spi.c 87.7 KB
Newer Older
1
/*
Grant Likely's avatar
Grant Likely committed
2
 * SPI init/core code
3 4
 *
 * Copyright (C) 2005 David Brownell
5
 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/cache.h>
22 23
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
24
#include <linux/mutex.h>
25
#include <linux/of_device.h>
26
#include <linux/of_irq.h>
27
#include <linux/clk/clk-conf.h>
28
#include <linux/slab.h>
29
#include <linux/mod_devicetable.h>
30
#include <linux/spi/spi.h>
31
#include <linux/of_gpio.h>
Mark Brown's avatar
Mark Brown committed
32
#include <linux/pm_runtime.h>
33
#include <linux/pm_domain.h>
34
#include <linux/export.h>
35
#include <linux/sched/rt.h>
36 37
#include <linux/delay.h>
#include <linux/kthread.h>
38 39
#include <linux/ioport.h>
#include <linux/acpi.h>
40
#include <linux/highmem.h>
41

42 43 44
#define CREATE_TRACE_POINTS
#include <trace/events/spi.h>

45 46
static void spidev_release(struct device *dev)
{
47
	struct spi_device	*spi = to_spi_device(dev);
48 49 50 51 52

	/* spi masters may cleanup for released devices */
	if (spi->master->cleanup)
		spi->master->cleanup(spi);

53
	spi_master_put(spi->master);
54
	kfree(spi);
55 56 57 58 59 60
}

static ssize_t
modalias_show(struct device *dev, struct device_attribute *a, char *buf)
{
	const struct spi_device	*spi = to_spi_device(dev);
61 62 63 64 65
	int len;

	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
	if (len != -ENODEV)
		return len;
66

67
	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68
}
69
static DEVICE_ATTR_RO(modalias);
70

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
#define SPI_STATISTICS_ATTRS(field, file)				\
static ssize_t spi_master_##field##_show(struct device *dev,		\
					 struct device_attribute *attr,	\
					 char *buf)			\
{									\
	struct spi_master *master = container_of(dev,			\
						 struct spi_master, dev); \
	return spi_statistics_##field##_show(&master->statistics, buf);	\
}									\
static struct device_attribute dev_attr_spi_master_##field = {		\
	.attr = { .name = file, .mode = S_IRUGO },			\
	.show = spi_master_##field##_show,				\
};									\
static ssize_t spi_device_##field##_show(struct device *dev,		\
					 struct device_attribute *attr,	\
					char *buf)			\
{									\
Geliang Tang's avatar
Geliang Tang committed
88
	struct spi_device *spi = to_spi_device(dev);			\
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
	return spi_statistics_##field##_show(&spi->statistics, buf);	\
}									\
static struct device_attribute dev_attr_spi_device_##field = {		\
	.attr = { .name = file, .mode = S_IRUGO },			\
	.show = spi_device_##field##_show,				\
}

#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
					    char *buf)			\
{									\
	unsigned long flags;						\
	ssize_t len;							\
	spin_lock_irqsave(&stat->lock, flags);				\
	len = sprintf(buf, format_string, stat->field);			\
	spin_unlock_irqrestore(&stat->lock, flags);			\
	return len;							\
}									\
SPI_STATISTICS_ATTRS(name, file)

#define SPI_STATISTICS_SHOW(field, format_string)			\
	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
				 field, format_string)

SPI_STATISTICS_SHOW(messages, "%lu");
SPI_STATISTICS_SHOW(transfers, "%lu");
SPI_STATISTICS_SHOW(errors, "%lu");
SPI_STATISTICS_SHOW(timedout, "%lu");

SPI_STATISTICS_SHOW(spi_sync, "%lu");
SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
SPI_STATISTICS_SHOW(spi_async, "%lu");

SPI_STATISTICS_SHOW(bytes, "%llu");
SPI_STATISTICS_SHOW(bytes_rx, "%llu");
SPI_STATISTICS_SHOW(bytes_tx, "%llu");

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
				 "transfer_bytes_histo_" number,	\
				 transfer_bytes_histo[index],  "%lu")
SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");

148 149
SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");

150 151 152
static struct attribute *spi_dev_attrs[] = {
	&dev_attr_modalias.attr,
	NULL,
153
};
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

static const struct attribute_group spi_dev_group = {
	.attrs  = spi_dev_attrs,
};

static struct attribute *spi_device_statistics_attrs[] = {
	&dev_attr_spi_device_messages.attr,
	&dev_attr_spi_device_transfers.attr,
	&dev_attr_spi_device_errors.attr,
	&dev_attr_spi_device_timedout.attr,
	&dev_attr_spi_device_spi_sync.attr,
	&dev_attr_spi_device_spi_sync_immediate.attr,
	&dev_attr_spi_device_spi_async.attr,
	&dev_attr_spi_device_bytes.attr,
	&dev_attr_spi_device_bytes_rx.attr,
	&dev_attr_spi_device_bytes_tx.attr,
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
	&dev_attr_spi_device_transfer_bytes_histo0.attr,
	&dev_attr_spi_device_transfer_bytes_histo1.attr,
	&dev_attr_spi_device_transfer_bytes_histo2.attr,
	&dev_attr_spi_device_transfer_bytes_histo3.attr,
	&dev_attr_spi_device_transfer_bytes_histo4.attr,
	&dev_attr_spi_device_transfer_bytes_histo5.attr,
	&dev_attr_spi_device_transfer_bytes_histo6.attr,
	&dev_attr_spi_device_transfer_bytes_histo7.attr,
	&dev_attr_spi_device_transfer_bytes_histo8.attr,
	&dev_attr_spi_device_transfer_bytes_histo9.attr,
	&dev_attr_spi_device_transfer_bytes_histo10.attr,
	&dev_attr_spi_device_transfer_bytes_histo11.attr,
	&dev_attr_spi_device_transfer_bytes_histo12.attr,
	&dev_attr_spi_device_transfer_bytes_histo13.attr,
	&dev_attr_spi_device_transfer_bytes_histo14.attr,
	&dev_attr_spi_device_transfer_bytes_histo15.attr,
	&dev_attr_spi_device_transfer_bytes_histo16.attr,
187
	&dev_attr_spi_device_transfers_split_maxsize.attr,
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
	NULL,
};

static const struct attribute_group spi_device_statistics_group = {
	.name  = "statistics",
	.attrs  = spi_device_statistics_attrs,
};

static const struct attribute_group *spi_dev_groups[] = {
	&spi_dev_group,
	&spi_device_statistics_group,
	NULL,
};

static struct attribute *spi_master_statistics_attrs[] = {
	&dev_attr_spi_master_messages.attr,
	&dev_attr_spi_master_transfers.attr,
	&dev_attr_spi_master_errors.attr,
	&dev_attr_spi_master_timedout.attr,
	&dev_attr_spi_master_spi_sync.attr,
	&dev_attr_spi_master_spi_sync_immediate.attr,
	&dev_attr_spi_master_spi_async.attr,
	&dev_attr_spi_master_bytes.attr,
	&dev_attr_spi_master_bytes_rx.attr,
	&dev_attr_spi_master_bytes_tx.attr,
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
	&dev_attr_spi_master_transfer_bytes_histo0.attr,
	&dev_attr_spi_master_transfer_bytes_histo1.attr,
	&dev_attr_spi_master_transfer_bytes_histo2.attr,
	&dev_attr_spi_master_transfer_bytes_histo3.attr,
	&dev_attr_spi_master_transfer_bytes_histo4.attr,
	&dev_attr_spi_master_transfer_bytes_histo5.attr,
	&dev_attr_spi_master_transfer_bytes_histo6.attr,
	&dev_attr_spi_master_transfer_bytes_histo7.attr,
	&dev_attr_spi_master_transfer_bytes_histo8.attr,
	&dev_attr_spi_master_transfer_bytes_histo9.attr,
	&dev_attr_spi_master_transfer_bytes_histo10.attr,
	&dev_attr_spi_master_transfer_bytes_histo11.attr,
	&dev_attr_spi_master_transfer_bytes_histo12.attr,
	&dev_attr_spi_master_transfer_bytes_histo13.attr,
	&dev_attr_spi_master_transfer_bytes_histo14.attr,
	&dev_attr_spi_master_transfer_bytes_histo15.attr,
	&dev_attr_spi_master_transfer_bytes_histo16.attr,
230
	&dev_attr_spi_master_transfers_split_maxsize.attr,
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
	NULL,
};

static const struct attribute_group spi_master_statistics_group = {
	.name  = "statistics",
	.attrs  = spi_master_statistics_attrs,
};

static const struct attribute_group *spi_master_groups[] = {
	&spi_master_statistics_group,
	NULL,
};

void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
				       struct spi_transfer *xfer,
				       struct spi_master *master)
{
	unsigned long flags;
249 250 251 252
	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;

	if (l2len < 0)
		l2len = 0;
253 254 255 256

	spin_lock_irqsave(&stats->lock, flags);

	stats->transfers++;
257
	stats->transfer_bytes_histo[l2len]++;
258 259 260 261 262 263 264 265 266 267 268 269

	stats->bytes += xfer->len;
	if ((xfer->tx_buf) &&
	    (xfer->tx_buf != master->dummy_tx))
		stats->bytes_tx += xfer->len;
	if ((xfer->rx_buf) &&
	    (xfer->rx_buf != master->dummy_rx))
		stats->bytes_rx += xfer->len;

	spin_unlock_irqrestore(&stats->lock, flags);
}
EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
270 271 272 273 274

/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 * and the sysfs version makes coldplug work too.
 */

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
						const struct spi_device *sdev)
{
	while (id->name[0]) {
		if (!strcmp(sdev->modalias, id->name))
			return id;
		id++;
	}
	return NULL;
}

const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
{
	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);

	return spi_match_id(sdrv->id_table, sdev);
}
EXPORT_SYMBOL_GPL(spi_get_device_id);

294 295 296
static int spi_match_device(struct device *dev, struct device_driver *drv)
{
	const struct spi_device	*spi = to_spi_device(dev);
297 298
	const struct spi_driver	*sdrv = to_spi_driver(drv);

299 300 301 302
	/* Attempt an OF style match */
	if (of_driver_match_device(dev, drv))
		return 1;

303 304 305 306
	/* Then try ACPI */
	if (acpi_driver_match_device(dev, drv))
		return 1;

307 308
	if (sdrv->id_table)
		return !!spi_match_id(sdrv->id_table, spi);
309

310
	return strcmp(spi->modalias, drv->name) == 0;
311 312
}

313
static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
314 315
{
	const struct spi_device		*spi = to_spi_device(dev);
316 317 318 319 320
	int rc;

	rc = acpi_device_uevent_modalias(dev, env);
	if (rc != -ENODEV)
		return rc;
321

322
	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
323 324 325 326 327
	return 0;
}

struct bus_type spi_bus_type = {
	.name		= "spi",
328
	.dev_groups	= spi_dev_groups,
329 330 331 332 333
	.match		= spi_match_device,
	.uevent		= spi_uevent,
};
EXPORT_SYMBOL_GPL(spi_bus_type);

334 335 336 337

static int spi_drv_probe(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
338
	struct spi_device		*spi = to_spi_device(dev);
339 340
	int ret;

341 342 343 344
	ret = of_clk_set_defaults(dev->of_node, false);
	if (ret)
		return ret;

345 346 347 348 349 350 351 352
	if (dev->of_node) {
		spi->irq = of_irq_get(dev->of_node, 0);
		if (spi->irq == -EPROBE_DEFER)
			return -EPROBE_DEFER;
		if (spi->irq < 0)
			spi->irq = 0;
	}

353 354
	ret = dev_pm_domain_attach(dev, true);
	if (ret != -EPROBE_DEFER) {
355
		ret = sdrv->probe(spi);
356 357 358
		if (ret)
			dev_pm_domain_detach(dev, true);
	}
359

360
	return ret;
361 362 363 364 365
}

static int spi_drv_remove(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
366 367
	int ret;

368
	ret = sdrv->remove(to_spi_device(dev));
369
	dev_pm_domain_detach(dev, true);
370

371
	return ret;
372 373 374 375 376 377 378 379 380
}

static void spi_drv_shutdown(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	sdrv->shutdown(to_spi_device(dev));
}

