i2o_core.c 84.5 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2
/*
 * Core I2O structure management 
Linus Torvalds's avatar
Linus Torvalds committed
3
 * 
4
 * (C) Copyright 1999-2002   Red Hat Software 
Linus Torvalds's avatar
Linus Torvalds committed
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Written by Alan Cox, Building Number Three Ltd 
 * 
 * This program is free software; you can redistribute it and/or 
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation; either version 
 * 2 of the License, or (at your option) any later version.  
 * 
 * A lot of the I2O message side code from this is taken from the 
 * Red Creek RCPCI45 adapter driver by Red Creek Communications 
 * 
 * Fixes by: 
 *		Philipp Rumpf 
 *		Juha Sievnen <Juha.Sievanen@cs.Helsinki.FI> 
 *		Auvo Hkkinen <Auvo.Hakkinen@cs.Helsinki.FI> 
 *		Deepak Saxena <deepak@plexity.net> 
 *		Boji T Kannanthanam <boji.t.kannanthanam@intel.com>
22 23 24
 *
 * Ported to Linux 2.5 by
 *		Alan Cox	<alan@redhat.com>
Linus Torvalds's avatar
Linus Torvalds committed
25 26 27 28 29 30 31 32 33 34 35 36
 * 
 */

#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/pci.h>

#include <linux/i2o.h>

#include <linux/errno.h>
#include <linux/init.h>
Linus Torvalds's avatar
Linus Torvalds committed
37
#include <linux/slab.h>
Linus Torvalds's avatar
Linus Torvalds committed
38 39 40 41 42 43 44 45 46 47
#include <linux/spinlock.h>
#include <linux/smp_lock.h>

#include <linux/bitops.h>
#include <linux/wait.h>
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <asm/semaphore.h>
Linus Torvalds's avatar
Linus Torvalds committed
48
#include <linux/completion.h>
49
#include <linux/workqueue.h>
Linus Torvalds's avatar
Linus Torvalds committed
50 51 52 53 54 55

#include <asm/io.h>
#include <linux/reboot.h>

#include "i2o_lan.h"

Linus Torvalds's avatar
Linus Torvalds committed
56
//#define DRIVERDEBUG
Linus Torvalds's avatar
Linus Torvalds committed
57 58 59 60 61 62 63 64

#ifdef DRIVERDEBUG
#define dprintk(s, args...) printk(s, ## args)
#else
#define dprintk(s, args...)
#endif

/* OSM table */
Linus Torvalds's avatar
Linus Torvalds committed
65
static struct i2o_handler *i2o_handlers[MAX_I2O_MODULES];
Linus Torvalds's avatar
Linus Torvalds committed
66 67

/* Controller list */
Linus Torvalds's avatar
Linus Torvalds committed
68 69 70
static struct i2o_controller *i2o_controllers[MAX_I2O_CONTROLLERS];
struct i2o_controller *i2o_controller_chain;
int i2o_num_controllers;
Linus Torvalds's avatar
Linus Torvalds committed
71 72

/* Initiator Context for Core message */
Linus Torvalds's avatar
Linus Torvalds committed
73
static int core_context;
Linus Torvalds's avatar
Linus Torvalds committed
74 75

/* Initialization && shutdown functions */
76
void i2o_sys_init(void);
Linus Torvalds's avatar
Linus Torvalds committed
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
static void i2o_sys_shutdown(void);
static int i2o_reset_controller(struct i2o_controller *);
static int i2o_reboot_event(struct notifier_block *, unsigned long , void *);
static int i2o_online_controller(struct i2o_controller *);
static int i2o_init_outbound_q(struct i2o_controller *);
static int i2o_post_outbound_messages(struct i2o_controller *);

/* Reply handler */
static void i2o_core_reply(struct i2o_handler *, struct i2o_controller *,
			   struct i2o_message *);

/* Various helper functions */
static int i2o_lct_get(struct i2o_controller *);
static int i2o_lct_notify(struct i2o_controller *);
static int i2o_hrt_get(struct i2o_controller *);

static int i2o_build_sys_table(void);
static int i2o_systab_send(struct i2o_controller *c);

/* I2O core event handler */
static int i2o_core_evt(void *);
static int evt_pid;
static int evt_running;

/* Dynamic LCT update handler */
static int i2o_dyn_lct(void *);

void i2o_report_controller_unit(struct i2o_controller *, struct i2o_device *);

/*
 * I2O System Table.  Contains information about
 * all the IOPs in the system.  Used to inform IOPs
 * about each other's existence.
 *
 * sys_tbl_ver is the CurrentChangeIndicator that is
 * used by IOPs to track changes.
 */
Linus Torvalds's avatar
Linus Torvalds committed
114 115 116
static struct i2o_sys_tbl *sys_tbl;
static int sys_tbl_ind;
static int sys_tbl_len;
Linus Torvalds's avatar
Linus Torvalds committed
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

/*
 * This spin lock is used to keep a device from being
 * added and deleted concurrently across CPUs or interrupts.
 * This can occur when a user creates a device and immediatelly
 * deletes it before the new_dev_notify() handler is called.
 */
static spinlock_t i2o_dev_lock = SPIN_LOCK_UNLOCKED;

/*
 * Structures and definitions for synchronous message posting.
 * See i2o_post_wait() for description.
 */ 
struct i2o_post_wait_data
{
Linus Torvalds's avatar
Linus Torvalds committed
132 133 134 135 136 137
	int *status;		/* Pointer to status block on caller stack */
	int *complete;		/* Pointer to completion flag on caller stack */
	u32 id;			/* Unique identifier */
	wait_queue_head_t *wq;	/* Wake up for caller (NULL for dead) */
	struct i2o_post_wait_data *next;	/* Chain */
	void *mem[2];		/* Memory blocks to recover on failure path */
138 139
	dma_addr_t phys[2];	/* Physical address of blocks to recover */
	u32 size[2];		/* Size of blocks to recover */
Linus Torvalds's avatar
Linus Torvalds committed
140
};
141

Linus Torvalds's avatar
Linus Torvalds committed
142 143
static struct i2o_post_wait_data *post_wait_queue;
static u32 post_wait_id;	// Unique ID for each post_wait
Linus Torvalds's avatar
Linus Torvalds committed
144
static spinlock_t post_wait_lock = SPIN_LOCK_UNLOCKED;
145
static void i2o_post_wait_complete(struct i2o_controller *, u32, int);
Linus Torvalds's avatar
Linus Torvalds committed
146 147 148 149 150 151 152 153 154 155 156 157 158 159

/* OSM descriptor handler */ 
static struct i2o_handler i2o_core_handler =
{
	(void *)i2o_core_reply,
	NULL,
	NULL,
	NULL,
	"I2O core layer",
	0,
	I2O_CLASS_EXECUTIVE
};

/*
Linus Torvalds's avatar
Linus Torvalds committed
160
 * Used when queueing a reply to be handled later
Linus Torvalds's avatar
Linus Torvalds committed
161
 */
Linus Torvalds's avatar
Linus Torvalds committed
162
 
Linus Torvalds's avatar
Linus Torvalds committed
163 164 165 166 167 168 169
struct reply_info
{
	struct i2o_controller *iop;
	u32 msg[MSG_FRAME_SIZE];
};
static struct reply_info evt_reply;
static struct reply_info events[I2O_EVT_Q_LEN];
Linus Torvalds's avatar
Linus Torvalds committed
170 171 172
static int evt_in;
static int evt_out;
static int evt_q_len;
Linus Torvalds's avatar
Linus Torvalds committed
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
#define MODINC(x,y) ((x) = ((x) + 1) % (y))

/*
 * I2O configuration spinlock. This isnt a big deal for contention
 * so we have one only
 */

static DECLARE_MUTEX(i2o_configuration_lock);

/* 
 * Event spinlock.  Used to keep event queue sane and from
 * handling multiple events simultaneously.
 */
static spinlock_t i2o_evt_lock = SPIN_LOCK_UNLOCKED;

/*
Linus Torvalds's avatar
Linus Torvalds committed
189
 * Semaphore used to synchronize event handling thread with 
Linus Torvalds's avatar
Linus Torvalds committed
190 191
 * interrupt handler.
 */
Linus Torvalds's avatar
Linus Torvalds committed
192 193
 
static DECLARE_MUTEX(evt_sem);
Linus Torvalds's avatar
Linus Torvalds committed
194
static DECLARE_COMPLETION(evt_dead);
195
static DECLARE_WAIT_QUEUE_HEAD(evt_wait);
Linus Torvalds's avatar
Linus Torvalds committed
196 197 198 199 200 201 202 203

static struct notifier_block i2o_reboot_notifier =
{
        i2o_reboot_event,
        NULL,
        0
};

Linus Torvalds's avatar
Linus Torvalds committed
204 205 206 207
/*
 *	Config options
 */

Linus Torvalds's avatar
Linus Torvalds committed
208
static int verbose;
Linus Torvalds's avatar
Linus Torvalds committed
209
MODULE_PARM(verbose, "i");
Linus Torvalds's avatar
Linus Torvalds committed
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

/*
 * I2O Core reply handler
 */
static void i2o_core_reply(struct i2o_handler *h, struct i2o_controller *c,
		    struct i2o_message *m)
{
	u32 *msg=(u32 *)m;
	u32 status;
	u32 context = msg[2];

	if (msg[0] & MSG_FAIL) // Fail bit is set
	{
		u32 *preserved_msg = (u32*)(c->mem_offset + msg[7]);

		i2o_report_status(KERN_INFO, "i2o_core", msg);
		i2o_dump_message(preserved_msg);

		/* If the failed request needs special treatment,
		 * it should be done here. */

                /* Release the preserved msg by resubmitting it as a NOP */

Linus Torvalds's avatar
Linus Torvalds committed
233 234
		preserved_msg[0] = cpu_to_le32(THREE_WORD_MSG_SIZE | SGL_OFFSET_0);
		preserved_msg[1] = cpu_to_le32(I2O_CMD_UTIL_NOP << 24 | HOST_TID << 12 | 0);
Linus Torvalds's avatar
Linus Torvalds committed
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
		preserved_msg[2] = 0;
		i2o_post_message(c, msg[7]);

		/* If reply to i2o_post_wait failed, return causes a timeout */

		return;
	}       

#ifdef DRIVERDEBUG
	i2o_report_status(KERN_INFO, "i2o_core", msg);
#endif

	if(msg[2]&0x80000000)	// Post wait message
	{
		if (msg[4] >> 24)
Linus Torvalds's avatar
Linus Torvalds committed
250
			status = (msg[4] & 0xFFFF);
Linus Torvalds's avatar
Linus Torvalds committed
251 252 253
		else
			status = I2O_POST_WAIT_OK;
	
254
		i2o_post_wait_complete(c, context, status);
Linus Torvalds's avatar
Linus Torvalds committed
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
		return;
	}

	if(m->function == I2O_CMD_UTIL_EVT_REGISTER)
	{
		memcpy(events[evt_in].msg, msg, (msg[0]>>16)<<2);
		events[evt_in].iop = c;

		spin_lock(&i2o_evt_lock);
		MODINC(evt_in, I2O_EVT_Q_LEN);
		if(evt_q_len == I2O_EVT_Q_LEN)
			MODINC(evt_out, I2O_EVT_Q_LEN);
		else
			evt_q_len++;
		spin_unlock(&i2o_evt_lock);

		up(&evt_sem);
		wake_up_interruptible(&evt_wait);
		return;
	}

	if(m->function == I2O_CMD_LCT_NOTIFY)
	{
		up(&c->lct_sem);
		return;
	}

	/*
	 * If this happens, we want to dump the message to the syslog so
	 * it can be sent back to the card manufacturer by the end user
	 * to aid in debugging.
	 * 
	 */
	printk(KERN_WARNING "%s: Unsolicited message reply sent to core!"
			"Message dumped to syslog\n", 
			c->name);
	i2o_dump_message(msg);

	return;
}

/**
 *	i2o_install_handler - install a message handler
 *	@h: Handler structure
 *
 *	Install an I2O handler - these handle the asynchronous messaging
 *	from the card once it has initialised. If the table of handlers is
 *	full then -ENOSPC is returned. On a success 0 is returned and the
 *	context field is set by the function. The structure is part of the
 *	system from this time onwards. It must not be freed until it has
 *	been uninstalled
 */
 
int i2o_install_handler(struct i2o_handler *h)
{
	int i;
	down(&i2o_configuration_lock);
	for(i=0;i<MAX_I2O_MODULES;i++)
	{
		if(i2o_handlers[i]==NULL)
		{
			h->context = i;
			i2o_handlers[i]=h;
			up(&i2o_configuration_lock);
			return 0;
		}
	}
	up(&i2o_configuration_lock);
	return -ENOSPC;
}

/**
 *	i2o_remove_handler - remove an i2o message handler
 *	@h: handler
 *
 *	Remove a message handler previously installed with i2o_install_handler.
 *	After this function returns the handler object can be freed or re-used
 */
 
int i2o_remove_handler(struct i2o_handler *h)
{
	i2o_handlers[h->context]=NULL;
	return 0;
}
	

/*
 *	Each I2O controller has a chain of devices on it.
 * Each device has a pointer to it's LCT entry to be used
 * for fun purposes.
 */

/**
 *	i2o_install_device	-	attach a device to a controller
 *	@c: controller
 *	@d: device
 * 	
 *	Add a new device to an i2o controller. This can be called from
 *	non interrupt contexts only. It adds the device and marks it as
 *	unclaimed. The device memory becomes part of the kernel and must
 *	be uninstalled before being freed or reused. Zero is returned
 *	on success.
 */
 
int i2o_install_device(struct i2o_controller *c, struct i2o_device *d)
{
	int i;

	down(&i2o_configuration_lock);
	d->controller=c;
	d->owner=NULL;
	d->next=c->devices;
Linus Torvalds's avatar
Linus Torvalds committed
367 368 369
	d->prev=NULL;
	if (c->devices != NULL)
		c->devices->prev=d;
Linus Torvalds's avatar
Linus Torvalds committed
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
	c->devices=d;
	*d->dev_name = 0;

	for(i = 0; i < I2O_MAX_MANAGERS; i++)
		d->managers[i] = NULL;

	up(&i2o_configuration_lock);
	return 0;
}

/* we need this version to call out of i2o_delete_controller */

int __i2o_delete_device(struct i2o_device *d)
{
	struct i2o_device **p;
	int i;

	p=&(d->controller->devices);

	/*
	 *	Hey we have a driver!
	 * Check to see if the driver wants us to notify it of 
	 * device deletion. If it doesn't we assume that it
	 * is unsafe to delete a device with an owner and 
	 * fail.
	 */
	if(d->owner)
	{
		if(d->owner->dev_del_notify)
		{
			dprintk(KERN_INFO "Device has owner, notifying\n");
			d->owner->dev_del_notify(d->controller, d);
			if(d->owner)
			{
				printk(KERN_WARNING 
					"Driver \"%s\" did not release device!\n", d->owner->name);
				return -EBUSY;
			}
		}
		else
			return -EBUSY;
	}

	/*
	 * Tell any other users who are talking to this device
	 * that it's going away.  We assume that everything works.
	 */
	for(i=0; i < I2O_MAX_MANAGERS; i++)
	{
		if(d->managers[i] && d->managers[i]->dev_del_notify)
			d->managers[i]->dev_del_notify(d->controller, d);
	}
	 			
	while(*p!=NULL)
	{
		if(*p==d)
		{
			/*
			 *	Destroy
			 */
			*p=d->next;
			kfree(d);
			return 0;
		}
		p=&((*p)->next);
	}
	printk(KERN_ERR "i2o_delete_device: passed invalid device.\n");
	return -EINVAL;
}

