_info->sb)) {
4047
		/*
4048 4049
		 * The cleaner kthread is stopped, so do one final pass over
		 * unused block groups.
4050
		 */
4051
		btrfs_delete_unused_bgs(fs_info);
4052

4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
		/*
		 * There might be existing delayed inode workers still running
		 * and holding an empty delayed inode item. We must wait for
		 * them to complete first because they can create a transaction.
		 * This happens when someone calls btrfs_balance_delayed_items()
		 * and then a transaction commit runs the same delayed nodes
		 * before any delayed worker has done something with the nodes.
		 * We must wait for any worker here and not at transaction
		 * commit time since that could cause a deadlock.
		 * This is a very rare case.
		 */
		btrfs_flush_workqueue(fs_info->delayed_workers);

4066
		ret = btrfs_commit_super(fs_info);
4067
		if (ret)
4068
			btrfs_err(fs_info, "commit super ret %d", ret);
4069 4070
	}

4071 4072
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4073
		btrfs_error_commit_super(fs_info);
4074

4075 4076
	kthread_stop(fs_info->transaction_kthread);
	kthread_stop(fs_info->cleaner_kthread);
4077

4078
	ASSERT(list_empty(&fs_info->delayed_iputs));
4079
	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4080

4081
	btrfs_free_qgroup_config(fs_info);
4082
	ASSERT(list_empty(&fs_info->delalloc_roots));
4083

4084
	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4085
		btrfs_info(fs_info, "at unmount delalloc count %lld",
4086
		       percpu_counter_sum(&fs_info->delalloc_bytes));
4087
	}
4088

4089 4090 4091 4092
	if (percpu_counter_sum(&fs_info->dio_bytes))
		btrfs_info(fs_info, "at unmount dio bytes count %lld",
			   percpu_counter_sum(&fs_info->dio_bytes));

4093
	btrfs_sysfs_remove_mounted(fs_info);
4094
	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4095

4096
	btrfs_free_fs_roots(fs_info);
4097

4098 4099
	btrfs_put_block_group_cache(fs_info);

4100 4101 4102 4103 4104
	/*
	 * we must make sure there is not any read request to
	 * submit after we stopping all workers.
	 */
	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4105 4106
	btrfs_stop_all_workers(fs_info);

4107
	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4108
	free_root_pointers(fs_info, true);
4109

4110 4111 4112 4113 4114 4115 4116 4117 4118
	/*
	 * We must free the block groups after dropping the fs_roots as we could
	 * have had an IO error and have left over tree log blocks that aren't
	 * cleaned up until the fs roots are freed.  This makes the block group
	 * accounting appear to be wrong because there's pending reserved bytes,
	 * so make sure we do the block group cleanup afterwards.
	 */
	btrfs_free_block_groups(fs_info);

4119
	iput(fs_info->btree_inode);
4120

4121
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4122
	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4123
		btrfsic_unmount(fs_info->fs_devices);
4124 4125
#endif

4126
	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4127
	btrfs_close_devices(fs_info->fs_devices);
4128
	cleanup_srcu_struct(&fs_info->subvol_srcu);
4129 4130
}

4131 4132
int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
			  int atomic)
4133
{
4134
	int ret;
4135
	struct inode *btree_inode = buf->pages[0]->mapping->host;
4136

4137
	ret = extent_buffer_uptodate(buf);
4138 4139 4140 4141
	if (!ret)
		return ret;

	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4142 4143 4144
				    parent_transid, atomic);
	if (ret == -EAGAIN)
		return ret;
4145
	return !ret;
4146 4147 4148 4149
}

void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
{
4150
	struct btrfs_fs_info *fs_info;
4151
	struct btrfs_root *root;
4152
	u64 transid = btrfs_header_generation(buf);
4153
	int was_dirty;
4154

