slub.c 128 KB
Newer Older
Christoph Lameter's avatar
Christoph Lameter committed
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
Christoph Lameter's avatar
Christoph Lameter committed
7
 *
Christoph Lameter's avatar
Christoph Lameter committed
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
Christoph Lameter's avatar
Christoph Lameter committed
10 11 12
 */

#include <linux/mm.h>
Nick Piggin's avatar
Nick Piggin committed
13
#include <linux/swap.h> /* struct reclaim_state */
Christoph Lameter's avatar
Christoph Lameter committed
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
Christoph Lameter's avatar
Christoph Lameter committed
22
#include <linux/seq_file.h>
23
#include <linux/kasan.h>
24
#include <linux/kmemcheck.h>
Christoph Lameter's avatar
Christoph Lameter committed
25 26 27 28
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
29
#include <linux/debugobjects.h>
Christoph Lameter's avatar
Christoph Lameter committed
30
#include <linux/kallsyms.h>
31
#include <linux/memory.h>
Roman Zippel's avatar
Roman Zippel committed
32
#include <linux/math64.h>
Akinobu Mita's avatar
Akinobu Mita committed
33
#include <linux/fault-inject.h>
34
#include <linux/stacktrace.h>
35
#include <linux/prefetch.h>
36
#include <linux/memcontrol.h>
Christoph Lameter's avatar
Christoph Lameter committed
37

38 39
#include <trace/events/kmem.h>

40 41
#include "internal.h"

Christoph Lameter's avatar
Christoph Lameter committed
42 43
/*
 * Lock order:
44
 *   1. slab_mutex (Global Mutex)
45 46
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
Christoph Lameter's avatar
Christoph Lameter committed
47
 *
48
 *   slab_mutex
49
 *
50
 *   The role of the slab_mutex is to protect the list of all the slabs
51 52 53 54 55 56 57 58 59 60 61 62 63 64
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
Christoph Lameter's avatar
Christoph Lameter committed
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
Christoph Lameter's avatar
Christoph Lameter committed
85 86
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
Christoph Lameter's avatar
Christoph Lameter committed
87
 * freed then the slab will show up again on the partial lists.
Christoph Lameter's avatar
Christoph Lameter committed
88 89
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
Christoph Lameter's avatar
Christoph Lameter committed
90 91 92 93 94 95 96
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
97 98 99 100 101 102 103 104 105 106 107 108
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
109
 * 			freelist that allows lockless access to
110 111
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
Christoph Lameter's avatar
Christoph Lameter committed
112 113 114
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
115
 * 			the fast path and disables lockless freelists.
Christoph Lameter's avatar
Christoph Lameter committed
116 117
 */

118 119
static inline int kmem_cache_debug(struct kmem_cache *s)
{
120
#ifdef CONFIG_SLUB_DEBUG
121
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122
#else
123
	return 0;
124
#endif
125
}
126

127 128 129 130 131 132 133 134 135
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

Christoph Lameter's avatar
Christoph Lameter committed
136 137 138 139 140 141 142 143 144 145 146
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

147 148 149
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

150 151 152 153
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
154
#define MIN_PARTIAL 5
Christoph Lameter's avatar
Christoph Lameter committed
155

156 157 158
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
159
 * sort the partial list by the number of objects in use.
160 161 162
 */
#define MAX_PARTIAL 10

Christoph Lameter's avatar
Christoph Lameter committed
163 164
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
Christoph Lameter's avatar
Christoph Lameter committed
165

166
/*
167 168 169
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
170
 */
171
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
172

173 174
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
175
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
176

Christoph Lameter's avatar
Christoph Lameter committed
177
/* Internal SLUB flags */
Christoph Lameter's avatar
Christoph Lameter committed
178
#define __OBJECT_POISON		0x80000000UL /* Poison object */
179
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
Christoph Lameter's avatar
Christoph Lameter committed
180 181 182 183 184

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

185 186 187
/*
 * Tracking user of a slab.
 */
188
#define TRACK_ADDRS_COUNT 16
189
struct track {
190
	unsigned long addr;	/* Called from address */
191 192 193
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
194 195 196 197 198 199 200
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

201
#ifdef CONFIG_SYSFS
Christoph Lameter's avatar
Christoph Lameter committed
202 203
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
204
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
Christoph Lameter's avatar
Christoph Lameter committed
205
#else
206 207 208
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
209
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
Christoph Lameter's avatar
Christoph Lameter committed
210 211
#endif

212
static inline void stat(const struct kmem_cache *s, enum stat_item si)
213 214
{
#ifdef CONFIG_SLUB_STATS
215 216 217 218 219
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
220 221 222
#endif
}

Christoph Lameter's avatar
Christoph Lameter committed
223 224 225 226
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

Christoph Lameter's avatar
Christoph Lameter committed
227
/* Verify that a pointer has an address that is valid within a slab page */
228 229 230 231 232
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

233
	if (!object)
234 235
		return 1;

236
	base = page_address(page);
237
	if (object < base || object >= base + page->objects * s->size ||
238 239 240 241 242 243 244
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

245 246 247 248 249
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

250 251 252 253 254
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

255 256 257 258 259 260 261 262 263 264 265 266
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

267 268 269 270 271 272
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
273 274
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 276
			__p += (__s)->size)

277 278 279 280
#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
	for (__p = (__addr), __idx = 1; __idx <= __objects;\
			__p += (__s)->size, __idx++)

281 282 283 284 285 286
/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

287 288 289 290 291 292 293 294
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295
		return s->object_size;
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

311 312 313 314 315
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

316
static inline struct kmem_cache_order_objects oo_make(int order,
317
		unsigned long size, int reserved)
318 319
{
	struct kmem_cache_order_objects x = {
320
		(order << OO_SHIFT) + order_objects(order, size, reserved)
321 322 323 324 325 326 327
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
328
	return x.x >> OO_SHIFT;
329 330 331 332
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
333
	return x.x & OO_MASK;
334 335
}

336 337 338 339 340 341 342 343 344 345 346 347 348
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
	 * as page->_count.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_count, so
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

364 365 366 367 368 369 370
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
371 372
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373
	if (s->flags & __CMPXCHG_DOUBLE) {
374
		if (cmpxchg_double(&page->freelist, &page->counters,
375 376
				   freelist_old, counters_old,
				   freelist_new, counters_new))
377
			return true;
378 379 380 381
	} else
#endif
	{
		slab_lock(page);
382 383
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
384
			page->freelist = freelist_new;
385
			set_page_slub_counters(page, counters_new);
386
			slab_unlock(page);
387
			return true;
388 389 390 391 392 393 394 395
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
396
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 398
#endif

399
	return false;
400 401
}

402 403 404 405 406
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
407 408
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409
	if (s->flags & __CMPXCHG_DOUBLE) {
410
		if (cmpxchg_double(&page->freelist, &page->counters,
411 412
				   freelist_old, counters_old,
				   freelist_new, counters_new))
413
			return true;
414 415 416
	} else
#endif
	{
417 418 419
		unsigned long flags;

		local_irq_save(flags);
420
		slab_lock(page);
421 422
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
423
			page->freelist = freelist_new;
424
			set_page_slub_counters(page, counters_new);
425
			slab_unlock(page);
426
			local_irq_restore(flags);
427
			return true;
428
		}
429
		slab_unlock(page);
430
		local_irq_restore(flags);
431 432 433 434 435 436
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
437
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 439
#endif

440
	return false;
441 442
}

443
#ifdef CONFIG_SLUB_DEBUG
444 445 446
/*
 * Determine a map of object in use on a page.
 *
447
 * Node listlock must be held to guarantee that the page does
448 449 450 451 452 453 454 455 456 457 458
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

459 460 461
/*
 * Debug settings:
 */
462 463 464
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
465
static int slub_debug;
466
#endif
467 468

static char *slub_debug_slabs;
469
static int disable_higher_order_debug;
470

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
/*
 * slub is about to manipulate internal object metadata.  This memory lies
 * outside the range of the allocated object, so accessing it would normally
 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 * to tell kasan that these accesses are OK.
 */
static inline void metadata_access_enable(void)
{
	kasan_disable_current();
}

static inline void metadata_access_disable(void)
{
	kasan_enable_current();
}

Christoph Lameter's avatar
Christoph Lameter committed
487 488 489 490 491
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
492
	metadata_access_enable();
493 494
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
495
	metadata_access_disable();
Christoph Lameter's avatar
Christoph Lameter committed
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
512
			enum track_item alloc, unsigned long addr)
Christoph Lameter's avatar
Christoph Lameter committed
513
{
Akinobu Mita's avatar
Akinobu Mita committed
514
	struct track *p = get_track(s, object, alloc);
Christoph Lameter's avatar
Christoph Lameter committed
515 516

	if (addr) {
517 518 519 520 521 522 523 524
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
525
		metadata_access_enable();
526
		save_stack_trace(&trace);
527
		metadata_access_disable();
528 529 530 531 532 533 534 535 536

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
Christoph Lameter's avatar
Christoph Lameter committed
537 538
		p->addr = addr;
		p->cpu = smp_processor_id();
539
		p->pid = current->pid;
Christoph Lameter's avatar
Christoph Lameter committed
540 541 542 543 544 545 546
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
547 548 549
	if (!(s->flags & SLAB_STORE_USER))
		return;

550 551
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
Christoph Lameter's avatar
Christoph Lameter committed
552 553 554 555 556 557 558
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

559 560
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
561 562 563 564 565
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
566
				pr_err("\t%pS\n", (void *)t->addrs[i]);
567 568 569 570
			else
				break;
	}
#endif
571 572 573 574 575 576 577 578 579 580 581 582 583
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
584
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
585
	       page, page->objects, page->inuse, page->freelist, page->flags);
586 587 588 589 590

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
591
	struct va_format vaf;
592 593 594
	va_list args;

	va_start(args, fmt);
595 596
	vaf.fmt = fmt;
	vaf.va = &args;
597
	pr_err("=============================================================================\n");
598
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
599
	pr_err("-----------------------------------------------------------------------------\n\n");
600

601
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
602
	va_end(args);
Christoph Lameter's avatar
Christoph Lameter committed
603 604
}

605 606
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
607
	struct va_format vaf;
608 609 610
	va_list args;

	va_start(args, fmt);
611 612 613
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
614 615 616 617
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
Christoph Lameter's avatar
Christoph Lameter committed
618 619
{
	unsigned int off;	/* Offset of last byte */
620
	u8 *addr = page_address(page);
621 622 623 624 625

	print_tracking(s, p);

	print_page_info(page);

626 627
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
628 629

	if (p > addr + 16)
630
		print_section("Bytes b4 ", p - 16, 16);
Christoph Lameter's avatar
Christoph Lameter committed
631

632
	print_section("Object ", p, min_t(unsigned long, s->object_size,
633
				PAGE_SIZE));
Christoph Lameter's avatar
Christoph Lameter committed
634
	if (s->flags & SLAB_RED_ZONE)
635 636
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
Christoph Lameter's avatar
Christoph Lameter committed
637 638 639 640 641 642

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

643
	if (s->flags & SLAB_STORE_USER)
Christoph Lameter's avatar
Christoph Lameter committed
644 645 646 647
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
648
		print_section("Padding ", p + off, s->size - off);
649 650

	dump_stack();
Christoph Lameter's avatar
Christoph Lameter committed
651 652
}

653
void object_err(struct kmem_cache *s, struct page *page,
Christoph Lameter's avatar
Christoph Lameter committed
654 655
			u8 *object, char *reason)
{
656
	slab_bug(s, "%s", reason);
657
	print_trailer(s, page, object);
Christoph Lameter's avatar
Christoph Lameter committed
658 659
}

660 661
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
Christoph Lameter's avatar
Christoph Lameter committed
662 663 664 665
{
	va_list args;
	char buf[100];

666 667
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
Christoph Lameter's avatar
Christoph Lameter committed
668
	va_end(args);
669
	slab_bug(s, "%s", buf);
670
	print_page_info(page);
Christoph Lameter's avatar
Christoph Lameter committed
671 672 673
	dump_stack();
}

674
static void init_object(struct kmem_cache *s, void *object, u8 val)
Christoph Lameter's avatar
Christoph Lameter committed
675 676 677 678
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
679 680
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
Christoph Lameter's avatar
Christoph Lameter committed
681 682 683
	}

	if (s->flags & SLAB_RED_ZONE)
684
		memset(p + s->object_size, val, s->inuse - s->object_size);
Christoph Lameter's avatar
Christoph Lameter committed
685 686
}

687 688 689 690 691 692 693 694 695
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
696
			u8 *start, unsigned int value, unsigned int bytes)
697 698 699 700
{
	u8 *fault;
	u8 *end;

701
	metadata_access_enable();
702
	fault = memchr_inv(start, value, bytes);
703
	metadata_access_disable();
704 705 706 707 708 709 710 711
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
712
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
713 714 715 716 717
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
Christoph Lameter's avatar
Christoph Lameter committed
718 719 720 721 722 723 724 725 726
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
Christoph Lameter's avatar
Christoph Lameter committed
727
 *
Christoph Lameter's avatar
Christoph Lameter committed
728 729 730
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
731
 * object + s->object_size
Christoph Lameter's avatar
Christoph Lameter committed
732
 * 	Padding to reach word boundary. This is also used for Redzoning.
Christoph Lameter's avatar
Christoph Lameter committed
733
 * 	Padding is extended by another word if Redzoning is enabled and
734
 * 	object_size == inuse.
Christoph Lameter's avatar
Christoph Lameter committed
735
 *
Christoph Lameter's avatar
Christoph Lameter committed
736 737 738 739
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
Christoph Lameter's avatar
Christoph Lameter committed
740 741
 * 	Meta data starts here.
 *
Christoph Lameter's avatar
Christoph Lameter committed
742 743
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
Christoph Lameter's avatar
Christoph Lameter committed
744
 * 	C. Padding to reach required alignment boundary or at mininum
Christoph Lameter's avatar
Christoph Lameter committed
745
 * 		one word if debugging is on to be able to detect writes
Christoph Lameter's avatar
Christoph Lameter committed
746 747 748
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
Christoph Lameter's avatar
Christoph Lameter committed
749 750
 *
 * object + s->size
Christoph Lameter's avatar
Christoph Lameter committed
751
 * 	Nothing is used beyond s->size.
Christoph Lameter's avatar
Christoph Lameter committed
752
 *
753
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
Christoph Lameter's avatar
Christoph Lameter committed
754
 * ignored. And therefore no slab options that rely on these boundaries
Christoph Lameter's avatar
Christoph Lameter committed
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