/**
 *	i2o_delete_device	-	remove an i2o device
 *	@d: device to remove
 *
 *	This function unhooks a device from a controller. The device
 *	will not be unhooked if it has an owner who does not wish to free
 *	it, or if the owner lacks a dev_del_notify function. In that case
 *	-EBUSY is returned. On success 0 is returned. Other errors cause
 *	negative errno values to be returned
 */
 
int i2o_delete_device(struct i2o_device *d)
{
	int ret;

	down(&i2o_configuration_lock);

	/*
	 *	Seek, locate
	 */

	ret = __i2o_delete_device(d);

	up(&i2o_configuration_lock);

	return ret;
}

/**
 *	i2o_install_controller	-	attach a controller
 *	@c: controller
 * 	
 *	Add a new controller to the i2o layer. This can be called from
 *	non interrupt contexts only. It adds the controller and marks it as
 *	unused with no devices. If the tables are full or memory allocations
 *	fail then a negative errno code is returned. On success zero is
 *	returned and the controller is bound to the system. The structure
 *	must not be freed or reused until being uninstalled.
 */
 
int i2o_install_controller(struct i2o_controller *c)
{
	int i;
	down(&i2o_configuration_lock);
	for(i=0;i<MAX_I2O_CONTROLLERS;i++)
	{
		if(i2o_controllers[i]==NULL)
		{
488
			c->dlct = (i2o_lct*)pci_alloc_consistent(c->pdev, 8192, &c->dlct_phys);
Linus Torvalds's avatar
Linus Torvalds committed
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
			if(c->dlct==NULL)
			{
				up(&i2o_configuration_lock);
				return -ENOMEM;
			}
			i2o_controllers[i]=c;
			c->devices = NULL;
			c->next=i2o_controller_chain;
			i2o_controller_chain=c;
			c->unit = i;
			c->page_frame = NULL;
			c->hrt = NULL;
			c->lct = NULL;
			c->status_block = NULL;
			sprintf(c->name, "i2o/iop%d", i);
			i2o_num_controllers++;
			init_MUTEX_LOCKED(&c->lct_sem);
			up(&i2o_configuration_lock);
			return 0;
		}
	}
	printk(KERN_ERR "No free i2o controller slots.\n");
	up(&i2o_configuration_lock);
	return -EBUSY;
}

/**
 *	i2o_delete_controller	- delete a controller
 *	@c: controller
 *	
 *	Remove an i2o controller from the system. If the controller or its
 *	devices are busy then -EBUSY is returned. On a failure a negative
 *	errno code is returned. On success zero is returned.
 */
  
int i2o_delete_controller(struct i2o_controller *c)
{
	struct i2o_controller **p;
	int users;
	char name[16];
	int stat;

	dprintk(KERN_INFO "Deleting controller %s\n", c->name);

	/*
	 * Clear event registration as this can cause weird behavior
	 */
	if(c->status_block->iop_state == ADAPTER_STATE_OPERATIONAL)
		i2o_event_register(c, core_context, 0, 0, 0);

	down(&i2o_configuration_lock);
	if((users=atomic_read(&c->users)))
	{
		dprintk(KERN_INFO "I2O: %d users for controller %s\n", users,
			c->name);
		up(&i2o_configuration_lock);
		return -EBUSY;
	}
	while(c->devices)
	{
		if(__i2o_delete_device(c->devices)<0)
		{
			/* Shouldnt happen */
			c->bus_disable(c);
			up(&i2o_configuration_lock);
			return -EBUSY;
		}
	}

	/*
	 * If this is shutdown time, the thread's already been killed
	 */
	if(c->lct_running) {
		stat = kill_proc(c->lct_pid, SIGTERM, 1);
		if(!stat) {
			int count = 10 * 100;
			while(c->lct_running && --count) {
				current->state = TASK_INTERRUPTIBLE;
				schedule_timeout(1);
			}
		
			if(!count)
				printk(KERN_ERR 
					"%s: LCT thread still running!\n", 
					c->name);
		}
	}

	p=&i2o_controller_chain;

	while(*p)
	{
		if(*p==c)
		{
 			/* Ask the IOP to switch to RESET state */
			i2o_reset_controller(c);

			/* Release IRQ */
			c->destructor(c);

			*p=c->next;
			up(&i2o_configuration_lock);

			if(c->page_frame)
Linus Torvalds's avatar
Linus Torvalds committed
593 594
			{
				pci_unmap_single(c->pdev, c->page_frame_map, MSG_POOL_SIZE, PCI_DMA_FROMDEVICE);
Linus Torvalds's avatar
Linus Torvalds committed
595
				kfree(c->page_frame);
Linus Torvalds's avatar
Linus Torvalds committed
596
			}
Linus Torvalds's avatar
Linus Torvalds committed
597
			if(c->hrt)
598
				pci_free_consistent(c->pdev, c->hrt_len, c->hrt, c->hrt_phys);
Linus Torvalds's avatar
Linus Torvalds committed
599
			if(c->lct)
600
				pci_free_consistent(c->pdev, c->lct->table_size << 2, c->lct, c->lct_phys);
Linus Torvalds's avatar
Linus Torvalds committed
601
			if(c->status_block)
602
				pci_free_consistent(c->pdev, sizeof(i2o_status_block), c->status_block, c->status_block_phys);
Linus Torvalds's avatar
Linus Torvalds committed
603
			if(c->dlct)
604
				pci_free_consistent(c->pdev, 8192, c->dlct, c->dlct_phys);
Linus Torvalds's avatar
Linus Torvalds committed
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699

			i2o_controllers[c->unit]=NULL;
			memcpy(name, c->name, strlen(c->name)+1);
			kfree(c);
			dprintk(KERN_INFO "%s: Deleted from controller chain.\n", name);
			
			i2o_num_controllers--;
			return 0;
		}
		p=&((*p)->next);
	}
	up(&i2o_configuration_lock);
	printk(KERN_ERR "i2o_delete_controller: bad pointer!\n");
	return -ENOENT;
}

/**
 *	i2o_unlock_controller	-	unlock a controller
 *	@c: controller to unlock
 *
 *	Take a lock on an i2o controller. This prevents it being deleted.
 *	i2o controllers are not refcounted so a deletion of an in use device
 *	will fail, not take affect on the last dereference.
 */
 
void i2o_unlock_controller(struct i2o_controller *c)
{
	atomic_dec(&c->users);
}

/**
 *	i2o_find_controller - return a locked controller
 *	@n: controller number
 *
 *	Returns a pointer to the controller object. The controller is locked
 *	on return. NULL is returned if the controller is not found.
 */
 
struct i2o_controller *i2o_find_controller(int n)
{
	struct i2o_controller *c;
	
	if(n<0 || n>=MAX_I2O_CONTROLLERS)
		return NULL;
	
	down(&i2o_configuration_lock);
	c=i2o_controllers[n];
	if(c!=NULL)
		atomic_inc(&c->users);
	up(&i2o_configuration_lock);
	return c;
}

/**
 *	i2o_issue_claim	- claim or release a device
 *	@cmd: command
 *	@c: controller to claim for
 *	@tid: i2o task id
 *	@type: type of claim
 *
 *	Issue I2O UTIL_CLAIM and UTIL_RELEASE messages. The message to be sent
 *	is set by cmd. The tid is the task id of the object to claim and the
 *	type is the claim type (see the i2o standard)
 *
 *	Zero is returned on success.
 */
 
static int i2o_issue_claim(u32 cmd, struct i2o_controller *c, int tid, u32 type)
{
	u32 msg[5];

	msg[0] = FIVE_WORD_MSG_SIZE | SGL_OFFSET_0;
	msg[1] = cmd << 24 | HOST_TID<<12 | tid;
	msg[3] = 0;
	msg[4] = type;
	
	return i2o_post_wait(c, msg, sizeof(msg), 60);
}

/*
 * 	i2o_claim_device - claim a device for use by an OSM
 *	@d: device to claim
 *	@h: handler for this device
 *
 *	Do the leg work to assign a device to a given OSM on Linux. The
 *	kernel updates the internal handler data for the device and then
 *	performs an I2O claim for the device, attempting to claim the
 *	device as primary. If the attempt fails a negative errno code
 *	is returned. On success zero is returned.
 */
 
int i2o_claim_device(struct i2o_device *d, struct i2o_handler *h)
{
	down(&i2o_configuration_lock);
	if (d->owner) {
Linus Torvalds's avatar
Linus Torvalds committed
700
		printk(KERN_INFO "Device claim called, but dev already owned by %s!",
Linus Torvalds's avatar
Linus Torvalds committed
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
		       h->name);
		up(&i2o_configuration_lock);
		return -EBUSY;
	}
	d->owner=h;

	if(i2o_issue_claim(I2O_CMD_UTIL_CLAIM ,d->controller,d->lct_data.tid, 
			   I2O_CLAIM_PRIMARY))
	{
		d->owner = NULL;
		return -EBUSY;
	}
	up(&i2o_configuration_lock);
	return 0;
}

/**
 *	i2o_release_device - release a device that the OSM is using
 *	@d: device to claim
 *	@h: handler for this device
 *
 *	Drop a claim by an OSM on a given I2O device. The handler is cleared
 *	and 0 is returned on success.
 *
Linus Torvalds's avatar
Linus Torvalds committed
725 726 727 728
 *	AC - some devices seem to want to refuse an unclaim until they have
 *	finished internal processing. It makes sense since you don't want a
 *	new device to go reconfiguring the entire system until you are done.
 *	Thus we are prepared to wait briefly.
Linus Torvalds's avatar
Linus Torvalds committed
729 730 731 732 733
 */

int i2o_release_device(struct i2o_device *d, struct i2o_handler *h)
{
	int err = 0;
Linus Torvalds's avatar
Linus Torvalds committed
734
	int tries;
Linus Torvalds's avatar
Linus Torvalds committed
735 736 737

	down(&i2o_configuration_lock);
	if (d->owner != h) {
Linus Torvalds's avatar
Linus Torvalds committed
738
		printk(KERN_INFO "Claim release called, but not owned by %s!\n",
Linus Torvalds's avatar
Linus Torvalds committed
739 740 741 742 743
		       h->name);
		up(&i2o_configuration_lock);
		return -ENOENT;
	}	

Linus Torvalds's avatar
Linus Torvalds committed
744
	for(tries=0;tries<10;tries++)
Linus Torvalds's avatar
Linus Torvalds committed
745
	{
Linus Torvalds's avatar
Linus Torvalds committed
746
		d->owner = NULL;
Linus Torvalds's avatar
Linus Torvalds committed
747

Linus Torvalds's avatar
Linus Torvalds committed
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
		/*
		 *	If the controller takes a nonblocking approach to
		 *	releases we have to sleep/poll for a few times.
		 */
		 
		if((err=i2o_issue_claim(I2O_CMD_UTIL_RELEASE, d->controller, d->lct_data.tid, I2O_CLAIM_PRIMARY)) )
		{
			err = -ENXIO;
			current->state = TASK_UNINTERRUPTIBLE;
			schedule_timeout(HZ);
		}
		else
		{
			err=0;
			break;
		}
	}
Linus Torvalds's avatar
Linus Torvalds committed
765 766 767 768
	up(&i2o_configuration_lock);
	return err;
}

Linus Torvalds's avatar
Linus Torvalds committed
769 770 771 772 773 774 775
/**
 * 	i2o_device_notify_on	-	Enable deletion notifiers
 *	@d: device for notification
 *	@h: handler to install
 *
 *	Called by OSMs to let the core know that they want to be
 *	notified if the given device is deleted from the system.
Linus Torvalds's avatar
Linus Torvalds committed
776
 */
Linus Torvalds's avatar
Linus Torvalds committed
777

Linus Torvalds's avatar
Linus Torvalds committed
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
int i2o_device_notify_on(struct i2o_device *d, struct i2o_handler *h)
{
	int i;

	if(d->num_managers == I2O_MAX_MANAGERS)
		return -ENOSPC;

	for(i = 0; i < I2O_MAX_MANAGERS; i++)
	{
		if(!d->managers[i])
		{
			d->managers[i] = h;
			break;
		}
	}
	
	d->num_managers++;
	
	return 0;
}

Linus Torvalds's avatar
Linus Torvalds committed
799 800 801 802 803
/**
 * 	i2o_device_notify_off	-	Remove deletion notifiers
 *	@d: device for notification
 *	@h: handler to remove
 *
Linus Torvalds's avatar
Linus Torvalds committed
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
 * Called by OSMs to let the core know that they no longer
 * are interested in the fate of the given device.
 */
int i2o_device_notify_off(struct i2o_device *d, struct i2o_handler *h)
{
	int i;

	for(i=0; i < I2O_MAX_MANAGERS; i++)
	{
		if(d->managers[i] == h)
		{
			d->managers[i] = NULL;
			d->num_managers--;
			return 0;
		}
	}

	return -ENOENT;
}

Linus Torvalds's avatar
Linus Torvalds committed
824 825 826 827 828 829 830 831 832 833
/**
 *	i2o_event_register	-	register interest in an event
 * 	@c: Controller to register interest with
 *	@tid: I2O task id
 *	@init_context: initiator context to use with this notifier
 *	@tr_context: transaction context to use with this notifier
 *	@evt_mask: mask of events
 *
 *	Create and posts an event registration message to the task. No reply
 *	is waited for, or expected. Errors in posting will be reported.
Linus Torvalds's avatar
Linus Torvalds committed
834
 */
Linus Torvalds's avatar
Linus Torvalds committed
835
 
Linus Torvalds's avatar
Linus Torvalds committed
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
int i2o_event_register(struct i2o_controller *c, u32 tid, 
		u32 init_context, u32 tr_context, u32 evt_mask)
{
	u32 msg[5];	// Not performance critical, so we just 
			// i2o_post_this it instead of building it
			// in IOP memory
	
	msg[0] = FIVE_WORD_MSG_SIZE|SGL_OFFSET_0;
	msg[1] = I2O_CMD_UTIL_EVT_REGISTER<<24 | HOST_TID<<12 | tid;
	msg[2] = init_context;
	msg[3] = tr_context;
	msg[4] = evt_mask;

	return i2o_post_this(c, msg, sizeof(msg));
}

/*
Linus Torvalds's avatar
Linus Torvalds committed
853 854 855
 * 	i2o_event_ack	-	acknowledge an event
 *	@c: controller 
 *	@msg: pointer to the UTIL_EVENT_REGISTER reply we received
Linus Torvalds's avatar
Linus Torvalds committed
856
 *
Linus Torvalds's avatar
Linus Torvalds committed
857 858 859
 *	We just take a pointer to the original UTIL_EVENT_REGISTER reply
 *	message and change the function code since that's what spec
 *	describes an EventAck message looking like.
Linus Torvalds's avatar
Linus Torvalds committed
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
 */
 
int i2o_event_ack(struct i2o_controller *c, u32 *msg)
{
	struct i2o_message *m = (struct i2o_message *)msg;

	m->function = I2O_CMD_UTIL_EVT_ACK;

	return i2o_post_wait(c, msg, m->size * 4, 2);
}

/*
 * Core event handler.  Runs as a separate thread and is woken
 * up whenever there is an Executive class event.
 */
static int i2o_core_evt(void *reply_data)
{
	struct reply_info *reply = (struct reply_info *) reply_data;
	u32 *msg = reply->msg;
	struct i2o_controller *c = NULL;
Linus Torvalds's avatar
Linus Torvalds committed
880
	unsigned long flags;
Linus Torvalds's avatar
Linus Torvalds committed
881 882 883 884 885 886 887 888 889 890

	lock_kernel();
	daemonize();
	unlock_kernel();

	strcpy(current->comm, "i2oevtd");
	evt_running = 1;

	while(1)
	{
Linus Torvalds's avatar
Linus Torvalds committed
891
		if(down_interruptible(&evt_sem))
Linus Torvalds's avatar
Linus Torvalds committed
892 893
		{
			dprintk(KERN_INFO "I2O event thread dead\n");
Linus Torvalds's avatar
Linus Torvalds committed
894
			printk("exiting...");
Linus Torvalds's avatar
Linus Torvalds committed
895
			evt_running = 0;
Linus Torvalds's avatar
Linus Torvalds committed
896
			complete_and_exit(&evt_dead, 0);
Linus Torvalds's avatar
Linus Torvalds committed
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
		}