4155 4156 4157
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
	/*
	 * This is a fast path so only do this check if we have sanity tests
4158
	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4159 4160
	 * outside of the sanity tests.
	 */
4161
	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4162 4163 4164
		return;
#endif
	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4165
	fs_info = root->fs_info;
4166
	btrfs_assert_tree_locked(buf);
4167
	if (transid != fs_info->generation)
4168
		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4169
			buf->start, transid, fs_info->generation);
4170
	was_dirty = set_extent_buffer_dirty(buf);
4171
	if (!was_dirty)
4172 4173 4174
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 buf->len,
					 fs_info->dirty_metadata_batch);
4175
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4176 4177 4178 4179 4180 4181
	/*
	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
	 * but item data not updated.
	 * So here we should only check item pointers, not item data.
	 */
	if (btrfs_header_level(buf) == 0 &&
4182
	    btrfs_check_leaf_relaxed(buf)) {
4183
		btrfs_print_leaf(buf);
4184 4185 4186
		ASSERT(0);
	}
#endif
4187 4188
}

4189
static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4190
					int flush_delayed)
4191 4192 4193 4194 4195
{
	/*
	 * looks as though older kernels can get into trouble with
	 * this code, they end up stuck in balance_dirty_pages forever
	 */
4196
	int ret;
4197 4198 4199 4200

	if (current->flags & PF_MEMALLOC)
		return;

4201
	if (flush_delayed)
4202
		btrfs_balance_delayed_items(fs_info);
4203

4204 4205 4206
	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
				     BTRFS_DIRTY_METADATA_THRESH,
				     fs_info->dirty_metadata_batch);
4207
	if (ret > 0) {
4208
		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4209 4210 4211
	}
}

4212
void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4213
{
4214
	__btrfs_btree_balance_dirty(fs_info, 1);
4215
}
4216

4217
void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4218
{
4219
	__btrfs_btree_balance_dirty(fs_info, 0);
4220
}
4221

4222 4223
int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
		      struct btrfs_key *first_key)
4224
{
4225
	return btree_read_extent_buffer_pages(buf, parent_transid,
4226
					      level, first_key);
4227
}
4228

4229
static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4230
{
4231 4232 4233
	/* cleanup FS via transaction */
	btrfs_cleanup_transaction(fs_info);

4234
	mutex_lock(&fs_info->cleaner_mutex);
4235
	btrfs_run_delayed_iputs(fs_info);
4236
	mutex_unlock(&fs_info->cleaner_mutex);
4237

4238 4239
	down_write(&fs_info->cleanup_work_sem);
	up_write(&fs_info->cleanup_work_sem);
4240 4241
}

4242
static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4243 4244 4245
{
	struct btrfs_ordered_extent *ordered;

4246
	spin_lock(&root->ordered_extent_lock);
4247 4248 4249 4250
	/*
	 * This will just short circuit the ordered completion stuff which will
	 * make sure the ordered extent gets properly cleaned up.
	 */
4251
	list_for_each_entry(ordered, &root->ordered_extents,
4252 4253
			    root_extent_list)
		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
	spin_unlock(&root->ordered_extent_lock);
}

static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *root;
	struct list_head splice;

	INIT_LIST_HEAD(&splice);

	spin_lock(&fs_info->ordered_root_lock);
	list_splice_init(&fs_info->ordered_roots, &splice);
	while (!list_empty(&splice)) {
		root = list_first_entry(&splice, struct btrfs_root,
					ordered_root);
4269 4270
		list_move_tail(&root->ordered_root,
			       &fs_info->ordered_roots);
4271

4272
		spin_unlock(&fs_info->ordered_root_lock);
4273 4274
		btrfs_destroy_ordered_extents(root);

4275 4276
		cond_resched();
		spin_lock(&fs_info->ordered_root_lock);
4277 4278
	}
	spin_unlock(&fs_info->ordered_root_lock);
4279 4280 4281 4282 4283 4284 4285 4286

	/*
	 * We need this here because if we've been flipped read-only we won't
	 * get sync() from the umount, so we need to make sure any ordered
	 * extents that haven't had their dirty pages IO start writeout yet
	 * actually get run and error out properly.
	 */
	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4287 4288
}