773 774
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
Christoph Lameter's avatar
Christoph Lameter committed
775 776
}

777
/* Check the pad bytes at the end of a slab page */
Christoph Lameter's avatar
Christoph Lameter committed
778 779
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
780 781 782 783 784
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
Christoph Lameter's avatar
Christoph Lameter committed
785 786 787 788

	if (!(s->flags & SLAB_POISON))
		return 1;

789
	start = page_address(page);
790
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
791 792
	end = start + length;
	remainder = length % s->size;
Christoph Lameter's avatar
Christoph Lameter committed
793 794 795
	if (!remainder)
		return 1;

796
	metadata_access_enable();
797
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
798
	metadata_access_disable();
799 800 801 802 803 804
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
805
	print_section("Padding ", end - remainder, remainder);
806

Eric Dumazet's avatar
Eric Dumazet committed
807
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
808
	return 0;
Christoph Lameter's avatar
Christoph Lameter committed
809 810 811
}

static int check_object(struct kmem_cache *s, struct page *page,
812
					void *object, u8 val)
Christoph Lameter's avatar
Christoph Lameter committed
813 814
{
	u8 *p = object;
815
	u8 *endobject = object + s->object_size;
Christoph Lameter's avatar
Christoph Lameter committed
816 817

	if (s->flags & SLAB_RED_ZONE) {
818
		if (!check_bytes_and_report(s, page, object, "Redzone",
819
			endobject, val, s->inuse - s->object_size))
Christoph Lameter's avatar
Christoph Lameter committed
820 821
			return 0;
	} else {
822
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
Ingo Molnar's avatar
Ingo Molnar committed
823
			check_bytes_and_report(s, page, p, "Alignment padding",
824 825
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
Ingo Molnar's avatar
Ingo Molnar committed
826
		}
Christoph Lameter's avatar
Christoph Lameter committed
827 828 829
	}

	if (s->flags & SLAB_POISON) {
830
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
831
			(!check_bytes_and_report(s, page, p, "Poison", p,
832
					POISON_FREE, s->object_size - 1) ||
833
			 !check_bytes_and_report(s, page, p, "Poison",
834
				p + s->object_size - 1, POISON_END, 1)))
Christoph Lameter's avatar
Christoph Lameter committed
835 836 837 838 839 840 841
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

842
	if (!s->offset && val == SLUB_RED_ACTIVE)
Christoph Lameter's avatar
Christoph Lameter committed
843 844 845 846 847 848 849 850 851 852
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
853
		 * No choice but to zap it and thus lose the remainder
Christoph Lameter's avatar
Christoph Lameter committed
854
		 * of the free objects in this slab. May cause
Christoph Lameter's avatar
Christoph Lameter committed
855
		 * another error because the object count is now wrong.
Christoph Lameter's avatar
Christoph Lameter committed
856
		 */
857
		set_freepointer(s, p, NULL);
Christoph Lameter's avatar
Christoph Lameter committed
858 859 860 861 862 863 864
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
865 866
	int maxobj;

Christoph Lameter's avatar
Christoph Lameter committed
867 868 869
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
870
		slab_err(s, page, "Not a valid slab page");
Christoph Lameter's avatar
Christoph Lameter committed
871 872
		return 0;
	}
873

874
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
875 876
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
877
			page->objects, maxobj);
878 879 880
		return 0;
	}
	if (page->inuse > page->objects) {
881
		slab_err(s, page, "inuse %u > max %u",
882
			page->inuse, page->objects);
Christoph Lameter's avatar
Christoph Lameter committed
883 884 885 886 887 888 889 890
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
Christoph Lameter's avatar
Christoph Lameter committed
891 892
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
Christoph Lameter's avatar
Christoph Lameter committed
893 894 895 896
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
897
	void *fp;
Christoph Lameter's avatar
Christoph Lameter committed
898
	void *object = NULL;
899
	int max_objects;
Christoph Lameter's avatar
Christoph Lameter committed
900

901
	fp = page->freelist;
902
	while (fp && nr <= page->objects) {
Christoph Lameter's avatar
Christoph Lameter committed
903 904 905 906 907 908
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
909
				set_freepointer(s, object, NULL);
Christoph Lameter's avatar
Christoph Lameter committed
910
			} else {
911
				slab_err(s, page, "Freepointer corrupt");
912
				page->freelist = NULL;
913
				page->inuse = page->objects;
914
				slab_fix(s, "Freelist cleared");
Christoph Lameter's avatar
Christoph Lameter committed
915 916 917 918 919 920 921 922 923
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

924
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
925 926
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
927 928 929 930 931 932 933

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
934
	if (page->inuse != page->objects - nr) {
935
		slab_err(s, page, "Wrong object count. Counter is %d but "
936 937
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
938
		slab_fix(s, "Object count adjusted.");
Christoph Lameter's avatar
Christoph Lameter committed
939 940 941 942
	}
	return search == NULL;
}

943 944
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
945 946
{
	if (s->flags & SLAB_TRACE) {
947
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
948 949 950 951 952 953
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
954 955
			print_section("Object ", (void *)object,
					s->object_size);
956 957 958 959 960

		dump_stack();
	}
}

961
/*
Christoph Lameter's avatar
Christoph Lameter committed
962
 * Tracking of fully allocated slabs for debugging purposes.
963
 */
964 965
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
966
{
967 968 969
	if (!(s->flags & SLAB_STORE_USER))
		return;

970
	lockdep_assert_held(&n->list_lock);
971 972 973
	list_add(&page->lru, &n->full);
}

974
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
975 976 977 978
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

979
	lockdep_assert_held(&n->list_lock);
980 981 982
	list_del(&page->lru);
}

983 984 985 986 987 988 989 990
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

991 992 993 994 995
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

996
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
997 998 999 1000 1001 1002 1003 1004 1005
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1006
	if (likely(n)) {
1007
		atomic_long_inc(&n->nr_slabs);
1008 1009
		atomic_long_add(objects, &n->total_objects);
	}
1010
}
1011
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1012 1013 1014 1015
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1016
	atomic_long_sub(objects, &n->total_objects);
1017 1018 1019
}

/* Object debug checks for alloc/free paths */
1020 1021 1022 1023 1024 1025
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1026
	init_object(s, object, SLUB_RED_INACTIVE);
1027 1028 1029
	init_tracking(s, object);
}

1030 1031
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1032
					void *object, unsigned long addr)
Christoph Lameter's avatar
Christoph Lameter committed
1033 1034 1035 1036 1037 1038
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1039
		goto bad;
Christoph Lameter's avatar
Christoph Lameter committed
1040 1041
	}

1042
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
Christoph Lameter's avatar
Christoph Lameter committed
1043 1044
		goto bad;

1045 1046 1047 1048
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1049
	init_object(s, object, SLUB_RED_ACTIVE);
Christoph Lameter's avatar
Christoph Lameter committed
1050
	return 1;
1051

Christoph Lameter's avatar
Christoph Lameter committed
1052 1053 1054 1055 1056
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
Christoph Lameter's avatar
Christoph Lameter committed
1057
		 * as used avoids touching the remaining objects.
Christoph Lameter's avatar
Christoph Lameter committed
1058
		 */
1059
		slab_fix(s, "Marking all objects used");
1060
		page->inuse = page->objects;
1061
		page->freelist = NULL;
Christoph Lameter's avatar
Christoph Lameter committed
1062 1063 1064 1065
	}
	return 0;
}

1066 1067 1068
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
Christoph Lameter's avatar
Christoph Lameter committed
1069
{
1070
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1071

1072
	spin_lock_irqsave(&n->list_lock, *flags);
1073 1074
	slab_lock(page);

Christoph Lameter's avatar
Christoph Lameter committed
1075 1076 1077 1078
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1079
		slab_err(s, page, "Invalid object pointer 0x%p", object);
Christoph Lameter's avatar
Christoph Lameter committed
1080 1081 1082 1083
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1084
		object_err(s, page, object, "Object already free");
Christoph Lameter's avatar
Christoph Lameter committed
1085 1086 1087
		goto fail;
	}

1088
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1089
		goto out;
Christoph Lameter's avatar
Christoph Lameter committed
1090

1091
	if (unlikely(s != page->slab_cache)) {
Ingo Molnar's avatar
Ingo Molnar committed
1092
		if (!PageSlab(page)) {
1093 1094
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1095
		} else if (!page->slab_cache) {
1096 1097
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1098
			dump_stack();
1099
		} else
1100 1101
			object_err(s, page, object,
					"page slab pointer corrupt.");
Christoph Lameter's avatar
Christoph Lameter committed
1102 1103
		goto fail;
	}
1104 1105 1106 1107

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1108
	init_object(s, object, SLUB_RED_INACTIVE);
1109
out:
1110
	slab_unlock(page);
1111 1112 1113 1114 1115
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
1116

Christoph Lameter's avatar
Christoph Lameter committed
1117
fail:
1118 1119
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1120
	slab_fix(s, "Object at 0x%p not freed", object);
1121
	return NULL;
Christoph Lameter's avatar
Christoph Lameter committed
1122 1123
}

1124 1125
static int __init setup_slub_debug(char *str)
{
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
1150
	for (; *str && *str != ','; str++) {
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1167 1168 1169
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1170 1171 1172 1173 1174 1175 1176
		case 'o':
			/*
			 * Avoid enabling debugging on caches if its minimum
			 * order would increase as a result.
			 */
			disable_higher_order_debug = 1;
			break;
1177
		default:
1178 1179
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1180
		}
1181 1182
	}

1183
check_slabs:
1184 1185
	if (*str == ',')
		slub_debug_slabs = str + 1;
1186
out:
1187 1188 1189 1190 1191
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1192
unsigned long kmem_cache_flags(unsigned long object_size,
1193
	unsigned long flags, const char *name,
1194
	void (*ctor)(void *))
1195 1196
{
	/*
1197
	 * Enable debugging if selected on the kernel commandline.
1198
	 */
1199 1200
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1201
		flags |= slub_debug;
1202 1203

	return flags;
1204 1205
}
#else
1206 1207
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
1208

1209
static inline int alloc_debug_processing(struct kmem_cache *s,
1210
	struct page *page, void *object, unsigned long addr) { return 0; }
1211

1212 1213 1214
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
1215 1216 1217 1218

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1219
			void *object, u8 val) { return 1; }
1220 1221
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1222 1223
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1224
unsigned long kmem_cache_flags(unsigned long object_size,
1225
	unsigned long flags, const char *name,
1226
	void (*ctor)(void *))
1227 1228 1229
{
	return flags;
}
1230
#define slub_debug 0
1231

1232 1233
#define disable_higher_order_debug 0

1234 1235
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1236 1237
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1238 1239 1240 1241
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1242

1243 1244 1245 1246 1247 1248
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1249 1250 1251
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
1252
	kasan_kmalloc_large(ptr, size);
1253 1254 1255 1256 1257
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
1258
	kasan_kfree_large(x);
1259 1260
}

1261 1262
static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
						     gfp_t flags)
1263 1264 1265 1266
{
	flags &= gfp_allowed_mask;
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);
1267

1268 1269 1270 1271
	if (should_failslab(s->object_size, flags, s->flags))
		return NULL;

	return memcg_kmem_get_cache(s, flags);
1272 1273 1274 1275
}

static inline void slab_post_alloc_hook(struct kmem_cache *s,
					gfp_t flags, void *object)
1276
{
1277 1278 1279
	flags &= gfp_allowed_mask;
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1280
	memcg_kmem_put_cache(s);
1281
	kasan_slab_alloc(s, object);
1282
}
1283

1284 1285 1286
static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
1287

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
1305 1306

	kasan_slab_free(s, x);
1307
}
1308

Christoph Lameter's avatar
Christoph Lameter committed
1309 1310 1311
/*
 * Slab allocation and freeing
 */
1312 1313
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1314
{
1315
	struct page *page;
1316 1317
	int order = oo_order(oo);

1318 1319
	flags |= __GFP_NOTRACK;

1320 1321 1322
	if (memcg_charge_slab(s, flags, order))
		return NULL;

1323
	if (node == NUMA_NO_NODE)
1324
		page = alloc_pages(flags, order);
1325
	else
1326 1327 1328 1329 1330 1331
		page = alloc_pages_exact_node(node, flags, order);

	if (!page)
		memcg_uncharge_slab(s, order);

	return page;
1332 1333
}

Christoph Lameter's avatar
Christoph Lameter committed
1334 1335
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
1336
	struct page *page;
1337
	struct kmem_cache_order_objects oo = s->oo;
1338
	gfp_t alloc_gfp;
Christoph Lameter's avatar
Christoph Lameter committed
1339

1340 1341 1342 1343 1344
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1345
	flags |= s->allocflags;
1346

1347 1348 1349 1350 1351 1352
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