David Brownell's avatar
David Brownell committed
381
/**
382
 * __spi_register_driver - register a SPI driver
383
 * @owner: owner module of the driver to register
David Brownell's avatar
David Brownell committed
384 385
 * @sdrv: the driver to register
 * Context: can sleep
386 387
 *
 * Return: zero on success, else a negative error code.
David Brownell's avatar
David Brownell committed
388
 */
389
int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
390
{
391
	sdrv->driver.owner = owner;
392 393 394 395 396 397 398 399 400
	sdrv->driver.bus = &spi_bus_type;
	if (sdrv->probe)
		sdrv->driver.probe = spi_drv_probe;
	if (sdrv->remove)
		sdrv->driver.remove = spi_drv_remove;
	if (sdrv->shutdown)
		sdrv->driver.shutdown = spi_drv_shutdown;
	return driver_register(&sdrv->driver);
}
401
EXPORT_SYMBOL_GPL(__spi_register_driver);
402

403 404 405 406 407 408 409 410 411 412
/*-------------------------------------------------------------------------*/

/* SPI devices should normally not be created by SPI device drivers; that
 * would make them board-specific.  Similarly with SPI master drivers.
 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 * with other readonly (flashable) information about mainboard devices.
 */

struct boardinfo {
	struct list_head	list;
413
	struct spi_board_info	board_info;
414 415 416
};

static LIST_HEAD(board_list);
417 418 419 420 421 422
static LIST_HEAD(spi_master_list);

/*
 * Used to protect add/del opertion for board_info list and
 * spi_master list, and their matching process
 */
423
static DEFINE_MUTEX(board_lock);
424

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/**
 * spi_alloc_device - Allocate a new SPI device
 * @master: Controller to which device is connected
 * Context: can sleep
 *
 * Allows a driver to allocate and initialize a spi_device without
 * registering it immediately.  This allows a driver to directly
 * fill the spi_device with device parameters before calling
 * spi_add_device() on it.
 *
 * Caller is responsible to call spi_add_device() on the returned
 * spi_device structure to add it to the SPI master.  If the caller
 * needs to discard the spi_device without adding it, then it should
 * call spi_dev_put() on it.
 *
440
 * Return: a pointer to the new device, or NULL.
441 442 443 444 445 446 447 448
 */
struct spi_device *spi_alloc_device(struct spi_master *master)
{
	struct spi_device	*spi;

	if (!spi_master_get(master))
		return NULL;

Jingoo Han's avatar
Jingoo Han committed
449
	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
450 451 452 453 454 455
	if (!spi) {
		spi_master_put(master);
		return NULL;
	}

	spi->master = master;
456
	spi->dev.parent = &master->dev;
457 458
	spi->dev.bus = &spi_bus_type;
	spi->dev.release = spidev_release;
459
	spi->cs_gpio = -ENOENT;
460 461 462

	spin_lock_init(&spi->statistics.lock);

463 464 465 466 467
	device_initialize(&spi->dev);
	return spi;
}
EXPORT_SYMBOL_GPL(spi_alloc_device);

468 469 470 471 472 473 474 475 476 477 478 479 480
static void spi_dev_set_name(struct spi_device *spi)
{
	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);

	if (adev) {
		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
		return;
	}

	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
		     spi->chip_select);
}

481 482 483 484 485 486 487 488 489 490 491
static int spi_dev_check(struct device *dev, void *data)
{
	struct spi_device *spi = to_spi_device(dev);
	struct spi_device *new_spi = data;

	if (spi->master == new_spi->master &&
	    spi->chip_select == new_spi->chip_select)
		return -EBUSY;
	return 0;
}

492 493 494 495 496 497 498
/**
 * spi_add_device - Add spi_device allocated with spi_alloc_device
 * @spi: spi_device to register
 *
 * Companion function to spi_alloc_device.  Devices allocated with
 * spi_alloc_device can be added onto the spi bus with this function.
 *
499
 * Return: 0 on success; negative errno on failure
500 501 502
 */
int spi_add_device(struct spi_device *spi)
{
503
	static DEFINE_MUTEX(spi_add_lock);
504 505
	struct spi_master *master = spi->master;
	struct device *dev = master->dev.parent;
506 507 508
	int status;

	/* Chipselects are numbered 0..max; validate. */
509
	if (spi->chip_select >= master->num_chipselect) {
510 511
		dev_err(dev, "cs%d >= max %d\n",
			spi->chip_select,
512
			master->num_chipselect);
513 514 515 516
		return -EINVAL;
	}

	/* Set the bus ID string */
517
	spi_dev_set_name(spi);
518 519 520 521 522 523 524

	/* We need to make sure there's no other device with this
	 * chipselect **BEFORE** we call setup(), else we'll trash
	 * its configuration.  Lock against concurrent add() calls.
	 */
	mutex_lock(&spi_add_lock);

525 526
	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
	if (status) {
527 528 529 530 531
		dev_err(dev, "chipselect %d already in use\n",
				spi->chip_select);
		goto done;
	}

532 533 534
	if (master->cs_gpios)
		spi->cs_gpio = master->cs_gpios[spi->chip_select];

535 536 537 538
	/* Drivers may modify this initial i/o setup, but will
	 * normally rely on the device being setup.  Devices
	 * using SPI_CS_HIGH can't coexist well otherwise...
	 */
539
	status = spi_setup(spi);
540
	if (status < 0) {
541 542
		dev_err(dev, "can't setup %s, status %d\n",
				dev_name(&spi->dev), status);
543
		goto done;
544 545
	}

546
	/* Device may be bound to an active driver when this returns */
547
	status = device_add(&spi->dev);
548
	if (status < 0)
549 550
		dev_err(dev, "can't add %s, status %d\n",
				dev_name(&spi->dev), status);
551
	else
552
		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
553

554 555 556
done:
	mutex_unlock(&spi_add_lock);
	return status;
557 558
}
EXPORT_SYMBOL_GPL(spi_add_device);
559

David Brownell's avatar
David Brownell committed
560 561 562 563 564 565 566
/**
 * spi_new_device - instantiate one new SPI device
 * @master: Controller to which device is connected
 * @chip: Describes the SPI device
 * Context: can sleep
 *
 * On typical mainboards, this is purely internal; and it's not needed
567 568 569 570
 * after board init creates the hard-wired devices.  Some development
 * platforms may not be able to use spi_register_board_info though, and
 * this is exported so that for example a USB or parport based adapter
 * driver could add devices (which it would learn about out-of-band).
571
 *
572
 * Return: the new device, or NULL.
573
 */
574 575
struct spi_device *spi_new_device(struct spi_master *master,
				  struct spi_board_info *chip)
576 577 578 579
{
	struct spi_device	*proxy;
	int			status;

580 581 582 583 584 585 586
	/* NOTE:  caller did any chip->bus_num checks necessary.
	 *
	 * Also, unless we change the return value convention to use
	 * error-or-pointer (not NULL-or-pointer), troubleshootability
	 * suggests syslogged diagnostics are best here (ugh).
	 */

587 588
	proxy = spi_alloc_device(master);
	if (!proxy)
589 590
		return NULL;

591 592
	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));

593 594
	proxy->chip_select = chip->chip_select;
	proxy->max_speed_hz = chip->max_speed_hz;
595
	proxy->mode = chip->mode;
596
	proxy->irq = chip->irq;
597
	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
598 599 600 601
	proxy->dev.platform_data = (void *) chip->platform_data;
	proxy->controller_data = chip->controller_data;
	proxy->controller_state = NULL;

602
	status = spi_add_device(proxy);
603
	if (status < 0) {
604 605
		spi_dev_put(proxy);
		return NULL;
606 607 608 609 610 611
	}

	return proxy;
}
EXPORT_SYMBOL_GPL(spi_new_device);

612 613 614 615 616 617 618 619 620
/**
 * spi_unregister_device - unregister a single SPI device
 * @spi: spi_device to unregister
 *
 * Start making the passed SPI device vanish. Normally this would be handled
 * by spi_unregister_master().
 */
void spi_unregister_device(struct spi_device *spi)
{
621 622 623 624 625
	if (!spi)
		return;

	if (spi->dev.of_node)
		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
626 627
	if (ACPI_COMPANION(&spi->dev))
		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
628
	device_unregister(&spi->dev);
629 630 631
}
EXPORT_SYMBOL_GPL(spi_unregister_device);

632 633 634 635 636 637 638 639 640 641 642 643 644 645
static void spi_match_master_to_boardinfo(struct spi_master *master,
				struct spi_board_info *bi)
{
	struct spi_device *dev;

	if (master->bus_num != bi->bus_num)
		return;

	dev = spi_new_device(master, bi);
	if (!dev)
		dev_err(master->dev.parent, "can't create new device for %s\n",
			bi->modalias);
}

David Brownell's avatar
David Brownell committed
646 647 648 649 650 651
/**
 * spi_register_board_info - register SPI devices for a given board
 * @info: array of chip descriptors
 * @n: how many descriptors are provided
 * Context: can sleep
 *
652 653 654 655 656 657 658 659 660 661 662 663
 * Board-specific early init code calls this (probably during arch_initcall)
 * with segments of the SPI device table.  Any device nodes are created later,
 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 * this table of devices forever, so that reloading a controller driver will
 * not make Linux forget about these hard-wired devices.
 *
 * Other code can also call this, e.g. a particular add-on board might provide
 * SPI devices through its expansion connector, so code initializing that board
 * would naturally declare its SPI devices.
 *
 * The board info passed can safely be __initdata ... but be careful of
 * any embedded pointers (platform_data, etc), they're copied as-is.
664 665
 *
 * Return: zero on success, else a negative error code.
666
 */
667
int spi_register_board_info(struct spi_board_info const *info, unsigned n)
668
{
669 670
	struct boardinfo *bi;
	int i;
671

672 673 674
	if (!n)
		return -EINVAL;

675
	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
676 677 678
	if (!bi)
		return -ENOMEM;

679 680
	for (i = 0; i < n; i++, bi++, info++) {
		struct spi_master *master;
681

682 683 684 685 686 687
		memcpy(&bi->board_info, info, sizeof(*info));
		mutex_lock(&board_lock);
		list_add_tail(&bi->list, &board_list);
		list_for_each_entry(master, &spi_master_list, list)
			spi_match_master_to_boardinfo(master, &bi->board_info);
		mutex_unlock(&board_lock);
688
	}
689 690

	return 0;
691 692 693 694
}

/*-------------------------------------------------------------------------*/

695 696 697 698 699
static void spi_set_cs(struct spi_device *spi, bool enable)
{
	if (spi->mode & SPI_CS_HIGH)
		enable = !enable;

700
	if (gpio_is_valid(spi->cs_gpio))
701 702 703 704 705
		gpio_set_value(spi->cs_gpio, !enable);
	else if (spi->master->set_cs)
		spi->master->set_cs(spi, !enable);
}

706
#ifdef CONFIG_HAS_DMA
707 708 709 710 711
static int spi_map_buf(struct spi_master *master, struct device *dev,
		       struct sg_table *sgt, void *buf, size_t len,
		       enum dma_data_direction dir)
{
	const bool vmalloced_buf = is_vmalloc_addr(buf);
712
	unsigned int max_seg_size = dma_get_max_seg_size(dev);
713 714 715 716 717 718 719
#ifdef CONFIG_HIGHMEM
	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
				(unsigned long)buf < (PKMAP_BASE +
					(LAST_PKMAP * PAGE_SIZE)));
#else
	const bool kmap_buf = false;
#endif
720 721
	int desc_len;
	int sgs;
722 723 724 725 726
	struct page *vm_page;
	void *sg_buf;
	size_t min;
	int i, ret;

727
	if (vmalloced_buf || kmap_buf) {
728
		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
729
		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
730
	} else if (virt_addr_valid(buf)) {
731
		desc_len = min_t(int, max_seg_size, master->max_dma_len);
732
		sgs = DIV_ROUND_UP(len, desc_len);
733 734
	} else {
		return -EINVAL;
735 736
	}

