c_can.c 34.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * CAN bus driver for Bosch C_CAN controller
 *
 * Copyright (C) 2010 ST Microelectronics
 * Bhupesh Sharma <bhupesh.sharma@st.com>
 *
 * Borrowed heavily from the C_CAN driver originally written by:
 * Copyright (C) 2007
 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
 *
 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
 * written by:
 * Copyright
 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
 *
 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
 * Bosch C_CAN user manual can be obtained from:
 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
 * users_manual_c_can.pdf
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/list.h>
#include <linux/io.h>
37
#include <linux/pm_runtime.h>
38 39 40 41

#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
42
#include <linux/can/led.h>
43 44 45

#include "c_can.h"

46 47 48 49
/* Number of interface registers */
#define IF_ENUM_REG_LEN		11
#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)

50 51 52
/* control extension register D_CAN specific */
#define CONTROL_EX_PDR		BIT(8)

53 54 55 56 57 58 59 60 61 62
/* control register */
#define CONTROL_TEST		BIT(7)
#define CONTROL_CCE		BIT(6)
#define CONTROL_DISABLE_AR	BIT(5)
#define CONTROL_ENABLE_AR	(0 << 5)
#define CONTROL_EIE		BIT(3)
#define CONTROL_SIE		BIT(2)
#define CONTROL_IE		BIT(1)
#define CONTROL_INIT		BIT(0)

63 64
#define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)

65 66 67 68 69 70 71 72 73
/* test register */
#define TEST_RX			BIT(7)
#define TEST_TX1		BIT(6)
#define TEST_TX2		BIT(5)
#define TEST_LBACK		BIT(4)
#define TEST_SILENT		BIT(3)
#define TEST_BASIC		BIT(2)

/* status register */
74
#define STATUS_PDA		BIT(10)
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
#define STATUS_BOFF		BIT(7)
#define STATUS_EWARN		BIT(6)
#define STATUS_EPASS		BIT(5)
#define STATUS_RXOK		BIT(4)
#define STATUS_TXOK		BIT(3)

/* error counter register */
#define ERR_CNT_TEC_MASK	0xff
#define ERR_CNT_TEC_SHIFT	0
#define ERR_CNT_REC_SHIFT	8
#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
#define ERR_CNT_RP_SHIFT	15
#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)

/* bit-timing register */
#define BTR_BRP_MASK		0x3f
#define BTR_BRP_SHIFT		0
#define BTR_SJW_SHIFT		6
#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
#define BTR_TSEG1_SHIFT		8
#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
#define BTR_TSEG2_SHIFT		12
#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)

/* brp extension register */
#define BRP_EXT_BRPE_MASK	0x0f
#define BRP_EXT_BRPE_SHIFT	0

/* IFx command request */
#define IF_COMR_BUSY		BIT(15)

/* IFx command mask */
#define IF_COMM_WR		BIT(7)
#define IF_COMM_MASK		BIT(6)
#define IF_COMM_ARB		BIT(5)
#define IF_COMM_CONTROL		BIT(4)
#define IF_COMM_CLR_INT_PND	BIT(3)
#define IF_COMM_TXRQST		BIT(2)
113
#define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
114 115 116 117 118 119
#define IF_COMM_DATAA		BIT(1)
#define IF_COMM_DATAB		BIT(0)
#define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
				IF_COMM_CONTROL | IF_COMM_TXRQST | \
				IF_COMM_DATAA | IF_COMM_DATAB)

120 121 122 123 124 125
/* For the low buffers we clear the interrupt bit, but keep newdat */
#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
				 IF_COMM_DATAA | IF_COMM_DATAB)

/* For the high buffers we clear the interrupt bit and newdat */
126
#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
127

128 129 130 131

/* Receive setup of message objects */
#define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
/* IFx arbitration */
#define IF_ARB_MSGVAL		BIT(15)
#define IF_ARB_MSGXTD		BIT(14)
#define IF_ARB_TRANSMIT		BIT(13)

/* IFx message control */
#define IF_MCONT_NEWDAT		BIT(15)
#define IF_MCONT_MSGLST		BIT(14)
#define IF_MCONT_INTPND		BIT(13)
#define IF_MCONT_UMASK		BIT(12)
#define IF_MCONT_TXIE		BIT(11)
#define IF_MCONT_RXIE		BIT(10)
#define IF_MCONT_RMTEN		BIT(9)
#define IF_MCONT_TXRQST		BIT(8)
#define IF_MCONT_EOB		BIT(7)
#define IF_MCONT_DLC_MASK	0xf

149 150 151
#define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
#define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)

152
/*
153
 * Use IF1 for RX and IF2 for TX
154
 */
155 156
#define IF_RX			0
#define IF_TX			1
157 158 159 160