1353
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1354 1355
	if (unlikely(!page)) {
		oo = s->min;
1356
		alloc_gfp = flags;
1357 1358 1359 1360
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1361
		page = alloc_slab_page(s, alloc_gfp, node, oo);
Christoph Lameter's avatar
Christoph Lameter committed
1362

1363 1364
		if (page)
			stat(s, ORDER_FALLBACK);
1365
	}
1366

1367
	if (kmemcheck_enabled && page
1368
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1369 1370
		int pages = 1 << oo_order(oo);

1371
		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1372 1373 1374 1375 1376 1377 1378 1379 1380

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
1381 1382
	}

1383 1384 1385 1386 1387
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1388
	page->objects = oo_objects(oo);
Christoph Lameter's avatar
Christoph Lameter committed
1389 1390 1391
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1392
		1 << oo_order(oo));
Christoph Lameter's avatar
Christoph Lameter committed
1393 1394 1395 1396 1397 1398 1399

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
1400
	setup_object_debug(s, page, object);
1401 1402
	if (unlikely(s->ctor)) {
		kasan_unpoison_object_data(s, object);
1403
		s->ctor(object);
1404 1405
		kasan_poison_object_data(s, object);
	}
Christoph Lameter's avatar
Christoph Lameter committed
1406 1407 1408 1409 1410 1411 1412
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *p;
Glauber Costa's avatar
Glauber Costa committed
1413
	int order;
1414
	int idx;
Christoph Lameter's avatar
Christoph Lameter committed
1415

1416 1417 1418 1419
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
		BUG();
	}
Christoph Lameter's avatar
Christoph Lameter committed
1420

Christoph Lameter's avatar
Christoph Lameter committed
1421 1422
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
Christoph Lameter's avatar
Christoph Lameter committed
1423 1424 1425
	if (!page)
		goto out;

Glauber Costa's avatar
Glauber Costa committed
1426
	order = compound_order(page);
1427
	inc_slabs_node(s, page_to_nid(page), page->objects);
1428
	page->slab_cache = s;
1429
	__SetPageSlab(page);
1430
	if (page_is_pfmemalloc(page))
1431
		SetPageSlabPfmemalloc(page);
Christoph Lameter's avatar
Christoph Lameter committed
1432 1433 1434 1435

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
Glauber Costa's avatar
Glauber Costa committed
1436
		memset(start, POISON_INUSE, PAGE_SIZE << order);
Christoph Lameter's avatar
Christoph Lameter committed
1437

1438 1439
	kasan_poison_slab(page);

1440 1441 1442 1443 1444 1445
	for_each_object_idx(p, idx, s, start, page->objects) {
		setup_object(s, page, p);
		if (likely(idx < page->objects))
			set_freepointer(s, p, p + s->size);
		else
			set_freepointer(s, p, NULL);
Christoph Lameter's avatar
Christoph Lameter committed
1446 1447 1448
	}

	page->freelist = start;
1449
	page->inuse = page->objects;
1450
	page->frozen = 1;
Christoph Lameter's avatar
Christoph Lameter committed
1451 1452 1453 1454 1455 1456
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1457 1458
	int order = compound_order(page);
	int pages = 1 << order;
Christoph Lameter's avatar
Christoph Lameter committed
1459

1460
	if (kmem_cache_debug(s)) {
Christoph Lameter's avatar
Christoph Lameter committed
1461 1462 1463
		void *p;

		slab_pad_check(s, page);
1464 1465
		for_each_object(p, s, page_address(page),
						page->objects)
1466
			check_object(s, page, p, SLUB_RED_INACTIVE);
Christoph Lameter's avatar
Christoph Lameter committed
1467 1468
	}

1469
	kmemcheck_free_shadow(page, compound_order(page));
1470

Christoph Lameter's avatar
Christoph Lameter committed
1471 1472 1473
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1474
		-pages);
Christoph Lameter's avatar
Christoph Lameter committed
1475

1476
	__ClearPageSlabPfmemalloc(page);
1477
	__ClearPageSlab(page);
Glauber Costa's avatar
Glauber Costa committed
1478

1479
	page_mapcount_reset(page);
Nick Piggin's avatar
Nick Piggin committed
1480 1481
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1482 1483
	__free_pages(page, order);
	memcg_uncharge_slab(s, order);
Christoph Lameter's avatar
Christoph Lameter committed
1484 1485
}

1486 1487 1488
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

Christoph Lameter's avatar
Christoph Lameter committed
1489 1490 1491 1492
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1493 1494 1495 1496 1497
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1498
	__free_slab(page->slab_cache, page);
Christoph Lameter's avatar
Christoph Lameter committed
1499 1500 1501 1502 1503
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
Christoph Lameter's avatar
Christoph Lameter committed
1518 1519 1520 1521 1522 1523 1524 1525

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1526
	dec_slabs_node(s, page_to_nid(page), page->objects);
Christoph Lameter's avatar
Christoph Lameter committed
1527 1528 1529 1530
	free_slab(s, page);
}

/*
1531
 * Management of partially allocated slabs.
Christoph Lameter's avatar
Christoph Lameter committed
1532
 */
1533 1534
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
Christoph Lameter's avatar
Christoph Lameter committed
1535
{
Christoph Lameter's avatar
Christoph Lameter committed
1536
	n->nr_partial++;
1537
	if (tail == DEACTIVATE_TO_TAIL)
1538 1539 1540
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
Christoph Lameter's avatar
Christoph Lameter committed
1541 1542
}

1543 1544
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1545
{
1546
	lockdep_assert_held(&n->list_lock);
1547 1548
	__add_partial(n, page, tail);
}
1549

1550 1551 1552
static inline void
__remove_partial(struct kmem_cache_node *n, struct page *page)
{
1553 1554 1555 1556
	list_del(&page->lru);
	n->nr_partial--;
}

1557 1558 1559 1560 1561 1562 1563
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
	__remove_partial(n, page);
}

Christoph Lameter's avatar
Christoph Lameter committed
1564
/*
1565 1566
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
Christoph Lameter's avatar
Christoph Lameter committed
1567
 *
1568
 * Returns a list of objects or NULL if it fails.
Christoph Lameter's avatar
Christoph Lameter committed
1569
 */
1570
static inline void *acquire_slab(struct kmem_cache *s,
1571
		struct kmem_cache_node *n, struct page *page,
1572
		int mode, int *objects)
Christoph Lameter's avatar
Christoph Lameter committed
1573
{
1574 1575 1576 1577
	void *freelist;
	unsigned long counters;
	struct page new;

1578 1579
	lockdep_assert_held(&n->list_lock);

1580 1581 1582 1583 1584
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1585 1586 1587
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1588
	*objects = new.objects - new.inuse;
1589
	if (mode) {
1590
		new.inuse = page->objects;
1591 1592 1593 1594
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1595

1596
	VM_BUG_ON(new.frozen);
1597
	new.frozen = 1;
1598

1599
	if (!__cmpxchg_double_slab(s, page,
1600
			freelist, counters,
1601
			new.freelist, new.counters,
1602 1603
			"acquire_slab"))
		return NULL;
1604 1605

	remove_partial(n, page);
1606
	WARN_ON(!freelist);
1607
	return freelist;
Christoph Lameter's avatar
Christoph Lameter committed
1608 1609
}

1610
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1611
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1612

Christoph Lameter's avatar
Christoph Lameter committed
1613
/*
Christoph Lameter's avatar
Christoph Lameter committed
1614
 * Try to allocate a partial slab from a specific node.
Christoph Lameter's avatar
Christoph Lameter committed
1615
 */
1616 1617
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
Christoph Lameter's avatar
Christoph Lameter committed
1618
{
1619 1620
	struct page *page, *page2;
	void *object = NULL;
1621 1622
	int available = 0;
	int objects;
Christoph Lameter's avatar
Christoph Lameter committed
1623 1624 1625 1626

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
Christoph Lameter's avatar
Christoph Lameter committed
1627 1628
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
Christoph Lameter's avatar
Christoph Lameter committed
1629 1630 1631 1632 1633
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1634
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1635
		void *t;
1636

1637 1638 1639
		if (!pfmemalloc_match(page, flags))
			continue;

1640
		t = acquire_slab(s, n, page, object == NULL, &objects);
1641 1642 1643
		if (!t)
			break;

1644
		available += objects;
1645
		if (!object) {
1646 1647 1648 1649
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1650
			put_cpu_partial(s, page, 0);
1651
			stat(s, CPU_PARTIAL_NODE);
1652
		}
1653 1654
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1655 1656
			break;

1657
	}
Christoph Lameter's avatar
Christoph Lameter committed
1658
	spin_unlock(&n->list_lock);
1659
	return object;
Christoph Lameter's avatar
Christoph Lameter committed
1660 1661 1662
}

/*
Christoph Lameter's avatar
Christoph Lameter committed
1663
 * Get a page from somewhere. Search in increasing NUMA distances.
Christoph Lameter's avatar
Christoph Lameter committed
1664
 */
1665
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1666
		struct kmem_cache_cpu *c)
Christoph Lameter's avatar
Christoph Lameter committed
1667 1668 1669
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1670
	struct zoneref *z;
1671 1672
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1673
	void *object;
1674
	unsigned int cpuset_mems_cookie;
Christoph Lameter's avatar
Christoph Lameter committed
1675 1676

	/*
Christoph Lameter's avatar
Christoph Lameter committed
1677 1678 1679 1680
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
Christoph Lameter's avatar
Christoph Lameter committed
1681
	 *
Christoph Lameter's avatar
Christoph Lameter committed
1682 1683 1684 1685
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
Christoph Lameter's avatar
Christoph Lameter committed
1686
	 *
Christoph Lameter's avatar
Christoph Lameter committed
1687
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
Christoph Lameter's avatar
Christoph Lameter committed
1688 1689 1690 1691 1692
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
Christoph Lameter's avatar
Christoph Lameter committed
1693
	 */
1694 1695
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
Christoph Lameter's avatar
Christoph Lameter committed
1696 1697
		return NULL;

1698
	do {
1699
		cpuset_mems_cookie = read_mems_allowed_begin();
1700
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1701 1702 1703 1704 1705
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

1706
			if (n && cpuset_zone_allowed(zone, flags) &&
1707
					n->nr_partial > s->min_partial) {
1708
				object = get_partial_node(s, n, c, flags);
1709 1710
				if (object) {
					/*
1711 1712 1713 1714 1715
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1716 1717 1718
					 */
					return object;
				}
1719
			}
Christoph Lameter's avatar
Christoph Lameter committed
1720
		}
1721
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
Christoph Lameter's avatar
Christoph Lameter committed
1722 1723 1724 1725 1726 1727 1728
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1729
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1730
		struct kmem_cache_cpu *c)
Christoph Lameter's avatar
Christoph Lameter committed
1731
{
1732
	void *object;
1733 1734 1735 1736 1737 1738
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
	else if (!node_present_pages(node))
		searchnode = node_to_mem_node(node);
Christoph Lameter's avatar
Christoph Lameter committed
1739

1740
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1741 1742
	if (object || node != NUMA_NO_NODE)
		return object;
Christoph Lameter's avatar
Christoph Lameter committed
1743

1744
	return get_any_partial(s, flags, c);
Christoph Lameter's avatar
Christoph Lameter committed
1745 1746
}

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

1788
	pr_info("%s %s: cmpxchg redo ", n, s->name);
1789 1790 1791

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1792
		pr_warn("due to cpu change %d -> %d\n",
1793 1794 1795 1796
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
1797
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1798 1799
			tid_to_event(tid), tid_to_event(actual_tid));
	else
1800
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1801 1802
			actual_tid, tid, next_tid(tid));
#endif
1803
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1804 1805
}

1806
static void init_kmem_cache_cpus(struct kmem_cache *s)
1807 1808 1809 1810 1811 1812
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1813

Christoph Lameter's avatar
Christoph Lameter committed
1814 1815 1816
/*
 * Remove the cpu slab
 */
1817 1818
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
Christoph Lameter's avatar
Christoph Lameter committed
1819
{
1820 1821 1822 1823 1824
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1825
	int tail = DEACTIVATE_TO_HEAD;
1826 1827 1828 1829
	struct page new;
	struct page old;

	if (page->freelist) {
1830
		stat(s, DEACTIVATE_REMOTE_FREES);
1831
		tail = DEACTIVATE_TO_TAIL;
1832 1833
	}

1834
	/*
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
1852
			VM_BUG_ON(!new.frozen);
1853

1854
		} while (!__cmpxchg_double_slab(s, page,
1855 1856 1857 1858 1859 1860 1861
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1862
	/*
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1875
	 */
1876
redo:
1877

1878 1879
	old.freelist = page->freelist;
	old.counters = page->counters;
1880
	VM_BUG_ON(!old.frozen);
1881

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1893
	if (!new.inuse && n->nr_partial >= s->min_partial)
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1926

1927
			remove_full(s, n, page);
1928 1929 1930 1931

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1932
			stat(s, tail);
1933 1934

		} else if (m == M_FULL) {
1935

1936 1937 1938 1939 1940 1941 1942
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1943
	if (!__cmpxchg_double_slab(s, page,
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1956
	}
Christoph Lameter's avatar
Christoph Lameter committed
1957 1958
}

1959 1960 1961
/*
 * Unfreeze all the cpu partial slabs.
 *
1962 1963 1964
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1965
 */
1966 1967
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1968
{
1969
#ifdef CONFIG_SLUB_CPU_PARTIAL
1970
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1971
	struct page *page, *discard_page = NULL;
1972 1973 1974 1975 1976 1977

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1978 1979 1980 1981 1982 1983 1984 1985 1986

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1987 1988 1989 1990 1991

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
1992
			VM_BUG_ON(!old.frozen);
1993 1994 1995 1996 1997 1998