737 738 739 740 741 742
	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
	if (ret != 0)
		return ret;

	for (i = 0; i < sgs; i++) {

743
		if (vmalloced_buf || kmap_buf) {
744 745
			min = min_t(size_t,
				    len, desc_len - offset_in_page(buf));
746 747 748 749
			if (vmalloced_buf)
				vm_page = vmalloc_to_page(buf);
			else
				vm_page = kmap_to_page(buf);
750 751 752 753
			if (!vm_page) {
				sg_free_table(sgt);
				return -ENOMEM;
			}
754 755
			sg_set_page(&sgt->sgl[i], vm_page,
				    min, offset_in_page(buf));
756
		} else {
757
			min = min_t(size_t, len, desc_len);
758
			sg_buf = buf;
759
			sg_set_buf(&sgt->sgl[i], sg_buf, min);
760 761 762 763 764 765 766
		}

		buf += min;
		len -= min;
	}

	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
767 768
	if (!ret)
		ret = -ENOMEM;
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
	if (ret < 0) {
		sg_free_table(sgt);
		return ret;
	}

	sgt->nents = ret;

	return 0;
}

static void spi_unmap_buf(struct spi_master *master, struct device *dev,
			  struct sg_table *sgt, enum dma_data_direction dir)
{
	if (sgt->orig_nents) {
		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
		sg_free_table(sgt);
	}
}

788
static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
789 790 791
{
	struct device *tx_dev, *rx_dev;
	struct spi_transfer *xfer;
792
	int ret;
793

794
	if (!master->can_dma)
795 796
		return 0;

797 798 799 800 801 802 803 804 805
	if (master->dma_tx)
		tx_dev = master->dma_tx->device->dev;
	else
		tx_dev = &master->dev;

	if (master->dma_rx)
		rx_dev = master->dma_rx->device->dev;
	else
		rx_dev = &master->dev;
806 807 808 809 810 811

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (!master->can_dma(master, msg->spi, xfer))
			continue;

		if (xfer->tx_buf != NULL) {
812 813 814 815 816
			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
					  (void *)xfer->tx_buf, xfer->len,
					  DMA_TO_DEVICE);
			if (ret != 0)
				return ret;
817 818 819
		}

		if (xfer->rx_buf != NULL) {
820 821 822 823 824 825 826
			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
					  xfer->rx_buf, xfer->len,
					  DMA_FROM_DEVICE);
			if (ret != 0) {
				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
					      DMA_TO_DEVICE);
				return ret;
827 828 829 830 831 832 833 834 835
			}
		}
	}

	master->cur_msg_mapped = true;

	return 0;
}

836
static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
837 838 839 840
{
	struct spi_transfer *xfer;
	struct device *tx_dev, *rx_dev;

841
	if (!master->cur_msg_mapped || !master->can_dma)
842 843
		return 0;

844 845 846 847 848 849 850 851 852
	if (master->dma_tx)
		tx_dev = master->dma_tx->device->dev;
	else
		tx_dev = &master->dev;

	if (master->dma_rx)
		rx_dev = master->dma_rx->device->dev;
	else
		rx_dev = &master->dev;
853 854 855 856 857

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (!master->can_dma(master, msg->spi, xfer))
			continue;

858 859
		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
860 861 862 863
	}

	return 0;
}
864
#else /* !CONFIG_HAS_DMA */
865 866 867 868 869 870 871 872 873 874 875 876 877 878
static inline int spi_map_buf(struct spi_master *master,
			      struct device *dev, struct sg_table *sgt,
			      void *buf, size_t len,
			      enum dma_data_direction dir)
{
	return -EINVAL;
}

static inline void spi_unmap_buf(struct spi_master *master,
				 struct device *dev, struct sg_table *sgt,
				 enum dma_data_direction dir)
{
}

879 880 881 882 883 884
static inline int __spi_map_msg(struct spi_master *master,
				struct spi_message *msg)
{
	return 0;
}

885 886
static inline int __spi_unmap_msg(struct spi_master *master,
				  struct spi_message *msg)
887 888 889 890 891
{
	return 0;
}
#endif /* !CONFIG_HAS_DMA */

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
static inline int spi_unmap_msg(struct spi_master *master,
				struct spi_message *msg)
{
	struct spi_transfer *xfer;

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		/*
		 * Restore the original value of tx_buf or rx_buf if they are
		 * NULL.
		 */
		if (xfer->tx_buf == master->dummy_tx)
			xfer->tx_buf = NULL;
		if (xfer->rx_buf == master->dummy_rx)
			xfer->rx_buf = NULL;
	}

	return __spi_unmap_msg(master, msg);
}

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
{
	struct spi_transfer *xfer;
	void *tmp;
	unsigned int max_tx, max_rx;

	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
		max_tx = 0;
		max_rx = 0;

		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
			if ((master->flags & SPI_MASTER_MUST_TX) &&
			    !xfer->tx_buf)
				max_tx = max(xfer->len, max_tx);
			if ((master->flags & SPI_MASTER_MUST_RX) &&
			    !xfer->rx_buf)
				max_rx = max(xfer->len, max_rx);
		}

		if (max_tx) {
			tmp = krealloc(master->dummy_tx, max_tx,
				       GFP_KERNEL | GFP_DMA);
			if (!tmp)
				return -ENOMEM;
			master->dummy_tx = tmp;
			memset(tmp, 0, max_tx);
		}

		if (max_rx) {
			tmp = krealloc(master->dummy_rx, max_rx,
				       GFP_KERNEL | GFP_DMA);
			if (!tmp)
				return -ENOMEM;
			master->dummy_rx = tmp;
		}

		if (max_tx || max_rx) {
			list_for_each_entry(xfer, &msg->transfers,
					    transfer_list) {
				if (!xfer->tx_buf)
					xfer->tx_buf = master->dummy_tx;
				if (!xfer->rx_buf)
					xfer->rx_buf = master->dummy_rx;
			}
		}
	}

	return __spi_map_msg(master, msg);
}
960

961 962 963 964
/*
 * spi_transfer_one_message - Default implementation of transfer_one_message()
 *
 * This is a standard implementation of transfer_one_message() for
965
 * drivers which implement a transfer_one() operation.  It provides
966 967 968 969 970 971 972 973
 * standard handling of delays and chip select management.
 */
static int spi_transfer_one_message(struct spi_master *master,
				    struct spi_message *msg)
{
	struct spi_transfer *xfer;
	bool keep_cs = false;
	int ret = 0;
974
	unsigned long long ms = 1;
975 976
	struct spi_statistics *statm = &master->statistics;
	struct spi_statistics *stats = &msg->spi->statistics;
977 978 979

	spi_set_cs(msg->spi, true);

980 981 982
	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);

983 984 985
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		trace_spi_transfer_start(msg, xfer);

986 987 988
		spi_statistics_add_transfer_stats(statm, xfer, master);
		spi_statistics_add_transfer_stats(stats, xfer, master);

989 990
		if (xfer->tx_buf || xfer->rx_buf) {
			reinit_completion(&master->xfer_completion);
991

992 993
			ret = master->transfer_one(master, msg->spi, xfer);
			if (ret < 0) {
994 995 996 997
				SPI_STATISTICS_INCREMENT_FIELD(statm,
							       errors);
				SPI_STATISTICS_INCREMENT_FIELD(stats,
							       errors);
998 999 1000 1001
				dev_err(&msg->spi->dev,
					"SPI transfer failed: %d\n", ret);
				goto out;
			}
1002

1003 1004
			if (ret > 0) {
				ret = 0;
1005 1006
				ms = 8LL * 1000LL * xfer->len;
				do_div(ms, xfer->speed_hz);
1007
				ms += ms + 200; /* some tolerance */
1008

1009 1010 1011
				if (ms > UINT_MAX)
					ms = UINT_MAX;

1012 1013 1014
				ms = wait_for_completion_timeout(&master->xfer_completion,
								 msecs_to_jiffies(ms));
			}
1015

1016
			if (ms == 0) {
1017 1018 1019 1020
				SPI_STATISTICS_INCREMENT_FIELD(statm,
							       timedout);
				SPI_STATISTICS_INCREMENT_FIELD(stats,
							       timedout);
1021 1022 1023 1024 1025 1026 1027 1028 1029
				dev_err(&msg->spi->dev,
					"SPI transfer timed out\n");
				msg->status = -ETIMEDOUT;
			}
		} else {
			if (xfer->len)
				dev_err(&msg->spi->dev,
					"Bufferless transfer has length %u\n",
					xfer->len);
1030
		}
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

		trace_spi_transfer_stop(msg, xfer);

		if (msg->status != -EINPROGRESS)
			goto out;

		if (xfer->delay_usecs)
			udelay(xfer->delay_usecs);

		if (xfer->cs_change) {
			if (list_is_last(&xfer->transfer_list,
					 &msg->transfers)) {
				keep_cs = true;
			} else {
1045 1046 1047
				spi_set_cs(msg->spi, false);
				udelay(10);
				spi_set_cs(msg->spi, true);
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
			}
		}

		msg->actual_length += xfer->len;
	}

out:
	if (ret != 0 || !keep_cs)
		spi_set_cs(msg->spi, false);

	if (msg->status == -EINPROGRESS)
		msg->status = ret;

1061
	if (msg->status && master->handle_err)
1062 1063
		master->handle_err(master, msg);

1064 1065
	spi_res_release(master, msg);

1066 1067 1068 1069 1070 1071 1072
	spi_finalize_current_message(master);

	return ret;
}

/**
 * spi_finalize_current_transfer - report completion of a transfer
1073
 * @master: the master reporting completion
1074 1075 1076
 *
 * Called by SPI drivers using the core transfer_one_message()
 * implementation to notify it that the current interrupt driven
1077
 * transfer has finished and the next one may be scheduled.
1078 1079 1080 1081 1082 1083 1084
 */
void spi_finalize_current_transfer(struct spi_master *master)
{
	complete(&master->xfer_completion);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);

1085
/**
1086 1087 1088
 * __spi_pump_messages - function which processes spi message queue
 * @master: master to process queue for
 * @in_kthread: true if we are in the context of the message pump thread
1089 1090 1091 1092 1093
 *
 * This function checks if there is any spi message in the queue that
 * needs processing and if so call out to the driver to initialize hardware
 * and transfer each message.
 *
1094 1095 1096
 * Note that it is called both from the kthread itself and also from
 * inside spi_sync(); the queue extraction handling at the top of the
 * function should deal with this safely.
1097
 */
1098
static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1099 1100 1101 1102 1103
{
	unsigned long flags;
	bool was_busy = false;
	int ret;

1104
	/* Lock queue */
1105
	spin_lock_irqsave(&master->queue_lock, flags);
1106 1107 1108 1109 1110 1111 1112

	/* Make sure we are not already running a message */
	if (master->cur_msg) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

1113 1114
	/* If another context is idling the device then defer */
	if (master->idling) {
1115
		kthread_queue_work(&master->kworker, &master->pump_messages);
1116 1117 1118 1119
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

1120
	/* Check if the queue is idle */
1121
	if (list_empty(&master->queue) || !master->running) {
1122 1123 1124
		if (!master->busy) {
			spin_unlock_irqrestore(&master->queue_lock, flags);
			return;
1125
		}
1126 1127 1128

		/* Only do teardown in the thread */
		if (!in_kthread) {
1129
			kthread_queue_work(&master->kworker,
1130 1131 1132 1133 1134
					   &master->pump_messages);
			spin_unlock_irqrestore(&master->queue_lock, flags);
			return;
		}

1135
		master->busy = false;
1136
		master->idling = true;
1137
		spin_unlock_irqrestore(&master->queue_lock, flags);
1138

1139 1140 1141 1142
		kfree(master->dummy_rx);
		master->dummy_rx = NULL;
		kfree(master->dummy_tx);
		master->dummy_tx = NULL;
1143 1144 1145 1146
		if (master->unprepare_transfer_hardware &&
		    master->unprepare_transfer_hardware(master))
			dev_err(&master->dev,
				"failed to unprepare transfer hardware\n");
1147 1148 1149 1150
		if (master->auto_runtime_pm) {
			pm_runtime_mark_last_busy(master->dev.parent);
			pm_runtime_put_autosuspend(master->dev.parent);
		}
1151
		trace_spi_master_idle(master);
1152