/* minimum timeout for checking BUSY status */
#define MIN_TIMEOUT_VALUE	6

161 162 163
/* Wait for ~1 sec for INIT bit */
#define INIT_WAIT_MS		1000

164 165 166 167 168 169 170 171 172 173 174 175 176
/* napi related */
#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM

/* c_can lec values */
enum c_can_lec_type {
	LEC_NO_ERROR = 0,
	LEC_STUFF_ERROR,
	LEC_FORM_ERROR,
	LEC_ACK_ERROR,
	LEC_BIT1_ERROR,
	LEC_BIT0_ERROR,
	LEC_CRC_ERROR,
	LEC_UNUSED,
177
	LEC_MASK = LEC_UNUSED,
178 179 180 181 182 183 184 185 186 187 188 189 190
};

/*
 * c_can error types:
 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
 */
enum c_can_bus_error_types {
	C_CAN_NO_ERROR = 0,
	C_CAN_BUS_OFF,
	C_CAN_ERROR_WARNING,
	C_CAN_ERROR_PASSIVE,
};

191
static const struct can_bittiming_const c_can_bittiming_const = {
192 193 194 195 196 197 198 199 200 201 202
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 16,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
	.brp_inc = 1,
};

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_enable(priv->device);
}

static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_disable(priv->device);
}

static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_get_sync(priv->device);
}

static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_put_sync(priv->device);
}

227 228 229 230 231 232
static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
{
	if (priv->raminit)
		priv->raminit(priv, enable);
}

233 234 235 236 237 238
static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
{
	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
			C_CAN_MSG_OBJ_TX_FIRST;
}

239
static inline int get_tx_echo_msg_obj(int txecho)
240
{
241
	return (txecho & C_CAN_NEXT_MSG_OBJ_MASK) + C_CAN_MSG_OBJ_TX_FIRST;
242 243
}

244
static u32 c_can_read_reg32(struct c_can_priv *priv, enum reg index)
245
{
246 247
	u32 val = priv->read_reg(priv, index);
	val |= ((u32) priv->read_reg(priv, index + 1)) << 16;
248 249 250
	return val;
}

251
static void c_can_irq_control(struct c_can_priv *priv, bool enable)
252
{
253
	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
254 255

	if (enable)
256
		ctrl |= CONTROL_IRQMSK;
257

258
	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
259 260 261 262 263 264 265
}

static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
{
	int count = MIN_TIMEOUT_VALUE;

	while (count && priv->read_reg(priv,
266
				C_CAN_IFACE(COMREQ_REG, iface)) &
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
				IF_COMR_BUSY) {
		count--;
		udelay(1);
	}

	if (!count)
		return 1;

	return 0;
}

static inline void c_can_object_get(struct net_device *dev,
					int iface, int objno, int mask)
{
	struct c_can_priv *priv = netdev_priv(dev);

	/*
	 * As per specs, after writting the message object number in the
	 * IF command request register the transfer b/w interface
	 * register and message RAM must be complete in 6 CAN-CLK
	 * period.
	 */
289
	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
290
			IFX_WRITE_LOW_16BIT(mask));
291
	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
			IFX_WRITE_LOW_16BIT(objno));

	if (c_can_msg_obj_is_busy(priv, iface))
		netdev_err(dev, "timed out in object get\n");
}

static inline void c_can_object_put(struct net_device *dev,
					int iface, int objno, int mask)
{
	struct c_can_priv *priv = netdev_priv(dev);

	/*
	 * As per specs, after writting the message object number in the
	 * IF command request register the transfer b/w interface
	 * register and message RAM must be complete in 6 CAN-CLK
	 * period.
	 */
309
	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
310
			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
311
	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
			IFX_WRITE_LOW_16BIT(objno));

	if (c_can_msg_obj_is_busy(priv, iface))
		netdev_err(dev, "timed out in object put\n");
}

static void c_can_write_msg_object(struct net_device *dev,
			int iface, struct can_frame *frame, int objno)
{
	int i;
	u16 flags = 0;
	unsigned int id;
	struct c_can_priv *priv = netdev_priv(dev);

	if (!(frame->can_id & CAN_RTR_FLAG))
		flags |= IF_ARB_TRANSMIT;

	if (frame->can_id & CAN_EFF_FLAG) {
		id = frame->can_id & CAN_EFF_MASK;
		flags |= IF_ARB_MSGXTD;
	} else
		id = ((frame->can_id & CAN_SFF_MASK) << 18);

	flags |= IF_ARB_MSGVAL;

337
	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
338
				IFX_WRITE_LOW_16BIT(id));
339
	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), flags |
340 341 342
				IFX_WRITE_HIGH_16BIT(id));

	for (i = 0; i < frame->can_dlc; i += 2) {
343
		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
344 345 346 347
				frame->data[i] | (frame->data[i + 1] << 8));
	}