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1999
		} while (!__cmpxchg_double_slab(s, page,
2000 2001 2002 2003
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

2004
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2005 2006
			page->next = discard_page;
			discard_page = page;
2007 2008 2009
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
2010 2011 2012 2013 2014
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2015 2016 2017 2018 2019 2020 2021 2022 2023

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2024
#endif
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2036
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2037
{
2038
#ifdef CONFIG_SLUB_CPU_PARTIAL
2039 2040 2041 2042
	struct page *oldpage;
	int pages;
	int pobjects;

2043
	preempt_disable();
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2059
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2060
				local_irq_restore(flags);
2061
				oldpage = NULL;
2062 2063
				pobjects = 0;
				pages = 0;
2064
				stat(s, CPU_PARTIAL_DRAIN);
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2075 2076
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2077 2078 2079 2080 2081 2082 2083 2084
	if (unlikely(!s->cpu_partial)) {
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
2085
#endif
2086 2087
}

2088
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
Christoph Lameter's avatar
Christoph Lameter committed
2089
{
2090
	stat(s, CPUSLAB_FLUSH);
2091 2092 2093 2094 2095
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
Christoph Lameter's avatar
Christoph Lameter committed
2096 2097 2098 2099
}

/*
 * Flush cpu slab.
Christoph Lameter's avatar
Christoph Lameter committed
2100
 *
Christoph Lameter's avatar
Christoph Lameter committed
2101 2102
 * Called from IPI handler with interrupts disabled.
 */
2103
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
Christoph Lameter's avatar
Christoph Lameter committed
2104
{
2105
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
Christoph Lameter's avatar
Christoph Lameter committed
2106

2107 2108 2109 2110
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2111
		unfreeze_partials(s, c);
2112
	}
Christoph Lameter's avatar
Christoph Lameter committed
2113 2114 2115 2116 2117 2118
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2119
	__flush_cpu_slab(s, smp_processor_id());
Christoph Lameter's avatar
Christoph Lameter committed
2120 2121
}

2122 2123 2124 2125 2126
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2127
	return c->page || c->partial;
2128 2129
}

Christoph Lameter's avatar
Christoph Lameter committed
2130 2131
static void flush_all(struct kmem_cache *s)
{
2132
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
Christoph Lameter's avatar
Christoph Lameter committed
2133 2134
}

2135 2136 2137 2138
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2139
static inline int node_match(struct page *page, int node)
2140 2141
{
#ifdef CONFIG_NUMA
2142
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2143 2144 2145 2146 2147
		return 0;
#endif
	return 1;
}

2148
#ifdef CONFIG_SLUB_DEBUG
2149 2150 2151 2152 2153
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2154 2155 2156 2157 2158 2159 2160
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2174
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2175

2176 2177 2178
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2179 2180 2181
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
2182
	int node;
2183
	struct kmem_cache_node *n;
2184

2185 2186 2187
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2188
	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2189
		nid, gfpflags);
2190 2191 2192
	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
2193

2194
	if (oo_order(s->min) > get_order(s->object_size))
2195 2196
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2197

2198
	for_each_kmem_cache_node(s, node, n) {
2199 2200 2201 2202
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2203 2204 2205
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
2206

2207
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2208 2209
			node, nr_slabs, nr_objs, nr_free);
	}
2210
#endif
2211 2212
}

2213 2214 2215
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2216
	void *freelist;
2217 2218
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2219

2220
	freelist = get_partial(s, flags, node, c);
2221

2222 2223 2224 2225
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2226
	if (page) {
2227
		c = raw_cpu_ptr(s->cpu_slab);
2228 2229 2230 2231 2232 2233 2234
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2235
		freelist = page->freelist;
2236 2237 2238 2239 2240 2241
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2242
		freelist = NULL;
2243

2244
	return freelist;
2245 2246
}

2247 2248 2249 2250 2251 2252 2253 2254
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2255
/*
2256 2257
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2258 2259 2260 2261
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2262 2263
 *
 * This function must be called with interrupt disabled.
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2274

2275
		new.counters = counters;
2276
		VM_BUG_ON(!new.frozen);
2277 2278 2279 2280

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2281
	} while (!__cmpxchg_double_slab(s, page,
2282 2283 2284 2285 2286 2287 2288
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

Christoph Lameter's avatar
Christoph Lameter committed
2289
/*
2290 2291 2292 2293 2294 2295
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
Christoph Lameter's avatar
Christoph Lameter committed
2296
 *
2297 2298 2299
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
Christoph Lameter's avatar
Christoph Lameter committed
2300
 *
2301
 * And if we were unable to get a new slab from the partial slab lists then
Christoph Lameter's avatar
Christoph Lameter committed
2302 2303
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
Christoph Lameter's avatar
Christoph Lameter committed
2304
 */
2305 2306
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
Christoph Lameter's avatar
Christoph Lameter committed
2307
{
2308
	void *freelist;
2309
	struct page *page;
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
Christoph Lameter's avatar
Christoph Lameter committed
2321

2322 2323
	page = c->page;
	if (!page)
Christoph Lameter's avatar
Christoph Lameter committed
2324
		goto new_slab;
2325
redo:
2326

2327
	if (unlikely(!node_match(page, node))) {
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
		int searchnode = node;

		if (node != NUMA_NO_NODE && !node_present_pages(node))
			searchnode = node_to_mem_node(node);

		if (unlikely(!node_match(page, searchnode))) {
			stat(s, ALLOC_NODE_MISMATCH);
			deactivate_slab(s, page, c->freelist);
			c->page = NULL;
			c->freelist = NULL;
			goto new_slab;
		}
2340
	}
Christoph Lameter's avatar
Christoph Lameter committed
2341

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2354
	/* must check again c->freelist in case of cpu migration or IRQ */
2355 2356
	freelist = c->freelist;
	if (freelist)
2357
		goto load_freelist;
2358

2359
	freelist = get_freelist(s, page);
Christoph Lameter's avatar
Christoph Lameter committed
2360

2361
	if (!freelist) {
2362 2363
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2364
		goto new_slab;
2365
	}
Christoph Lameter's avatar
Christoph Lameter committed
2366

2367
	stat(s, ALLOC_REFILL);
Christoph Lameter's avatar
Christoph Lameter committed
2368

2369
load_freelist:
2370 2371 2372 2373 2374
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2375
	VM_BUG_ON(!c->page->frozen);
2376
	c->freelist = get_freepointer(s, freelist);
2377 2378
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2379
	return freelist;
Christoph Lameter's avatar
Christoph Lameter committed
2380 2381

new_slab:
2382

2383
	if (c->partial) {
2384 2385
		page = c->page = c->partial;
		c->partial = page->next;
2386 2387 2388
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
Christoph Lameter's avatar
Christoph Lameter committed
2389 2390
	}

2391
	freelist = new_slab_objects(s, gfpflags, node, &c);
2392

2393
	if (unlikely(!freelist)) {
2394
		slab_out_of_memory(s, gfpflags, node);
2395 2396
		local_irq_restore(flags);
		return NULL;
Christoph Lameter's avatar
Christoph Lameter committed
2397
	}
2398

2399
	page = c->page;
2400
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2401
		goto load_freelist;
2402

2403
	/* Only entered in the debug case */
2404 2405
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2406
		goto new_slab;	/* Slab failed checks. Next slab needed */
2407

2408
	deactivate_slab(s, page, get_freepointer(s, freelist));
2409 2410
	c->page = NULL;
	c->freelist = NULL;
2411
	local_irq_restore(flags);
2412
	return freelist;
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2425
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2426
		gfp_t gfpflags, int node, unsigned long addr)
2427 2428
{
	void **object;
2429
	struct kmem_cache_cpu *c;
2430
	struct page *page;
2431
	unsigned long tid;
2432

2433 2434
	s = slab_pre_alloc_hook(s, gfpflags);
	if (!s)
Akinobu Mita's avatar
Akinobu Mita committed
2435
		return NULL;
2436 2437 2438 2439 2440 2441
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2442
	 *
2443 2444 2445
	 * We should guarantee that tid and kmem_cache are retrieved on
	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
	 * to check if it is matched or not.
2446
	 */
2447 2448 2449
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2450 2451
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2462 2463 2464 2465 2466 2467 2468 2469

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2470
	object = c->freelist;
2471
	page = c->page;
2472
	if (unlikely(!object || !node_match(page, node))) {
2473
		object = __slab_alloc(s, gfpflags, node, addr, c);
2474 2475
		stat(s, ALLOC_SLOWPATH);
	} else {
2476 2477
		void *next_object = get_freepointer_safe(s, object);

2478
		/*
Lucas De Marchi's avatar
Lucas De Marchi committed
2479
		 * The cmpxchg will only match if there was no additional
2480 2481
		 * operation and if we are on the right processor.
		 *
2482 2483
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2484 2485 2486 2487
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2488 2489 2490
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2491
		 */
2492
		if (unlikely(!this_cpu_cmpxchg_double(
2493 2494
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2495
				next_object, next_tid(tid)))) {
2496 2497 2498 2499

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2500
		prefetch_freepointer(s, next_object);
2501
		stat(s, ALLOC_FASTPATH);
2502
	}
2503

2504
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2505
		memset(object, 0, s->object_size);
2506

2507
	slab_post_alloc_hook(s, gfpflags, object);
2508

2509
	return object;
Christoph Lameter's avatar
Christoph Lameter committed
2510 2511
}

2512 2513 2514 2515 2516 2517
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

Christoph Lameter's avatar
Christoph Lameter committed
2518 2519
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2520
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2521

2522 2523
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
2524 2525

	return ret;
Christoph Lameter's avatar
Christoph Lameter committed
2526 2527 2528
}
EXPORT_SYMBOL(kmem_cache_alloc);

2529
#ifdef CONFIG_TRACING
2530 2531
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2532
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2533
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2534
	kasan_kmalloc(s, ret, size);
2535 2536 2537
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
2538 2539
#endif

Christoph Lameter's avatar
Christoph Lameter committed
2540 2541 2542
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2543
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2544

2545
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2546
				    s->object_size, s->size, gfpflags, node);
2547 2548

	return ret;
Christoph Lameter's avatar
Christoph Lameter committed
2549 2550 2551
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2552
#ifdef CONFIG_TRACING
2553
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2554
				    gfp_t gfpflags,
2555
				    int node, size_t size)
2556
{
2557
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2558 2559 2560

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
2561 2562

	kasan_kmalloc(s, ret, size);
2563
	return ret;
2564
}
2565
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2566
#endif
2567
#endif
2568

Christoph Lameter's avatar
Christoph Lameter committed
2569
/*
2570
 * Slow path handling. This may still be called frequently since objects
2571
 * have a longer lifetime than the cpu slabs in most processing loads.
Christoph Lameter's avatar
Christoph Lameter committed
2572
 *
2573 2574 2575
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
Christoph Lameter's avatar
Christoph Lameter committed
2576
 */
2577
static void __slab_free(struct kmem_cache *s, struct page *page,
2578
			void *x, unsigned long addr)
Christoph Lameter's avatar
Christoph Lameter committed
2579 2580 2581
{
	void *prior;
	void **object = (void *)x;
2582 2583 2584 2585
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2586
	unsigned long uninitialized_var(flags);
Christoph Lameter's avatar
Christoph Lameter committed
2587

2588
	stat(s, FREE_SLOWPATH);
Christoph Lameter's avatar
Christoph Lameter committed
2589

2590 2591
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2592
		return;
Christoph Lameter's avatar
Christoph Lameter committed
2593

2594
	do {
2595 2596 2597 2598
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2599 2600 2601 2602 2603 2604
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2605
		if ((!new.inuse || !prior) && !was_frozen) {
2606

2607
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2608 2609

				/*
2610 2611 2612 2613
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2614 2615 2616
				 */
				new.frozen = 1;

2617
			} else { /* Needs to be taken off a list */
2618

2619
				n = get_node(s, page_to_nid(page));
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2631
		}
Christoph Lameter's avatar
Christoph Lameter committed
2632

2633 2634 2635 2636
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
Christoph Lameter's avatar
Christoph Lameter committed
2637

2638
	if (likely(!n)) {
2639 2640 2641 2642 2643

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2644
		if (new.frozen && !was_frozen) {
2645
			put_cpu_partial(s, page, 1);
2646 2647
			stat(s, CPU_PARTIAL_FREE);
		}
2648
		/*
2649 2650 2651
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
2652 2653 2654 2655
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}
Christoph Lameter's avatar
Christoph Lameter committed
2656

2657
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2658 2659
		goto slab_empty;

Christoph Lameter's avatar
Christoph Lameter committed
2660
	/*
2661 2662
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
Christoph Lameter's avatar
Christoph Lameter committed
2663
	 */
2664 2665
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
2666
			remove_full(s, n, page);
2667 2668
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2669
	}
2670
	spin_unlock_irqrestore(&n->list_lock, flags);
Christoph Lameter's avatar
Christoph Lameter committed
2671 2672 2673
	return;

slab_empty:
2674
	if (prior) {
Christoph Lameter's avatar
Christoph Lameter committed
2675
		/*
2676
		 * Slab on the partial list.
Christoph Lameter's avatar
Christoph Lameter committed
2677
		 */
2678
		remove_partial(n, page);
2679
		stat(s, FREE_REMOVE_PARTIAL);
2680
	} else {
2681
		/* Slab must be on the full list */
2682 2683
		remove_full(s, n, page);
	}
2684

2685
	spin_unlock_irqrestore(&n->list_lock, flags);
2686
	stat(s, FREE_SLAB);
Christoph Lameter's avatar
Christoph Lameter committed
2687 2688 2689
	discard_slab(s, page);
}