4289
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4290
				      struct btrfs_fs_info *fs_info)
4291 4292 4293 4294 4295 4296 4297 4298 4299
{
	struct rb_node *node;
	struct btrfs_delayed_ref_root *delayed_refs;
	struct btrfs_delayed_ref_node *ref;
	int ret = 0;

	delayed_refs = &trans->delayed_refs;

	spin_lock(&delayed_refs->lock);
4300
	if (atomic_read(&delayed_refs->num_entries) == 0) {
4301
		spin_unlock(&delayed_refs->lock);
4302
		btrfs_debug(fs_info, "delayed_refs has NO entry");
4303 4304 4305
		return ret;
	}

4306
	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4307
		struct btrfs_delayed_ref_head *head;
4308
		struct rb_node *n;
4309
		bool pin_bytes = false;
4310

4311 4312
		head = rb_entry(node, struct btrfs_delayed_ref_head,
				href_node);
4313
		if (btrfs_delayed_ref_lock(delayed_refs, head))
4314
			continue;
4315

4316
		spin_lock(&head->lock);
4317
		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4318 4319
			ref = rb_entry(n, struct btrfs_delayed_ref_node,
				       ref_node);
4320
			ref->in_tree = 0;
4321
			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4322
			RB_CLEAR_NODE(&ref->ref_node);
4323 4324
			if (!list_empty(&ref->add_list))
				list_del(&ref->add_list);
4325 4326
			atomic_dec(&delayed_refs->num_entries);
			btrfs_put_delayed_ref(ref);
4327
		}
4328 4329 4330
		if (head->must_insert_reserved)
			pin_bytes = true;
		btrfs_free_delayed_extent_op(head->extent_op);
4331
		btrfs_delete_ref_head(delayed_refs, head);
4332 4333 4334
		spin_unlock(&head->lock);
		spin_unlock(&delayed_refs->lock);
		mutex_unlock(&head->mutex);
4335

4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
		if (pin_bytes) {
			struct btrfs_block_group *cache;

			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
			BUG_ON(!cache);

			spin_lock(&cache->space_info->lock);
			spin_lock(&cache->lock);
			cache->pinned += head->num_bytes;
			btrfs_space_info_update_bytes_pinned(fs_info,
				cache->space_info, head->num_bytes);
			cache->reserved -= head->num_bytes;
			cache->space_info->bytes_reserved -= head->num_bytes;
			spin_unlock(&cache->lock);
			spin_unlock(&cache->space_info->lock);
			percpu_counter_add_batch(
				&cache->space_info->total_bytes_pinned,
				head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);

			btrfs_put_block_group(cache);

			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
				head->bytenr + head->num_bytes - 1);
		}
4360
		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4361
		btrfs_put_delayed_ref_head(head);
4362 4363 4364
		cond_resched();
		spin_lock(&delayed_refs->lock);
	}
4365
	btrfs_qgroup_destroy_extent_records(trans);
4366 4367 4368 4369 4370 4371

	spin_unlock(&delayed_refs->lock);

	return ret;
}

4372
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4373 4374 4375 4376 4377 4378
{
	struct btrfs_inode *btrfs_inode;
	struct list_head splice;

	INIT_LIST_HEAD(&splice);

4379 4380
	spin_lock(&root->delalloc_lock);
	list_splice_init(&root->delalloc_inodes, &splice);
4381 4382

	while (!list_empty(&splice)) {
4383
		struct inode *inode = NULL;
4384 4385
		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
					       delalloc_inodes);
4386
		__btrfs_del_delalloc_inode(root, btrfs_inode);
4387
		spin_unlock(&root->delalloc_lock);
4388

4389 4390 4391 4392 4393 4394 4395 4396 4397
		/*
		 * Make sure we get a live inode and that it'll not disappear
		 * meanwhile.
		 */
		inode = igrab(&btrfs_inode->vfs_inode);
		if (inode) {
			invalidate_inode_pages2(inode->i_mapping);
			iput(inode);
		}
4398
		spin_lock(&root->delalloc_lock);
4399
	}
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
	spin_unlock(&root->delalloc_lock);
}

static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *root;
	struct list_head splice;