	/* enable interrupt for this message object */
348
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
349 350 351 352 353 354
			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
			frame->can_dlc);
	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
}

static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
355
						       int iface)
356 357 358
{
	int i;

359 360
	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
		c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
361 362
}

363 364
static int c_can_handle_lost_msg_obj(struct net_device *dev,
				     int iface, int objno, u32 ctrl)
365 366
{
	struct net_device_stats *stats = &dev->stats;
367
	struct c_can_priv *priv = netdev_priv(dev);
368
	struct can_frame *frame;
369
	struct sk_buff *skb;
370

371 372
	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
373
	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
374

375 376 377
	stats->rx_errors++;
	stats->rx_over_errors++;

378 379 380
	/* create an error msg */
	skb = alloc_can_err_skb(dev, &frame);
	if (unlikely(!skb))
381
		return 0;
382 383 384 385 386

	frame->can_id |= CAN_ERR_CRTL;
	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;

	netif_receive_skb(skb);
387
	return 1;
388 389
}

390
static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
391 392
{
	struct net_device_stats *stats = &dev->stats;
393
	struct c_can_priv *priv = netdev_priv(dev);
394
	struct can_frame *frame;
395 396
	struct sk_buff *skb;
	u32 arb, data;
397 398 399 400 401 402 403 404 405

	skb = alloc_can_skb(dev, &frame);
	if (!skb) {
		stats->rx_dropped++;
		return -ENOMEM;
	}

	frame->can_dlc = get_can_dlc(ctrl & 0x0F);

406 407
	arb = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface));
	arb |= priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface)) << 16;
408

409 410
	if (arb & (IF_ARB_MSGXTD << 16))
		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
411
	else
412
		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
413

414
	if (arb & (IF_ARB_TRANSMIT << 16)) {
415
		frame->can_id |= CAN_RTR_FLAG;
416 417 418 419 420
	} else {
		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);

		for (i = 0; i < frame->can_dlc; i += 2, dreg ++) {
			data = priv->read_reg(priv, dreg);
421 422 423 424 425 426 427
			frame->data[i] = data;
			frame->data[i + 1] = data >> 8;
		}
	}

	stats->rx_packets++;
	stats->rx_bytes += frame->can_dlc;
428 429

	netif_receive_skb(skb);
430 431 432 433
	return 0;
}

static void c_can_setup_receive_object(struct net_device *dev, int iface,
434
				       u32 obj, u32 mask, u32 id, u32 mcont)
435 436 437
{
	struct c_can_priv *priv = netdev_priv(dev);

438 439 440
	mask |= BIT(29);
	priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
	priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface), mask >> 16);
441

442 443 444
	id |= IF_ARB_MSGVAL << 16;
	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), id);
	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), id >> 16);
445

446
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
447
	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
448 449 450 451 452 453
}

static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
{
	struct c_can_priv *priv = netdev_priv(dev);

454 455 456
	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
457 458 459 460

	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);

	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
461
			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
462 463 464 465
}

static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
{
466
	int val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487

	/*
	 * as transmission request register's bit n-1 corresponds to
	 * message object n, we need to handle the same properly.
	 */
	if (val & (1 << (objno - 1)))
		return 1;

	return 0;
}

static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
					struct net_device *dev)
{
	u32 msg_obj_no;
	struct c_can_priv *priv = netdev_priv(dev);
	struct can_frame *frame = (struct can_frame *)skb->data;

	if (can_dropped_invalid_skb(dev, skb))
		return NETDEV_TX_OK;

488
	spin_lock_bh(&priv->xmit_lock);
489 490 491
	msg_obj_no = get_tx_next_msg_obj(priv);

	/* prepare message object for transmission */
492
	c_can_write_msg_object(dev, IF_TX, frame, msg_obj_no);
493
	priv->dlc[msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST] = frame->can_dlc;
494 495 496 497 498 499 500 501 502 503
	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);

	/*
	 * we have to stop the queue in case of a wrap around or
	 * if the next TX message object is still in use
	 */
	priv->tx_next++;
	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
		netif_stop_queue(dev);
504
	spin_unlock_bh(&priv->xmit_lock);
505 506 507 508

	return NETDEV_TX_OK;
}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
static int c_can_wait_for_ctrl_init(struct net_device *dev,
				    struct c_can_priv *priv, u32 init)
{
	int retry = 0;

	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
		udelay(10);
		if (retry++ > 1000) {
			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
			return -EIO;
		}
	}
	return 0;
}