2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
2701
static __always_inline void slab_free(struct kmem_cache *s,
2702
			struct page *page, void *x, unsigned long addr)
2703 2704
{
	void **object = (void *)x;
2705
	struct kmem_cache_cpu *c;
2706
	unsigned long tid;
2707

2708 2709
	slab_free_hook(s, x);

2710 2711 2712 2713 2714
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
2715
	 * during the cmpxchg then the free will succeed.
2716
	 */
2717 2718 2719
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2720 2721
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2722

2723 2724
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
2725

2726
	if (likely(page == c->page)) {
2727
		set_freepointer(s, object, c->freelist);
2728

2729
		if (unlikely(!this_cpu_cmpxchg_double(
2730 2731 2732 2733 2734 2735 2736
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2737
		stat(s, FREE_FASTPATH);
2738
	} else
2739
		__slab_free(s, page, x, addr);
2740 2741 2742

}

Christoph Lameter's avatar
Christoph Lameter committed
2743 2744
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2745 2746
	s = cache_from_obj(s, x);
	if (!s)
2747
		return;
2748
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2749
	trace_kmem_cache_free(_RET_IP_, x);
Christoph Lameter's avatar
Christoph Lameter committed
2750 2751 2752
}
EXPORT_SYMBOL(kmem_cache_free);

2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
{
	__kmem_cache_free_bulk(s, size, p);
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
								void **p)
{
	return __kmem_cache_alloc_bulk(s, flags, size, p);
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);


Christoph Lameter's avatar
Christoph Lameter committed
2767
/*
Christoph Lameter's avatar
Christoph Lameter committed
2768 2769 2770 2771
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
Christoph Lameter's avatar
Christoph Lameter committed
2772 2773 2774 2775
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
Christoph Lameter's avatar
Christoph Lameter committed
2776
 * must be moved on and off the partial lists and is therefore a factor in
Christoph Lameter's avatar
Christoph Lameter committed
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2787
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2788
static int slub_min_objects;
Christoph Lameter's avatar
Christoph Lameter committed
2789 2790 2791 2792

/*
 * Calculate the order of allocation given an slab object size.
 *
Christoph Lameter's avatar
Christoph Lameter committed
2793 2794 2795 2796
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
2797
 * unused space left. We go to a higher order if more than 1/16th of the slab
Christoph Lameter's avatar
Christoph Lameter committed
2798 2799 2800 2801 2802 2803
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
Christoph Lameter's avatar
Christoph Lameter committed
2804
 *
Christoph Lameter's avatar
Christoph Lameter committed
2805 2806 2807 2808
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
Christoph Lameter's avatar
Christoph Lameter committed
2809
 *
Christoph Lameter's avatar
Christoph Lameter committed
2810 2811 2812 2813
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
Christoph Lameter's avatar
Christoph Lameter committed
2814
 */
2815
static inline int slab_order(int size, int min_objects,
2816
				int max_order, int fract_leftover, int reserved)
Christoph Lameter's avatar
Christoph Lameter committed
2817 2818 2819
{
	int order;
	int rem;
2820
	int min_order = slub_min_order;
Christoph Lameter's avatar
Christoph Lameter committed
2821

2822
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2823
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2824

2825
	for (order = max(min_order,
2826 2827
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
Christoph Lameter's avatar
Christoph Lameter committed
2828

2829
		unsigned long slab_size = PAGE_SIZE << order;
Christoph Lameter's avatar
Christoph Lameter committed
2830

2831
		if (slab_size < min_objects * size + reserved)
Christoph Lameter's avatar
Christoph Lameter committed
2832 2833
			continue;

2834
		rem = (slab_size - reserved) % size;
Christoph Lameter's avatar
Christoph Lameter committed
2835

2836
		if (rem <= slab_size / fract_leftover)
Christoph Lameter's avatar
Christoph Lameter committed
2837 2838 2839
			break;

	}
Christoph Lameter's avatar
Christoph Lameter committed
2840

Christoph Lameter's avatar
Christoph Lameter committed
2841 2842 2843
	return order;
}

2844
static inline int calculate_order(int size, int reserved)
2845 2846 2847 2848
{
	int order;
	int min_objects;
	int fraction;
2849
	int max_objects;
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2860 2861
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2862
	max_objects = order_objects(slub_max_order, size, reserved);
2863 2864
	min_objects = min(min_objects, max_objects);

2865
	while (min_objects > 1) {
2866
		fraction = 16;
2867 2868
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2869
					slub_max_order, fraction, reserved);
2870 2871 2872 2873
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2874
		min_objects--;
2875 2876 2877 2878 2879 2880
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2881
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2882 2883 2884 2885 2886 2887
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2888
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
David Rientjes's avatar
David Rientjes committed
2889
	if (order < MAX_ORDER)
2890 2891 2892 2893
		return order;
	return -ENOSYS;
}

2894
static void
2895
init_kmem_cache_node(struct kmem_cache_node *n)
Christoph Lameter's avatar
Christoph Lameter committed
2896 2897 2898 2899
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2900
#ifdef CONFIG_SLUB_DEBUG
2901
	atomic_long_set(&n->nr_slabs, 0);
2902
	atomic_long_set(&n->total_objects, 0);
2903
	INIT_LIST_HEAD(&n->full);
2904
#endif
Christoph Lameter's avatar
Christoph Lameter committed
2905 2906
}

2907
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2908
{
2909
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2910
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2911

2912
	/*
2913 2914
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2915
	 */
2916 2917
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2918 2919 2920 2921 2922

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2923

2924
	return 1;
2925 2926
}

2927 2928
static struct kmem_cache *kmem_cache_node;

Christoph Lameter's avatar
Christoph Lameter committed
2929 2930 2931 2932 2933
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
2934 2935
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
2936
 * memory on a fresh node that has no slab structures yet.
Christoph Lameter's avatar
Christoph Lameter committed
2937
 */
2938
static void early_kmem_cache_node_alloc(int node)
Christoph Lameter's avatar
Christoph Lameter committed
2939 2940 2941 2942
{
	struct page *page;
	struct kmem_cache_node *n;

2943
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
Christoph Lameter's avatar
Christoph Lameter committed
2944

2945
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
Christoph Lameter's avatar
Christoph Lameter committed
2946 2947

	BUG_ON(!page);
2948
	if (page_to_nid(page) != node) {
2949 2950
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2951 2952
	}

Christoph Lameter's avatar
Christoph Lameter committed
2953 2954
	n = page->freelist;
	BUG_ON(!n);
2955
	page->freelist = get_freepointer(kmem_cache_node, n);
2956
	page->inuse = 1;
2957
	page->frozen = 0;
2958
	kmem_cache_node->node[node] = n;
2959
#ifdef CONFIG_SLUB_DEBUG
2960
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2961
	init_tracking(kmem_cache_node, n);
2962
#endif
2963
	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
2964
	init_kmem_cache_node(n);
2965
	inc_slabs_node(kmem_cache_node, node, page->objects);
Christoph Lameter's avatar
Christoph Lameter committed
2966

2967
	/*
2968 2969
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
2970
	 */
2971
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
Christoph Lameter's avatar
Christoph Lameter committed
2972 2973 2974 2975 2976
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
2977
	struct kmem_cache_node *n;
Christoph Lameter's avatar
Christoph Lameter committed
2978

2979 2980
	for_each_kmem_cache_node(s, node, n) {
		kmem_cache_free(kmem_cache_node, n);
Christoph Lameter's avatar
Christoph Lameter committed
2981 2982 2983 2984
		s->node[node] = NULL;
	}
}

2985
static int init_kmem_cache_nodes(struct kmem_cache *s)
Christoph Lameter's avatar
Christoph Lameter committed
2986 2987 2988
{
	int node;

2989
	for_each_node_state(node, N_NORMAL_MEMORY) {
Christoph Lameter's avatar
Christoph Lameter committed
2990 2991
		struct kmem_cache_node *n;

2992
		if (slab_state == DOWN) {
2993
			early_kmem_cache_node_alloc(node);
2994 2995
			continue;
		}
2996
		n = kmem_cache_alloc_node(kmem_cache_node,
2997
						GFP_KERNEL, node);
Christoph Lameter's avatar
Christoph Lameter committed
2998

2999 3000 3001
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
Christoph Lameter's avatar
Christoph Lameter committed
3002
		}
3003

Christoph Lameter's avatar
Christoph Lameter committed
3004
		s->node[node] = n;
3005
		init_kmem_cache_node(n);
Christoph Lameter's avatar
Christoph Lameter committed
3006 3007 3008 3009
	}
	return 1;
}

3010
static void set_min_partial(struct kmem_cache *s, unsigned long min)
3011 3012 3013 3014 3015 3016 3017 3018
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

Christoph Lameter's avatar
Christoph Lameter committed
3019 3020 3021 3022
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
3023
static int calculate_sizes(struct kmem_cache *s, int forced_order)
Christoph Lameter's avatar
Christoph Lameter committed
3024 3025
{
	unsigned long flags = s->flags;
3026
	unsigned long size = s->object_size;
3027
	int order;
Christoph Lameter's avatar
Christoph Lameter committed
3028

3029 3030 3031 3032 3033 3034 3035 3036
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
Christoph Lameter's avatar
Christoph Lameter committed
3037 3038 3039 3040 3041 3042
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3043
			!s->ctor)
Christoph Lameter's avatar
Christoph Lameter committed
3044 3045 3046 3047 3048 3049
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
Christoph Lameter's avatar
Christoph Lameter committed
3050
	 * If we are Redzoning then check if there is some space between the
Christoph Lameter's avatar
Christoph Lameter committed
3051
	 * end of the object and the free pointer. If not then add an
Christoph Lameter's avatar
Christoph Lameter committed
3052
	 * additional word to have some bytes to store Redzone information.
Christoph Lameter's avatar
Christoph Lameter committed
3053
	 */
3054
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
Christoph Lameter's avatar
Christoph Lameter committed
3055
		size += sizeof(void *);
3056
#endif
Christoph Lameter's avatar
Christoph Lameter committed
3057 3058

	/*
Christoph Lameter's avatar
Christoph Lameter committed
3059 3060
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
Christoph Lameter's avatar
Christoph Lameter committed
3061 3062 3063 3064
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3065
		s->ctor)) {
Christoph Lameter's avatar
Christoph Lameter committed
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3078
#ifdef CONFIG_SLUB_DEBUG
Christoph Lameter's avatar
Christoph Lameter committed
3079 3080 3081 3082 3083 3084 3085
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

3086
	if (flags & SLAB_RED_ZONE)
Christoph Lameter's avatar
Christoph Lameter committed
3087 3088 3089 3090
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3091
		 * corrupted if a user writes before the start
Christoph Lameter's avatar
Christoph Lameter committed
3092 3093 3094
		 * of the object.
		 */
		size += sizeof(void *);
3095
#endif
Christoph Lameter's avatar
Christoph Lameter committed
3096

Christoph Lameter's avatar
Christoph Lameter committed
3097 3098 3099 3100 3101
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3102
	size = ALIGN(size, s->align);
Christoph Lameter's avatar
Christoph Lameter committed
3103
	s->size = size;
3104 3105 3106
	if (forced_order >= 0)
		order = forced_order;
	else
3107
		order = calculate_order(size, s->reserved);
Christoph Lameter's avatar
Christoph Lameter committed
3108

3109
	if (order < 0)
Christoph Lameter's avatar
Christoph Lameter committed
3110 3111
		return 0;

3112
	s->allocflags = 0;
3113
	if (order)
3114 3115 3116
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3117
		s->allocflags |= GFP_DMA;
3118 3119 3120 3121

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

Christoph Lameter's avatar
Christoph Lameter committed
3122 3123 3124
	/*
	 * Determine the number of objects per slab
	 */
3125 3126
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3127 3128
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
Christoph Lameter's avatar
Christoph Lameter committed
3129

3130
	return !!oo_objects(s->oo);
Christoph Lameter's avatar
Christoph Lameter committed
3131 3132
}

3133
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
Christoph Lameter's avatar
Christoph Lameter committed
3134
{
3135
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3136
	s->reserved = 0;
Christoph Lameter's avatar
Christoph Lameter committed
3137

3138 3139
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
Christoph Lameter's avatar
Christoph Lameter committed
3140

3141
	if (!calculate_sizes(s, -1))
Christoph Lameter's avatar
Christoph Lameter committed
3142
		goto error;
3143 3144 3145 3146 3147
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3148
		if (get_order(s->size) > get_order(s->object_size)) {
3149 3150 3151 3152 3153 3154
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
Christoph Lameter's avatar
Christoph Lameter committed
3155

3156 3157
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3158 3159 3160 3161 3162
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3163 3164 3165 3166
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3182
	 * B) The number of objects in cpu partial slabs to extract from the
3183 3184
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3185
	 */
3186
	if (!kmem_cache_has_cpu_partial(s))
3187 3188
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3189 3190 3191 3192 3193 3194 3195 3196
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

Christoph Lameter's avatar
Christoph Lameter committed
3197
#ifdef CONFIG_NUMA
3198
	s->remote_node_defrag_ratio = 1000;
Christoph Lameter's avatar
Christoph Lameter committed
3199
#endif
3200
	if (!init_kmem_cache_nodes(s))
3201
		goto error;
Christoph Lameter's avatar
Christoph Lameter committed
3202

3203
	if (alloc_kmem_cache_cpus(s))
3204
		return 0;
3205

3206
	free_kmem_cache_nodes(s);
Christoph Lameter's avatar
Christoph Lameter committed
3207 3208 3209 3210
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3211 3212
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3213
	return -EINVAL;
Christoph Lameter's avatar
Christoph Lameter committed
3214 3215
}