	INIT_LIST_HEAD(&splice);

	spin_lock(&fs_info->delalloc_root_lock);
	list_splice_init(&fs_info->delalloc_roots, &splice);
	while (!list_empty(&splice)) {
		root = list_first_entry(&splice, struct btrfs_root,
					 delalloc_root);
4415
		root = btrfs_grab_root(root);
4416 4417 4418 4419
		BUG_ON(!root);
		spin_unlock(&fs_info->delalloc_root_lock);

		btrfs_destroy_delalloc_inodes(root);
4420
		btrfs_put_root(root);
4421 4422 4423 4424

		spin_lock(&fs_info->delalloc_root_lock);
	}
	spin_unlock(&fs_info->delalloc_root_lock);
4425 4426
}

4427
static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
					struct extent_io_tree *dirty_pages,
					int mark)
{
	int ret;
	struct extent_buffer *eb;
	u64 start = 0;
	u64 end;

	while (1) {
		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4438
					    mark, NULL);
4439 4440 4441
		if (ret)
			break;

4442
		clear_extent_bits(dirty_pages, start, end, mark);
4443
		while (start <= end) {
4444 4445
			eb = find_extent_buffer(fs_info, start);
			start += fs_info->nodesize;
4446
			if (!eb)
4447
				continue;
4448
			wait_on_extent_buffer_writeback(eb);
4449

4450 4451 4452 4453
			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
					       &eb->bflags))
				clear_extent_buffer_dirty(eb);
			free_extent_buffer_stale(eb);
4454 4455 4456 4457 4458 4459
		}
	}

	return ret;
}

4460
static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4461
				       struct extent_io_tree *unpin)
4462 4463 4464 4465 4466 4467
{
	u64 start;
	u64 end;
	int ret;

	while (1) {
4468 4469
		struct extent_state *cached_state = NULL;

4470 4471 4472 4473 4474 4475 4476
		/*
		 * The btrfs_finish_extent_commit() may get the same range as
		 * ours between find_first_extent_bit and clear_extent_dirty.
		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
		 * the same extent range.
		 */
		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4477
		ret = find_first_extent_bit(unpin, 0, &start, &end,
4478
					    EXTENT_DIRTY, &cached_state);
4479 4480
		if (ret) {
			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4481
			break;
4482
		}
4483

4484 4485
		clear_extent_dirty(unpin, start, end, &cached_state);
		free_extent_state(cached_state);
4486
		btrfs_error_unpin_extent_range(fs_info, start, end);
4487
		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4488 4489 4490 4491 4492 4493
		cond_resched();
	}

	return 0;
}

4494
static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
{
	struct inode *inode;

	inode = cache->io_ctl.inode;
	if (inode) {
		invalidate_inode_pages2(inode->i_mapping);
		BTRFS_I(inode)->generation = 0;
		cache->io_ctl.inode = NULL;
		iput(inode);
	}
	btrfs_put_block_group(cache);
}

void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4509
			     struct btrfs_fs_info *fs_info)
4510
{
4511
	struct btrfs_block_group *cache;
4512 4513 4514 4515

	spin_lock(&cur_trans->dirty_bgs_lock);
	while (!list_empty(&cur_trans->dirty_bgs)) {
		cache = list_first_entry(&cur_trans->dirty_bgs,
4516
					 struct btrfs_block_group,
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
					 dirty_list);

		if (!list_empty(&cache->io_list)) {
			spin_unlock(&cur_trans->dirty_bgs_lock);
			list_del_init(&cache->io_list);
			btrfs_cleanup_bg_io(cache);
			spin_lock(&cur_trans->dirty_bgs_lock);
		}

		list_del_init(&cache->dirty_list);
		spin_lock(&cache->lock);
		cache->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&cache->lock);

		spin_unlock(&cur_trans->dirty_bgs_lock);
		btrfs_put_block_group(cache);
4533
		btrfs_delayed_refs_rsv_release(fs_info, 1);
4534 4535 4536 4537
		spin_lock(&cur_trans->dirty_bgs_lock);
	}
	spin_unlock(&cur_trans->dirty_bgs_lock);