1153 1154
		spin_lock_irqsave(&master->queue_lock, flags);
		master->idling = false;
1155 1156 1157 1158 1159 1160
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

	/* Extract head of queue */
	master->cur_msg =
1161
		list_first_entry(&master->queue, struct spi_message, queue);
1162 1163 1164 1165 1166 1167 1168 1169

	list_del_init(&master->cur_msg->queue);
	if (master->busy)
		was_busy = true;
	else
		master->busy = true;
	spin_unlock_irqrestore(&master->queue_lock, flags);

1170 1171
	mutex_lock(&master->io_mutex);

1172 1173 1174 1175 1176
	if (!was_busy && master->auto_runtime_pm) {
		ret = pm_runtime_get_sync(master->dev.parent);
		if (ret < 0) {
			dev_err(&master->dev, "Failed to power device: %d\n",
				ret);
1177
			mutex_unlock(&master->io_mutex);
1178 1179 1180 1181
			return;
		}
	}

1182 1183 1184
	if (!was_busy)
		trace_spi_master_busy(master);

1185
	if (!was_busy && master->prepare_transfer_hardware) {
1186 1187 1188 1189
		ret = master->prepare_transfer_hardware(master);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare transfer hardware\n");
1190 1191 1192

			if (master->auto_runtime_pm)
				pm_runtime_put(master->dev.parent);
1193
			mutex_unlock(&master->io_mutex);
1194 1195 1196 1197
			return;
		}
	}

1198 1199
	trace_spi_message_start(master->cur_msg);

1200 1201 1202 1203 1204 1205 1206
	if (master->prepare_message) {
		ret = master->prepare_message(master, master->cur_msg);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare message: %d\n", ret);
			master->cur_msg->status = ret;
			spi_finalize_current_message(master);
1207
			goto out;
1208 1209 1210 1211
		}
		master->cur_msg_prepared = true;
	}

1212 1213 1214 1215
	ret = spi_map_msg(master, master->cur_msg);
	if (ret) {
		master->cur_msg->status = ret;
		spi_finalize_current_message(master);
1216
		goto out;
1217 1218
	}

1219 1220 1221
	ret = master->transfer_one_message(master, master->cur_msg);
	if (ret) {
		dev_err(&master->dev,
1222
			"failed to transfer one message from queue\n");
1223
		goto out;
1224
	}
1225 1226

out:
1227
	mutex_unlock(&master->io_mutex);
1228 1229

	/* Prod the scheduler in case transfer_one() was busy waiting */
1230 1231
	if (!ret)
		cond_resched();
1232 1233
}

1234 1235 1236 1237 1238 1239 1240 1241 1242
/**
 * spi_pump_messages - kthread work function which processes spi message queue
 * @work: pointer to kthread work struct contained in the master struct
 */
static void spi_pump_messages(struct kthread_work *work)
{
	struct spi_master *master =
		container_of(work, struct spi_master, pump_messages);

1243
	__spi_pump_messages(master, true);
1244 1245
}

1246 1247 1248 1249 1250 1251 1252
static int spi_init_queue(struct spi_master *master)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };

	master->running = false;
	master->busy = false;

1253
	kthread_init_worker(&master->kworker);
1254
	master->kworker_task = kthread_run(kthread_worker_fn,
1255
					   &master->kworker, "%s",
1256 1257 1258
					   dev_name(&master->dev));
	if (IS_ERR(master->kworker_task)) {
		dev_err(&master->dev, "failed to create message pump task\n");
1259
		return PTR_ERR(master->kworker_task);
1260
	}
1261
	kthread_init_work(&master->pump_messages, spi_pump_messages);
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285

	/*
	 * Master config will indicate if this controller should run the
	 * message pump with high (realtime) priority to reduce the transfer
	 * latency on the bus by minimising the delay between a transfer
	 * request and the scheduling of the message pump thread. Without this
	 * setting the message pump thread will remain at default priority.
	 */
	if (master->rt) {
		dev_info(&master->dev,
			"will run message pump with realtime priority\n");
		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
	}

	return 0;
}

/**
 * spi_get_next_queued_message() - called by driver to check for queued
 * messages
 * @master: the master to check for queued messages
 *
 * If there are more messages in the queue, the next message is returned from
 * this call.
1286 1287
 *
 * Return: the next message in the queue, else NULL if the queue is empty.
1288 1289 1290 1291 1292 1293 1294 1295
 */
struct spi_message *spi_get_next_queued_message(struct spi_master *master)
{
	struct spi_message *next;
	unsigned long flags;

	/* get a pointer to the next message, if any */
	spin_lock_irqsave(&master->queue_lock, flags);
1296 1297
	next = list_first_entry_or_null(&master->queue, struct spi_message,
					queue);
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	spin_unlock_irqrestore(&master->queue_lock, flags);

	return next;
}
EXPORT_SYMBOL_GPL(spi_get_next_queued_message);

/**
 * spi_finalize_current_message() - the current message is complete
 * @master: the master to return the message to
 *
 * Called by the driver to notify the core that the message in the front of the
 * queue is complete and can be removed from the queue.
 */
void spi_finalize_current_message(struct spi_master *master)
{
	struct spi_message *mesg;
	unsigned long flags;
1315
	int ret;
1316 1317 1318 1319 1320

	spin_lock_irqsave(&master->queue_lock, flags);
	mesg = master->cur_msg;
	spin_unlock_irqrestore(&master->queue_lock, flags);

1321 1322
	spi_unmap_msg(master, mesg);

1323 1324 1325 1326 1327 1328 1329
	if (master->cur_msg_prepared && master->unprepare_message) {
		ret = master->unprepare_message(master, mesg);
		if (ret) {
			dev_err(&master->dev,
				"failed to unprepare message: %d\n", ret);
		}
	}
1330

1331 1332
	spin_lock_irqsave(&master->queue_lock, flags);
	master->cur_msg = NULL;
1333
	master->cur_msg_prepared = false;
1334
	kthread_queue_work(&master->kworker, &master->pump_messages);
1335 1336 1337
	spin_unlock_irqrestore(&master->queue_lock, flags);

	trace_spi_message_done(mesg);
1338

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	mesg->state = NULL;
	if (mesg->complete)
		mesg->complete(mesg->context);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_message);

static int spi_start_queue(struct spi_master *master)
{
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (master->running || master->busy) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -EBUSY;
	}

	master->running = true;
	master->cur_msg = NULL;
	spin_unlock_irqrestore(&master->queue_lock, flags);

1360
	kthread_queue_work(&master->kworker, &master->pump_messages);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

	return 0;
}

static int spi_stop_queue(struct spi_master *master)
{
	unsigned long flags;
	unsigned limit = 500;
	int ret = 0;

	spin_lock_irqsave(&master->queue_lock, flags);

	/*
	 * This is a bit lame, but is optimized for the common execution path.
	 * A wait_queue on the master->busy could be used, but then the common
	 * execution path (pump_messages) would be required to call wake_up or
	 * friends on every SPI message. Do this instead.
	 */
	while ((!list_empty(&master->queue) || master->busy) && limit--) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
1381
		usleep_range(10000, 11000);
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
		spin_lock_irqsave(&master->queue_lock, flags);
	}

	if (!list_empty(&master->queue) || master->busy)
		ret = -EBUSY;
	else
		master->running = false;

	spin_unlock_irqrestore(&master->queue_lock, flags);

	if (ret) {
		dev_warn(&master->dev,
			 "could not stop message queue\n");
		return ret;
	}
	return ret;
}

static int spi_destroy_queue(struct spi_master *master)
{
	int ret;

	ret = spi_stop_queue(master);

	/*
1407
	 * kthread_flush_worker will block until all work is done.
1408 1409 1410 1411 1412 1413 1414 1415 1416
	 * If the reason that stop_queue timed out is that the work will never
	 * finish, then it does no good to call flush/stop thread, so
	 * return anyway.
	 */
	if (ret) {
		dev_err(&master->dev, "problem destroying queue\n");
		return ret;
	}

1417
	kthread_flush_worker(&master->kworker);
1418 1419 1420 1421 1422
	kthread_stop(master->kworker_task);

	return 0;
}

1423 1424 1425
static int __spi_queued_transfer(struct spi_device *spi,
				 struct spi_message *msg,
				 bool need_pump)
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
{
	struct spi_master *master = spi->master;
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (!master->running) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -ESHUTDOWN;
	}
	msg->actual_length = 0;
	msg->status = -EINPROGRESS;

	list_add_tail(&msg->queue, &master->queue);
1440
	if (!master->busy && need_pump)
1441
		kthread_queue_work(&master->kworker, &master->pump_messages);
1442 1443 1444 1445 1446

	spin_unlock_irqrestore(&master->queue_lock, flags);
	return 0;
}

1447 1448 1449 1450
/**
 * spi_queued_transfer - transfer function for queued transfers
 * @spi: spi device which is requesting transfer
 * @msg: spi message which is to handled is queued to driver queue
1451 1452
 *
 * Return: zero on success, else a negative error code.
1453 1454 1455 1456 1457 1458
 */
static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
{
	return __spi_queued_transfer(spi, msg, true);
}

1459 1460 1461 1462 1463
static int spi_master_initialize_queue(struct spi_master *master)
{
	int ret;

	master->transfer = spi_queued_transfer;
1464 1465
	if (!master->transfer_one_message)
		master->transfer_one_message = spi_transfer_one_message;
1466 1467 1468 1469 1470 1471 1472

	/* Initialize and start queue */
	ret = spi_init_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem initializing queue\n");
		goto err_init_queue;
	}
1473
	master->queued = true;
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	ret = spi_start_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem starting queue\n");
		goto err_start_queue;
	}

	return 0;

err_start_queue:
	spi_destroy_queue(master);
1484
err_init_queue:
1485 1486 1487 1488 1489
	return ret;
}

/*-------------------------------------------------------------------------*/

1490
#if defined(CONFIG_OF)
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
static struct spi_device *
of_register_spi_device(struct spi_master *master, struct device_node *nc)
{
	struct spi_device *spi;
	int rc;
	u32 value;

	/* Alloc an spi_device */
	spi = spi_alloc_device(master);
	if (!spi) {
		dev_err(&master->dev, "spi_device alloc error for %s\n",
			nc->full_name);
		rc = -ENOMEM;
		goto err_out;
	}

	/* Select device driver */
	rc = of_modalias_node(nc, spi->modalias,
				sizeof(spi->modalias));
	if (rc < 0) {
		dev_err(&master->dev, "cannot find modalias for %s\n",
			nc->full_name);
		goto err_out;
	}

	/* Device address */
	rc = of_property_read_u32(nc, "reg", &value);
	if (rc) {
		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
			nc->full_name, rc);
		goto err_out;
	}
	spi->chip_select = value;

	/* Mode (clock phase/polarity/etc.) */
	if (of_find_property(nc, "spi-cpha", NULL))
		spi->mode |= SPI_CPHA;
	if (of_find_property(nc, "spi-cpol", NULL))
		spi->mode |= SPI_CPOL;
	if (of_find_property(nc, "spi-cs-high", NULL))
		spi->mode |= SPI_CS_HIGH;
	if (of_find_property(nc, "spi-3wire", NULL))
		spi->mode |= SPI_3WIRE;
	if (of_find_property(nc, "spi-lsb-first", NULL))
		spi->mode |= SPI_LSB_FIRST;

	/* Device DUAL/QUAD mode */
	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
		switch (value) {
		case 1:
			break;
		case 2:
			spi->mode |= SPI_TX_DUAL;
			break;
		case 4:
			spi->mode |= SPI_TX_QUAD;
			break;
		default:
			dev_warn(&master->dev,
				"spi-tx-bus-width %d not supported\n",
				value);
			break;
		}
	}

	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
		switch (value) {
		case 1:
			break;
		case 2:
			spi->mode |= SPI_RX_DUAL;
			break;
		case 4:
			spi->mode |= SPI_RX_QUAD;
			break;
		default:
			dev_warn(&master->dev,
				"spi-rx-bus-width %d not supported\n",
				value);
			break;
		}
	}

	/* Device speed */
	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
	if (rc) {
		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
			nc->full_name, rc);
		goto err_out;
	}
	spi->max_speed_hz = value;