3216 3217 3218 3219 3220 3221
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
Namhyung Kim's avatar
Namhyung Kim committed
3222 3223
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
3224 3225
	if (!map)
		return;
3226
	slab_err(s, page, text, s->name);
3227 3228
	slab_lock(page);

3229
	get_map(s, page, map);
3230 3231 3232
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3233
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3234 3235 3236 3237
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
3238
	kfree(map);
3239 3240 3241
#endif
}

Christoph Lameter's avatar
Christoph Lameter committed
3242
/*
3243
 * Attempt to free all partial slabs on a node.
3244 3245
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
Christoph Lameter's avatar
Christoph Lameter committed
3246
 */
3247
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
Christoph Lameter's avatar
Christoph Lameter committed
3248 3249 3250
{
	struct page *page, *h;

3251
	list_for_each_entry_safe(page, h, &n->partial, lru) {
Christoph Lameter's avatar
Christoph Lameter committed
3252
		if (!page->inuse) {
3253
			__remove_partial(n, page);
Christoph Lameter's avatar
Christoph Lameter committed
3254
			discard_slab(s, page);
3255 3256
		} else {
			list_slab_objects(s, page,
3257
			"Objects remaining in %s on kmem_cache_close()");
3258
		}
3259
	}
Christoph Lameter's avatar
Christoph Lameter committed
3260 3261 3262
}

/*
Christoph Lameter's avatar
Christoph Lameter committed
3263
 * Release all resources used by a slab cache.
Christoph Lameter's avatar
Christoph Lameter committed
3264
 */
3265
static inline int kmem_cache_close(struct kmem_cache *s)
Christoph Lameter's avatar
Christoph Lameter committed
3266 3267
{
	int node;
3268
	struct kmem_cache_node *n;
Christoph Lameter's avatar
Christoph Lameter committed
3269 3270 3271

	flush_all(s);
	/* Attempt to free all objects */
3272
	for_each_kmem_cache_node(s, node, n) {
3273 3274
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
Christoph Lameter's avatar
Christoph Lameter committed
3275 3276
			return 1;
	}
3277
	free_percpu(s->cpu_slab);
Christoph Lameter's avatar
Christoph Lameter committed
3278 3279 3280 3281
	free_kmem_cache_nodes(s);
	return 0;
}

3282
int __kmem_cache_shutdown(struct kmem_cache *s)
Christoph Lameter's avatar
Christoph Lameter committed
3283
{
3284
	return kmem_cache_close(s);
Christoph Lameter's avatar
Christoph Lameter committed
3285 3286 3287 3288 3289 3290 3291 3292
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
3293
	get_option(&str, &slub_min_order);
Christoph Lameter's avatar
Christoph Lameter committed
3294 3295 3296 3297 3298 3299 3300 3301

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
3302
	get_option(&str, &slub_max_order);
David Rientjes's avatar
David Rientjes committed
3303
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
Christoph Lameter's avatar
Christoph Lameter committed
3304 3305 3306 3307 3308 3309 3310 3311

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
3312
	get_option(&str, &slub_min_objects);
Christoph Lameter's avatar
Christoph Lameter committed
3313 3314 3315 3316 3317 3318 3319 3320

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3321
	struct kmem_cache *s;
3322
	void *ret;
Christoph Lameter's avatar
Christoph Lameter committed
3323

3324
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3325
		return kmalloc_large(size, flags);
3326

3327
	s = kmalloc_slab(size, flags);
3328 3329

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3330 3331
		return s;

3332
	ret = slab_alloc(s, flags, _RET_IP_);
3333

3334
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3335

3336 3337
	kasan_kmalloc(s, ret, size);

3338
	return ret;
Christoph Lameter's avatar
Christoph Lameter committed
3339 3340 3341
}
EXPORT_SYMBOL(__kmalloc);

3342
#ifdef CONFIG_NUMA
3343 3344
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3345
	struct page *page;
3346
	void *ptr = NULL;
3347

3348 3349
	flags |= __GFP_COMP | __GFP_NOTRACK;
	page = alloc_kmem_pages_node(node, flags, get_order(size));
3350
	if (page)
3351 3352
		ptr = page_address(page);

3353
	kmalloc_large_node_hook(ptr, size, flags);
3354
	return ptr;
3355 3356
}

Christoph Lameter's avatar
Christoph Lameter committed
3357 3358
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3359
	struct kmem_cache *s;
3360
	void *ret;
Christoph Lameter's avatar
Christoph Lameter committed
3361

3362
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3363 3364
		ret = kmalloc_large_node(size, flags, node);

3365 3366 3367
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
3368 3369 3370

		return ret;
	}
3371

3372
	s = kmalloc_slab(size, flags);
3373 3374

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3375 3376
		return s;

3377
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3378

3379
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3380

3381 3382
	kasan_kmalloc(s, ret, size);

3383
	return ret;
Christoph Lameter's avatar
Christoph Lameter committed
3384 3385 3386 3387
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

3388
static size_t __ksize(const void *object)
Christoph Lameter's avatar
Christoph Lameter committed
3389
{
3390
	struct page *page;
Christoph Lameter's avatar
Christoph Lameter committed
3391

3392
	if (unlikely(object == ZERO_SIZE_PTR))
3393 3394
		return 0;

3395 3396
	page = virt_to_head_page(object);

Pekka Enberg's avatar
Pekka Enberg committed
3397 3398
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3399
		return PAGE_SIZE << compound_order(page);
Pekka Enberg's avatar
Pekka Enberg committed
3400
	}
Christoph Lameter's avatar
Christoph Lameter committed
3401

3402
	return slab_ksize(page->slab_cache);
Christoph Lameter's avatar
Christoph Lameter committed
3403
}
3404 3405 3406 3407 3408 3409 3410 3411 3412

size_t ksize(const void *object)
{
	size_t size = __ksize(object);
	/* We assume that ksize callers could use whole allocated area,
	   so we need unpoison this area. */
	kasan_krealloc(object, size);
	return size;
}
3413
EXPORT_SYMBOL(ksize);
Christoph Lameter's avatar
Christoph Lameter committed
3414 3415 3416 3417

void kfree(const void *x)
{
	struct page *page;
3418
	void *object = (void *)x;
Christoph Lameter's avatar
Christoph Lameter committed
3419

3420 3421
	trace_kfree(_RET_IP_, x);

3422
	if (unlikely(ZERO_OR_NULL_PTR(x)))
Christoph Lameter's avatar
Christoph Lameter committed
3423 3424
		return;

3425
	page = virt_to_head_page(x);
3426
	if (unlikely(!PageSlab(page))) {
3427
		BUG_ON(!PageCompound(page));
3428
		kfree_hook(x);
3429
		__free_kmem_pages(page, compound_order(page));
3430 3431
		return;
	}
3432
	slab_free(page->slab_cache, page, object, _RET_IP_);
Christoph Lameter's avatar
Christoph Lameter committed
3433 3434 3435
}
EXPORT_SYMBOL(kfree);

3436 3437
#define SHRINK_PROMOTE_MAX 32

3438
/*
3439 3440 3441
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
Christoph Lameter's avatar
Christoph Lameter committed
3442 3443 3444 3445
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3446
 */
3447
int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3448 3449 3450 3451 3452 3453
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3454 3455
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
3456
	unsigned long flags;
3457
	int ret = 0;
3458

3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
	if (deactivate) {
		/*
		 * Disable empty slabs caching. Used to avoid pinning offline
		 * memory cgroups by kmem pages that can be freed.
		 */
		s->cpu_partial = 0;
		s->min_partial = 0;

		/*
		 * s->cpu_partial is checked locklessly (see put_cpu_partial),
		 * so we have to make sure the change is visible.
		 */
		kick_all_cpus_sync();
	}

3474
	flush_all(s);
3475
	for_each_kmem_cache_node(s, node, n) {
3476 3477 3478
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);
3479 3480 3481 3482

		spin_lock_irqsave(&n->list_lock, flags);

		/*
3483
		 * Build lists of slabs to discard or promote.
3484
		 *
Christoph Lameter's avatar
Christoph Lameter committed
3485 3486
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3487 3488
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
				list_move(&page->lru, &discard);
3499
				n->nr_partial--;
3500 3501
			} else if (free <= SHRINK_PROMOTE_MAX)
				list_move(&page->lru, promote + free - 1);
3502 3503 3504
		}

		/*
3505 3506
		 * Promote the slabs filled up most to the head of the
		 * partial list.
3507
		 */
3508 3509
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);
3510 3511

		spin_unlock_irqrestore(&n->list_lock, flags);
3512 3513

		/* Release empty slabs */
3514
		list_for_each_entry_safe(page, t, &discard, lru)
3515
			discard_slab(s, page);
3516 3517 3518

		if (slabs_node(s, node))
			ret = 1;
3519 3520
	}

3521
	return ret;
3522 3523
}

3524 3525 3526 3527
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3528
	mutex_lock(&slab_mutex);
3529
	list_for_each_entry(s, &slab_caches, list)
3530
		__kmem_cache_shrink(s, false);
3531
	mutex_unlock(&slab_mutex);
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3543
	offline_node = marg->status_change_nid_normal;
3544 3545 3546 3547 3548 3549 3550 3551

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3552
	mutex_lock(&slab_mutex);
3553 3554 3555 3556 3557 3558
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3559
			 * and offline_pages() function shouldn't call this
3560 3561
			 * callback. So, we must fail.
			 */
3562
			BUG_ON(slabs_node(s, offline_node));
3563 3564

			s->node[offline_node] = NULL;
3565
			kmem_cache_free(kmem_cache_node, n);
3566 3567
		}
	}
3568
	mutex_unlock(&slab_mutex);
3569 3570 3571 3572 3573 3574 3575
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3576
	int nid = marg->status_change_nid_normal;
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3587
	 * We are bringing a node online. No memory is available yet. We must
3588 3589 3590
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3591
	mutex_lock(&slab_mutex);
3592 3593 3594 3595 3596 3597
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3598
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3599 3600 3601 3602
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3603
		init_kmem_cache_node(n);
3604 3605 3606
		s->node[nid] = n;
	}
out:
3607
	mutex_unlock(&slab_mutex);
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3631 3632 3633 3634
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3635 3636 3637
	return ret;
}

3638 3639 3640 3641
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3642

Christoph Lameter's avatar
Christoph Lameter committed
3643 3644 3645 3646
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3647 3648
/*
 * Used for early kmem_cache structures that were allocated using
3649 3650
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3651 3652
 */

3653
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3654 3655
{
	int node;
3656
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3657
	struct kmem_cache_node *n;
3658

3659
	memcpy(s, static_cache, kmem_cache->object_size);
3660

3661 3662 3663 3664 3665 3666
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
3667
	for_each_kmem_cache_node(s, node, n) {
3668 3669
		struct page *p;

3670 3671
		list_for_each_entry(p, &n->partial, lru)
			p->slab_cache = s;
3672

Li Zefan's avatar
Li Zefan committed
3673
#ifdef CONFIG_SLUB_DEBUG
3674 3675
		list_for_each_entry(p, &n->full, lru)
			p->slab_cache = s;
3676 3677
#endif
	}
3678
	slab_init_memcg_params(s);
3679 3680
	list_add(&s->list, &slab_caches);
	return s;
3681 3682
}

Christoph Lameter's avatar
Christoph Lameter committed
3683 3684
void __init kmem_cache_init(void)
{
3685 3686
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3687

3688 3689 3690
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3691 3692
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3693

3694 3695
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3696

3697
	register_hotmemory_notifier(&slab_memory_callback_nb);
Christoph Lameter's avatar
Christoph Lameter committed
3698 3699 3700 3701

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3702 3703 3704 3705
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3706

3707
	kmem_cache = bootstrap(&boot_kmem_cache);
Christoph Lameter's avatar
Christoph Lameter committed
3708

3709 3710 3711 3712 3713
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3714
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3715 3716

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3717
	setup_kmalloc_cache_index_table();
3718
	create_kmalloc_caches(0);
Christoph Lameter's avatar
Christoph Lameter committed
3719 3720 3721

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3722
#endif
Christoph Lameter's avatar
Christoph Lameter committed
3723

3724
	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3725
		cache_line_size(),
Christoph Lameter's avatar
Christoph Lameter committed
3726 3727 3728 3729
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3730 3731 3732 3733
void __init kmem_cache_init_late(void)
{
}

3734
struct kmem_cache *
3735 3736
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
Christoph Lameter's avatar
Christoph Lameter committed
3737
{
3738
	struct kmem_cache *s, *c;
Christoph Lameter's avatar
Christoph Lameter committed
3739

3740
	s = find_mergeable(size, align, flags, name, ctor);
Christoph Lameter's avatar
Christoph Lameter committed
3741 3742
	if (s) {
		s->refcount++;
3743

Christoph Lameter's avatar
Christoph Lameter committed
3744 3745 3746 3747
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3748
		s->object_size = max(s->object_size, (int)size);
Christoph Lameter's avatar
Christoph Lameter committed
3749
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
Christoph Lameter's avatar
Christoph Lameter committed
3750

3751
		for_each_memcg_cache(c, s) {
3752 3753 3754 3755 3756
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

3757 3758
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3759
			s = NULL;
3760
		}
3761
	}
Christoph Lameter's avatar
Christoph Lameter committed
3762

3763 3764
	return s;
}
3765

3766
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3767
{
3768 3769 3770 3771 3772
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3773

3774 3775 3776 3777
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3778
	memcg_propagate_slab_attrs(s);
3779 3780 3781
	err = sysfs_slab_add(s);
	if (err)
		kmem_cache_close(s);
3782

3783
	return err;
Christoph Lameter's avatar
Christoph Lameter committed
3784 3785 3786 3787
}