524 525 526 527 528 529 530
static int c_can_set_bittiming(struct net_device *dev)
{
	unsigned int reg_btr, reg_brpe, ctrl_save;
	u8 brp, brpe, sjw, tseg1, tseg2;
	u32 ten_bit_brp;
	struct c_can_priv *priv = netdev_priv(dev);
	const struct can_bittiming *bt = &priv->can.bittiming;
531
	int res;
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547

	/* c_can provides a 6-bit brp and 4-bit brpe fields */
	ten_bit_brp = bt->brp - 1;
	brp = ten_bit_brp & BTR_BRP_MASK;
	brpe = ten_bit_brp >> 6;

	sjw = bt->sjw - 1;
	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
	tseg2 = bt->phase_seg2 - 1;
	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
			(tseg2 << BTR_TSEG2_SHIFT);
	reg_brpe = brpe & BRP_EXT_BRPE_MASK;

	netdev_info(dev,
		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);

548
	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
549 550 551 552 553 554
	ctrl_save &= ~CONTROL_INIT;
	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
	if (res)
		return res;

555 556 557
	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
558

559
	return c_can_wait_for_ctrl_init(dev, priv, 0);
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
}

/*
 * Configure C_CAN message objects for Tx and Rx purposes:
 * C_CAN provides a total of 32 message objects that can be configured
 * either for Tx or Rx purposes. Here the first 16 message objects are used as
 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
 * See user guide document for further details on configuring message
 * objects.
 */
static void c_can_configure_msg_objects(struct net_device *dev)
{
	int i;

	/* first invalidate all message objects */
	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
577
		c_can_inval_msg_object(dev, IF_RX, i);
578 579 580

	/* setup receive message objects */
	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
581
		c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
582

583
	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
584
				   IF_MCONT_RCV_EOB);
585 586 587 588 589 590 591 592
}

/*
 * Configure C_CAN chip:
 * - enable/disable auto-retransmission
 * - set operating mode
 * - configure message objects
 */
593
static int c_can_chip_config(struct net_device *dev)
594 595 596
{
	struct c_can_priv *priv = netdev_priv(dev);

597
	/* enable automatic retransmission */
598
	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
599

600 601
	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
602
		/* loopback + silent mode : useful for hot self-test */
603 604
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
605 606
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
		/* loopback mode : useful for self-test function */
607
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
608
		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
609 610
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
		/* silent mode : bus-monitoring mode */
611
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
612
		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
613
	}
614 615 616 617 618

	/* configure message objects */
	c_can_configure_msg_objects(dev);

	/* set a `lec` value so that we can check for updates later */
619
	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
620 621

	/* set bittiming params */
622
	return c_can_set_bittiming(dev);
623 624
}

625
static int c_can_start(struct net_device *dev)
626 627
{
	struct c_can_priv *priv = netdev_priv(dev);
628
	int err;
629 630

	/* basic c_can configuration */
631 632 633
	err = c_can_chip_config(dev);
	if (err)
		return err;
634

635 636 637 638
	/* Setup the command for new messages */
	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;

639 640
	priv->can.state = CAN_STATE_ERROR_ACTIVE;

641
	/* reset tx helper pointers and the rx mask */
642
	priv->tx_next = priv->tx_echo = 0;
643
	priv->rxmasked = 0;
644

645
	return 0;
646 647 648 649 650 651
}

static void c_can_stop(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

652
	c_can_irq_control(priv, false);
653 654 655 656 657
	priv->can.state = CAN_STATE_STOPPED;
}

static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
{
658
	struct c_can_priv *priv = netdev_priv(dev);
659 660
	int err;

661 662
	switch (mode) {
	case CAN_MODE_START:
663 664 665
		err = c_can_start(dev);
		if (err)
			return err;
666
		netif_wake_queue(dev);
667
		c_can_irq_control(priv, true);
668 669 670 671 672 673 674 675
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

676 677
static int __c_can_get_berr_counter(const struct net_device *dev,
				    struct can_berr_counter *bec)
678 679 680 681
{
	unsigned int reg_err_counter;
	struct c_can_priv *priv = netdev_priv(dev);

682
	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
683 684 685 686
	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
				ERR_CNT_REC_SHIFT;
	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;

687 688 689 690 691 692 693 694 695 696 697
	return 0;
}

static int c_can_get_berr_counter(const struct net_device *dev,
				  struct can_berr_counter *bec)
{
	struct c_can_priv *priv = netdev_priv(dev);
	int err;

	c_can_pm_runtime_get_sync(priv);
	err = __c_can_get_berr_counter(dev, bec);
698 699
	c_can_pm_runtime_put_sync(priv);