	/* Store a pointer to the node in the device structure */
	of_node_get(nc);
	spi->dev.of_node = nc;

	/* Register the new device */
	rc = spi_add_device(spi);
	if (rc) {
		dev_err(&master->dev, "spi_device register error %s\n",
			nc->full_name);
		goto err_out;
	}

	return spi;

err_out:
	spi_dev_put(spi);
	return ERR_PTR(rc);
}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
/**
 * of_register_spi_devices() - Register child devices onto the SPI bus
 * @master:	Pointer to spi_master device
 *
 * Registers an spi_device for each child node of master node which has a 'reg'
 * property.
 */
static void of_register_spi_devices(struct spi_master *master)
{
	struct spi_device *spi;
	struct device_node *nc;

	if (!master->dev.of_node)
		return;

1617
	for_each_available_child_of_node(master->dev.of_node, nc) {
1618 1619
		if (of_node_test_and_set_flag(nc, OF_POPULATED))
			continue;
1620
		spi = of_register_spi_device(master, nc);
1621
		if (IS_ERR(spi)) {
1622
			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1623
				nc->full_name);
1624 1625
			of_node_clear_flag(nc, OF_POPULATED);
		}
1626 1627 1628 1629 1630 1631
	}
}
#else
static void of_register_spi_devices(struct spi_master *master) { }
#endif

1632 1633 1634 1635
#ifdef CONFIG_ACPI
static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
{
	struct spi_device *spi = data;
1636
	struct spi_master *master = spi->master;
1637 1638 1639 1640 1641 1642

	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
		struct acpi_resource_spi_serialbus *sb;

		sb = &ares->data.spi_serial_bus;
		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
			/*
			 * ACPI DeviceSelection numbering is handled by the
			 * host controller driver in Windows and can vary
			 * from driver to driver. In Linux we always expect
			 * 0 .. max - 1 so we need to ask the driver to
			 * translate between the two schemes.
			 */
			if (master->fw_translate_cs) {
				int cs = master->fw_translate_cs(master,
						sb->device_selection);
				if (cs < 0)
					return cs;
				spi->chip_select = cs;
			} else {
				spi->chip_select = sb->device_selection;
			}

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
			spi->max_speed_hz = sb->connection_speed;

			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
				spi->mode |= SPI_CPHA;
			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
				spi->mode |= SPI_CPOL;
			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
				spi->mode |= SPI_CS_HIGH;
		}
	} else if (spi->irq < 0) {
		struct resource r;

		if (acpi_dev_resource_interrupt(ares, 0, &r))
			spi->irq = r.start;
	}

	/* Always tell the ACPI core to skip this resource */
	return 1;
}

1680 1681
static acpi_status acpi_register_spi_device(struct spi_master *master,
					    struct acpi_device *adev)
1682 1683 1684 1685 1686
{
	struct list_head resource_list;
	struct spi_device *spi;
	int ret;

1687 1688
	if (acpi_bus_get_status(adev) || !adev->status.present ||
	    acpi_device_enumerated(adev))
1689 1690 1691 1692 1693 1694 1695 1696 1697
		return AE_OK;

	spi = spi_alloc_device(master);
	if (!spi) {
		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
			dev_name(&adev->dev));
		return AE_NO_MEMORY;
	}

1698
	ACPI_COMPANION_SET(&spi->dev, adev);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
	spi->irq = -1;

	INIT_LIST_HEAD(&resource_list);
	ret = acpi_dev_get_resources(adev, &resource_list,
				     acpi_spi_add_resource, spi);
	acpi_dev_free_resource_list(&resource_list);

	if (ret < 0 || !spi->max_speed_hz) {
		spi_dev_put(spi);
		return AE_OK;
	}

1711 1712 1713
	if (spi->irq < 0)
		spi->irq = acpi_dev_gpio_irq_get(adev, 0);

1714 1715
	acpi_device_set_enumerated(adev);

1716
	adev->power.flags.ignore_parent = true;
1717
	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1718
	if (spi_add_device(spi)) {
1719
		adev->power.flags.ignore_parent = false;
1720 1721 1722 1723 1724 1725 1726 1727
		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
			dev_name(&adev->dev));
		spi_dev_put(spi);
	}

	return AE_OK;
}

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
				       void *data, void **return_value)
{
	struct spi_master *master = data;
	struct acpi_device *adev;

	if (acpi_bus_get_device(handle, &adev))
		return AE_OK;

	return acpi_register_spi_device(master, adev);
}

1740 1741 1742 1743 1744
static void acpi_register_spi_devices(struct spi_master *master)
{
	acpi_status status;
	acpi_handle handle;

1745
	handle = ACPI_HANDLE(master->dev.parent);
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	if (!handle)
		return;

	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
				     acpi_spi_add_device, NULL,
				     master, NULL);
	if (ACPI_FAILURE(status))
		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
}
#else
static inline void acpi_register_spi_devices(struct spi_master *master) {}
#endif /* CONFIG_ACPI */

Tony Jones's avatar
Tony Jones committed
1759
static void spi_master_release(struct device *dev)
1760 1761 1762
{
	struct spi_master *master;

Tony Jones's avatar
Tony Jones committed
1763
	master = container_of(dev, struct spi_master, dev);
1764 1765 1766 1767 1768 1769
	kfree(master);
}

static struct class spi_master_class = {
	.name		= "spi_master",
	.owner		= THIS_MODULE,
Tony Jones's avatar
Tony Jones committed
1770
	.dev_release	= spi_master_release,
1771
	.dev_groups	= spi_master_groups,
1772 1773 1774 1775 1776 1777
};


/**
 * spi_alloc_master - allocate SPI master controller
 * @dev: the controller, possibly using the platform_bus
David Brownell's avatar
David Brownell committed
1778
 * @size: how much zeroed driver-private data to allocate; the pointer to this
Tony Jones's avatar
Tony Jones committed
1779
 *	memory is in the driver_data field of the returned device,
1780
 *	accessible with spi_master_get_devdata().
David Brownell's avatar
David Brownell committed
1781
 * Context: can sleep
1782 1783 1784
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.  It's how they allocate
dmitry pervushin's avatar
dmitry pervushin committed
1785
 * an spi_master structure, prior to calling spi_register_master().
1786
 *
1787
 * This must be called from context that can sleep.
1788 1789
 *
 * The caller is responsible for assigning the bus number and initializing
dmitry pervushin's avatar
dmitry pervushin committed
1790
 * the master's methods before calling spi_register_master(); and (after errors
1791
 * adding the device) calling spi_master_put() to prevent a memory leak.
1792 1793
 *
 * Return: the SPI master structure on success, else NULL.
1794
 */
1795
struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1796 1797 1798
{
	struct spi_master	*master;

1799 1800 1801
	if (!dev)
		return NULL;

Jingoo Han's avatar
Jingoo Han committed
1802
	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1803 1804 1805
	if (!master)
		return NULL;

Tony Jones's avatar
Tony Jones committed
1806
	device_initialize(&master->dev);
1807 1808
	master->bus_num = -1;
	master->num_chipselect = 1;
Tony Jones's avatar
Tony Jones committed
1809
	master->dev.class = &spi_master_class;
1810
	master->dev.parent = dev;
1811
	pm_suspend_ignore_children(&master->dev, true);
1812
	spi_master_set_devdata(master, &master[1]);
1813 1814 1815 1816 1817

	return master;
}
EXPORT_SYMBOL_GPL(spi_alloc_master);

1818 1819 1820
#ifdef CONFIG_OF
static int of_spi_register_master(struct spi_master *master)
{
1821
	int nb, i, *cs;
1822 1823 1824 1825 1826 1827
	struct device_node *np = master->dev.of_node;

	if (!np)
		return 0;

	nb = of_gpio_named_count(np, "cs-gpios");
Jingoo Han's avatar
Jingoo Han committed
1828
	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1829

1830 1831
	/* Return error only for an incorrectly formed cs-gpios property */
	if (nb == 0 || nb == -ENOENT)
1832
		return 0;
1833 1834
	else if (nb < 0)
		return nb;
1835 1836 1837 1838 1839 1840 1841 1842 1843

	cs = devm_kzalloc(&master->dev,
			  sizeof(int) * master->num_chipselect,
			  GFP_KERNEL);
	master->cs_gpios = cs;

	if (!master->cs_gpios)
		return -ENOMEM;

1844
	for (i = 0; i < master->num_chipselect; i++)
1845
		cs[i] = -ENOENT;
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858

	for (i = 0; i < nb; i++)
		cs[i] = of_get_named_gpio(np, "cs-gpios", i);

	return 0;
}
#else
static int of_spi_register_master(struct spi_master *master)
{
	return 0;
}
#endif

1859 1860 1861
/**
 * spi_register_master - register SPI master controller
 * @master: initialized master, originally from spi_alloc_master()
David Brownell's avatar
David Brownell committed
1862
 * Context: can sleep
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
 *
 * SPI master controllers connect to their drivers using some non-SPI bus,
 * such as the platform bus.  The final stage of probe() in that code
 * includes calling spi_register_master() to hook up to this SPI bus glue.
 *
 * SPI controllers use board specific (often SOC specific) bus numbers,
 * and board-specific addressing for SPI devices combines those numbers
 * with chip select numbers.  Since SPI does not directly support dynamic
 * device identification, boards need configuration tables telling which
 * chip is at which address.
 *
 * This must be called from context that can sleep.  It returns zero on
 * success, else a negative error code (dropping the master's refcount).
1876 1877
 * After a successful return, the caller is responsible for calling
 * spi_unregister_master().
1878 1879
 *
 * Return: zero on success, else a negative error code.
1880
 */
1881
int spi_register_master(struct spi_master *master)
1882
{
1883
	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
Tony Jones's avatar
Tony Jones committed
1884
	struct device		*dev = master->dev.parent;
1885
	struct boardinfo	*bi;
1886 1887 1888
	int			status = -ENODEV;
	int			dynamic = 0;

1889 1890 1891
	if (!dev)
		return -ENODEV;

1892 1893 1894 1895
	status = of_spi_register_master(master);
	if (status)
		return status;

1896 1897 1898 1899 1900 1901
	/* even if it's just one always-selected device, there must
	 * be at least one chipselect
	 */
	if (master->num_chipselect == 0)
		return -EINVAL;

1902 1903 1904
	if ((master->bus_num < 0) && master->dev.of_node)
		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");

1905
	/* convention:  dynamically assigned bus IDs count down from the max */
1906
	if (master->bus_num < 0) {
1907 1908 1909
		/* FIXME switch to an IDR based scheme, something like
		 * I2C now uses, so we can't run out of "dynamic" IDs
		 */
1910
		master->bus_num = atomic_dec_return(&dyn_bus_id);
1911
		dynamic = 1;
1912 1913
	}

1914 1915
	INIT_LIST_HEAD(&master->queue);
	spin_lock_init(&master->queue_lock);
1916 1917
	spin_lock_init(&master->bus_lock_spinlock);
	mutex_init(&master->bus_lock_mutex);
1918
	mutex_init(&master->io_mutex);
1919
	master->bus_lock_flag = 0;
1920
	init_completion(&master->xfer_completion);
1921 1922
	if (!master->max_dma_len)
		master->max_dma_len = INT_MAX;
1923

1924 1925 1926
	/* register the device, then userspace will see it.
	 * registration fails if the bus ID is in use.
	 */
1927
	dev_set_name(&master->dev, "spi%u", master->bus_num);
Tony Jones's avatar
Tony Jones committed
1928
	status = device_add(&master->dev);
1929
	if (status < 0)
1930
		goto done;
1931
	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1932 1933
			dynamic ? " (dynamic)" : "");

1934 1935 1936 1937 1938 1939
	/* If we're using a queued driver, start the queue */
	if (master->transfer)
		dev_info(dev, "master is unqueued, this is deprecated\n");
	else {
		status = spi_master_initialize_queue(master);
		if (status) {
1940
			device_del(&master->dev);
1941 1942 1943
			goto done;
		}
	}
1944 1945
	/* add statistics */
	spin_lock_init(&master->statistics.lock);
1946