#ifdef CONFIG_SMP
/*
Christoph Lameter's avatar
Christoph Lameter committed
3788 3789
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
Christoph Lameter's avatar
Christoph Lameter committed
3790
 */
3791
static int slab_cpuup_callback(struct notifier_block *nfb,
Christoph Lameter's avatar
Christoph Lameter committed
3792 3793 3794
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3795 3796
	struct kmem_cache *s;
	unsigned long flags;
Christoph Lameter's avatar
Christoph Lameter committed
3797 3798 3799

	switch (action) {
	case CPU_UP_CANCELED:
3800
	case CPU_UP_CANCELED_FROZEN:
Christoph Lameter's avatar
Christoph Lameter committed
3801
	case CPU_DEAD:
3802
	case CPU_DEAD_FROZEN:
3803
		mutex_lock(&slab_mutex);
3804 3805 3806 3807 3808
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3809
		mutex_unlock(&slab_mutex);
Christoph Lameter's avatar
Christoph Lameter committed
3810 3811 3812 3813 3814 3815 3816
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3817
static struct notifier_block slab_notifier = {
Ingo Molnar's avatar
Ingo Molnar committed
3818
	.notifier_call = slab_cpuup_callback
3819
};
Christoph Lameter's avatar
Christoph Lameter committed
3820 3821 3822

#endif

3823
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
Christoph Lameter's avatar
Christoph Lameter committed
3824
{
3825
	struct kmem_cache *s;
3826
	void *ret;
3827

3828
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3829 3830
		return kmalloc_large(size, gfpflags);

3831
	s = kmalloc_slab(size, gfpflags);
Christoph Lameter's avatar
Christoph Lameter committed
3832

3833
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3834
		return s;
Christoph Lameter's avatar
Christoph Lameter committed
3835

3836
	ret = slab_alloc(s, gfpflags, caller);
3837

Lucas De Marchi's avatar
Lucas De Marchi committed
3838
	/* Honor the call site pointer we received. */
3839
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3840 3841

	return ret;
Christoph Lameter's avatar
Christoph Lameter committed
3842 3843
}

3844
#ifdef CONFIG_NUMA
Christoph Lameter's avatar
Christoph Lameter committed
3845
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3846
					int node, unsigned long caller)
Christoph Lameter's avatar
Christoph Lameter committed
3847
{
3848
	struct kmem_cache *s;
3849
	void *ret;
3850

3851
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3852 3853 3854 3855 3856 3857 3858 3859
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3860

3861
	s = kmalloc_slab(size, gfpflags);
Christoph Lameter's avatar
Christoph Lameter committed
3862

3863
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3864
		return s;
Christoph Lameter's avatar
Christoph Lameter committed
3865

3866
	ret = slab_alloc_node(s, gfpflags, node, caller);
3867

Lucas De Marchi's avatar
Lucas De Marchi committed
3868
	/* Honor the call site pointer we received. */
3869
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3870 3871

	return ret;
Christoph Lameter's avatar
Christoph Lameter committed
3872
}
3873
#endif
Christoph Lameter's avatar
Christoph Lameter committed
3874

3875
#ifdef CONFIG_SYSFS
3876 3877 3878 3879 3880 3881 3882 3883 3884
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3885
#endif
3886

3887
#ifdef CONFIG_SLUB_DEBUG
3888 3889
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3890 3891
{
	void *p;
3892
	void *addr = page_address(page);
3893 3894 3895 3896 3897 3898

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3899
	bitmap_zero(map, page->objects);
3900

3901 3902 3903 3904 3905
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3906 3907
	}

3908
	for_each_object(p, s, addr, page->objects)
3909
		if (!test_bit(slab_index(p, s, addr), map))
3910
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3911 3912 3913 3914
				return 0;
	return 1;
}

3915 3916
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3917
{
3918 3919 3920
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
3921 3922
}

3923 3924
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3925 3926 3927 3928 3929 3930 3931 3932
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3933
		validate_slab_slab(s, page, map);
3934 3935 3936
		count++;
	}
	if (count != n->nr_partial)
3937 3938
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
3939 3940 3941 3942 3943

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3944
		validate_slab_slab(s, page, map);
3945 3946 3947
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
3948 3949
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
3950 3951 3952 3953 3954 3955

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3956
static long validate_slab_cache(struct kmem_cache *s)
3957 3958 3959
{
	int node;
	unsigned long count = 0;
3960
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3961
				sizeof(unsigned long), GFP_KERNEL);
3962
	struct kmem_cache_node *n;
3963 3964 3965

	if (!map)
		return -ENOMEM;
3966 3967

	flush_all(s);
3968
	for_each_kmem_cache_node(s, node, n)
3969 3970
		count += validate_slab_node(s, n, map);
	kfree(map);
3971 3972
	return count;
}
3973
/*
Christoph Lameter's avatar
Christoph Lameter committed
3974
 * Generate lists of code addresses where slabcache objects are allocated
3975 3976 3977 3978 3979
 * and freed.
 */

struct location {
	unsigned long count;
3980
	unsigned long addr;
3981 3982 3983 3984 3985
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
Rusty Russell's avatar
Rusty Russell committed
3986
	DECLARE_BITMAP(cpus, NR_CPUS);
3987
	nodemask_t nodes;
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4003
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4004 4005 4006 4007 4008 4009
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4010
	l = (void *)__get_free_pages(flags, order);
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4024
				const struct track *track)
4025 4026 4027
{
	long start, end, pos;
	struct location *l;
4028
	unsigned long caddr;
4029
	unsigned long age = jiffies - track->when;
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

Rusty Russell's avatar
Rusty Russell committed
4061 4062
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4063 4064
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4065 4066 4067
			return 1;
		}

4068
		if (track->addr < caddr)
4069 4070 4071 4072 4073 4074
			end = pos;
		else
			start = pos;
	}

	/*
Christoph Lameter's avatar
Christoph Lameter committed
4075
	 * Not found. Insert new tracking element.
4076
	 */
4077
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4078 4079 4080 4081 4082 4083 4084 4085
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4086 4087 4088 4089 4090 4091
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
Rusty Russell's avatar
Rusty Russell committed
4092 4093
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4094 4095
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4096 4097 4098 4099
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
4100
		struct page *page, enum track_item alloc,
Namhyung Kim's avatar
Namhyung Kim committed
4101
		unsigned long *map)
4102
{
4103
	void *addr = page_address(page);
4104 4105
	void *p;

4106
	bitmap_zero(map, page->objects);
4107
	get_map(s, page, map);
4108

4109
	for_each_object(p, s, addr, page->objects)
4110 4111
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4112 4113 4114 4115 4116
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4117
	int len = 0;
4118
	unsigned long i;
4119
	struct loc_track t = { 0, 0, NULL };
4120
	int node;
4121 4122
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
4123
	struct kmem_cache_node *n;
4124

4125 4126 4127
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4128
		return sprintf(buf, "Out of memory\n");
4129
	}
4130 4131 4132
	/* Push back cpu slabs */
	flush_all(s);

4133
	for_each_kmem_cache_node(s, node, n) {
4134 4135 4136
		unsigned long flags;
		struct page *page;

4137
		if (!atomic_long_read(&n->nr_slabs))
4138 4139 4140 4141
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
4142
			process_slab(&t, s, page, alloc, map);
4143
		list_for_each_entry(page, &n->full, lru)
4144
			process_slab(&t, s, page, alloc, map);
4145 4146 4147 4148
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4149
		struct location *l = &t.loc[i];
4150

Hugh Dickins's avatar
Hugh Dickins committed
4151
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4152
			break;
4153
		len += sprintf(buf + len, "%7ld ", l->count);
4154 4155

		if (l->addr)
4156
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4157
		else
4158
			len += sprintf(buf + len, "<not-available>");
4159 4160

		if (l->sum_time != l->min_time) {
4161
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
Roman Zippel's avatar
Roman Zippel committed
4162 4163 4164
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4165
		} else
4166
			len += sprintf(buf + len, " age=%ld",
4167 4168 4169
				l->min_time);

		if (l->min_pid != l->max_pid)
4170
			len += sprintf(buf + len, " pid=%ld-%ld",
4171 4172
				l->min_pid, l->max_pid);
		else
4173
			len += sprintf(buf + len, " pid=%ld",
4174 4175
				l->min_pid);

Rusty Russell's avatar
Rusty Russell committed
4176 4177
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4178 4179 4180 4181
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " cpus=%*pbl",
					 cpumask_pr_args(to_cpumask(l->cpus)));
4182

4183
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4184 4185 4186 4187
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " nodes=%*pbl",
					 nodemask_pr_args(&l->nodes));
4188

4189
		len += sprintf(buf + len, "\n");
4190 4191 4192
	}

	free_loc_track(&t);
4193
	kfree(map);
4194
	if (!t.count)
4195 4196
		len += sprintf(buf, "No data\n");
	return len;
4197
}
4198
#endif
4199

4200
#ifdef SLUB_RESILIENCY_TEST
4201
static void __init resiliency_test(void)
4202 4203 4204
{
	u8 *p;

4205
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4206

4207 4208 4209
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4210 4211 4212

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4213 4214
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4215 4216 4217 4218 4219 4220

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4221 4222 4223
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4224 4225 4226 4227 4228

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4229 4230 4231
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4232 4233
	validate_slab_cache(kmalloc_caches[6]);

4234
	pr_err("\nB. Corruption after free\n");
4235 4236 4237
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4238
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4239 4240 4241 4242 4243
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4244
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4245 4246 4247 4248 4249
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4250
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4251 4252 4253 4254 4255 4256 4257 4258
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4259
#ifdef CONFIG_SYSFS
Christoph Lameter's avatar
Christoph Lameter committed
4260
enum slab_stat_type {
4261 4262 4263 4264 4265
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
Christoph Lameter's avatar
Christoph Lameter committed
4266 4267
};

4268
#define SO_ALL		(1 << SL_ALL)
Christoph Lameter's avatar
Christoph Lameter committed
4269 4270 4271
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4272
#define SO_TOTAL	(1 << SL_TOTAL)
Christoph Lameter's avatar
Christoph Lameter committed
4273

4274 4275
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
Christoph Lameter's avatar
Christoph Lameter committed
4276 4277 4278 4279 4280 4281
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4282
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4283 4284
	if (!nodes)
		return -ENOMEM;
Christoph Lameter's avatar
Christoph Lameter committed
4285

4286 4287
	if (flags & SO_CPU) {
		int cpu;
Christoph Lameter's avatar
Christoph Lameter committed
4288

4289
		for_each_possible_cpu(cpu) {
4290 4291
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4292
			int node;
4293
			struct page *page;
4294

4295
			page = READ_ONCE(c->page);
4296 4297
			if (!page)
				continue;
4298

4299 4300 4301 4302 4303 4304 4305
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4306

4307 4308 4309
			total += x;
			nodes[node] += x;

4310
			page = READ_ONCE(c->partial);
4311
			if (page) {
4312 4313 4314 4315 4316 4317 4318
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4319 4320
				total += x;
				nodes[node] += x;
4321
			}
Christoph Lameter's avatar
Christoph Lameter committed
4322 4323 4324
		}
	}

4325
	get_online_mems();
4326
#ifdef CONFIG_SLUB_DEBUG
4327
	if (flags & SO_ALL) {
4328 4329 4330
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4331

4332 4333 4334 4335 4336
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
Christoph Lameter's avatar
Christoph Lameter committed
4337
			else
4338
				x = atomic_long_read(&n->nr_slabs);
Christoph Lameter's avatar
Christoph Lameter committed
4339 4340 4341 4342
			total += x;
			nodes[node] += x;
		}

4343 4344 4345
	} else
#endif
	if (flags & SO_PARTIAL) {
4346
		struct kmem_cache_node *n;
Christoph Lameter's avatar
Christoph Lameter committed
4347

4348
		for_each_kmem_cache_node(s, node, n) {
4349 4350 4351 4352
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
Christoph Lameter's avatar
Christoph Lameter committed
4353
			else
4354
				x = n->nr_partial;
Christoph Lameter's avatar
Christoph Lameter committed
4355 4356 4357 4358 4359 4360
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
4361
	for (node = 0; node < nr_node_ids; node++)
Christoph Lameter's avatar
Christoph Lameter committed
4362 4363 4364 4365
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4366
	put_online_mems();
Christoph Lameter's avatar
Christoph Lameter committed
4367 4368 4369 4370
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4371
#ifdef CONFIG_SLUB_DEBUG
Christoph Lameter's avatar
Christoph Lameter committed
4372 4373 4374
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
4375
	struct kmem_cache_node *n;
Christoph Lameter's avatar
Christoph Lameter committed
4376

4377
	for_each_kmem_cache_node(s, node, n)
4378
		if (atomic_long_read(&n->total_objects))
Christoph Lameter's avatar
Christoph Lameter committed
4379
			return 1;
4380

Christoph Lameter's avatar
Christoph Lameter committed
4381 4382
	return 0;
}
4383
#endif
Christoph Lameter's avatar
Christoph Lameter committed
4384 4385

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4386
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
Christoph Lameter's avatar
Christoph Lameter committed
4387 4388 4389 4390 4391 4392 4393 4394

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4395 4396
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
Christoph Lameter's avatar
Christoph Lameter committed
4397 4398 4399

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4400
	__ATTR(_name, 0600, _name##_show, _name##_store)
Christoph Lameter's avatar
Christoph Lameter committed
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4416
	return sprintf(buf, "%d\n", s->object_size);
Christoph Lameter's avatar
Christoph Lameter committed
4417 4418 4419 4420 4421
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4422
	return sprintf(buf, "%d\n", oo_objects(s->oo));
Christoph Lameter's avatar
Christoph Lameter committed
4423 4424 4425
}
SLAB_ATTR_RO(objs_per_slab);