700
	return err;
701 702 703 704 705 706 707 708 709
}

/*
 * priv->tx_echo holds the number of the oldest can_frame put for
 * transmission into the hardware, but not yet ACKed by the CAN tx
 * complete IRQ.
 *
 * We iterate from priv->tx_echo to priv->tx_next and check if the
 * packet has been transmitted, echo it back to the CAN framework.
710
 * If we discover a not yet transmitted packet, stop looking for more.
711 712 713 714 715
 */
static void c_can_do_tx(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
716
	u32 val, obj, pkts = 0, bytes = 0;
717

718 719 720
	spin_lock_bh(&priv->xmit_lock);

	for (; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
721
		obj = get_tx_echo_msg_obj(priv->tx_echo);
722
		val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
723 724

		if (val & (1 << (obj - 1)))
725
			break;
726 727 728 729 730

		can_get_echo_skb(dev, obj - C_CAN_MSG_OBJ_TX_FIRST);
		bytes += priv->dlc[obj - C_CAN_MSG_OBJ_TX_FIRST];
		pkts++;
		c_can_inval_msg_object(dev, IF_TX, obj);
731 732 733 734 735 736
	}

	/* restart queue if wrap-up or if queue stalled on last pkt */
	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
		netif_wake_queue(dev);
737 738

	spin_unlock_bh(&priv->xmit_lock);
739 740 741 742 743 744

	if (pkts) {
		stats->tx_bytes += bytes;
		stats->tx_packets += pkts;
		can_led_event(dev, CAN_LED_EVENT_TX);
	}
745 746
}

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
/*
 * If we have a gap in the pending bits, that means we either
 * raced with the hardware or failed to readout all upper
 * objects in the last run due to quota limit.
 */
static u32 c_can_adjust_pending(u32 pend)
{
	u32 weight, lasts;

	if (pend == RECEIVE_OBJECT_BITS)
		return pend;

	/*
	 * If the last set bit is larger than the number of pending
	 * bits we have a gap.
	 */
	weight = hweight32(pend);
	lasts = fls(pend);

	/* If the bits are linear, nothing to do */
	if (lasts == weight)
		return pend;

	/*
	 * Find the first set bit after the gap. We walk backwards
	 * from the last set bit.
	 */
	for (lasts--; pend & (1 << (lasts - 1)); lasts--);

	return pend & ~((1 << lasts) - 1);
}

779 780
static inline void c_can_rx_object_get(struct net_device *dev,
				       struct c_can_priv *priv, u32 obj)
781 782 783 784 785 786
{
#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
	if (obj < C_CAN_MSG_RX_LOW_LAST)
		c_can_object_get(dev, IF_RX, obj, IF_COMM_RCV_LOW);
	else
#endif
787
		c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
788 789 790 791 792 793 794 795 796 797 798 799 800 801
}

static inline void c_can_rx_finalize(struct net_device *dev,
				     struct c_can_priv *priv, u32 obj)
{
#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
	if (obj < C_CAN_MSG_RX_LOW_LAST)
		priv->rxmasked |= BIT(obj - 1);
	else if (obj == C_CAN_MSG_RX_LOW_LAST) {
		priv->rxmasked = 0;
		/* activate all lower message objects */
		c_can_activate_all_lower_rx_msg_obj(dev, IF_RX);
	}
#endif
802 803
	if (priv->type != BOSCH_D_CAN)
		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
804 805
}

806 807 808
static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
			      u32 pend, int quota)
{
809
	u32 pkts = 0, ctrl, obj;
810 811 812 813

	while ((obj = ffs(pend)) && quota > 0) {
		pend &= ~BIT(obj - 1);

814
		c_can_rx_object_get(dev, priv, obj);
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));

		if (ctrl & IF_MCONT_MSGLST) {
			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);

			pkts += n;
			quota -= n;
			continue;
		}

		/*
		 * This really should not happen, but this covers some
		 * odd HW behaviour. Do not remove that unless you
		 * want to brick your machine.
		 */
		if (!(ctrl & IF_MCONT_NEWDAT))
			continue;

		/* read the data from the message object */
		c_can_read_msg_object(dev, IF_RX, ctrl);

836
		c_can_rx_finalize(dev, priv, obj);
837 838 839 840 841 842

		pkts++;
		quota--;
	}

	return pkts;
843 844
}

845 846 847 848 849 850 851 852 853 854
static inline u32 c_can_get_pending(struct c_can_priv *priv)
{
	u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);

#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
	pend &= ~priv->rxmasked;
#endif
	return pend;
}