		/* 
		 * Copy the data out of the queue so that we don't have to lock
		 * around the whole function and just around the qlen update
		 */
		spin_lock_irqsave(&i2o_evt_lock, flags);
		memcpy(reply, &events[evt_out], sizeof(struct reply_info));
		MODINC(evt_out, I2O_EVT_Q_LEN);
		evt_q_len--;
		spin_unlock_irqrestore(&i2o_evt_lock, flags);
	
		c = reply->iop;
	 	dprintk(KERN_INFO "I2O IRTOS EVENT: iop%d, event %#10x\n", c->unit, msg[4]);

		/* 
		 * We do not attempt to delete/quiesce/etc. the controller if
		 * some sort of error indidication occurs.  We may want to do
		 * so in the future, but for now we just let the user deal with 
		 * it.  One reason for this is that what to do with an error
		 * or when to send what rror is not really agreed on, so
		 * we get errors that may not be fatal but just look like they
		 * are...so let the user deal with it.
		 */
		switch(msg[4])
		{
			case I2O_EVT_IND_EXEC_RESOURCE_LIMITS:
				printk(KERN_ERR "%s: Out of resources\n", c->name);
				break;

			case I2O_EVT_IND_EXEC_POWER_FAIL:
				printk(KERN_ERR "%s: Power failure\n", c->name);
				break;

			case I2O_EVT_IND_EXEC_HW_FAIL:
			{
				char *fail[] = 
					{ 
						"Unknown Error",
						"Power Lost",
						"Code Violation",
						"Parity Error",
						"Code Execution Exception",
						"Watchdog Timer Expired" 
					};

				if(msg[5] <= 6)
					printk(KERN_ERR "%s: Hardware Failure: %s\n", 
						c->name, fail[msg[5]]);
				else
					printk(KERN_ERR "%s: Unknown Hardware Failure\n", c->name);

				break;
			}

			/*
		 	 * New device created
		 	 * - Create a new i2o_device entry
		 	 * - Inform all interested drivers about this device's existence
		 	 */
			case I2O_EVT_IND_EXEC_NEW_LCT_ENTRY:
			{
				struct i2o_device *d = (struct i2o_device *)
					kmalloc(sizeof(struct i2o_device), GFP_KERNEL);
				int i;

Linus Torvalds's avatar
Linus Torvalds committed
963 964 965 966
				if (d == NULL) {
					printk(KERN_EMERG "i2oevtd: out of memory\n");
					break;
				}
Linus Torvalds's avatar
Linus Torvalds committed
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
				memcpy(&d->lct_data, &msg[5], sizeof(i2o_lct_entry));
	
				d->next = NULL;
				d->controller = c;
				d->flags = 0;
	
				i2o_report_controller_unit(c, d);
				i2o_install_device(c,d);
	
				for(i = 0; i < MAX_I2O_MODULES; i++)
				{
					if(i2o_handlers[i] && 
						i2o_handlers[i]->new_dev_notify &&
						(i2o_handlers[i]->class&d->lct_data.class_id))
						{
						spin_lock(&i2o_dev_lock);
						i2o_handlers[i]->new_dev_notify(c,d);
						spin_unlock(&i2o_dev_lock);
						}
				}
			
				break;
			}
	
			/*
 		 	 * LCT entry for a device has been modified, so update it
		 	 * internally.
		 	 */
			case I2O_EVT_IND_EXEC_MODIFIED_LCT:
			{
				struct i2o_device *d;
				i2o_lct_entry *new_lct = (i2o_lct_entry *)&msg[5];

				for(d = c->devices; d; d = d->next)
				{
					if(d->lct_data.tid == new_lct->tid)
					{
						memcpy(&d->lct_data, new_lct, sizeof(i2o_lct_entry));
						break;
					}
				}
				break;
			}
	
			case I2O_EVT_IND_CONFIGURATION_FLAG:
				printk(KERN_WARNING "%s requires user configuration\n", c->name);
				break;
	
			case I2O_EVT_IND_GENERAL_WARNING:
				printk(KERN_WARNING "%s: Warning notification received!"
					"Check configuration for errors!\n", c->name);
				break;
Linus Torvalds's avatar
Linus Torvalds committed
1019 1020 1021 1022 1023
				
			case I2O_EVT_IND_EVT_MASK_MODIFIED:
				/* Well I guess that was us hey .. */
				break;
					
Linus Torvalds's avatar
Linus Torvalds committed
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
			default:
				printk(KERN_WARNING "%s: No handler for event (0x%08x)\n", c->name, msg[4]);
				break;
		}
	}

	return 0;
}

/*
 * Dynamic LCT update.  This compares the LCT with the currently
 * installed devices to check for device deletions..this needed b/c there
 * is no DELETED_LCT_ENTRY EventIndicator for the Executive class so
 * we can't just have the event handler do this...annoying
 *
 * This is a hole in the spec that will hopefully be fixed someday.
 */
static int i2o_dyn_lct(void *foo)
{
	struct i2o_controller *c = (struct i2o_controller *)foo;
	struct i2o_device *d = NULL;
	struct i2o_device *d1 = NULL;
	int i = 0;
	int found = 0;
	int entries;
	void *tmp;
	char name[16];

	lock_kernel();
	daemonize();
	unlock_kernel();

	sprintf(name, "iop%d_lctd", c->unit);
	strcpy(current->comm, name);	
	
	c->lct_running = 1;

	while(1)
	{
		down_interruptible(&c->lct_sem);
		if(signal_pending(current))
		{
			dprintk(KERN_ERR "%s: LCT thread dead\n", c->name);
			c->lct_running = 0;
			return 0;
		}

		entries = c->dlct->table_size;
		entries -= 3;
		entries /= 9;

		dprintk(KERN_INFO "%s: Dynamic LCT Update\n",c->name);
		dprintk(KERN_INFO "%s: Dynamic LCT contains %d entries\n", c->name, entries);

		if(!entries)
		{
			printk(KERN_INFO "%s: Empty LCT???\n", c->name);
			continue;
		}

		/*
		 * Loop through all the devices on the IOP looking for their
		 * LCT data in the LCT.  We assume that TIDs are not repeated.
		 * as that is the only way to really tell.  It's been confirmed
		 * by the IRTOS vendor(s?) that TIDs are not reused until they 
		 * wrap arround(4096), and I doubt a system will up long enough
		 * to create/delete that many devices.
		 */
		for(d = c->devices; d; )
		{
			found = 0;
			d1 = d->next;
			
			for(i = 0; i < entries; i++) 
			{ 
				if(d->lct_data.tid == c->dlct->lct_entry[i].tid) 
				{ 
					found = 1; 
					break; 
				} 
			} 
			if(!found) 
			{
				dprintk(KERN_INFO "i2o_core: Deleted device!\n"); 
				spin_lock(&i2o_dev_lock);
				i2o_delete_device(d); 
				spin_unlock(&i2o_dev_lock);
			} 
			d = d1; 
		}

		/* 
		 * Tell LCT to renotify us next time there is a change
	 	 */
		i2o_lct_notify(c);

		/*
		 * Copy new LCT into public LCT
		 *
		 * Possible race if someone is reading LCT while  we are copying 
		 * over it. If this happens, we'll fix it then. but I doubt that
		 * the LCT will get updated often enough or will get read by
		 * a user often enough to worry.
		 */
		if(c->lct->table_size < c->dlct->table_size)
		{
1130
			dma_addr_t phys;
Linus Torvalds's avatar
Linus Torvalds committed
1131
			tmp = c->lct;
1132
			c->lct = pci_alloc_consistent(c->pdev, c->dlct->table_size<<2, &phys);
Linus Torvalds's avatar
Linus Torvalds committed
1133 1134 1135 1136 1137 1138
			if(!c->lct)
			{
				printk(KERN_ERR "%s: No memory for LCT!\n", c->name);
				c->lct = tmp;
				continue;
			}
1139 1140
			pci_free_consistent(tmp, c->lct->table_size << 2, c->lct, c->lct_phys);
			c->lct_phys = phys;
Linus Torvalds's avatar
Linus Torvalds committed
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
		}
		memcpy(c->lct, c->dlct, c->dlct->table_size<<2);
	}

	return 0;
}

/**
 *	i2o_run_queue	-	process pending events on a controller
 *	@c: controller to process
 *
 *	This is called by the bus specific driver layer when an interrupt
 *	or poll of this card interface is desired.
 */
 
void i2o_run_queue(struct i2o_controller *c)
{
	struct i2o_message *m;
	u32 mv;
	u32 *msg;

	/*
	 * Old 960 steppings had a bug in the I2O unit that caused
	 * the queue to appear empty when it wasn't.
	 */
	if((mv=I2O_REPLY_READ32(c))==0xFFFFFFFF)
		mv=I2O_REPLY_READ32(c);

	while(mv!=0xFFFFFFFF)
	{
		struct i2o_handler *i;
Linus Torvalds's avatar
Linus Torvalds committed
1172
		/* Map the message from the page frame map to kernel virtual */
1173 1174
		/* m=(struct i2o_message *)(mv - (unsigned long)c->page_frame_map + (unsigned long)c->page_frame); */
		m=(struct i2o_message *)bus_to_virt(mv);
Linus Torvalds's avatar
Linus Torvalds committed
1175 1176
		msg=(u32*)m;

Linus Torvalds's avatar
Linus Torvalds committed
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
		/*
	 	 *	Ensure this message is seen coherently but cachably by
		 *	the processor 
	 	 */

		pci_dma_sync_single(c->pdev, c->page_frame_map, MSG_FRAME_SIZE, PCI_DMA_FROMDEVICE);
	
		/*
		 *	Despatch it
	 	 */

Linus Torvalds's avatar
Linus Torvalds committed
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		i=i2o_handlers[m->initiator_context&(MAX_I2O_MODULES-1)];
		if(i && i->reply)
			i->reply(i,c,m);
		else
		{
			printk(KERN_WARNING "I2O: Spurious reply to handler %d\n", 
				m->initiator_context&(MAX_I2O_MODULES-1));
		}	
	 	i2o_flush_reply(c,mv);
		mb();

		/* That 960 bug again... */	
		if((mv=I2O_REPLY_READ32(c))==0xFFFFFFFF)
			mv=I2O_REPLY_READ32(c);
	}		
}


/**
 *	i2o_get_class_name - 	do i2o class name lookup
 *	@class: class number
 *
 *	Return a descriptive string for an i2o class
 */
 
const char *i2o_get_class_name(int class)
{
	int idx = 16;
	static char *i2o_class_name[] = {
		"Executive",
		"Device Driver Module",
		"Block Device",
		"Tape Device",
		"LAN Interface",
		"WAN Interface",
		"Fibre Channel Port",
		"Fibre Channel Device",
		"SCSI Device",
		"ATE Port",
		"ATE Device",
		"Floppy Controller",
		"Floppy Device",
		"Secondary Bus Port",
		"Peer Transport Agent",
		"Peer Transport",
		"Unknown"
	};
	
	switch(class&0xFFF)
	{
		case I2O_CLASS_EXECUTIVE:
			idx = 0; break;
		case I2O_CLASS_DDM:
			idx = 1; break;
		case I2O_CLASS_RANDOM_BLOCK_STORAGE:
			idx = 2; break;
		case I2O_CLASS_SEQUENTIAL_STORAGE:
			idx = 3; break;
		case I2O_CLASS_LAN:
			idx = 4; break;
		case I2O_CLASS_WAN:
			idx = 5; break;
		case I2O_CLASS_FIBRE_CHANNEL_PORT:
			idx = 6; break;
		case I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL:
			idx = 7; break;
		case I2O_CLASS_SCSI_PERIPHERAL:
			idx = 8; break;
		case I2O_CLASS_ATE_PORT:
			idx = 9; break;
		case I2O_CLASS_ATE_PERIPHERAL:
			idx = 10; break;
		case I2O_CLASS_FLOPPY_CONTROLLER:
			idx = 11; break;
		case I2O_CLASS_FLOPPY_DEVICE:
			idx = 12; break;
		case I2O_CLASS_BUS_ADAPTER_PORT:
			idx = 13; break;
		case I2O_CLASS_PEER_TRANSPORT_AGENT:
			idx = 14; break;
		case I2O_CLASS_PEER_TRANSPORT:
			idx = 15; break;
	}

	return i2o_class_name[idx];
}


/**
Linus Torvalds's avatar
Linus Torvalds committed
1277
 *	i2o_wait_message	-	obtain an i2o message from the IOP
Linus Torvalds's avatar
Linus Torvalds committed
1278
 *	@c: controller
Linus Torvalds's avatar
Linus Torvalds committed
1279
 *	@why: explanation 
Linus Torvalds's avatar
Linus Torvalds committed
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
 *
 *	This function waits up to 5 seconds for a message slot to be
 *	available. If no message is available it prints an error message
 *	that is expected to be what the message will be used for (eg
 *	"get_status"). 0xFFFFFFFF is returned on a failure.
 *
 *	On a success the message is returned. This is the physical page
 *	frame offset address from the read port. (See the i2o spec)
 */
 
u32 i2o_wait_message(struct i2o_controller *c, char *why)
{
	long time=jiffies;
	u32 m;
	while((m=I2O_POST_READ32(c))==0xFFFFFFFF)
	{
		if((jiffies-time)>=5*HZ)
		{
			dprintk(KERN_ERR "%s: Timeout waiting for message frame to send %s.\n", 
				c->name, why);
			return 0xFFFFFFFF;
		}
		schedule();
		barrier();
	}
	return m;
}
	
/**
 *	i2o_report_controller_unit - print information about a tid
 *	@c: controller
 *	@d: device
 *	
 *	Dump an information block associated with a given unit (TID). The
 *	tables are read and a block of text is output to printk that is
 *	formatted intended for the user.
 */
 
void i2o_report_controller_unit(struct i2o_controller *c, struct i2o_device *d)
{
	char buf[64];
	char str[22];
	int ret;
	int unit = d->lct_data.tid;