4426 4427 4428
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4429 4430 4431
	unsigned long order;
	int err;

4432
	err = kstrtoul(buf, 10, &order);
4433 4434
	if (err)
		return err;
4435 4436 4437 4438 4439 4440 4441 4442

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

Christoph Lameter's avatar
Christoph Lameter committed
4443 4444
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4445
	return sprintf(buf, "%d\n", oo_order(s->oo));
Christoph Lameter's avatar
Christoph Lameter committed
4446
}
4447
SLAB_ATTR(order);
Christoph Lameter's avatar
Christoph Lameter committed
4448

4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4460
	err = kstrtoul(buf, 10, &min);
4461 4462 4463
	if (err)
		return err;

4464
	set_min_partial(s, min);
4465 4466 4467 4468
	return length;
}
SLAB_ATTR(min_partial);

4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4480
	err = kstrtoul(buf, 10, &objects);
4481 4482
	if (err)
		return err;
4483
	if (objects && !kmem_cache_has_cpu_partial(s))
4484
		return -EINVAL;
4485 4486 4487 4488 4489 4490 4491

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

Christoph Lameter's avatar
Christoph Lameter committed
4492 4493
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
4494 4495 4496
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
Christoph Lameter's avatar
Christoph Lameter committed
4497 4498 4499 4500 4501
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
4502
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
Christoph Lameter's avatar
Christoph Lameter committed
4503 4504 4505 4506 4507
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4508
	return show_slab_objects(s, buf, SO_PARTIAL);
Christoph Lameter's avatar
Christoph Lameter committed
4509 4510 4511 4512 4513
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4514
	return show_slab_objects(s, buf, SO_CPU);
Christoph Lameter's avatar
Christoph Lameter committed
4515 4516 4517 4518 4519
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4520
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
Christoph Lameter's avatar
Christoph Lameter committed
4521 4522 4523
}
SLAB_ATTR_RO(objects);

4524 4525 4526 4527 4528 4529
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4596 4597 4598 4599 4600 4601
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4602
#ifdef CONFIG_SLUB_DEBUG
4603 4604 4605 4606 4607 4608
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4609 4610 4611 4612 4613 4614
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

Christoph Lameter's avatar
Christoph Lameter committed
4615 4616 4617 4618 4619 4620 4621 4622 4623
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4624 4625
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
Christoph Lameter's avatar
Christoph Lameter committed
4626
		s->flags |= SLAB_DEBUG_FREE;
4627
	}
Christoph Lameter's avatar
Christoph Lameter committed
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4640 4641 4642 4643 4644 4645 4646 4647
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

Christoph Lameter's avatar
Christoph Lameter committed
4648
	s->flags &= ~SLAB_TRACE;
4649 4650
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
Christoph Lameter's avatar
Christoph Lameter committed
4651
		s->flags |= SLAB_TRACE;
4652
	}
Christoph Lameter's avatar
Christoph Lameter committed
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4669 4670
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
Christoph Lameter's avatar
Christoph Lameter committed
4671
		s->flags |= SLAB_RED_ZONE;
4672
	}
4673
	calculate_sizes(s, -1);
Christoph Lameter's avatar
Christoph Lameter committed
4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4690 4691
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
Christoph Lameter's avatar
Christoph Lameter committed
4692
		s->flags |= SLAB_POISON;
4693
	}
4694
	calculate_sizes(s, -1);
Christoph Lameter's avatar
Christoph Lameter committed
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4711 4712
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
Christoph Lameter's avatar
Christoph Lameter committed
4713
		s->flags |= SLAB_STORE_USER;
4714
	}
4715
	calculate_sizes(s, -1);
Christoph Lameter's avatar
Christoph Lameter committed
4716 4717 4718 4719
	return length;
}
SLAB_ATTR(store_user);

4720 4721 4722 4723 4724 4725 4726 4727
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4728 4729 4730 4731 4732 4733 4734 4735
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4736 4737
}
SLAB_ATTR(validate);
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4765 4766 4767
	if (s->refcount > 1)
		return -EINVAL;

4768 4769 4770 4771 4772 4773
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4774
#endif
4775

4776 4777 4778 4779 4780 4781 4782 4783
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4784 4785 4786
	if (buf[0] == '1')
		kmem_cache_shrink(s);
	else
4787 4788 4789 4790 4791
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

Christoph Lameter's avatar
Christoph Lameter committed
4792
#ifdef CONFIG_NUMA
4793
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
Christoph Lameter's avatar
Christoph Lameter committed
4794
{
4795
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
Christoph Lameter's avatar
Christoph Lameter committed
4796 4797
}

4798
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
Christoph Lameter's avatar
Christoph Lameter committed
4799 4800
				const char *buf, size_t length)
{
4801 4802 4803
	unsigned long ratio;
	int err;

4804
	err = kstrtoul(buf, 10, &ratio);
4805 4806 4807
	if (err)
		return err;

4808
	if (ratio <= 100)
4809
		s->remote_node_defrag_ratio = ratio * 10;
Christoph Lameter's avatar
Christoph Lameter committed
4810 4811 4812

	return length;
}
4813
SLAB_ATTR(remote_node_defrag_ratio);
Christoph Lameter's avatar
Christoph Lameter committed
4814 4815
#endif

4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4828
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4829 4830 4831 4832 4833 4834 4835

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4836
#ifdef CONFIG_SMP
4837 4838
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4839
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4840
	}
4841
#endif
4842 4843 4844 4845
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

4846 4847 4848 4849 4850
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4851
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4852 4853
}

4854 4855 4856 4857 4858
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
4859 4860 4861 4862 4863 4864 4865 4866 4867
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4879
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4880 4881 4882 4883 4884 4885 4886
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4887
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4888
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4889 4890
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4891 4892
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4893 4894
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4895 4896
#endif

4897
static struct attribute *slab_attrs[] = {
Christoph Lameter's avatar
Christoph Lameter committed
4898 4899 4900 4901
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4902
	&min_partial_attr.attr,
4903
	&cpu_partial_attr.attr,
Christoph Lameter's avatar
Christoph Lameter committed
4904
	&objects_attr.attr,
4905
	&objects_partial_attr.attr,
Christoph Lameter's avatar
Christoph Lameter committed
4906 4907 4908 4909 4910 4911 4912 4913
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
4914
	&shrink_attr.attr,
4915
	&reserved_attr.attr,
4916
	&slabs_cpu_partial_attr.attr,
4917
#ifdef CONFIG_SLUB_DEBUG
4918 4919 4920 4921
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
Christoph Lameter's avatar
Christoph Lameter committed
4922 4923 4924
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4925
	&validate_attr.attr,
4926 4927
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
4928
#endif
Christoph Lameter's avatar
Christoph Lameter committed
4929 4930 4931 4932
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4933
	&remote_node_defrag_ratio_attr.attr,
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
4946
	&alloc_node_mismatch_attr.attr,
4947 4948 4949 4950 4951 4952 4953
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4954
	&deactivate_bypass_attr.attr,
4955
	&order_fallback_attr.attr,
4956 4957
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
4958 4959
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
4960 4961
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
Christoph Lameter's avatar
Christoph Lameter committed
4962
#endif
4963 4964 4965 4966
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

Christoph Lameter's avatar
Christoph Lameter committed
4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5008 5009
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5010
		struct kmem_cache *c;
Christoph Lameter's avatar
Christoph Lameter committed
5011

5012 5013 5014 5015
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5033 5034
		for_each_memcg_cache(c, s)
			attribute->store(c, buf, len);
5035 5036 5037
		mutex_unlock(&slab_mutex);
	}
#endif
Christoph Lameter's avatar
Christoph Lameter committed
5038 5039 5040
	return err;
}

5041 5042 5043 5044 5045
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;
5046
	struct kmem_cache *root_cache;
5047

5048
	if (is_root_cache(s))
5049 5050
		return;

5051
	root_cache = s->memcg_params.root_cache;
5052

5053 5054 5055 5056
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5057
	if (!root_cache->max_attr_size)
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5079
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5080 5081 5082 5083 5084 5085 5086 5087
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5088
		attr->show(root_cache, buf);
5089 5090 5091 5092 5093 5094 5095 5096
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5097 5098 5099 5100 5101
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5102
static const struct sysfs_ops slab_sysfs_ops = {
Christoph Lameter's avatar
Christoph Lameter committed
5103 5104 5105 5106 5107 5108
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5109
	.release = kmem_cache_release,
Christoph Lameter's avatar
Christoph Lameter committed
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5121
static const struct kset_uevent_ops slab_uevent_ops = {
Christoph Lameter's avatar
Christoph Lameter committed
5122 5123 5124
	.filter = uevent_filter,
};

5125
static struct kset *slab_kset;
Christoph Lameter's avatar
Christoph Lameter committed
5126

5127 5128 5129 5130
static inline struct kset *cache_kset(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
5131
		return s->memcg_params.root_cache->memcg_kset;
5132 5133 5134 5135
#endif
	return slab_kset;
}

Christoph Lameter's avatar
Christoph Lameter committed
5136 5137 5138
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
Christoph Lameter's avatar
Christoph Lameter committed
5139 5140
 *
 * Format	:[flags-]size
Christoph Lameter's avatar
Christoph Lameter committed
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
5163 5164
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
Christoph Lameter's avatar
Christoph Lameter committed
5165 5166 5167
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5168

Christoph Lameter's avatar
Christoph Lameter committed
5169 5170 5171 5172 5173 5174 5175 5176
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5177
	int unmergeable = slab_unmergeable(s);
Christoph Lameter's avatar
Christoph Lameter committed
5178 5179 5180 5181 5182 5183 5184

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5185
		sysfs_remove_link(&slab_kset->kobj, s->name);
Christoph Lameter's avatar
Christoph Lameter committed
5186 5187 5188 5189 5190 5191 5192 5193 5194
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5195
	s->kobj.kset = cache_kset(s);
5196
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5197 5198
	if (err)
		goto out_put_kobj;
Christoph Lameter's avatar
Christoph Lameter committed
5199 5200

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5201 5202
	if (err)
		goto out_del_kobj;
5203 5204 5205 5206 5207

#ifdef CONFIG_MEMCG_KMEM
	if (is_root_cache(s)) {
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5208 5209
			err = -ENOMEM;
			goto out_del_kobj;
5210 5211 5212 5213
		}
	}
#endif

Christoph Lameter's avatar
Christoph Lameter committed
5214 5215 5216 5217 5218
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5219 5220 5221 5222 5223 5224 5225 5226 5227
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
out_put_kobj:
	kobject_put(&s->kobj);
	goto out;
Christoph Lameter's avatar
Christoph Lameter committed
5228 5229
}

5230
void sysfs_slab_remove(struct kmem_cache *s)
Christoph Lameter's avatar
Christoph Lameter committed
5231
{
5232
	if (slab_state < FULL)
5233 5234 5235 5236 5237 5238
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5239 5240 5241
#ifdef CONFIG_MEMCG_KMEM
	kset_unregister(s->memcg_kset);
#endif
Christoph Lameter's avatar
Christoph Lameter committed
5242 5243
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
5244
	kobject_put(&s->kobj);
Christoph Lameter's avatar
Christoph Lameter committed
5245 5246 5247 5248
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
5249
 * available lest we lose that information.
Christoph Lameter's avatar
Christoph Lameter committed
5250 5251 5252 5253 5254 5255 5256
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

Adrian Bunk's avatar
Adrian Bunk committed
5257
static struct saved_alias *alias_list;
Christoph Lameter's avatar
Christoph Lameter committed
5258 5259 5260 5261 5262

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5263
	if (slab_state == FULL) {
Christoph Lameter's avatar
Christoph Lameter committed
5264 5265 5266
		/*
		 * If we have a leftover link then remove it.
		 */
5267 5268
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
Christoph Lameter's avatar
Christoph Lameter committed
5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5284
	struct kmem_cache *s;
Christoph Lameter's avatar
Christoph Lameter committed
5285 5286
	int err;

5287
	mutex_lock(&slab_mutex);
5288

5289
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5290
	if (!slab_kset) {
5291
		mutex_unlock(&slab_mutex);
5292
		pr_err("Cannot register slab subsystem.\n");
Christoph Lameter's avatar
Christoph Lameter committed
5293 5294 5295
		return -ENOSYS;
	}

5296
	slab_state = FULL;
5297

5298
	list_for_each_entry(s, &slab_caches, list) {
5299
		err = sysfs_slab_add(s);
5300
		if (err)
5301 5302
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5303
	}
Christoph Lameter's avatar
Christoph Lameter committed
5304 5305 5306 5307 5308 5309

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5310
		if (err)
5311 5312
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
Christoph Lameter's avatar
Christoph Lameter committed
5313 5314 5315
		kfree(al);
	}

5316
	mutex_unlock(&slab_mutex);
Christoph Lameter's avatar
Christoph Lameter committed
5317 5318 5319 5320 5321
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5322
#endif /* CONFIG_SYSFS */
5323 5324 5325 5326

/*
 * The /proc/slabinfo ABI
 */
5327
#ifdef CONFIG_SLABINFO
5328
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5329 5330
{
	unsigned long nr_slabs = 0;
5331 5332
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
5333
	int node;
5334
	struct kmem_cache_node *n;
5335

5336
	for_each_kmem_cache_node(s, node, n) {
5337 5338
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5339
		nr_free += count_partial(n, count_free);
5340 5341
	}

5342 5343 5344 5345 5346 5347
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
5348 5349
}

5350
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5351 5352 5353
{
}

5354 5355
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5356
{
5357
	return -EIO;
5358
}
5359
#endif /* CONFIG_SLABINFO */