855 856 857 858 859 860 861 862 863
/*
 * theory of operation:
 *
 * c_can core saves a received CAN message into the first free message
 * object it finds free (starting with the lowest). Bits NEWDAT and
 * INTPND are set for this message object indicating that a new message
 * has arrived. To work-around this issue, we keep two groups of message
 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
 *
864 865
 * If CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING = y
 *
866 867 868 869 870 871 872 873 874 875 876 877
 * To ensure in-order frame reception we use the following
 * approach while re-activating a message object to receive further
 * frames:
 * - if the current message object number is lower than
 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
 *   the INTPND bit.
 * - if the current message object number is equal to
 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
 *   receive message objects.
 * - if the current message object number is greater than
 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
 *   only this message object.
878 879 880 881 882 883 884 885
 *
 * This can cause packet loss!
 *
 * If CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING = n
 *
 * We clear the newdat bit right away.
 *
 * This can result in packet reordering when the readout is slow.
886 887 888 889
 */
static int c_can_do_rx_poll(struct net_device *dev, int quota)
{
	struct c_can_priv *priv = netdev_priv(dev);
890
	u32 pkts = 0, pend = 0, toread, n;
891 892 893 894 895 896 897 898

	/*
	 * It is faster to read only one 16bit register. This is only possible
	 * for a maximum number of 16 objects.
	 */
	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
			"Implementation does not support more message objects than 16");

899 900
	while (quota > 0) {
		if (!pend) {
901
			pend = c_can_get_pending(priv);
902
			if (!pend)
903
				break;
904 905 906 907
			/*
			 * If the pending field has a gap, handle the
			 * bits above the gap first.
			 */
908
			toread = c_can_adjust_pending(pend);
909
		} else {
910
			toread = pend;
911
		}
912
		/* Remove the bits from pend */
913 914 915 916 917
		pend &= ~toread;
		/* Read the objects */
		n = c_can_read_objects(dev, priv, toread, quota);
		pkts += n;
		quota -= n;
918 919
	}

920 921 922
	if (pkts)
		can_led_event(dev, CAN_LED_EVENT_RX);

923
	return pkts;
924 925 926 927 928 929 930 931 932 933 934 935 936
}

static int c_can_handle_state_change(struct net_device *dev,
				enum c_can_bus_error_types error_type)
{
	unsigned int reg_err_counter;
	unsigned int rx_err_passive;
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;
	struct can_berr_counter bec;

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	switch (error_type) {
	case C_CAN_ERROR_WARNING:
		/* error warning state */
		priv->can.can_stats.error_warning++;
		priv->can.state = CAN_STATE_ERROR_WARNING;
		break;
	case C_CAN_ERROR_PASSIVE:
		/* error passive state */
		priv->can.can_stats.error_passive++;
		priv->can.state = CAN_STATE_ERROR_PASSIVE;
		break;
	case C_CAN_BUS_OFF:
		/* bus-off state */
		priv->can.state = CAN_STATE_BUS_OFF;
		can_bus_off(dev);
		break;
	default:
		break;
	}

Lucas De Marchi's avatar
Lucas De Marchi committed
957
	/* propagate the error condition to the CAN stack */
958 959 960 961
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

962
	__c_can_get_berr_counter(dev, &bec);
963
	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
				ERR_CNT_RP_SHIFT;

	switch (error_type) {
	case C_CAN_ERROR_WARNING:
		/* error warning state */
		cf->can_id |= CAN_ERR_CRTL;
		cf->data[1] = (bec.txerr > bec.rxerr) ?
			CAN_ERR_CRTL_TX_WARNING :
			CAN_ERR_CRTL_RX_WARNING;
		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;

		break;
	case C_CAN_ERROR_PASSIVE:
		/* error passive state */
		cf->can_id |= CAN_ERR_CRTL;
		if (rx_err_passive)
			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
		if (bec.txerr > 127)
			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;

		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;
		break;
	case C_CAN_BUS_OFF:
		/* bus-off state */
		cf->can_id |= CAN_ERR_BUSOFF;
		can_bus_off(dev);
		break;
	default:
		break;
	}

	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;
1000
	netif_receive_skb(skb);
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

	return 1;
}

static int c_can_handle_bus_err(struct net_device *dev,
				enum c_can_lec_type lec_type)
{
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;

	/*
	 * early exit if no lec update or no error.
	 * no lec update means that no CAN bus event has been detected
	 * since CPU wrote 0x7 value to status reg.
	 */
	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
		return 0;

1021 1022 1023
	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
		return 0;

1024 1025 1026 1027
	/* common for all type of bus errors */
	priv->can.can_stats.bus_error++;
	stats->rx_errors++;

Lucas De Marchi's avatar
Lucas De Marchi committed
1028
	/* propagate the error condition to the CAN stack */
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