Linus Torvalds's avatar
Linus Torvalds committed
1325 1326 1327 1328
	if(verbose==0)
		return;
		
	printk(KERN_INFO "Target ID %d.\n", unit);
Linus Torvalds's avatar
Linus Torvalds committed
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	if((ret=i2o_query_scalar(c, unit, 0xF100, 3, buf, 16))>=0)
	{
		buf[16]=0;
		printk(KERN_INFO "     Vendor: %s\n", buf);
	}
	if((ret=i2o_query_scalar(c, unit, 0xF100, 4, buf, 16))>=0)
	{
		buf[16]=0;
		printk(KERN_INFO "     Device: %s\n", buf);
	}
	if(i2o_query_scalar(c, unit, 0xF100, 5, buf, 16)>=0)
	{
		buf[16]=0;
		printk(KERN_INFO "     Description: %s\n", buf);
	}
	if((ret=i2o_query_scalar(c, unit, 0xF100, 6, buf, 8))>=0)
	{
		buf[8]=0;
		printk(KERN_INFO "        Rev: %s\n", buf);
	}

	printk(KERN_INFO "    Class: ");
	sprintf(str, "%-21s", i2o_get_class_name(d->lct_data.class_id));
	printk("%s\n", str);
		
	printk(KERN_INFO "  Subclass: 0x%04X\n", d->lct_data.sub_class);
	printk(KERN_INFO "     Flags: ");
		
	if(d->lct_data.device_flags&(1<<0))
		printk("C");		// ConfigDialog requested
	if(d->lct_data.device_flags&(1<<1))
		printk("U");		// Multi-user capable
	if(!(d->lct_data.device_flags&(1<<4)))
		printk("P");		// Peer service enabled!
	if(!(d->lct_data.device_flags&(1<<5)))
		printk("M");		// Mgmt service enabled!
	printk("\n");
			
}


/*
 *	Parse the hardware resource table. Right now we print it out
 *	and don't do a lot with it. We should collate these and then
 *	interact with the Linux resource allocation block.
 *
 *	Lets prove we can read it first eh ?
 *
 *	This is full of endianisms!
 */
 
static int i2o_parse_hrt(struct i2o_controller *c)
{
#ifdef DRIVERDEBUG
	u32 *rows=(u32*)c->hrt;
	u8 *p=(u8 *)c->hrt;
	u8 *d;
	int count;
	int length;
	int i;
	int state;
	
	if(p[3]!=0)
	{
		printk(KERN_ERR "%s: HRT table for controller is too new a version.\n",
			c->name);
		return -1;
	}
		
	count=p[0]|(p[1]<<8);
	length = p[2];
	
	printk(KERN_INFO "%s: HRT has %d entries of %d bytes each.\n",
		c->name, count, length<<2);

	rows+=2;
	
	for(i=0;i<count;i++)
	{
		printk(KERN_INFO "Adapter %08X: ", rows[0]);
		p=(u8 *)(rows+1);
		d=(u8 *)(rows+2);
		state=p[1]<<8|p[0];
		
		printk("TID %04X:[", state&0xFFF);
		state>>=12;
		if(state&(1<<0))
			printk("H");		/* Hidden */
		if(state&(1<<2))
		{
			printk("P");		/* Present */
			if(state&(1<<1))
				printk("C");	/* Controlled */
		}
		if(state>9)
			printk("*");		/* Hard */
		
		printk("]:");
		
		switch(p[3]&0xFFFF)
		{
			case 0:
				/* Adapter private bus - easy */
				printk("Local bus %d: I/O at 0x%04X Mem 0x%08X", 
					p[2], d[1]<<8|d[0], *(u32 *)(d+4));
				break;
			case 1:
				/* ISA bus */
				printk("ISA %d: CSN %d I/O at 0x%04X Mem 0x%08X",
					p[2], d[2], d[1]<<8|d[0], *(u32 *)(d+4));
				break;
					
			case 2: /* EISA bus */
				printk("EISA %d: Slot %d I/O at 0x%04X Mem 0x%08X",
					p[2], d[3], d[1]<<8|d[0], *(u32 *)(d+4));
				break;

			case 3: /* MCA bus */
				printk("MCA %d: Slot %d I/O at 0x%04X Mem 0x%08X",
					p[2], d[3], d[1]<<8|d[0], *(u32 *)(d+4));
				break;

			case 4: /* PCI bus */
				printk("PCI %d: Bus %d Device %d Function %d",
					p[2], d[2], d[1], d[0]);
				break;

			case 0x80: /* Other */
			default:
				printk("Unsupported bus type.");
				break;
		}
		printk("\n");
		rows+=length;
	}
#endif
	return 0;
}
	
/*
 *	The logical configuration table tells us what we can talk to
 *	on the board. Most of the stuff isn't interesting to us. 
 */

static int i2o_parse_lct(struct i2o_controller *c)
{
	int i;
	int max;
	int tid;
	struct i2o_device *d;
	i2o_lct *lct = c->lct;

	if (lct == NULL) {
		printk(KERN_ERR "%s: LCT is empty???\n", c->name);
		return -1;
	}

	max = lct->table_size;
	max -= 3;
	max /= 9;
	
	printk(KERN_INFO "%s: LCT has %d entries.\n", c->name, max);
	
	if(lct->iop_flags&(1<<0))
		printk(KERN_WARNING "%s: Configuration dialog desired.\n", c->name);
		
	for(i=0;i<max;i++)
	{
		d = (struct i2o_device *)kmalloc(sizeof(struct i2o_device), GFP_KERNEL);
		if(d==NULL)
		{
			printk(KERN_CRIT "i2o_core: Out of memory for I2O device data.\n");
			return -ENOMEM;
		}
		
		d->controller = c;
		d->next = NULL;

		memcpy(&d->lct_data, &lct->lct_entry[i], sizeof(i2o_lct_entry));

		d->flags = 0;
		tid = d->lct_data.tid;
		
		i2o_report_controller_unit(c, d);
		
		i2o_install_device(c, d);
	}
	return 0;
}


/**
 *	i2o_quiesce_controller - quiesce controller
 *	@c: controller 
 *
 *	Quiesce an IOP. Causes IOP to make external operation quiescent
 *	(i2o 'READY' state). Internal operation of the IOP continues normally.
 */
 
int i2o_quiesce_controller(struct i2o_controller *c)
{
	u32 msg[4];
	int ret;

	i2o_status_get(c);

	/* SysQuiesce discarded if IOP not in READY or OPERATIONAL state */

	if ((c->status_block->iop_state != ADAPTER_STATE_READY) &&
		(c->status_block->iop_state != ADAPTER_STATE_OPERATIONAL))
	{
		return 0;
	}

	msg[0] = FOUR_WORD_MSG_SIZE|SGL_OFFSET_0;
	msg[1] = I2O_CMD_SYS_QUIESCE<<24|HOST_TID<<12|ADAPTER_TID;
	msg[3] = 0;

	/* Long timeout needed for quiesce if lots of devices */

	if ((ret = i2o_post_wait(c, msg, sizeof(msg), 240)))
		printk(KERN_INFO "%s: Unable to quiesce (status=%#x).\n",
			c->name, -ret);
	else
		dprintk(KERN_INFO "%s: Quiesced.\n", c->name);

	i2o_status_get(c); // Entered READY state
	return ret;
}

/**
 *	i2o_enable_controller - move controller from ready to operational
 *	@c: controller
 *
 *	Enable IOP. This allows the IOP to resume external operations and
 *	reverses the effect of a quiesce. In the event of an error a negative
 *	errno code is returned.
 */
 
int i2o_enable_controller(struct i2o_controller *c)
{
	u32 msg[4];
	int ret;

	i2o_status_get(c);
	
	/* Enable only allowed on READY state */	
	if(c->status_block->iop_state != ADAPTER_STATE_READY)
		return -EINVAL;

	msg[0]=FOUR_WORD_MSG_SIZE|SGL_OFFSET_0;
	msg[1]=I2O_CMD_SYS_ENABLE<<24|HOST_TID<<12|ADAPTER_TID;

	/* How long of a timeout do we need? */

	if ((ret = i2o_post_wait(c, msg, sizeof(msg), 240)))
		printk(KERN_ERR "%s: Could not enable (status=%#x).\n",
			c->name, -ret);
	else
		dprintk(KERN_INFO "%s: Enabled.\n", c->name);

	i2o_status_get(c); // entered OPERATIONAL state

	return ret;
}

/**
 *	i2o_clear_controller	-	clear a controller
 *	@c: controller
 *
 *	Clear an IOP to HOLD state, ie. terminate external operations, clear all
 *	input queues and prepare for a system restart. IOP's internal operation
 *	continues normally and the outbound queue is alive.
 *	The IOP is not expected to rebuild its LCT.
 */
 
int i2o_clear_controller(struct i2o_controller *c)
{
	struct i2o_controller *iop;
	u32 msg[4];
	int ret;

	/* Quiesce all IOPs first */

	for (iop = i2o_controller_chain; iop; iop = iop->next)
		i2o_quiesce_controller(iop);

	msg[0]=FOUR_WORD_MSG_SIZE|SGL_OFFSET_0;
	msg[1]=I2O_CMD_ADAPTER_CLEAR<<24|HOST_TID<<12|ADAPTER_TID;
	msg[3]=0;

	if ((ret=i2o_post_wait(c, msg, sizeof(msg), 30)))
		printk(KERN_INFO "%s: Unable to clear (status=%#x).\n",
			c->name, -ret);
	else
		dprintk(KERN_INFO "%s: Cleared.\n",c->name);

	i2o_status_get(c);

	/* Enable other IOPs */

	for (iop = i2o_controller_chain; iop; iop = iop->next)
		if (iop != c)
			i2o_enable_controller(iop);

	return ret;
}


/**
Linus Torvalds's avatar
Linus Torvalds committed
1639
 *	i2o_reset_controller	-	reset an IOP
Linus Torvalds's avatar
Linus Torvalds committed
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
 *	@c: controller to reset
 *
 *	Reset the IOP into INIT state and wait until IOP gets into RESET state.
 *	Terminate all external operations, clear IOP's inbound and outbound
 *	queues, terminate all DDMs, and reload the IOP's operating environment
 *	and all local DDMs. The IOP rebuilds its LCT.
 */
 
static int i2o_reset_controller(struct i2o_controller *c)
{
	struct i2o_controller *iop;
	u32 m;
	u8 *status;
1653
	dma_addr_t status_phys;
Linus Torvalds's avatar
Linus Torvalds committed
1654 1655 1656 1657 1658 1659
	u32 *msg;
	long time;

	/* Quiesce all IOPs first */

	for (iop = i2o_controller_chain; iop; iop = iop->next)
Linus Torvalds's avatar
Linus Torvalds committed
1660 1661 1662 1663
	{
		if(iop->type != I2O_TYPE_PCI || !iop->bus.pci.dpt)
			i2o_quiesce_controller(iop);
	}
Linus Torvalds's avatar
Linus Torvalds committed
1664 1665 1666 1667 1668 1669

	m=i2o_wait_message(c, "AdapterReset");
	if(m==0xFFFFFFFF)	
		return -ETIMEDOUT;
	msg=(u32 *)(c->mem_offset+m);
	
1670 1671
	status = pci_alloc_consistent(c->pdev, 4, &status_phys);
	if(status == NULL) {
Linus Torvalds's avatar
Linus Torvalds committed
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
		printk(KERN_ERR "IOP reset failed - no free memory.\n");
		return -ENOMEM;
	}
	memset(status, 0, 4);
	
	msg[0]=EIGHT_WORD_MSG_SIZE|SGL_OFFSET_0;
	msg[1]=I2O_CMD_ADAPTER_RESET<<24|HOST_TID<<12|ADAPTER_TID;
	msg[2]=core_context;
	msg[3]=0;
	msg[4]=0;
	msg[5]=0;
1683
	msg[6]=status_phys;
Linus Torvalds's avatar
Linus Torvalds committed
1684 1685 1686 1687 1688 1689
	msg[7]=0;	/* 64bit host FIXME */

	i2o_post_message(c,m);

	/* Wait for a reply */
	time=jiffies;
Linus Torvalds's avatar
Linus Torvalds committed
1690
	while(*status==0)
Linus Torvalds's avatar
Linus Torvalds committed
1691 1692 1693 1694
	{
		if((jiffies-time)>=20*HZ)
		{
			printk(KERN_ERR "IOP reset timeout.\n");
1695
			// Better to leak this for safety: - status;
Linus Torvalds's avatar
Linus Torvalds committed
1696 1697 1698 1699 1700 1701
			return -ETIMEDOUT;
		}
		schedule();
		barrier();
	}

Linus Torvalds's avatar
Linus Torvalds committed
1702
	if (*status==I2O_CMD_IN_PROGRESS)
Linus Torvalds's avatar
Linus Torvalds committed
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
	{ 
		/* 
		 * Once the reset is sent, the IOP goes into the INIT state 
		 * which is indeterminate.  We need to wait until the IOP 
		 * has rebooted before we can let the system talk to 
		 * it. We read the inbound Free_List until a message is 
		 * available.  If we can't read one in the given ammount of 
		 * time, we assume the IOP could not reboot properly.  
		 */ 

		dprintk(KERN_INFO "%s: Reset in progress, waiting for reboot...\n",
			c->name); 

		time = jiffies; 
		m = I2O_POST_READ32(c); 
		while(m == 0XFFFFFFFF) 
		{ 
			if((jiffies-time) >= 30*HZ)
			{
				printk(KERN_ERR "%s: Timeout waiting for IOP reset.\n", 
						c->name); 
				return -ETIMEDOUT; 
			} 
			schedule(); 
			barrier(); 
			m = I2O_POST_READ32(c); 
		}
		i2o_flush_reply(c,m);
	}

	/* If IopReset was rejected or didn't perform reset, try IopClear */

	i2o_status_get(c);
	if (status[0] == I2O_CMD_REJECTED || 
		c->status_block->iop_state != ADAPTER_STATE_RESET)
	{
		printk(KERN_WARNING "%s: Reset rejected, trying to clear\n",c->name);
		i2o_clear_controller(c);
	}
	else
		dprintk(KERN_INFO "%s: Reset completed.\n", c->name);

	/* Enable other IOPs */

	for (iop = i2o_controller_chain; iop; iop = iop->next)
		if (iop != c)
			i2o_enable_controller(iop);

1751
	pci_free_consistent(c->pdev, 4, status, status_phys);
Linus Torvalds's avatar
Linus Torvalds committed
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	return 0;
}


/**
 * 	i2o_status_get	-	get the status block for the IOP
 *	@c: controller
 *
 *	Issue a status query on the controller. This updates the
 *	attached status_block. If the controller fails to reply or an
 *	error occurs then a negative errno code is returned. On success
 *	zero is returned and the status_blok is updated.
 */
 
int i2o_status_get(struct i2o_controller *c)
{
	long time;
	u32 m;
	u32 *msg;
	u8 *status_block;

	if (c->status_block == NULL) 
	{
		c->status_block = (i2o_status_block *)
1776
			pci_alloc_consistent(c->pdev, sizeof(i2o_status_block), &c->status_block_phys);
Linus Torvalds's avatar
Linus Torvalds committed
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
		if (c->status_block == NULL)
		{
			printk(KERN_CRIT "%s: Get Status Block failed; Out of memory.\n",
				c->name);
			return -ENOMEM;
		}
	}

	status_block = (u8*)c->status_block;
	memset(c->status_block,0,sizeof(i2o_status_block));
	
	m=i2o_wait_message(c, "StatusGet");
	if(m==0xFFFFFFFF)
		return -ETIMEDOUT;	
	msg=(u32 *)(c->mem_offset+m);

	msg[0]=NINE_WORD_MSG_SIZE|SGL_OFFSET_0;
	msg[1]=I2O_CMD_STATUS_GET<<24|HOST_TID<<12|ADAPTER_TID;
	msg[2]=core_context;
	msg[3]=0;
	msg[4]=0;
	msg[5]=0;
1799
	msg[6]=c->status_block_phys;
Linus Torvalds's avatar
Linus Torvalds committed
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	msg[7]=0;   /* 64bit host FIXME */
	msg[8]=sizeof(i2o_status_block); /* always 88 bytes */

	i2o_post_message(c,m);

	/* Wait for a reply */

	time=jiffies;
	while(status_block[87]!=0xFF)
	{
		if((jiffies-time)>=5*HZ)
		{
			printk(KERN_ERR "%s: Get status timeout.\n",c->name);
			return -ETIMEDOUT;
		}
1815
		yield();
Linus Torvalds's avatar
Linus Torvalds committed
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
		barrier();
	}