1947 1948 1949 1950 1951 1952
	mutex_lock(&board_lock);
	list_add_tail(&master->list, &spi_master_list);
	list_for_each_entry(bi, &board_list, list)
		spi_match_master_to_boardinfo(master, &bi->board_info);
	mutex_unlock(&board_lock);

1953
	/* Register devices from the device tree and ACPI */
1954
	of_register_spi_devices(master);
1955
	acpi_register_spi_devices(master);
1956 1957 1958 1959 1960
done:
	return status;
}
EXPORT_SYMBOL_GPL(spi_register_master);

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
static void devm_spi_unregister(struct device *dev, void *res)
{
	spi_unregister_master(*(struct spi_master **)res);
}

/**
 * dev_spi_register_master - register managed SPI master controller
 * @dev:    device managing SPI master
 * @master: initialized master, originally from spi_alloc_master()
 * Context: can sleep
 *
 * Register a SPI device as with spi_register_master() which will
 * automatically be unregister
1974 1975
 *
 * Return: zero on success, else a negative error code.
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
 */
int devm_spi_register_master(struct device *dev, struct spi_master *master)
{
	struct spi_master **ptr;
	int ret;

	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return -ENOMEM;

	ret = spi_register_master(master);
1987
	if (!ret) {
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
		*ptr = master;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return ret;
}
EXPORT_SYMBOL_GPL(devm_spi_register_master);

1998
static int __unregister(struct device *dev, void *null)
1999
{
2000
	spi_unregister_device(to_spi_device(dev));
2001 2002 2003 2004 2005 2006
	return 0;
}

/**
 * spi_unregister_master - unregister SPI master controller
 * @master: the master being unregistered
David Brownell's avatar
David Brownell committed
2007
 * Context: can sleep
2008 2009 2010 2011 2012 2013 2014 2015
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.
 *
 * This must be called from context that can sleep.
 */
void spi_unregister_master(struct spi_master *master)
{
2016 2017
	int dummy;

2018 2019 2020 2021 2022
	if (master->queued) {
		if (spi_destroy_queue(master))
			dev_err(&master->dev, "queue remove failed\n");
	}

2023 2024 2025 2026
	mutex_lock(&board_lock);
	list_del(&master->list);
	mutex_unlock(&board_lock);

2027
	dummy = device_for_each_child(&master->dev, NULL, __unregister);
Tony Jones's avatar
Tony Jones committed
2028
	device_unregister(&master->dev);
2029 2030 2031
}
EXPORT_SYMBOL_GPL(spi_unregister_master);

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
int spi_master_suspend(struct spi_master *master)
{
	int ret;

	/* Basically no-ops for non-queued masters */
	if (!master->queued)
		return 0;

	ret = spi_stop_queue(master);
	if (ret)
		dev_err(&master->dev, "queue stop failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_suspend);

int spi_master_resume(struct spi_master *master)
{
	int ret;

	if (!master->queued)
		return 0;

	ret = spi_start_queue(master);
	if (ret)
		dev_err(&master->dev, "queue restart failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_resume);

2063
static int __spi_master_match(struct device *dev, const void *data)
Dave Young's avatar
Dave Young committed
2064 2065
{
	struct spi_master *m;
2066
	const u16 *bus_num = data;
Dave Young's avatar
Dave Young committed
2067 2068 2069 2070 2071

	m = container_of(dev, struct spi_master, dev);
	return m->bus_num == *bus_num;
}

2072 2073 2074
/**
 * spi_busnum_to_master - look up master associated with bus_num
 * @bus_num: the master's bus number
David Brownell's avatar
David Brownell committed
2075
 * Context: can sleep
2076 2077 2078 2079 2080
 *
 * This call may be used with devices that are registered after
 * arch init time.  It returns a refcounted pointer to the relevant
 * spi_master (which the caller must release), or NULL if there is
 * no such master registered.
2081 2082
 *
 * Return: the SPI master structure on success, else NULL.
2083 2084 2085
 */
struct spi_master *spi_busnum_to_master(u16 bus_num)
{
Tony Jones's avatar
Tony Jones committed
2086
	struct device		*dev;
2087
	struct spi_master	*master = NULL;
Dave Young's avatar
Dave Young committed
2088

2089
	dev = class_find_device(&spi_master_class, NULL, &bus_num,
Dave Young's avatar
Dave Young committed
2090 2091 2092 2093
				__spi_master_match);
	if (dev)
		master = container_of(dev, struct spi_master, dev);
	/* reference got in class_find_device */
2094
	return master;
2095 2096 2097
}
EXPORT_SYMBOL_GPL(spi_busnum_to_master);

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
/*-------------------------------------------------------------------------*/

/* Core methods for SPI resource management */

/**
 * spi_res_alloc - allocate a spi resource that is life-cycle managed
 *                 during the processing of a spi_message while using
 *                 spi_transfer_one
 * @spi:     the spi device for which we allocate memory
 * @release: the release code to execute for this resource
 * @size:    size to alloc and return
 * @gfp:     GFP allocation flags
 *
 * Return: the pointer to the allocated data
 *
 * This may get enhanced in the future to allocate from a memory pool
 * of the @spi_device or @spi_master to avoid repeated allocations.
 */
void *spi_res_alloc(struct spi_device *spi,
		    spi_res_release_t release,
		    size_t size, gfp_t gfp)
{
	struct spi_res *sres;

	sres = kzalloc(sizeof(*sres) + size, gfp);
	if (!sres)
		return NULL;

	INIT_LIST_HEAD(&sres->entry);
	sres->release = release;

	return sres->data;
}
EXPORT_SYMBOL_GPL(spi_res_alloc);

/**
 * spi_res_free - free an spi resource
 * @res: pointer to the custom data of a resource
 *
 */
void spi_res_free(void *res)
{
	struct spi_res *sres = container_of(res, struct spi_res, data);

	if (!res)
		return;

	WARN_ON(!list_empty(&sres->entry));
	kfree(sres);
}
EXPORT_SYMBOL_GPL(spi_res_free);

/**
 * spi_res_add - add a spi_res to the spi_message
 * @message: the spi message
 * @res:     the spi_resource
 */
void spi_res_add(struct spi_message *message, void *res)
{
	struct spi_res *sres = container_of(res, struct spi_res, data);

	WARN_ON(!list_empty(&sres->entry));
	list_add_tail(&sres->entry, &message->resources);
}
EXPORT_SYMBOL_GPL(spi_res_add);

/**
 * spi_res_release - release all spi resources for this message
 * @master:  the @spi_master
 * @message: the @spi_message
 */
void spi_res_release(struct spi_master *master,
		     struct spi_message *message)
{
	struct spi_res *res;

	while (!list_empty(&message->resources)) {
		res = list_last_entry(&message->resources,
				      struct spi_res, entry);

		if (res->release)
			res->release(master, message, res->data);

		list_del(&res->entry);

		kfree(res);
	}
}
EXPORT_SYMBOL_GPL(spi_res_release);
2187 2188 2189

/*-------------------------------------------------------------------------*/

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
/* Core methods for spi_message alterations */

static void __spi_replace_transfers_release(struct spi_master *master,
					    struct spi_message *msg,
					    void *res)
{
	struct spi_replaced_transfers *rxfer = res;
	size_t i;

	/* call extra callback if requested */
	if (rxfer->release)
		rxfer->release(master, msg, res);

	/* insert replaced transfers back into the message */
	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);

	/* remove the formerly inserted entries */
	for (i = 0; i < rxfer->inserted; i++)
		list_del(&rxfer->inserted_transfers[i].transfer_list);
}

/**
 * spi_replace_transfers - replace transfers with several transfers
 *                         and register change with spi_message.resources
 * @msg:           the spi_message we work upon
 * @xfer_first:    the first spi_transfer we want to replace
 * @remove:        number of transfers to remove
 * @insert:        the number of transfers we want to insert instead
 * @release:       extra release code necessary in some circumstances
 * @extradatasize: extra data to allocate (with alignment guarantees
 *                 of struct @spi_transfer)
2221
 * @gfp:           gfp flags
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
 *
 * Returns: pointer to @spi_replaced_transfers,
 *          PTR_ERR(...) in case of errors.
 */
struct spi_replaced_transfers *spi_replace_transfers(
	struct spi_message *msg,
	struct spi_transfer *xfer_first,
	size_t remove,
	size_t insert,
	spi_replaced_release_t release,
	size_t extradatasize,
	gfp_t gfp)
{
	struct spi_replaced_transfers *rxfer;
	struct spi_transfer *xfer;
	size_t i;

	/* allocate the structure using spi_res */
	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
			      insert * sizeof(struct spi_transfer)
			      + sizeof(struct spi_replaced_transfers)
			      + extradatasize,
			      gfp);
	if (!rxfer)
		return ERR_PTR(-ENOMEM);

	/* the release code to invoke before running the generic release */
	rxfer->release = release;

	/* assign extradata */
	if (extradatasize)
		rxfer->extradata =
			&rxfer->inserted_transfers[insert];

	/* init the replaced_transfers list */
	INIT_LIST_HEAD(&rxfer->replaced_transfers);

	/* assign the list_entry after which we should reinsert
	 * the @replaced_transfers - it may be spi_message.messages!
	 */
	rxfer->replaced_after = xfer_first->transfer_list.prev;

	/* remove the requested number of transfers */
	for (i = 0; i < remove; i++) {
		/* if the entry after replaced_after it is msg->transfers
		 * then we have been requested to remove more transfers
		 * than are in the list
		 */
		if (rxfer->replaced_after->next == &msg->transfers) {
			dev_err(&msg->spi->dev,
				"requested to remove more spi_transfers than are available\n");
			/* insert replaced transfers back into the message */
			list_splice(&rxfer->replaced_transfers,
				    rxfer->replaced_after);

			/* free the spi_replace_transfer structure */
			spi_res_free(rxfer);

			/* and return with an error */
			return ERR_PTR(-EINVAL);
		}

		/* remove the entry after replaced_after from list of
		 * transfers and add it to list of replaced_transfers
		 */
		list_move_tail(rxfer->replaced_after->next,
			       &rxfer->replaced_transfers);
	}

	/* create copy of the given xfer with identical settings
	 * based on the first transfer to get removed
	 */
	for (i = 0; i < insert; i++) {
		/* we need to run in reverse order */
		xfer = &rxfer->inserted_transfers[insert - 1 - i];

		/* copy all spi_transfer data */
		memcpy(xfer, xfer_first, sizeof(*xfer));

		/* add to list */
		list_add(&xfer->transfer_list, rxfer->replaced_after);

		/* clear cs_change and delay_usecs for all but the last */
		if (i) {
			xfer->cs_change = false;
			xfer->delay_usecs = 0;
		}
	}

	/* set up inserted */
	rxfer->inserted = insert;

	/* and register it with spi_res/spi_message */
	spi_res_add(msg, rxfer);

	return rxfer;
}
EXPORT_SYMBOL_GPL(spi_replace_transfers);

2321 2322 2323 2324 2325
static int __spi_split_transfer_maxsize(struct spi_master *master,
					struct spi_message *msg,
					struct spi_transfer **xferp,
					size_t maxsize,
					gfp_t gfp)
2326 2327 2328 2329 2330 2331 2332 2333
{
	struct spi_transfer *xfer = *xferp, *xfers;
	struct spi_replaced_transfers *srt;
	size_t offset;
	size_t count, i;

	/* warn once about this fact that we are splitting a transfer */
	dev_warn_once(&msg->spi->dev,
2334
		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2335 2336 2337 2338 2339 2340 2341
		      xfer->len, maxsize);

	/* calculate how many we have to replace */
	count = DIV_ROUND_UP(xfer->len, maxsize);

	/* create replacement */
	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2342 2343
	if (IS_ERR(srt))
		return PTR_ERR(srt);
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
	xfers = srt->inserted_transfers;

	/* now handle each of those newly inserted spi_transfers
	 * note that the replacements spi_transfers all are preset
	 * to the same values as *xferp, so tx_buf, rx_buf and len
	 * are all identical (as well as most others)
	 * so we just have to fix up len and the pointers.
	 *
	 * this also includes support for the depreciated
	 * spi_message.is_dma_mapped interface
	 */

	/* the first transfer just needs the length modified, so we
	 * run it outside the loop
	 */
2359
	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395