	/*
	 * check for 'last error code' which tells us the
	 * type of the last error to occur on the CAN bus
	 */
	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
	cf->data[2] |= CAN_ERR_PROT_UNSPEC;

	switch (lec_type) {
	case LEC_STUFF_ERROR:
		netdev_dbg(dev, "stuff error\n");
		cf->data[2] |= CAN_ERR_PROT_STUFF;
		break;
	case LEC_FORM_ERROR:
		netdev_dbg(dev, "form error\n");
		cf->data[2] |= CAN_ERR_PROT_FORM;
		break;
	case LEC_ACK_ERROR:
		netdev_dbg(dev, "ack error\n");
1051
		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
				CAN_ERR_PROT_LOC_ACK_DEL);
		break;
	case LEC_BIT1_ERROR:
		netdev_dbg(dev, "bit1 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT1;
		break;
	case LEC_BIT0_ERROR:
		netdev_dbg(dev, "bit0 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT0;
		break;
	case LEC_CRC_ERROR:
		netdev_dbg(dev, "CRC error\n");
1064
		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
1065 1066 1067 1068 1069 1070 1071 1072
				CAN_ERR_PROT_LOC_CRC_DEL);
		break;
	default:
		break;
	}

	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;
1073
	netif_receive_skb(skb);
1074 1075 1076 1077 1078 1079 1080
	return 1;
}

static int c_can_poll(struct napi_struct *napi, int quota)
{
	struct net_device *dev = napi->dev;
	struct c_can_priv *priv = netdev_priv(dev);
1081 1082
	u16 curr, last = priv->last_status;
	int work_done = 0;
1083

1084 1085 1086 1087
	priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
	/* Ack status on C_CAN. D_CAN is self clearing */
	if (priv->type != BOSCH_D_CAN)
		priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1088

1089 1090 1091 1092 1093
	/* handle state changes */
	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
		netdev_dbg(dev, "entered error warning state\n");
		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
	}
1094

1095 1096 1097 1098
	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
		netdev_dbg(dev, "entered error passive state\n");
		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
	}
1099

1100 1101 1102 1103
	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
		netdev_dbg(dev, "entered bus off state\n");
		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
		goto end;
1104 1105
	}

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	/* handle bus recovery events */
	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
		netdev_dbg(dev, "left bus off state\n");
		priv->can.state = CAN_STATE_ERROR_ACTIVE;
	}
	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
		netdev_dbg(dev, "left error passive state\n");
		priv->can.state = CAN_STATE_ERROR_ACTIVE;
	}

	/* handle lec errors on the bus */
	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);

	/* Handle Tx/Rx events. We do this unconditionally */
	work_done += c_can_do_rx_poll(dev, (quota - work_done));
	c_can_do_tx(dev);

1123 1124 1125
end:
	if (work_done < quota) {
		napi_complete(napi);
1126 1127
		/* enable all IRQs if we are not in bus off state */
		if (priv->can.state != CAN_STATE_BUS_OFF)
1128
			c_can_irq_control(priv, true);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
	}

	return work_done;
}

static irqreturn_t c_can_isr(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct c_can_priv *priv = netdev_priv(dev);

1139
	if (!priv->read_reg(priv, C_CAN_INT_REG))
1140 1141 1142
		return IRQ_NONE;

	/* disable all interrupts and schedule the NAPI */
1143
	c_can_irq_control(priv, false);
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	napi_schedule(&priv->napi);

	return IRQ_HANDLED;
}

static int c_can_open(struct net_device *dev)
{
	int err;
	struct c_can_priv *priv = netdev_priv(dev);

1154
	c_can_pm_runtime_get_sync(priv);
1155
	c_can_reset_ram(priv, true);
1156

1157 1158 1159 1160
	/* open the can device */
	err = open_candev(dev);
	if (err) {
		netdev_err(dev, "failed to open can device\n");
1161
		goto exit_open_fail;
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	}

	/* register interrupt handler */
	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
				dev);
	if (err < 0) {
		netdev_err(dev, "failed to request interrupt\n");
		goto exit_irq_fail;
	}

1172 1173 1174 1175
	/* start the c_can controller */
	err = c_can_start(dev);
	if (err)
		goto exit_start_fail;
1176

1177 1178
	can_led_event(dev, CAN_LED_EVENT_OPEN);

1179
	napi_enable(&priv->napi);
1180
	/* enable status change, error and module interrupts */
1181
	c_can_irq_control(priv, true);
1182 1183 1184 1185
	netif_start_queue(dev);

	return 0;

1186 1187
exit_start_fail:
	free_irq(dev->irq, dev);
1188 1189
exit_irq_fail:
	close_candev(dev);
1190
exit_open_fail:
1191
	c_can_reset_ram(priv, false);
1192
	c_can_pm_runtime_put_sync(priv);
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	return err;
}

static int c_can_close(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

	netif_stop_queue(dev);
	napi_disable(&priv->napi);
	c_can_stop(dev);
	free_irq(dev->irq, dev);
	close_candev(dev);
1205 1206

	c_can_reset_ram(priv, false);
1207
	c_can_pm_runtime_put_sync(priv);
1208

1209 1210
	can_led_event(dev, CAN_LED_EVENT_STOP);