#ifdef DRIVERDEBUG
	printk(KERN_INFO "%s: State = ", c->name);
	switch (c->status_block->iop_state) {
		case 0x01:  
			printk("INIT\n");
			break;
		case 0x02:
			printk("RESET\n");
			break;
		case 0x04:
			printk("HOLD\n");
			break;
		case 0x05:
			printk("READY\n");
			break;
		case 0x08:
			printk("OPERATIONAL\n");
			break;
		case 0x10:
			printk("FAILED\n");
			break;
		case 0x11:
			printk("FAULTED\n");
			break;
		default: 
			printk("%x (unknown !!)\n",c->status_block->iop_state);
}     
#endif   

	return 0;
}

/*
 * Get the Hardware Resource Table for the device.
 * The HRT contains information about possible hidden devices
 * but is mostly useless to us 
 */
int i2o_hrt_get(struct i2o_controller *c)
{
	u32 msg[6];
	int ret, size = sizeof(i2o_hrt);

Linus Torvalds's avatar
Linus Torvalds committed
1861
	/* First read just the header to figure out the real size */
Linus Torvalds's avatar
Linus Torvalds committed
1862 1863 1864

	do  {
		if (c->hrt == NULL) {
1865
			c->hrt=pci_alloc_consistent(c->pdev, size, &c->hrt_phys);
Linus Torvalds's avatar
Linus Torvalds committed
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
			if (c->hrt == NULL) {
				printk(KERN_CRIT "%s: Hrt Get failed; Out of memory.\n", c->name);
				return -ENOMEM;
			}
		}

		msg[0]= SIX_WORD_MSG_SIZE| SGL_OFFSET_4;
		msg[1]= I2O_CMD_HRT_GET<<24 | HOST_TID<<12 | ADAPTER_TID;
		msg[3]= 0;
		msg[4]= (0xD0000000 | size);	/* Simple transaction */
1876
		msg[5]= c->hrt_phys;		/* Dump it here */
Linus Torvalds's avatar
Linus Torvalds committed
1877

1878
		ret = i2o_post_wait_mem(c, msg, sizeof(msg), 20, c->hrt, NULL, c->hrt_phys, 0, size, 0);
Linus Torvalds's avatar
Linus Torvalds committed
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
		
		if(ret == -ETIMEDOUT)
		{
			/* The HRT block we used is in limbo somewhere. When the iop wakes up
			   we will recover it */
			c->hrt = NULL;
			return ret;
		}
		
		if(ret<0)
		{
Linus Torvalds's avatar
Linus Torvalds committed
1890 1891 1892 1893 1894 1895
			printk(KERN_ERR "%s: Unable to get HRT (status=%#x)\n",
				c->name, -ret);	
			return ret;
		}

		if (c->hrt->num_entries * c->hrt->entry_len << 2 > size) {
1896 1897 1898
			int new_size = c->hrt->num_entries * c->hrt->entry_len << 2;
			pci_free_consistent(c->pdev, size, c->hrt, c->hrt_phys);
			size = new_size;
Linus Torvalds's avatar
Linus Torvalds committed
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
			c->hrt = NULL;
		}
	} while (c->hrt == NULL);

	i2o_parse_hrt(c); // just for debugging

	return 0;
}

/*
 * Send the I2O System Table to the specified IOP
 *
 * The system table contains information about all the IOPs in the
 * system.  It is build and then sent to each IOP so that IOPs can
 * establish connections between each other.
 *
 */
static int i2o_systab_send(struct i2o_controller *iop)
{
	u32 msg[12];
1919
	dma_addr_t sys_tbl_phys;
Linus Torvalds's avatar
Linus Torvalds committed
1920
	int ret;
Linus Torvalds's avatar
Linus Torvalds committed
1921 1922 1923
	u32 *privbuf = kmalloc(16, GFP_KERNEL);
	if(privbuf == NULL)
		return -ENOMEM;
Linus Torvalds's avatar
Linus Torvalds committed
1924 1925 1926 1927 1928 1929 1930 1931
	
	if(iop->type == I2O_TYPE_PCI)
	{
		struct resource *root;
		
		if(iop->status_block->current_mem_size < iop->status_block->desired_mem_size)
		{
			struct resource *res = &iop->mem_resource;
Linus Torvalds's avatar
Linus Torvalds committed
1932
			res->name = iop->pdev->bus->name;
Linus Torvalds's avatar
Linus Torvalds committed
1933 1934 1935 1936
			res->flags = IORESOURCE_MEM;
			res->start = 0;
			res->end = 0;
			printk("%s: requires private memory resources.\n", iop->name);
Linus Torvalds's avatar
Linus Torvalds committed
1937
			root = pci_find_parent_resource(iop->pdev, res);
Linus Torvalds's avatar
Linus Torvalds committed
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
			if(root==NULL)
				printk("Can't find parent resource!\n");
			if(root && allocate_resource(root, res, 
					iop->status_block->desired_mem_size,
					iop->status_block->desired_mem_size,
					iop->status_block->desired_mem_size,
					1<<20,	/* Unspecified, so use 1Mb and play safe */
					NULL,
					NULL)>=0)
			{
				iop->mem_alloc = 1;
				iop->status_block->current_mem_size = 1 + res->end - res->start;
				iop->status_block->current_mem_base = res->start;
				printk(KERN_INFO "%s: allocated %ld bytes of PCI memory at 0x%08lX.\n", 
					iop->name, 1+res->end-res->start, res->start);
			}
		}
		if(iop->status_block->current_io_size < iop->status_block->desired_io_size)
		{
			struct resource *res = &iop->io_resource;
Linus Torvalds's avatar
Linus Torvalds committed
1958
			res->name = iop->pdev->bus->name;
Linus Torvalds's avatar
Linus Torvalds committed
1959 1960 1961 1962
			res->flags = IORESOURCE_IO;
			res->start = 0;
			res->end = 0;
			printk("%s: requires private memory resources.\n", iop->name);
Linus Torvalds's avatar
Linus Torvalds committed
1963
			root = pci_find_parent_resource(iop->pdev, res);
Linus Torvalds's avatar
Linus Torvalds committed
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
			if(root==NULL)
				printk("Can't find parent resource!\n");
			if(root &&  allocate_resource(root, res, 
					iop->status_block->desired_io_size,
					iop->status_block->desired_io_size,
					iop->status_block->desired_io_size,
					1<<20,	/* Unspecified, so use 1Mb and play safe */
					NULL,
					NULL)>=0)
			{
				iop->io_alloc = 1;
				iop->status_block->current_io_size = 1 + res->end - res->start;
				iop->status_block->current_mem_base = res->start;
				printk(KERN_INFO "%s: allocated %ld bytes of PCI I/O at 0x%08lX.\n", 
					iop->name, 1+res->end-res->start, res->start);
			}
		}
	}
	else
	{	
		privbuf[0] = iop->status_block->current_mem_base;
		privbuf[1] = iop->status_block->current_mem_size;
		privbuf[2] = iop->status_block->current_io_base;
		privbuf[3] = iop->status_block->current_io_size;
	}
Linus Torvalds's avatar
Linus Torvalds committed
1989 1990 1991 1992

	msg[0] = I2O_MESSAGE_SIZE(12) | SGL_OFFSET_6;
	msg[1] = I2O_CMD_SYS_TAB_SET<<24 | HOST_TID<<12 | ADAPTER_TID;
	msg[3] = 0;
Linus Torvalds's avatar
Linus Torvalds committed
1993
	msg[4] = (0<<16) | ((iop->unit+2) );      /* Host 0 IOP ID (unit + 2) */
Linus Torvalds's avatar
Linus Torvalds committed
1994 1995 1996 1997 1998 1999
	msg[5] = 0;                               /* Segment 0 */

	/* 
 	 * Provide three SGL-elements:
 	 * System table (SysTab), Private memory space declaration and 
 	 * Private i/o space declaration  
2000 2001 2002
 	 * 
 	 * Nasty one here. We can't use pci_alloc_consistent to send the
 	 * same table to everyone. We have to go remap it for them all
Linus Torvalds's avatar
Linus Torvalds committed
2003
 	 */
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
 	 
 	sys_tbl_phys = pci_map_single(iop->pdev, sys_tbl, sys_tbl_len, PCI_DMA_TODEVICE);
	msg[6] = 0x54000000 | sys_tbl_phys;

	msg[7] = sys_tbl_phys;
	msg[8] = 0x54000000 | privbuf[1];
	msg[9] = privbuf[0];
	msg[10] = 0xD4000000 | privbuf[3];
	msg[11] = privbuf[2];

	ret=i2o_post_wait(iop, msg, sizeof(msg), 120);

	pci_unmap_single(iop->pdev, sys_tbl_phys, sys_tbl_len, PCI_DMA_TODEVICE);
Linus Torvalds's avatar
Linus Torvalds committed
2017 2018 2019 2020 2021 2022 2023 2024
	
	if(ret==-ETIMEDOUT)
	{
		printk(KERN_ERR "%s: SysTab setup timed out.\n", iop->name);
	}
	else if(ret<0)
	{
		printk(KERN_ERR "%s: Unable to set SysTab (status=%#x).\n", 
Linus Torvalds's avatar
Linus Torvalds committed
2025
			iop->name, -ret);
Linus Torvalds's avatar
Linus Torvalds committed
2026 2027
		kfree(privbuf);
	}
Linus Torvalds's avatar
Linus Torvalds committed
2028
	else
Linus Torvalds's avatar
Linus Torvalds committed
2029
	{
Linus Torvalds's avatar
Linus Torvalds committed
2030
		dprintk(KERN_INFO "%s: SysTab set.\n", iop->name);
Linus Torvalds's avatar
Linus Torvalds committed
2031 2032
		kfree(privbuf);
	}
Linus Torvalds's avatar
Linus Torvalds committed
2033 2034 2035 2036 2037 2038 2039 2040 2041
	i2o_status_get(iop); // Entered READY state

	return ret;	

 }

/*
 * Initialize I2O subsystem.
 */
2042
void __init i2o_sys_init(void)
Linus Torvalds's avatar
Linus Torvalds committed
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
{
	struct i2o_controller *iop, *niop = NULL;

	printk(KERN_INFO "Activating I2O controllers...\n");
	printk(KERN_INFO "This may take a few minutes if there are many devices\n");
	
	/* In INIT state, Activate IOPs */
	for (iop = i2o_controller_chain; iop; iop = niop) {
		dprintk(KERN_INFO "Calling i2o_activate_controller for %s...\n", 
			iop->name);
		niop = iop->next;
		if (i2o_activate_controller(iop) < 0)
			i2o_delete_controller(iop);
	}

	/* Active IOPs in HOLD state */

rebuild_sys_tab:
	if (i2o_controller_chain == NULL)
		return;

	/*
	 * If build_sys_table fails, we kill everything and bail
	 * as we can't init the IOPs w/o a system table
	 */	
	dprintk(KERN_INFO "i2o_core: Calling i2o_build_sys_table...\n");
	if (i2o_build_sys_table() < 0) {
		i2o_sys_shutdown();
		return;
	}

	/* If IOP don't get online, we need to rebuild the System table */
	for (iop = i2o_controller_chain; iop; iop = niop) {
		niop = iop->next;
		dprintk(KERN_INFO "Calling i2o_online_controller for %s...\n", iop->name);
		if (i2o_online_controller(iop) < 0) {
			i2o_delete_controller(iop);	
			goto rebuild_sys_tab;
		}
	}
	
	/* Active IOPs now in OPERATIONAL state */

	/*
	 * Register for status updates from all IOPs
	 */
	for(iop = i2o_controller_chain; iop; iop=iop->next) {

		/* Create a kernel thread to deal with dynamic LCT updates */
		iop->lct_pid = kernel_thread(i2o_dyn_lct, iop, CLONE_SIGHAND);
	
		/* Update change ind on DLCT */
		iop->dlct->change_ind = iop->lct->change_ind;

		/* Start dynamic LCT updates */
		i2o_lct_notify(iop);

		/* Register for all events from IRTOS */
		i2o_event_register(iop, core_context, 0, 0, 0xFFFFFFFF);
	}
}

/**
 *	i2o_sys_shutdown - shutdown I2O system
 *
 *	Bring down each i2o controller and then return. Each controller
 *	is taken through an orderly shutdown
 */
 
static void i2o_sys_shutdown(void)
{
	struct i2o_controller *iop, *niop;

	/* Delete all IOPs from the controller chain */
	/* that will reset all IOPs too */

	for (iop = i2o_controller_chain; iop; iop = niop) {
		niop = iop->next;
		i2o_delete_controller(iop);
	}
}

/**
 *	i2o_activate_controller	-	bring controller up to HOLD
 *	@iop: controller
 *
 *	This function brings an I2O controller into HOLD state. The adapter
 *	is reset if neccessary and then the queues and resource table
 *	are read. -1 is returned on a failure, 0 on success.
 *	
 */
 
int i2o_activate_controller(struct i2o_controller *iop)
{
	/* In INIT state, Wait Inbound Q to initialize (in i2o_status_get) */
	/* In READY state, Get status */

	if (i2o_status_get(iop) < 0) {
		printk(KERN_INFO "Unable to obtain status of %s, "
			"attempting a reset.\n", iop->name);
		if (i2o_reset_controller(iop) < 0)
			return -1;
	}

	if(iop->status_block->iop_state == ADAPTER_STATE_FAULTED) {
		printk(KERN_CRIT "%s: hardware fault\n", iop->name);
		return -1;
	}

	if (iop->status_block->i2o_version > I2OVER15) {
		printk(KERN_ERR "%s: Not running vrs. 1.5. of the I2O Specification.\n",
			iop->name);
		return -1;
	}

	if (iop->status_block->iop_state == ADAPTER_STATE_READY ||
	    iop->status_block->iop_state == ADAPTER_STATE_OPERATIONAL ||
	    iop->status_block->iop_state == ADAPTER_STATE_HOLD ||
	    iop->status_block->iop_state == ADAPTER_STATE_FAILED)
	{
		dprintk(KERN_INFO "%s: Already running, trying to reset...\n",
			iop->name);
		if (i2o_reset_controller(iop) < 0)
			return -1;
	}

	if (i2o_init_outbound_q(iop) < 0)
		return -1;

	if (i2o_post_outbound_messages(iop)) 
		return -1;

	/* In HOLD state */
	
	if (i2o_hrt_get(iop) < 0)
		return -1;

	return 0;
}


/**
 *	i2o_init_outbound_queue	- setup the outbound queue
 *	@c: controller
 *
 *	Clear and (re)initialize IOP's outbound queue. Returns 0 on
 *	success or a negative errno code on a failure.
 */
 
int i2o_init_outbound_q(struct i2o_controller *c)
{
	u8 *status;
2195
	dma_addr_t status_phys;
Linus Torvalds's avatar
Linus Torvalds committed
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
	u32 m;
	u32 *msg;
	u32 time;

	dprintk(KERN_INFO "%s: Initializing Outbound Queue...\n", c->name);
	m=i2o_wait_message(c, "OutboundInit");
	if(m==0xFFFFFFFF)
		return -ETIMEDOUT;
	msg=(u32 *)(c->mem_offset+m);