	/* all the others need rx_buf/tx_buf also set */
	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
		/* update rx_buf, tx_buf and dma */
		if (xfers[i].rx_buf)
			xfers[i].rx_buf += offset;
		if (xfers[i].rx_dma)
			xfers[i].rx_dma += offset;
		if (xfers[i].tx_buf)
			xfers[i].tx_buf += offset;
		if (xfers[i].tx_dma)
			xfers[i].tx_dma += offset;

		/* update length */
		xfers[i].len = min(maxsize, xfers[i].len - offset);
	}

	/* we set up xferp to the last entry we have inserted,
	 * so that we skip those already split transfers
	 */
	*xferp = &xfers[count - 1];

	/* increment statistics counters */
	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
				       transfers_split_maxsize);
	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
				       transfers_split_maxsize);

	return 0;
}

/**
 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
 *                              when an individual transfer exceeds a
 *                              certain size
 * @master:    the @spi_master for this transfer
2396 2397
 * @msg:   the @spi_message to transform
 * @maxsize:  the maximum when to apply this
2398
 * @gfp: GFP allocation flags
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
 *
 * Return: status of transformation
 */
int spi_split_transfers_maxsize(struct spi_master *master,
				struct spi_message *msg,
				size_t maxsize,
				gfp_t gfp)
{
	struct spi_transfer *xfer;
	int ret;

	/* iterate over the transfer_list,
	 * but note that xfer is advanced to the last transfer inserted
	 * to avoid checking sizes again unnecessarily (also xfer does
	 * potentiall belong to a different list by the time the
	 * replacement has happened
	 */
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (xfer->len > maxsize) {
			ret = __spi_split_transfer_maxsize(
				master, msg, &xfer, maxsize, gfp);
			if (ret)
				return ret;
		}
	}

	return 0;
}
EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2428 2429 2430

/*-------------------------------------------------------------------------*/

2431 2432 2433 2434
/* Core methods for SPI master protocol drivers.  Some of the
 * other core methods are currently defined as inline functions.
 */

2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
{
	if (master->bits_per_word_mask) {
		/* Only 32 bits fit in the mask */
		if (bits_per_word > 32)
			return -EINVAL;
		if (!(master->bits_per_word_mask &
				SPI_BPW_MASK(bits_per_word)))
			return -EINVAL;
	}

	return 0;
}

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
/**
 * spi_setup - setup SPI mode and clock rate
 * @spi: the device whose settings are being modified
 * Context: can sleep, and no requests are queued to the device
 *
 * SPI protocol drivers may need to update the transfer mode if the
 * device doesn't work with its default.  They may likewise need
 * to update clock rates or word sizes from initial values.  This function
 * changes those settings, and must be called from a context that can sleep.
 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 * effect the next time the device is selected and data is transferred to
 * or from it.  When this function returns, the spi device is deselected.
 *
 * Note that this call will fail if the protocol driver specifies an option
 * that the underlying controller or its driver does not support.  For
 * example, not all hardware supports wire transfers using nine bit words,
 * LSB-first wire encoding, or active-high chipselects.
2466 2467
 *
 * Return: zero on success, else a negative error code.
2468 2469 2470
 */
int spi_setup(struct spi_device *spi)
{
2471
	unsigned	bad_bits, ugly_bits;
2472
	int		status;
2473

wangyuhang's avatar
wangyuhang committed
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
	/* check mode to prevent that DUAL and QUAD set at the same time
	 */
	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
		dev_err(&spi->dev,
		"setup: can not select dual and quad at the same time\n");
		return -EINVAL;
	}
	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
	 */
	if ((spi->mode & SPI_3WIRE) && (spi->mode &
		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
		return -EINVAL;
2487 2488 2489 2490
	/* help drivers fail *cleanly* when they need options
	 * that aren't supported with their current master
	 */
	bad_bits = spi->mode & ~spi->master->mode_bits;
2491 2492 2493 2494 2495 2496 2497 2498 2499
	ugly_bits = bad_bits &
		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
	if (ugly_bits) {
		dev_warn(&spi->dev,
			 "setup: ignoring unsupported mode bits %x\n",
			 ugly_bits);
		spi->mode &= ~ugly_bits;
		bad_bits &= ~ugly_bits;
	}
2500
	if (bad_bits) {
2501
		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2502 2503 2504 2505
			bad_bits);
		return -EINVAL;
	}

2506 2507 2508
	if (!spi->bits_per_word)
		spi->bits_per_word = 8;

2509 2510 2511
	status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
	if (status)
		return status;
2512

2513 2514 2515
	if (!spi->max_speed_hz)
		spi->max_speed_hz = spi->master->max_speed_hz;

2516 2517
	if (spi->master->setup)
		status = spi->master->setup(spi);
2518

2519 2520
	spi_set_cs(spi, false);

Jingoo Han's avatar
Jingoo Han committed
2521
	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
			(spi->mode & SPI_LOOP) ? "loopback, " : "",
			spi->bits_per_word, spi->max_speed_hz,
			status);

	return status;
}
EXPORT_SYMBOL_GPL(spi_setup);

2534
static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2535 2536
{
	struct spi_master *master = spi->master;
2537
	struct spi_transfer *xfer;
2538
	int w_size;
2539

2540 2541 2542
	if (list_empty(&message->transfers))
		return -EINVAL;

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
	/* Half-duplex links include original MicroWire, and ones with
	 * only one data pin like SPI_3WIRE (switches direction) or where
	 * either MOSI or MISO is missing.  They can also be caused by
	 * software limitations.
	 */
	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
			|| (spi->mode & SPI_3WIRE)) {
		unsigned flags = master->flags;

		list_for_each_entry(xfer, &message->transfers, transfer_list) {
			if (xfer->rx_buf && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
				return -EINVAL;
		}
	}

2562
	/**
2563 2564
	 * Set transfer bits_per_word and max speed as spi device default if
	 * it is not set for this transfer.
wangyuhang's avatar
wangyuhang committed
2565 2566
	 * Set transfer tx_nbits and rx_nbits as single transfer default
	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2567
	 */
2568
	message->frame_length = 0;
2569
	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2570
		message->frame_length += xfer->len;
2571 2572
		if (!xfer->bits_per_word)
			xfer->bits_per_word = spi->bits_per_word;
2573 2574

		if (!xfer->speed_hz)
2575
			xfer->speed_hz = spi->max_speed_hz;
2576 2577
		if (!xfer->speed_hz)
			xfer->speed_hz = master->max_speed_hz;
2578 2579 2580 2581

		if (master->max_speed_hz &&
		    xfer->speed_hz > master->max_speed_hz)
			xfer->speed_hz = master->max_speed_hz;
2582

2583 2584
		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
			return -EINVAL;
2585

2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
		/*
		 * SPI transfer length should be multiple of SPI word size
		 * where SPI word size should be power-of-two multiple
		 */
		if (xfer->bits_per_word <= 8)
			w_size = 1;
		else if (xfer->bits_per_word <= 16)
			w_size = 2;
		else
			w_size = 4;

		/* No partial transfers accepted */
2598
		if (xfer->len % w_size)
2599 2600
			return -EINVAL;

2601 2602 2603
		if (xfer->speed_hz && master->min_speed_hz &&
		    xfer->speed_hz < master->min_speed_hz)
			return -EINVAL;
wangyuhang's avatar
wangyuhang committed
2604 2605 2606 2607 2608 2609

		if (xfer->tx_buf && !xfer->tx_nbits)
			xfer->tx_nbits = SPI_NBITS_SINGLE;
		if (xfer->rx_buf && !xfer->rx_nbits)
			xfer->rx_nbits = SPI_NBITS_SINGLE;
		/* check transfer tx/rx_nbits:
2610 2611
		 * 1. check the value matches one of single, dual and quad
		 * 2. check tx/rx_nbits match the mode in spi_device
wangyuhang's avatar
wangyuhang committed
2612
		 */
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
		if (xfer->tx_buf) {
			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
				xfer->tx_nbits != SPI_NBITS_DUAL &&
				xfer->tx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_TX_QUAD))
				return -EINVAL;
		}
wangyuhang's avatar
wangyuhang committed
2625
		/* check transfer rx_nbits */
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
		if (xfer->rx_buf) {
			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
				xfer->rx_nbits != SPI_NBITS_DUAL &&
				xfer->rx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_RX_QUAD))
				return -EINVAL;
		}
2638 2639
	}

2640
	message->status = -EINPROGRESS;
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650

	return 0;
}

static int __spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;

	message->spi = spi;

2651 2652 2653
	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);

2654 2655
	trace_spi_message_submit(message);

2656 2657 2658
	return master->transfer(spi, message);
}

David Brownell's avatar
David Brownell committed
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
/**
 * spi_async - asynchronous SPI transfer
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
2687 2688
 *
 * Return: zero on success, else a negative error code.
David Brownell's avatar
David Brownell committed
2689 2690 2691 2692
 */
int spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
2693 2694
	int ret;
	unsigned long flags;
David Brownell's avatar
David Brownell committed
2695

2696 2697 2698 2699
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

2700
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
David Brownell's avatar
David Brownell committed
2701

2702 2703 2704 2705
	if (master->bus_lock_flag)
		ret = -EBUSY;
	else
		ret = __spi_async(spi, message);
David Brownell's avatar
David Brownell committed
2706

2707 2708 2709
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;
David Brownell's avatar
David Brownell committed
2710 2711 2712
}
EXPORT_SYMBOL_GPL(spi_async);

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
/**
 * spi_async_locked - version of spi_async with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
2741 2742
 *
 * Return: zero on success, else a negative error code.
2743 2744 2745 2746 2747 2748 2749
 */
int spi_async_locked(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
	int ret;
	unsigned long flags;

2750 2751 2752 2753
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);

	ret = __spi_async(spi, message);

	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;

}
EXPORT_SYMBOL_GPL(spi_async_locked);

2765

2766 2767 2768 2769 2770
int spi_flash_read(struct spi_device *spi,
		   struct spi_flash_read_message *msg)

{
	struct spi_master *master = spi->master;
2771
	struct device *rx_dev = NULL;
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
	int ret;

	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
	     msg->addr_nbits == SPI_NBITS_DUAL) &&
	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
		return -EINVAL;
	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
	     msg->addr_nbits == SPI_NBITS_QUAD) &&
	    !(spi->mode & SPI_TX_QUAD))
		return -EINVAL;
	if (msg->data_nbits == SPI_NBITS_DUAL &&
	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
		return -EINVAL;
	if (msg->data_nbits == SPI_NBITS_QUAD &&
	    !(spi->mode &  SPI_RX_QUAD))
		return -EINVAL;

	if (master->auto_runtime_pm) {
		ret = pm_runtime_get_sync(master->dev.parent);
		if (ret < 0) {
			dev_err(&master->dev, "Failed to power device: %d\n",
				ret);
			return ret;
		}
	}
2797

2798
	mutex_lock(&master->bus_lock_mutex);
2799
	mutex_lock(&master->io_mutex);
2800 2801 2802 2803 2804 2805 2806 2807
	if (master->dma_rx) {
		rx_dev = master->dma_rx->device->dev;
		ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
				  msg->buf, msg->len,
				  DMA_FROM_DEVICE);
		if (!ret)
			msg->cur_msg_mapped = true;
	}
2808
	ret = master->spi_flash_read(spi, msg);
2809 2810 2811
	if (msg->cur_msg_mapped)
		spi_unmap_buf(master, rx_dev, &msg->rx_sg,
			      DMA_FROM_DEVICE);
2812
	mutex_unlock(&master->io_mutex);
2813
	mutex_unlock(&master->bus_lock_mutex);
2814

2815 2816 2817 2818 2819 2820 2821
	if (master->auto_runtime_pm)
		pm_runtime_put(master->dev.parent);

	return ret;
}
EXPORT_SYMBOL_GPL(spi_flash_read);

2822 2823 2824 2825 2826 2827 2828
/*-------------------------------------------------------------------------*/

/* Utility methods for SPI master protocol drivers, layered on
 * top of the core.  Some other utility methods are defined as
 * inline functions.
 */