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	return 0;
}

struct net_device *alloc_c_can_dev(void)
{
	struct net_device *dev;
	struct c_can_priv *priv;

	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
	if (!dev)
		return NULL;

	priv = netdev_priv(dev);
1224
	spin_lock_init(&priv->xmit_lock);
1225 1226 1227 1228 1229 1230
	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);

	priv->dev = dev;
	priv->can.bittiming_const = &c_can_bittiming_const;
	priv->can.do_set_mode = c_can_set_mode;
	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1231
	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1232 1233 1234 1235 1236 1237 1238
					CAN_CTRLMODE_LISTENONLY |
					CAN_CTRLMODE_BERR_REPORTING;

	return dev;
}
EXPORT_SYMBOL_GPL(alloc_c_can_dev);

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
#ifdef CONFIG_PM
int c_can_power_down(struct net_device *dev)
{
	u32 val;
	unsigned long time_out;
	struct c_can_priv *priv = netdev_priv(dev);

	if (!(dev->flags & IFF_UP))
		return 0;

	WARN_ON(priv->type != BOSCH_D_CAN);

	/* set PDR value so the device goes to power down mode */
	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
	val |= CONTROL_EX_PDR;
	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);

	/* Wait for the PDA bit to get set */
	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
				time_after(time_out, jiffies))
		cpu_relax();

	if (time_after(jiffies, time_out))
		return -ETIMEDOUT;

	c_can_stop(dev);

1267
	c_can_reset_ram(priv, false);
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	c_can_pm_runtime_put_sync(priv);

	return 0;
}
EXPORT_SYMBOL_GPL(c_can_power_down);

int c_can_power_up(struct net_device *dev)
{
	u32 val;
	unsigned long time_out;
	struct c_can_priv *priv = netdev_priv(dev);
1279
	int ret;
1280 1281 1282 1283 1284 1285 1286

	if (!(dev->flags & IFF_UP))
		return 0;

	WARN_ON(priv->type != BOSCH_D_CAN);

	c_can_pm_runtime_get_sync(priv);
1287
	c_can_reset_ram(priv, true);
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

	/* Clear PDR and INIT bits */
	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
	val &= ~CONTROL_EX_PDR;
	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
	val = priv->read_reg(priv, C_CAN_CTRL_REG);
	val &= ~CONTROL_INIT;
	priv->write_reg(priv, C_CAN_CTRL_REG, val);

	/* Wait for the PDA bit to get clear */
	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
				time_after(time_out, jiffies))
		cpu_relax();

	if (time_after(jiffies, time_out))
		return -ETIMEDOUT;

1306 1307
	ret = c_can_start(dev);
	if (!ret)
1308
		c_can_irq_control(priv, true);
1309 1310

	return ret;
1311 1312 1313 1314
}
EXPORT_SYMBOL_GPL(c_can_power_up);
#endif

1315 1316
void free_c_can_dev(struct net_device *dev)
{
1317 1318 1319
	struct c_can_priv *priv = netdev_priv(dev);

	netif_napi_del(&priv->napi);
1320 1321 1322 1323 1324 1325 1326 1327
	free_candev(dev);
}
EXPORT_SYMBOL_GPL(free_c_can_dev);

static const struct net_device_ops c_can_netdev_ops = {
	.ndo_open = c_can_open,
	.ndo_stop = c_can_close,
	.ndo_start_xmit = c_can_start_xmit,
1328
	.ndo_change_mtu = can_change_mtu,
1329 1330 1331 1332
};

int register_c_can_dev(struct net_device *dev)
{
1333 1334 1335 1336 1337
	struct c_can_priv *priv = netdev_priv(dev);
	int err;

	c_can_pm_runtime_enable(priv);

1338 1339 1340
	dev->flags |= IFF_ECHO;	/* we support local echo */
	dev->netdev_ops = &c_can_netdev_ops;

1341 1342 1343
	err = register_candev(dev);
	if (err)
		c_can_pm_runtime_disable(priv);
1344 1345
	else
		devm_can_led_init(dev);
1346 1347

	return err;
1348 1349 1350 1351 1352 1353 1354 1355
}
EXPORT_SYMBOL_GPL(register_c_can_dev);

void unregister_c_can_dev(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

	unregister_candev(dev);
1356 1357

	c_can_pm_runtime_disable(priv);
1358 1359 1360 1361 1362 1363
}
EXPORT_SYMBOL_GPL(unregister_c_can_dev);

MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");