4538 4539 4540 4541
	/*
	 * Refer to the definition of io_bgs member for details why it's safe
	 * to use it without any locking
	 */
4542 4543
	while (!list_empty(&cur_trans->io_bgs)) {
		cache = list_first_entry(&cur_trans->io_bgs,
4544
					 struct btrfs_block_group,
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
					 io_list);

		list_del_init(&cache->io_list);
		spin_lock(&cache->lock);
		cache->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&cache->lock);
		btrfs_cleanup_bg_io(cache);
	}
}

4555
void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4556
				   struct btrfs_fs_info *fs_info)
4557
{
4558 4559
	struct btrfs_device *dev, *tmp;

4560
	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4561 4562 4563
	ASSERT(list_empty(&cur_trans->dirty_bgs));
	ASSERT(list_empty(&cur_trans->io_bgs));

4564 4565 4566 4567 4568
	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
				 post_commit_list) {
		list_del_init(&dev->post_commit_list);
	}

4569
	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4570

4571
	cur_trans->state = TRANS_STATE_COMMIT_START;
4572
	wake_up(&fs_info->transaction_blocked_wait);
4573

4574
	cur_trans->state = TRANS_STATE_UNBLOCKED;
4575
	wake_up(&fs_info->transaction_wait);
4576

4577
	btrfs_destroy_delayed_inodes(fs_info);
4578

4579
	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4580
				     EXTENT_DIRTY);
4581
	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4582

4583 4584
	cur_trans->state =TRANS_STATE_COMPLETED;
	wake_up(&cur_trans->commit_wait);
4585 4586
}

4587
static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4588 4589 4590
{
	struct btrfs_transaction *t;

4591
	mutex_lock(&fs_info->transaction_kthread_mutex);
4592

4593 4594 4595
	spin_lock(&fs_info->trans_lock);
	while (!list_empty(&fs_info->trans_list)) {
		t = list_first_entry(&fs_info->trans_list,
4596 4597
				     struct btrfs_transaction, list);
		if (t->state >= TRANS_STATE_COMMIT_START) {
4598
			refcount_inc(&t->use_count);
4599
			spin_unlock(&fs_info->trans_lock);
4600
			btrfs_wait_for_commit(fs_info, t->transid);
4601
			btrfs_put_transaction(t);
4602
			spin_lock(&fs_info->trans_lock);
4603 4604
			continue;
		}
4605
		if (t == fs_info->running_transaction) {
4606
			t->state = TRANS_STATE_COMMIT_DOING;
4607
			spin_unlock(&fs_info->trans_lock);
4608 4609 4610 4611 4612 4613 4614
			/*
			 * We wait for 0 num_writers since we don't hold a trans
			 * handle open currently for this transaction.
			 */
			wait_event(t->writer_wait,
				   atomic_read(&t->num_writers) == 0);
		} else {
4615
			spin_unlock(&fs_info->trans_lock);
4616
		}
4617
		btrfs_cleanup_one_transaction(t, fs_info);
4618

4619 4620 4621
		spin_lock(&fs_info->trans_lock);
		if (t == fs_info->running_transaction)
			fs_info->running_transaction = NULL;
4622
		list_del_init(&t->list);
4623
		spin_unlock(&fs_info->trans_lock);
4624

4625
		btrfs_put_transaction(t);
4626
		trace_btrfs_transaction_commit(fs_info->tree_root);
4627
		spin_lock(&fs_info->trans_lock);
4628
	}
4629 4630
	spin_unlock(&fs_info->trans_lock);
	btrfs_destroy_all_ordered_extents(fs_info);
4631 4632
	btrfs_destroy_delayed_inodes(fs_info);
	btrfs_assert_delayed_root_empty(fs_info);
4633 4634
	btrfs_destroy_all_delalloc_inodes(fs_info);
	mutex_unlock(&fs_info->transaction_kthread_mutex);
4635 4636 4637 4638

	return 0;
}

4639
static const struct extent_io_ops btree_extent_io_ops = {
4640
	/* mandatory callbacks */
4641
	.submit_bio_hook = btree_submit_bio_hook,
4642
	.readpage_end_io_hook = btree_readpage_end_io_hook,
4643
};