2206
	status = pci_alloc_consistent(c->pdev, 4, &status_phys);
Linus Torvalds's avatar
Linus Torvalds committed
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
	if (status==NULL) {
		printk(KERN_ERR "%s: Outbound Queue initialization failed - no free memory.\n",
			c->name);
		return -ENOMEM;
	}
	memset(status, 0, 4);

	msg[0]= EIGHT_WORD_MSG_SIZE| TRL_OFFSET_6;
	msg[1]= I2O_CMD_OUTBOUND_INIT<<24 | HOST_TID<<12 | ADAPTER_TID;
	msg[2]= core_context;
	msg[3]= 0x0106;				/* Transaction context */
	msg[4]= 4096;				/* Host page frame size */
2219 2220
	/* Frame size is in words. 256 bytes a frame for now */
	msg[5]= MSG_FRAME_SIZE<<16|0x80;	/* Outbound msg frame size in words and Initcode */
Linus Torvalds's avatar
Linus Torvalds committed
2221
	msg[6]= 0xD0000004;			/* Simple SG LE, EOB */
2222
	msg[7]= status_phys;
Linus Torvalds's avatar
Linus Torvalds committed
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237

	i2o_post_message(c,m);
	
	barrier();
	time=jiffies;
	while(status[0] < I2O_CMD_REJECTED)
	{
		if((jiffies-time)>=30*HZ)
		{
			if(status[0]==0x00)
				printk(KERN_ERR "%s: Ignored queue initialize request.\n",
					c->name);
			else  
				printk(KERN_ERR "%s: Outbound queue initialize timeout.\n",
					c->name);
2238
			pci_free_consistent(c->pdev, 4, status, status_phys);
Linus Torvalds's avatar
Linus Torvalds committed
2239 2240
			return -ETIMEDOUT;
		}  
2241
		yield();
Linus Torvalds's avatar
Linus Torvalds committed
2242 2243 2244 2245 2246 2247
		barrier();
	}  

	if(status[0] != I2O_CMD_COMPLETED)
	{
		printk(KERN_ERR "%s: IOP outbound initialise failed.\n", c->name);
2248
		pci_free_consistent(c->pdev, 4, status, status_phys);
Linus Torvalds's avatar
Linus Torvalds committed
2249 2250
		return -ETIMEDOUT;
	}
2251
	pci_free_consistent(c->pdev, 4, status, status_phys);
Linus Torvalds's avatar
Linus Torvalds committed
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
	return 0;
}

/**
 *	i2o_post_outbound_messages	-	fill message queue
 *	@c: controller
 *
 *	Allocate a message frame and load the messages into the IOP. The
 *	function returns zero on success or a negative errno code on
 *	failure.
 */

int i2o_post_outbound_messages(struct i2o_controller *c)
{
	int i;
	u32 m;
	/* Alloc space for IOP's outbound queue message frames */

	c->page_frame = kmalloc(MSG_POOL_SIZE, GFP_KERNEL);
	if(c->page_frame==NULL) {
Linus Torvalds's avatar
Linus Torvalds committed
2272
		printk(KERN_ERR "%s: Outbound Q initialize failed; out of memory.\n",
Linus Torvalds's avatar
Linus Torvalds committed
2273 2274 2275
			c->name);
		return -ENOMEM;
	}
Linus Torvalds's avatar
Linus Torvalds committed
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

	c->page_frame_map = pci_map_single(c->pdev, c->page_frame, MSG_POOL_SIZE, PCI_DMA_FROMDEVICE);

	if(c->page_frame_map == 0)
	{
		kfree(c->page_frame);
		printk(KERN_ERR "%s: Unable to map outbound queue.\n", c->name);
		return -ENOMEM;
	}

	m = c->page_frame_map;
Linus Torvalds's avatar
Linus Torvalds committed
2287 2288 2289 2290 2291 2292

	/* Post frames */

	for(i=0; i< NMBR_MSG_FRAMES; i++) {
		I2O_REPLY_WRITE32(c,m);
		mb();
2293
		m += (MSG_FRAME_SIZE << 2);
Linus Torvalds's avatar
Linus Torvalds committed
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
	}

	return 0;
}

/*
 * Get the IOP's Logical Configuration Table
 */
int i2o_lct_get(struct i2o_controller *c)
{
	u32 msg[8];
	int ret, size = c->status_block->expected_lct_size;

	do {
		if (c->lct == NULL) {
2309
			c->lct = pci_alloc_consistent(c->pdev, size, &c->lct_phys);
Linus Torvalds's avatar
Linus Torvalds committed
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
			if(c->lct == NULL) {
				printk(KERN_CRIT "%s: Lct Get failed. Out of memory.\n",
					c->name);
				return -ENOMEM;
			}
		}
		memset(c->lct, 0, size);

		msg[0] = EIGHT_WORD_MSG_SIZE|SGL_OFFSET_6;
		msg[1] = I2O_CMD_LCT_NOTIFY<<24 | HOST_TID<<12 | ADAPTER_TID;
		/* msg[2] filled in i2o_post_wait */
		msg[3] = 0;
		msg[4] = 0xFFFFFFFF;	/* All devices */
		msg[5] = 0x00000000;	/* Report now */
		msg[6] = 0xD0000000|size;
2325
		msg[7] = c->lct_phys;
Linus Torvalds's avatar
Linus Torvalds committed
2326

2327
		ret=i2o_post_wait_mem(c, msg, sizeof(msg), 120, c->lct, NULL, c->lct_phys, 0, size, 0);
Linus Torvalds's avatar
Linus Torvalds committed
2328 2329 2330 2331 2332 2333 2334 2335 2336
		
		if(ret == -ETIMEDOUT)
		{
			c->lct = NULL;
			return ret;
		}
		
		if(ret<0)
		{
Linus Torvalds's avatar
Linus Torvalds committed
2337 2338 2339 2340 2341 2342
			printk(KERN_ERR "%s: LCT Get failed (status=%#x.\n", 
				c->name, -ret);	
			return ret;
		}

		if (c->lct->table_size << 2 > size) {
2343 2344 2345
			int new_size = c->lct->table_size << 2;
			pci_free_consistent(c->pdev, size, c->lct, c->lct_phys);
			size = new_size;
Linus Torvalds's avatar
Linus Torvalds committed
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
			c->lct = NULL;
		}
	} while (c->lct == NULL);

        if ((ret=i2o_parse_lct(c)) < 0)
                return ret;

	return 0;
}

/*
 * Like above, but used for async notification.  The main
 * difference is that we keep track of the CurrentChangeIndiicator
 * so that we only get updates when it actually changes.
 *
 */
int i2o_lct_notify(struct i2o_controller *c)
{
	u32 msg[8];

	msg[0] = EIGHT_WORD_MSG_SIZE|SGL_OFFSET_6;
	msg[1] = I2O_CMD_LCT_NOTIFY<<24 | HOST_TID<<12 | ADAPTER_TID;
	msg[2] = core_context;
	msg[3] = 0xDEADBEEF;	
	msg[4] = 0xFFFFFFFF;	/* All devices */
	msg[5] = c->dlct->change_ind+1;	/* Next change */
	msg[6] = 0xD0000000|8192;
2373
	msg[7] = c->dlct_phys;
Linus Torvalds's avatar
Linus Torvalds committed
2374 2375 2376 2377 2378 2379 2380

	return i2o_post_this(c, msg, sizeof(msg));
}
		
/*
 *	Bring a controller online into OPERATIONAL state. 
 */
Linus Torvalds's avatar
Linus Torvalds committed
2381
 
Linus Torvalds's avatar
Linus Torvalds committed
2382 2383
int i2o_online_controller(struct i2o_controller *iop)
{
Linus Torvalds's avatar
Linus Torvalds committed
2384 2385
	u32 v;
	
Linus Torvalds's avatar
Linus Torvalds committed
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	if (i2o_systab_send(iop) < 0)
		return -1;

	/* In READY state */

	dprintk(KERN_INFO "%s: Attempting to enable...\n", iop->name);
	if (i2o_enable_controller(iop) < 0)
		return -1;

	/* In OPERATIONAL state  */

	dprintk(KERN_INFO "%s: Attempting to get/parse lct...\n", iop->name);
	if (i2o_lct_get(iop) < 0)
		return -1;

Linus Torvalds's avatar
Linus Torvalds committed
2401 2402 2403 2404 2405 2406 2407 2408 2409
	/* Check battery status */
	 
	iop->battery = 0;
	if(i2o_query_scalar(iop, ADAPTER_TID, 0x0000, 4, &v, 4)>=0)
	{
		if(v&16)
			iop->battery = 1;
	}

Linus Torvalds's avatar
Linus Torvalds committed
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
	return 0;
}

/*
 * Build system table
 *
 * The system table contains information about all the IOPs in the
 * system (duh) and is used by the Executives on the IOPs to establish
 * peer2peer connections.  We're not supporting peer2peer at the moment,
 * but this will be needed down the road for things like lan2lan forwarding.
 */
static int i2o_build_sys_table(void)
{
	struct i2o_controller *iop = NULL;
	struct i2o_controller *niop = NULL;
	int count = 0;

	sys_tbl_len = sizeof(struct i2o_sys_tbl) +	// Header + IOPs
				(i2o_num_controllers) *
					sizeof(struct i2o_sys_tbl_entry);

	if(sys_tbl)
		kfree(sys_tbl);

	sys_tbl = kmalloc(sys_tbl_len, GFP_KERNEL);
	if(!sys_tbl) {
		printk(KERN_CRIT "SysTab Set failed. Out of memory.\n");
		return -ENOMEM;
	}
	memset((void*)sys_tbl, 0, sys_tbl_len);

	sys_tbl->num_entries = i2o_num_controllers;
	sys_tbl->version = I2OVERSION; /* TODO: Version 2.0 */
	sys_tbl->change_ind = sys_tbl_ind++;

	for(iop = i2o_controller_chain; iop; iop = niop)
	{
		niop = iop->next;

		/* 
		 * Get updated IOP state so we have the latest information
		 *
		 * We should delete the controller at this point if it
		 * doesn't respond since  if it's not on the system table 
		 * it is techninically not part of the I2O subsytem...
		 */
		if(i2o_status_get(iop)) {
			printk(KERN_ERR "%s: Deleting b/c could not get status while"
				"attempting to build system table\n", iop->name);
			i2o_delete_controller(iop);		
			sys_tbl->num_entries--;
			continue; // try the next one
		}

		sys_tbl->iops[count].org_id = iop->status_block->org_id;
		sys_tbl->iops[count].iop_id = iop->unit + 2;
		sys_tbl->iops[count].seg_num = 0;
		sys_tbl->iops[count].i2o_version = 
				iop->status_block->i2o_version;
		sys_tbl->iops[count].iop_state = 
				iop->status_block->iop_state;
		sys_tbl->iops[count].msg_type = 
				iop->status_block->msg_type;
		sys_tbl->iops[count].frame_size = 
				iop->status_block->inbound_frame_size;
		sys_tbl->iops[count].last_changed = sys_tbl_ind - 1; // ??
		sys_tbl->iops[count].iop_capabilities = 
				iop->status_block->iop_capabilities;
2478 2479
		sys_tbl->iops[count].inbound_low = iop->post_port;
		sys_tbl->iops[count].inbound_high = 0;	// FIXME: 64-bit support
Linus Torvalds's avatar
Linus Torvalds committed
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531

		count++;
	}

#ifdef DRIVERDEBUG
{
	u32 *table;
	table = (u32*)sys_tbl;
	for(count = 0; count < (sys_tbl_len >>2); count++)
		printk(KERN_INFO "sys_tbl[%d] = %0#10x\n", count, table[count]);
}
#endif

	return 0;
}


/*
 *	Run time support routines
 */
 
/*
 *	Generic "post and forget" helpers. This is less efficient - we do
 *	a memcpy for example that isnt strictly needed, but for most uses
 *	this is simply not worth optimising
 */

int i2o_post_this(struct i2o_controller *c, u32 *data, int len)
{
	u32 m;
	u32 *msg;
	unsigned long t=jiffies;

	do
	{
		mb();
		m = I2O_POST_READ32(c);
	}
	while(m==0xFFFFFFFF && (jiffies-t)<HZ);
	
	if(m==0xFFFFFFFF)
	{
		printk(KERN_ERR "%s: Timeout waiting for message frame!\n",
		       c->name);
		return -ETIMEDOUT;
	}
	msg = (u32 *)(c->mem_offset + m);
 	memcpy_toio(msg, data, len);
	i2o_post_message(c,m);
	return 0;
}

Linus Torvalds's avatar
Linus Torvalds committed
2532 2533 2534 2535 2536 2537 2538 2539
/**
 * 	i2o_post_wait_mem	-	I2O query/reply with DMA buffers
 *	@c: controller
 *	@msg: message to send
 *	@len: length of message
 *	@timeout: time in seconds to wait
 *	@mem1: attached memory buffer 1
 *	@mem2: attached memory buffer 2
2540 2541 2542 2543
 *	@phys1: physical address of buffer 1
 *	@phys2: physical address of buffer 2
 *	@size1: size of buffer 1
 *	@size2: size of buffer 2
Linus Torvalds's avatar
Linus Torvalds committed
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
 *
 * 	This core API allows an OSM to post a message and then be told whether
 *	or not the system received a successful reply. 
 *
 *	If the message times out then the value '-ETIMEDOUT' is returned. This
 *	is a special case. In this situation the message may (should) complete
 *	at an indefinite time in the future. When it completes it will use the
 *	memory buffers attached to the request. If -ETIMEDOUT is returned then
 *	the memory buffers must not be freed. Instead the event completion will
 *	free them for you. In all other cases the buffers are your problem.
 *
 *	Pass NULL for unneeded buffers.
Linus Torvalds's avatar
Linus Torvalds committed
2556
 */
Linus Torvalds's avatar
Linus Torvalds committed
2557
 
2558
int i2o_post_wait_mem(struct i2o_controller *c, u32 *msg, int len, int timeout, void *mem1, void *mem2, dma_addr_t phys1, dma_addr_t phys2, int size1, int size2)
Linus Torvalds's avatar
Linus Torvalds committed
2559 2560
{
	DECLARE_WAIT_QUEUE_HEAD(wq_i2o_post);
2561
	DECLARE_WAITQUEUE(wait, current);
Linus Torvalds's avatar
Linus Torvalds committed
2562 2563
	int complete = 0;
	int status;
Linus Torvalds's avatar
Linus Torvalds committed
2564
	unsigned long flags = 0;
Linus Torvalds's avatar
Linus Torvalds committed
2565 2566 2567 2568 2569 2570
	struct i2o_post_wait_data *wait_data =
		kmalloc(sizeof(struct i2o_post_wait_data), GFP_KERNEL);

	if(!wait_data)
		return -ENOMEM;

Linus Torvalds's avatar
Linus Torvalds committed
2571 2572 2573 2574 2575 2576 2577
	/*
	 *	Create a new notification object
	 */
	wait_data->status = &status;
	wait_data->complete = &complete;
	wait_data->mem[0] = mem1;
	wait_data->mem[1] = mem2;
2578 2579 2580 2581 2582
	wait_data->phys[0] = phys1;
	wait_data->phys[1] = phys2;
	wait_data->size[0] = size1;
	wait_data->size[1] = size2;
	
Linus Torvalds's avatar
Linus Torvalds committed
2583
	/* 
Linus Torvalds's avatar
Linus Torvalds committed
2584
	 *	Queue the event with its unique id
Linus Torvalds's avatar
Linus Torvalds committed
2585 2586
	 */
	spin_lock_irqsave(&post_wait_lock, flags);
Linus Torvalds's avatar
Linus Torvalds committed
2587

Linus Torvalds's avatar
Linus Torvalds committed
2588 2589 2590 2591 2592
	wait_data->next = post_wait_queue;
	post_wait_queue = wait_data;
	wait_data->id = (++post_wait_id) & 0x7fff;
	wait_data->wq = &wq_i2o_post;