2829 2830 2831 2832 2833
static void spi_complete(void *arg)
{
	complete(arg);
}

2834
static int __spi_sync(struct spi_device *spi, struct spi_message *message)
2835 2836 2837 2838
{
	DECLARE_COMPLETION_ONSTACK(done);
	int status;
	struct spi_master *master = spi->master;
2839 2840 2841 2842 2843
	unsigned long flags;

	status = __spi_validate(spi, message);
	if (status != 0)
		return status;
2844 2845 2846

	message->complete = spi_complete;
	message->context = &done;
2847
	message->spi = spi;
2848

2849 2850 2851
	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
	/* If we're not using the legacy transfer method then we will
	 * try to transfer in the calling context so special case.
	 * This code would be less tricky if we could remove the
	 * support for driver implemented message queues.
	 */
	if (master->transfer == spi_queued_transfer) {
		spin_lock_irqsave(&master->bus_lock_spinlock, flags);

		trace_spi_message_submit(message);

		status = __spi_queued_transfer(spi, message, false);

		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
	} else {
		status = spi_async_locked(spi, message);
	}
2868 2869

	if (status == 0) {
2870 2871 2872
		/* Push out the messages in the calling context if we
		 * can.
		 */
2873 2874 2875 2876 2877
		if (master->transfer == spi_queued_transfer) {
			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
						       spi_sync_immediate);
			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
						       spi_sync_immediate);
2878
			__spi_pump_messages(master, false);
2879
		}
2880

2881 2882 2883 2884 2885 2886 2887
		wait_for_completion(&done);
		status = message->status;
	}
	message->context = NULL;
	return status;
}

2888 2889 2890 2891
/**
 * spi_sync - blocking/synchronous SPI data transfers
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
David Brownell's avatar
David Brownell committed
2892
 * Context: can sleep
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * Note that the SPI device's chip select is active during the message,
 * and then is normally disabled between messages.  Drivers for some
 * frequently-used devices may want to minimize costs of selecting a chip,
 * by leaving it selected in anticipation that the next message will go
 * to the same chip.  (That may increase power usage.)
 *
2904 2905 2906
 * Also, the caller is guaranteeing that the memory associated with the
 * message will not be freed before this call returns.
 *
2907
 * Return: zero on success, else a negative error code.
2908 2909 2910
 */
int spi_sync(struct spi_device *spi, struct spi_message *message)
{
2911 2912 2913 2914 2915 2916 2917
	int ret;

	mutex_lock(&spi->master->bus_lock_mutex);
	ret = __spi_sync(spi, message);
	mutex_unlock(&spi->master->bus_lock_mutex);

	return ret;
2918 2919 2920
}
EXPORT_SYMBOL_GPL(spi_sync);

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
/**
 * spi_sync_locked - version of spi_sync with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * This call should be used by drivers that require exclusive access to the
Lucas De Marchi's avatar
Lucas De Marchi committed
2932
 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2933 2934
 * be released by a spi_bus_unlock call when the exclusive access is over.
 *
2935
 * Return: zero on success, else a negative error code.
2936 2937 2938
 */
int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
{
2939
	return __spi_sync(spi, message);
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
}
EXPORT_SYMBOL_GPL(spi_sync_locked);

/**
 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
 * @master: SPI bus master that should be locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call should be used by drivers that require exclusive access to the
 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 * exclusive access is over. Data transfer must be done by spi_sync_locked
 * and spi_async_locked calls when the SPI bus lock is held.
 *
2956
 * Return: always zero.
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
 */
int spi_bus_lock(struct spi_master *master)
{
	unsigned long flags;

	mutex_lock(&master->bus_lock_mutex);

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
	master->bus_lock_flag = 1;
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	/* mutex remains locked until spi_bus_unlock is called */

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_lock);

/**
 * spi_bus_unlock - release the lock for exclusive SPI bus usage
 * @master: SPI bus master that was locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
 * call.
 *
2985
 * Return: always zero.
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
 */
int spi_bus_unlock(struct spi_master *master)
{
	master->bus_lock_flag = 0;

	mutex_unlock(&master->bus_lock_mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_unlock);

2997
/* portable code must never pass more than 32 bytes */
Jingoo Han's avatar
Jingoo Han committed
2998
#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2999 3000 3001 3002 3003 3004 3005 3006

static u8	*buf;

/**
 * spi_write_then_read - SPI synchronous write followed by read
 * @spi: device with which data will be exchanged
 * @txbuf: data to be written (need not be dma-safe)
 * @n_tx: size of txbuf, in bytes
3007 3008
 * @rxbuf: buffer into which data will be read (need not be dma-safe)
 * @n_rx: size of rxbuf, in bytes
David Brownell's avatar
David Brownell committed
3009
 * Context: can sleep
3010 3011 3012 3013
 *
 * This performs a half duplex MicroWire style transaction with the
 * device, sending txbuf and then reading rxbuf.  The return value
 * is zero for success, else a negative errno status code.
3014
 * This call may only be used from a context that may sleep.
3015
 *
3016
 * Parameters to this routine are always copied using a small buffer;
David Brownell's avatar
David Brownell committed
3017 3018
 * portable code should never use this for more than 32 bytes.
 * Performance-sensitive or bulk transfer code should instead use
3019
 * spi_{async,sync}() calls with dma-safe buffers.
3020 3021
 *
 * Return: zero on success, else a negative error code.
3022 3023
 */
int spi_write_then_read(struct spi_device *spi,
3024 3025
		const void *txbuf, unsigned n_tx,
		void *rxbuf, unsigned n_rx)
3026
{
3027
	static DEFINE_MUTEX(lock);
3028 3029 3030

	int			status;
	struct spi_message	message;
3031
	struct spi_transfer	x[2];
3032 3033
	u8			*local_buf;

3034 3035 3036 3037
	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
	 * copying here, (as a pure convenience thing), but we can
	 * keep heap costs out of the hot path unless someone else is
	 * using the pre-allocated buffer or the transfer is too large.
3038
	 */
3039
	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3040 3041
		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
				    GFP_KERNEL | GFP_DMA);
3042 3043 3044 3045 3046
		if (!local_buf)
			return -ENOMEM;
	} else {
		local_buf = buf;
	}
3047

3048
	spi_message_init(&message);
Jingoo Han's avatar
Jingoo Han committed
3049
	memset(x, 0, sizeof(x));
3050 3051 3052 3053 3054 3055 3056 3057
	if (n_tx) {
		x[0].len = n_tx;
		spi_message_add_tail(&x[0], &message);
	}
	if (n_rx) {
		x[1].len = n_rx;
		spi_message_add_tail(&x[1], &message);
	}
3058

3059
	memcpy(local_buf, txbuf, n_tx);
3060 3061
	x[0].tx_buf = local_buf;
	x[1].rx_buf = local_buf + n_tx;
3062 3063 3064

	/* do the i/o */
	status = spi_sync(spi, &message);
3065
	if (status == 0)
3066
		memcpy(rxbuf, x[1].rx_buf, n_rx);
3067

3068
	if (x[0].tx_buf == buf)
3069
		mutex_unlock(&lock);
3070 3071 3072 3073 3074 3075 3076 3077 3078
	else
		kfree(local_buf);

	return status;
}
EXPORT_SYMBOL_GPL(spi_write_then_read);

/*-------------------------------------------------------------------------*/

3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
#if IS_ENABLED(CONFIG_OF_DYNAMIC)
static int __spi_of_device_match(struct device *dev, void *data)
{
	return dev->of_node == data;
}

/* must call put_device() when done with returned spi_device device */
static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
{
	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
						__spi_of_device_match);
	return dev ? to_spi_device(dev) : NULL;
}

static int __spi_of_master_match(struct device *dev, const void *data)
{
	return dev->of_node == data;
}

/* the spi masters are not using spi_bus, so we find it with another way */
static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
{
	struct device *dev;

	dev = class_find_device(&spi_master_class, NULL, node,
				__spi_of_master_match);
	if (!dev)
		return NULL;

	/* reference got in class_find_device */
	return container_of(dev, struct spi_master, dev);
}

static int of_spi_notify(struct notifier_block *nb, unsigned long action,
			 void *arg)
{
	struct of_reconfig_data *rd = arg;
	struct spi_master *master;
	struct spi_device *spi;

	switch (of_reconfig_get_state_change(action, arg)) {
	case OF_RECONFIG_CHANGE_ADD:
		master = of_find_spi_master_by_node(rd->dn->parent);
		if (master == NULL)
			return NOTIFY_OK;	/* not for us */

3125 3126 3127 3128 3129
		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
			put_device(&master->dev);
			return NOTIFY_OK;
		}

3130 3131 3132 3133 3134 3135
		spi = of_register_spi_device(master, rd->dn);
		put_device(&master->dev);

		if (IS_ERR(spi)) {
			pr_err("%s: failed to create for '%s'\n",
					__func__, rd->dn->full_name);
3136
			of_node_clear_flag(rd->dn, OF_POPULATED);
3137 3138 3139 3140 3141
			return notifier_from_errno(PTR_ERR(spi));
		}
		break;

	case OF_RECONFIG_CHANGE_REMOVE:
3142 3143 3144 3145
		/* already depopulated? */
		if (!of_node_check_flag(rd->dn, OF_POPULATED))
			return NOTIFY_OK;

3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
		/* find our device by node */
		spi = of_find_spi_device_by_node(rd->dn);
		if (spi == NULL)
			return NOTIFY_OK;	/* no? not meant for us */

		/* unregister takes one ref away */
		spi_unregister_device(spi);

		/* and put the reference of the find */
		put_device(&spi->dev);
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block spi_of_notifier = {
	.notifier_call = of_spi_notify,
};
#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
extern struct notifier_block spi_of_notifier;
#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
#if IS_ENABLED(CONFIG_ACPI)
static int spi_acpi_master_match(struct device *dev, const void *data)
{
	return ACPI_COMPANION(dev->parent) == data;
}

static int spi_acpi_device_match(struct device *dev, void *data)
{
	return ACPI_COMPANION(dev) == data;
}

static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
{
	struct device *dev;

	dev = class_find_device(&spi_master_class, NULL, adev,
				spi_acpi_master_match);
	if (!dev)
		return NULL;

	return container_of(dev, struct spi_master, dev);
}

static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
{
	struct device *dev;

	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);

	return dev ? to_spi_device(dev) : NULL;
}

static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
			   void *arg)
{
	struct acpi_device *adev = arg;
	struct spi_master *master;
	struct spi_device *spi;

	switch (value) {
	case ACPI_RECONFIG_DEVICE_ADD:
		master = acpi_spi_find_master_by_adev(adev->parent);
		if (!master)
			break;

		acpi_register_spi_device(master, adev);
		put_device(&master->dev);
		break;
	case ACPI_RECONFIG_DEVICE_REMOVE:
		if (!acpi_device_enumerated(adev))
			break;

		spi = acpi_spi_find_device_by_adev(adev);
		if (!spi)
			break;

		spi_unregister_device(spi);
		put_device(&spi->dev);
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block spi_acpi_notifier = {
	.notifier_call = acpi_spi_notify,
};
#else
extern struct notifier_block spi_acpi_notifier;
#endif

3240 3241
static int __init spi_init(void)
{
3242 3243
	int	status;

3244
	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3245 3246 3247 3248 3249 3250 3251 3252
	if (!buf) {
		status = -ENOMEM;
		goto err0;
	}

	status = bus_register(&spi_bus_type);
	if (status < 0)
		goto err1;
3253

3254 3255 3256
	status = class_register(&spi_master_class);
	if (status < 0)
		goto err2;
3257

3258
	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3259
		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3260 3261
	if (IS_ENABLED(CONFIG_ACPI))
		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3262

3263
	return 0;
3264 3265 3266 3267 3268 3269 3270 3271

err2:
	bus_unregister(&spi_bus_type);
err1:
	kfree(buf);
	buf = NULL;
err0:
	return status;
3272
}
3273

3274 3275
/* board_info is normally registered in arch_initcall(),
 * but even essential drivers wait till later
3276 3277 3278 3279
 *
 * REVISIT only boardinfo really needs static linking. the rest (device and
 * driver registration) _could_ be dynamically linked (modular) ... costs
 * include needing to have boardinfo data structures be much more public.
3280
 */
3281
postcore_initcall(spi_init);
3282