Linus Torvalds's avatar
Linus Torvalds committed
2593 2594 2595 2596 2597 2598
	spin_unlock_irqrestore(&post_wait_lock, flags);

	/*
	 *	Fill in the message id
	 */
	 
Linus Torvalds's avatar
Linus Torvalds committed
2599 2600
	msg[2] = 0x80000000|(u32)core_context|((u32)wait_data->id<<16);
	
Linus Torvalds's avatar
Linus Torvalds committed
2601 2602 2603 2604 2605 2606
	/*
	 *	Post the message to the controller. At some point later it 
	 *	will return. If we time out before it returns then
	 *	complete will be zero.  From the point post_this returns
	 *	the wait_data may have been deleted.
	 */
2607 2608 2609

	add_wait_queue(&wq_i2o_post, &wait);
	set_current_state(TASK_INTERRUPTIBLE);
Linus Torvalds's avatar
Linus Torvalds committed
2610
	if ((status = i2o_post_this(c, msg, len))==0) {
2611
		schedule_timeout(HZ * timeout);
Linus Torvalds's avatar
Linus Torvalds committed
2612
	}  
Linus Torvalds's avatar
Linus Torvalds committed
2613
	else
2614 2615
	{
		remove_wait_queue(&wq_i2o_post, &wait);
Linus Torvalds's avatar
Linus Torvalds committed
2616
		return -EIO;
2617 2618 2619
	}
	remove_wait_queue(&wq_i2o_post, &wait);

Linus Torvalds's avatar
Linus Torvalds committed
2620 2621 2622
	if(signal_pending(current))
		status = -EINTR;
		
Linus Torvalds's avatar
Linus Torvalds committed
2623
	spin_lock_irqsave(&post_wait_lock, flags);
Linus Torvalds's avatar
Linus Torvalds committed
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
	barrier();	/* Be sure we see complete as it is locked */
	if(!complete)
	{
		/* 
		 *	Mark the entry dead. We cannot remove it. This is important.
		 *	When it does terminate (which it must do if the controller hasnt
		 *	died..) then it will otherwise scribble on stuff.
		 *	!complete lets us safely check if the entry is still
		 *	allocated and thus we can write into it
		 */
		wait_data->wq = NULL;
		status = -ETIMEDOUT;
	}
	else
	{
		/* Debugging check - remove me soon */
		if(status == -ETIMEDOUT)
		{
			printk("TIMEDOUT BUG!\n");
			status = -EIO;
Linus Torvalds's avatar
Linus Torvalds committed
2644 2645
		}
	}
Linus Torvalds's avatar
Linus Torvalds committed
2646
	/* And the wait_data is not leaked either! */	 
Linus Torvalds's avatar
Linus Torvalds committed
2647 2648 2649 2650
	spin_unlock_irqrestore(&post_wait_lock, flags);
	return status;
}

Linus Torvalds's avatar
Linus Torvalds committed
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
/**
 * 	i2o_post_wait		-	I2O query/reply
 *	@c: controller
 *	@msg: message to send
 *	@len: length of message
 *	@timeout: time in seconds to wait
 *
 * 	This core API allows an OSM to post a message and then be told whether
 *	or not the system received a successful reply. 
 */
 
int i2o_post_wait(struct i2o_controller *c, u32 *msg, int len, int timeout)
{
2664
	return i2o_post_wait_mem(c, msg, len, timeout, NULL, NULL, 0, 0, 0, 0);
Linus Torvalds's avatar
Linus Torvalds committed
2665 2666
}

Linus Torvalds's avatar
Linus Torvalds committed
2667 2668 2669 2670
/*
 * i2o_post_wait is completed and we want to wake up the 
 * sleeping proccess. Called by core's reply handler.
 */
Linus Torvalds's avatar
Linus Torvalds committed
2671

2672
static void i2o_post_wait_complete(struct i2o_controller *c, u32 context, int status)
Linus Torvalds's avatar
Linus Torvalds committed
2673
{
Linus Torvalds's avatar
Linus Torvalds committed
2674 2675 2676
	struct i2o_post_wait_data **p1, *q;
	unsigned long flags;
	
Linus Torvalds's avatar
Linus Torvalds committed
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
	/* 
	 * We need to search through the post_wait 
	 * queue to see if the given message is still
	 * outstanding.  If not, it means that the IOP 
	 * took longer to respond to the message than we 
	 * had allowed and timer has already expired.  
	 * Not much we can do about that except log
	 * it for debug purposes, increase timeout, and recompile
	 *
	 * Lock needed to keep anyone from moving queue pointers 
	 * around while we're looking through them.
	 */
Linus Torvalds's avatar
Linus Torvalds committed
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717

	spin_lock_irqsave(&post_wait_lock, flags);

	for(p1 = &post_wait_queue; *p1!=NULL; p1 = &((*p1)->next)) 
	{
		q = (*p1);
		if(q->id == ((context >> 16) & 0x7fff)) {
			/*
			 *	Delete it 
			 */
			 
			*p1 = q->next;
			
			/*
			 *	Live or dead ?
			 */
			 
			if(q->wq)
			{
				/* Live entry - wakeup and set status */
				*q->status = status;
				*q->complete = 1;
				wake_up(q->wq);
			}
			else
			{
				/*
				 *	Free resources. Caller is dead
				 */
2718

Linus Torvalds's avatar
Linus Torvalds committed
2719
				if(q->mem[0])
2720
					pci_free_consistent(c->pdev, q->size[0], q->mem[0], q->phys[0]);
Linus Torvalds's avatar
Linus Torvalds committed
2721
				if(q->mem[1])
2722 2723
					pci_free_consistent(c->pdev, q->size[1], q->mem[1], q->phys[1]);

Linus Torvalds's avatar
Linus Torvalds committed
2724 2725 2726
				printk(KERN_WARNING "i2o_post_wait event completed after timeout.\n");
			}
			kfree(q);
Linus Torvalds's avatar
Linus Torvalds committed
2727 2728 2729 2730 2731 2732
			spin_unlock(&post_wait_lock);
			return;
		}
	}
	spin_unlock(&post_wait_lock);

Linus Torvalds's avatar
Linus Torvalds committed
2733
	printk(KERN_DEBUG "i2o_post_wait: Bogus reply!\n");
Linus Torvalds's avatar
Linus Torvalds committed
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
}

/*	Issue UTIL_PARAMS_GET or UTIL_PARAMS_SET
 *
 *	This function can be used for all UtilParamsGet/Set operations.
 *	The OperationList is given in oplist-buffer, 
 *	and results are returned in reslist-buffer.
 *	Note that the minimum sized reslist is 8 bytes and contains
 *	ResultCount, ErrorInfoSize, BlockStatus and BlockSize.
 */
2744

Linus Torvalds's avatar
Linus Torvalds committed
2745 2746 2747 2748 2749 2750 2751 2752 2753
int i2o_issue_params(int cmd, struct i2o_controller *iop, int tid, 
                void *oplist, int oplen, void *reslist, int reslen)
{
	u32 msg[9]; 
	u32 *res32 = (u32*)reslist;
	u32 *restmp = (u32*)reslist;
	int len = 0;
	int i = 0;
	int wait_status;
Linus Torvalds's avatar
Linus Torvalds committed
2754
	u32 *opmem, *resmem;
2755
	dma_addr_t opmem_phys, resmem_phys;
Linus Torvalds's avatar
Linus Torvalds committed
2756 2757
	
	/* Get DMAable memory */
2758
	opmem = pci_alloc_consistent(iop->pdev, oplen, &opmem_phys);
Linus Torvalds's avatar
Linus Torvalds committed
2759 2760 2761 2762
	if(opmem == NULL)
		return -ENOMEM;
	memcpy(opmem, oplist, oplen);
	
2763
	resmem = pci_alloc_consistent(iop->pdev, reslen, &resmem_phys);
Linus Torvalds's avatar
Linus Torvalds committed
2764 2765
	if(resmem == NULL)
	{
2766
		pci_free_consistent(iop->pdev, oplen, opmem, opmem_phys);
Linus Torvalds's avatar
Linus Torvalds committed
2767 2768 2769
		return -ENOMEM;
	}
	
Linus Torvalds's avatar
Linus Torvalds committed
2770 2771 2772 2773 2774
	msg[0] = NINE_WORD_MSG_SIZE | SGL_OFFSET_5;
	msg[1] = cmd << 24 | HOST_TID << 12 | tid; 
	msg[3] = 0;
	msg[4] = 0;
	msg[5] = 0x54000000 | oplen;	/* OperationList */
2775
	msg[6] = opmem_phys;
Linus Torvalds's avatar
Linus Torvalds committed
2776
	msg[7] = 0xD0000000 | reslen;	/* ResultList */
2777
	msg[8] = resmem_phys;
Linus Torvalds's avatar
Linus Torvalds committed
2778

2779
	wait_status = i2o_post_wait_mem(iop, msg, sizeof(msg), 10, opmem, resmem, opmem_phys, resmem_phys, oplen, reslen);
Linus Torvalds's avatar
Linus Torvalds committed
2780 2781 2782 2783 2784 2785
	
	/*
	 *	This only looks like a memory leak - don't "fix" it.	
	 */
	if(wait_status == -ETIMEDOUT)
		return wait_status;
Linus Torvalds's avatar
Linus Torvalds committed
2786

2787 2788 2789 2790
	memcpy(reslist, resmem, reslen);
	pci_free_consistent(iop->pdev, reslen, resmem, resmem_phys);
	pci_free_consistent(iop->pdev, oplen, opmem, opmem_phys);
	
Linus Torvalds's avatar
Linus Torvalds committed
2791 2792
	/* Query failed */
	if(wait_status != 0)
2793
		return wait_status;		
Linus Torvalds's avatar
Linus Torvalds committed
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
	/*
	 * Calculate number of bytes of Result LIST
	 * We need to loop through each Result BLOCK and grab the length
	 */
	restmp = res32 + 1;
	len = 1;
	for(i = 0; i < (res32[0]&0X0000FFFF); i++)
	{
		if(restmp[0]&0x00FF0000)	/* BlockStatus != SUCCESS */
		{
			printk(KERN_WARNING "%s - Error:\n  ErrorInfoSize = 0x%02x, " 
					"BlockStatus = 0x%02x, BlockSize = 0x%04x\n",
					(cmd == I2O_CMD_UTIL_PARAMS_SET) ? "PARAMS_SET"
					: "PARAMS_GET",   
					res32[1]>>24, (res32[1]>>16)&0xFF, res32[1]&0xFFFF);
	
			/*
			 *	If this is the only request,than we return an error
			 */
			if((res32[0]&0x0000FFFF) == 1)
Linus Torvalds's avatar
Linus Torvalds committed
2814 2815 2816
			{
				return -((res32[1] >> 16) & 0xFF); /* -BlockStatus */
			}
Linus Torvalds's avatar
Linus Torvalds committed
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
		}
		len += restmp[0] & 0x0000FFFF;	/* Length of res BLOCK */
		restmp += restmp[0] & 0x0000FFFF;	/* Skip to next BLOCK */
	}
	return (len << 2);  /* bytes used by result list */
}

/*
 *	 Query one scalar group value or a whole scalar group.
 */                  	
int i2o_query_scalar(struct i2o_controller *iop, int tid, 
                     int group, int field, void *buf, int buflen)
{
	u16 opblk[] = { 1, 0, I2O_PARAMS_FIELD_GET, group, 1, field };
	u8  resblk[8+buflen]; /* 8 bytes for header */
	int size;

	if (field == -1)  		/* whole group */
       		opblk[4] = -1;
              
	size = i2o_issue_params(I2O_CMD_UTIL_PARAMS_GET, iop, tid, 
		opblk, sizeof(opblk), resblk, sizeof(resblk));
		
	memcpy(buf, resblk+8, buflen);  /* cut off header */
Linus Torvalds's avatar
Linus Torvalds committed
2841 2842 2843
	
	if(size>buflen)
		return buflen;
Linus Torvalds's avatar
Linus Torvalds committed
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
	return size;
}

/*
 *	Set a scalar group value or a whole group.
 */
int i2o_set_scalar(struct i2o_controller *iop, int tid, 
		   int group, int field, void *buf, int buflen)
{
	u16 *opblk;
	u8  resblk[8+buflen]; /* 8 bytes for header */
        int size;

	opblk = kmalloc(buflen+64, GFP_KERNEL);
	if (opblk == NULL)
	{
		printk(KERN_ERR "i2o: no memory for operation buffer.\n");
		return -ENOMEM;
	}

	opblk[0] = 1;                        /* operation count */
	opblk[1] = 0;                        /* pad */
	opblk[2] = I2O_PARAMS_FIELD_SET;
	opblk[3] = group;

	if(field == -1) {               /* whole group */
		opblk[4] = -1;
		memcpy(opblk+5, buf, buflen);
	}
	else                            /* single field */
	{
		opblk[4] = 1;
		opblk[5] = field;
		memcpy(opblk+6, buf, buflen);
	}   

	size = i2o_issue_params(I2O_CMD_UTIL_PARAMS_SET, iop, tid, 
				opblk, 12+buflen, resblk, sizeof(resblk));

	kfree(opblk);
Linus Torvalds's avatar
Linus Torvalds committed
2884 2885
	if(size>buflen)
		return buflen;
Linus Torvalds's avatar
Linus Torvalds committed
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
	return size;
}

/* 
 * 	if oper == I2O_PARAMS_TABLE_GET, get from all rows 
 * 		if fieldcount == -1 return all fields
 *			ibuf and ibuflen are unused (use NULL, 0)
 * 		else return specific fields
 *  			ibuf contains fieldindexes
 *
 * 	if oper == I2O_PARAMS_LIST_GET, get from specific rows
 * 		if fieldcount == -1 return all fields
 *			ibuf contains rowcount, keyvalues
 * 		else return specific fields
 *			fieldcount is # of fieldindexes
 *  			ibuf contains fieldindexes, rowcount, keyvalues
 *
 *	You could also use directly function i2o_issue_params().
 */
int i2o_query_table(int oper, struct i2o_controller *iop, int tid, int group,
		int fieldcount, void *ibuf, int ibuflen,
		void *resblk, int reslen) 
{
	u16 *opblk;
	int size;

	opblk = kmalloc(10 + ibuflen, GFP_KERNEL);
	if (opblk == NULL)
	{
		printk(KERN_ERR "i2o: no memory for query buffer.\n");
		return -ENOMEM;
	}

	opblk[0] = 1;				/* operation count */
	opblk[1] = 0;				/* pad */
	opblk[2] = oper;
	opblk[3] = group;		
	opblk[4] = fieldcount;
	memcpy(opblk+5, ibuf, ibuflen);		/* other params */

	size = i2o_issue_params(I2O_CMD_UTIL_PARAMS_GET,iop, tid, 
				opblk, 10+ibuflen, resblk, reslen);

	kfree(opblk);
Linus Torvalds's avatar
Linus Torvalds committed
2930 2931
	if(size>reslen)
		return reslen;
Linus Torvalds's avatar
Linus Torvalds committed
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
	return size;
}

/*
 * 	Clear table group, i.e. delete all rows.
 */
int i2o_clear_table(struct i2o_controller *iop, int tid, int group)
{
	u16 opblk[] = { 1, 0, I2O_PARAMS_TABLE_CLEAR, group };
	u8  resblk[32]; /* min 8 bytes for result header */

	return i2o_issue_params(I2O_CMD_UTIL_PARAMS_SET, iop, tid, 
				opblk, sizeof(opblk), resblk, sizeof(resblk));
}

/*
 * 	Add a new row into a table group.
 *
 * 	if fieldcount==-1 then we add whole rows
 *		buf contains rowcount, keyvalues
 * 	else just specific fields are given, rest use defaults
 *  		buf contains fieldindexes, rowcount, keyvalues
 */	
int i2o_row_add_table(struct i2o_controller *iop, int tid,
		    int group, int fieldcount, void *buf, int buflen)
{
	u16 *opblk;
	u8  resblk[32]; /* min 8 bytes for header */
	int size;

	opblk = kmalloc(buflen+64, GFP_KERNEL);
	if (opblk == NULL)
	{
		printk(KERN_ERR "i2o: no memory for operation buffer.\n");
		return -ENOMEM;
	}

	opblk[0] = 1;			/* operation count */
	opblk[1] = 0;			/* pad */
	opblk[2] = I2O_PARAMS_ROW_ADD;
	opblk[3] = group;	
	opblk[4] = fieldcount;
	memcpy(opblk+5, buf, buflen);

	size = i2o_issue_params(I2O_CMD_UTIL_PARAMS_SET, iop, tid, 
				opblk, 10+buflen, resblk, sizeof(resblk));

	kfree(opblk);
Linus Torvalds's avatar
Linus Torvalds committed
2980 2981
	if(size>buflen)
		return buflen;
Linus Torvalds's avatar
Linus Torvalds committed
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
	return size;
}


/*
 * Used for error reporting/debugging purposes.
 * Following fail status are common to all classes.
 * The preserved message must be handled in the reply handler. 
 */
void i2o_report_fail_status(u8 req_status, u32* msg)
{
	static char *FAIL_STATUS[] = { 
		"0x80",				/* not used */
		"SERVICE_SUSPENDED", 		/* 0x81 */
		"SERVICE_TERMINATED", 		/* 0x82 */
		"CONGESTION",
		"FAILURE",
		"STATE_ERROR",
		"TIME_OUT",
		"ROUTING_FAILURE",
		"INVALID_VERSION",
		"INVALID_OFFSET",
		"INVALID_MSG_FLAGS",
		"FRAME_TOO_SMALL",
		"FRAME_TOO_LARGE",
		"INVALID_TARGET_ID",
		"INVALID_INITIATOR_ID",
		"INVALID_INITIATOR_CONTEX",	/* 0x8F */
		"UNKNOWN_FAILURE"		/* 0xFF */
	};

	if (req_status == I2O_FSC_TRANSPORT_UNKNOWN_FAILURE)
		printk("TRANSPORT_UNKNOWN_FAILURE (%0#2x)\n.", req_status);
	else
		printk("TRANSPORT_%s.\n", FAIL_STATUS[req_status & 0x0F]);

	/* Dump some details */

	printk(KERN_ERR "  InitiatorId = %d, TargetId = %d\n",
		(msg[1] >> 12) & 0xFFF, msg[1] & 0xFFF); 
	printk(KERN_ERR "  LowestVersion = 0x%02X, HighestVersion = 0x%02X\n",
		(msg[4] >> 8) & 0xFF, msg[4] & 0xFF);
	printk(KERN_ERR "  FailingHostUnit = 0x%04X,  FailingIOP = 0x%03X\n",
		msg[5] >> 16, msg[5] & 0xFFF);

	printk(KERN_ERR "  Severity:  0x%02X ", (msg[4] >> 16) & 0xFF); 
	if (msg[4] & (1<<16))
		printk("(FormatError), "
			"this msg can never be delivered/processed.\n");
	if (msg[4] & (1<<17))
		printk("(PathError), "
			"this msg can no longer be delivered/processed.\n");
	if (msg[4] & (1<<18))
		printk("(PathState), "
			"the system state does not allow delivery.\n");
	if (msg[4] & (1<<19))
		printk("(Congestion), resources temporarily not available;"
			"do not retry immediately.\n");
}

/*
 * Used for error reporting/debugging purposes.
 * Following reply status are common to all classes.
 */
void i2o_report_common_status(u8 req_status)
{
	static char *REPLY_STATUS[] = { 
		"SUCCESS", 
		"ABORT_DIRTY", 
		"ABORT_NO_DATA_TRANSFER",
		"ABORT_PARTIAL_TRANSFER",
		"ERROR_DIRTY",
		"ERROR_NO_DATA_TRANSFER",
		"ERROR_PARTIAL_TRANSFER",
		"PROCESS_ABORT_DIRTY",
		"PROCESS_ABORT_NO_DATA_TRANSFER",
		"PROCESS_ABORT_PARTIAL_TRANSFER",
		"TRANSACTION_ERROR",
		"PROGRESS_REPORT"	
	};

	if (req_status > I2O_REPLY_STATUS_PROGRESS_REPORT)
		printk("RequestStatus = %0#2x", req_status);
	else
		printk("%s", REPLY_STATUS[req_status]);
}

/*
 * Used for error reporting/debugging purposes.
 * Following detailed status are valid  for executive class, 
 * utility class, DDM class and for transaction error replies.
 */
static void i2o_report_common_dsc(u16 detailed_status)
{
	static char *COMMON_DSC[] = { 
		"SUCCESS",
		"0x01",				// not used
		"BAD_KEY",
		"TCL_ERROR",
		"REPLY_BUFFER_FULL",
		"NO_SUCH_PAGE",
		"INSUFFICIENT_RESOURCE_SOFT",
		"INSUFFICIENT_RESOURCE_HARD",
		"0x08",				// not used
		"CHAIN_BUFFER_TOO_LARGE",
		"UNSUPPORTED_FUNCTION",
		"DEVICE_LOCKED",
		"DEVICE_RESET",
		"INAPPROPRIATE_FUNCTION",
		"INVALID_INITIATOR_ADDRESS",
		"INVALID_MESSAGE_FLAGS",
		"INVALID_OFFSET",
		"INVALID_PARAMETER",
		"INVALID_REQUEST",
		"INVALID_TARGET_ADDRESS",
		"MESSAGE_TOO_LARGE",
		"MESSAGE_TOO_SMALL",
		"MISSING_PARAMETER",
		"TIMEOUT",
		"UNKNOWN_ERROR",
		"UNKNOWN_FUNCTION",
		"UNSUPPORTED_VERSION",
		"DEVICE_BUSY",
		"DEVICE_NOT_AVAILABLE"		
	};

	if (detailed_status > I2O_DSC_DEVICE_NOT_AVAILABLE)
		printk(" / DetailedStatus = %0#4x.\n", detailed_status);
	else
		printk(" / %s.\n", COMMON_DSC[detailed_status]);
}

/*
 * Used for error reporting/debugging purposes
 */
static void i2o_report_lan_dsc(u16 detailed_status)
{
	static char *LAN_DSC[] = {	// Lan detailed status code strings
		"SUCCESS",
		"DEVICE_FAILURE",
		"DESTINATION_NOT_FOUND",
		"TRANSMIT_ERROR",
		"TRANSMIT_ABORTED",
		"RECEIVE_ERROR",
		"RECEIVE_ABORTED",
		"DMA_ERROR",
		"BAD_PACKET_DETECTED",
		"OUT_OF_MEMORY",
		"BUCKET_OVERRUN",
		"IOP_INTERNAL_ERROR",
		"CANCELED",
		"INVALID_TRANSACTION_CONTEXT",
		"DEST_ADDRESS_DETECTED",
		"DEST_ADDRESS_OMITTED",
		"PARTIAL_PACKET_RETURNED",
		"TEMP_SUSPENDED_STATE",	// last Lan detailed status code
		"INVALID_REQUEST"	// general detailed status code
	};

	if (detailed_status > I2O_DSC_INVALID_REQUEST)
		printk(" / %0#4x.\n", detailed_status);
	else
		printk(" / %s.\n", LAN_DSC[detailed_status]);
}

/*
 * Used for error reporting/debugging purposes
 */
static void i2o_report_util_cmd(u8 cmd)
{
	switch (cmd) {
	case I2O_CMD_UTIL_NOP:
		printk("UTIL_NOP, ");
		break;			
	case I2O_CMD_UTIL_ABORT:
		printk("UTIL_ABORT, ");
		break;
	case I2O_CMD_UTIL_CLAIM:
		printk("UTIL_CLAIM, ");
		break;
	case I2O_CMD_UTIL_RELEASE:
		printk("UTIL_CLAIM_RELEASE, ");
		break;
	case I2O_CMD_UTIL_CONFIG_DIALOG:
		printk("UTIL_CONFIG_DIALOG, ");
		break;
	case I2O_CMD_UTIL_DEVICE_RESERVE:
		printk("UTIL_DEVICE_RESERVE, ");
		break;
	case I2O_CMD_UTIL_DEVICE_RELEASE:
		printk("UTIL_DEVICE_RELEASE, ");
		break;
	case I2O_CMD_UTIL_EVT_ACK:
		printk("UTIL_EVENT_ACKNOWLEDGE, ");
		break;
	case I2O_CMD_UTIL_EVT_REGISTER:
		printk("UTIL_EVENT_REGISTER, ");
		break;
	case I2O_CMD_UTIL_LOCK:
		printk("UTIL_LOCK, ");
		break;
	case I2O_CMD_UTIL_LOCK_RELEASE:
		printk("UTIL_LOCK_RELEASE, ");
		break;
	case I2O_CMD_UTIL_PARAMS_GET:
		printk("UTIL_PARAMS_GET, ");
		break;
	case I2O_CMD_UTIL_PARAMS_SET:
		printk("UTIL_PARAMS_SET, ");
		break;
	case I2O_CMD_UTIL_REPLY_FAULT_NOTIFY:
		printk("UTIL_REPLY_FAULT_NOTIFY, ");
		break;
	default:
		printk("Cmd = %0#2x, ",cmd);	
	}
}

/*
 * Used for error reporting/debugging purposes
 */
static void i2o_report_exec_cmd(u8 cmd)
{
	switch (cmd) {
	case I2O_CMD_ADAPTER_ASSIGN:
		printk("EXEC_ADAPTER_ASSIGN, ");
		break;
	case I2O_CMD_ADAPTER_READ:
		printk("EXEC_ADAPTER_READ, ");
		break;
	case I2O_CMD_ADAPTER_RELEASE:
		printk("EXEC_ADAPTER_RELEASE, ");
		break;
	case I2O_CMD_BIOS_INFO_SET:
		printk("EXEC_BIOS_INFO_SET, ");
		break;
	case I2O_CMD_BOOT_DEVICE_SET:
		printk("EXEC_BOOT_DEVICE_SET, ");
		break;
	case I2O_CMD_CONFIG_VALIDATE:
		printk("EXEC_CONFIG_VALIDATE, ");
		break;
	case I2O_CMD_CONN_SETUP:
		printk("EXEC_CONN_SETUP, ");
		break;
	case I2O_CMD_DDM_DESTROY:
		printk("EXEC_DDM_DESTROY, ");
		break;
	case I2O_CMD_DDM_ENABLE:
		printk("EXEC_DDM_ENABLE, ");
		break;
	case I2O_CMD_DDM_QUIESCE:
		printk("EXEC_DDM_QUIESCE, ");
		break;
	case I2O_CMD_DDM_RESET:
		printk("EXEC_DDM_RESET, ");
		break;
	case I2O_CMD_DDM_SUSPEND:
		printk("EXEC_DDM_SUSPEND, ");
		break;
	case I2O_CMD_DEVICE_ASSIGN:
		printk("EXEC_DEVICE_ASSIGN, ");
		break;
	case I2O_CMD_DEVICE_RELEASE:
		printk("EXEC_DEVICE_RELEASE, ");
		break;
	case I2O_CMD_HRT_GET:
		printk("EXEC_HRT_GET, ");
		break;
	case I2O_CMD_ADAPTER_CLEAR:
		printk("EXEC_IOP_CLEAR, ");
		break;
	case I2O_CMD_ADAPTER_CONNECT:
		printk("EXEC_IOP_CONNECT, ");
		break;
	case I2O_CMD_ADAPTER_RESET:
		printk("EXEC_IOP_RESET, ");
		break;
	case I2O_CMD_LCT_NOTIFY:
		printk("EXEC_LCT_NOTIFY, ");
		break;
	case I2O_CMD_OUTBOUND_INIT:
		printk("EXEC_OUTBOUND_INIT, ");
		break;
	case I2O_CMD_PATH_ENABLE:
		printk("EXEC_PATH_ENABLE, ");
		break;
	case I2O_CMD_PATH_QUIESCE:
		printk("EXEC_PATH_QUIESCE, ");
		break;
	case I2O_CMD_PATH_RESET:
		printk("EXEC_PATH_RESET, ");
		break;
	case I2O_CMD_STATIC_MF_CREATE:
		printk("EXEC_STATIC_MF_CREATE, ");
		break;
	case I2O_CMD_STATIC_MF_RELEASE:
		printk("EXEC_STATIC_MF_RELEASE, ");
		break;
	case I2O_CMD_STATUS_GET:
		printk("EXEC_STATUS_GET, ");
		break;
	case I2O_CMD_SW_DOWNLOAD:
		printk("EXEC_SW_DOWNLOAD, ");
		break;
	case I2O_CMD_SW_UPLOAD:
		printk("EXEC_SW_UPLOAD, ");
		break;
	case I2O_CMD_SW_REMOVE:
		printk("EXEC_SW_REMOVE, ");
		break;
	case I2O_CMD_SYS_ENABLE:
		printk("EXEC_SYS_ENABLE, ");
		break;
	case I2O_CMD_SYS_MODIFY:
		printk("EXEC_SYS_MODIFY, ");
		break;
	case I2O_CMD_SYS_QUIESCE:
		printk("EXEC_SYS_QUIESCE, ");
		break;
	case I2O_CMD_SYS_TAB_SET:
		printk("EXEC_SYS_TAB_SET, ");
		break;
	default:
		printk("Cmd = %#02x, ",cmd);	
	}
}

/*
 * Used for error reporting/debugging purposes
 */
static void i2o_report_lan_cmd(u8 cmd)
{
	switch (cmd) {
	case LAN_PACKET_SEND:
		printk("LAN_PACKET_SEND, "); 
		break;
	case LAN_SDU_SEND:
		printk("LAN_SDU_SEND, ");
		break;
	case LAN_RECEIVE_POST:
		printk("LAN_RECEIVE_POST, ");
		break;
	case LAN_RESET:
		printk("LAN_RESET, ");
		break;
	case LAN_SUSPEND:
		printk("LAN_SUSPEND, ");
		break;
	default:
		printk("Cmd = %0#2x, ",cmd);	
	}	
}

/*
 * Used for error reporting/debugging purposes.
 * Report Cmd name, Request status, Detailed Status.
 */
void i2o_report_status(const char *severity, const char *str, u32 *msg)
{
	u8 cmd = (msg[1]>>24)&0xFF;
	u8 req_status = (msg[4]>>24)&0xFF;
	u16 detailed_status = msg[4]&0xFFFF;
	struct i2o_handler *h = i2o_handlers[msg[2] & (MAX_I2O_MODULES-1)];

	printk("%s%s: ", severity, str);

	if (cmd < 0x1F) 			// Utility cmd
		i2o_report_util_cmd(cmd);
	
	else if (cmd >= 0xA0 && cmd <= 0xEF) 	// Executive cmd
		i2o_report_exec_cmd(cmd);
	
	else if (h->class == I2O_CLASS_LAN && cmd >= 0x30 && cmd <= 0x3F)
		i2o_report_lan_cmd(cmd);	// LAN cmd
	else
        	printk("Cmd = %0#2x, ", cmd);	// Other cmds

	if (msg[0] & MSG_FAIL) {
		i2o_report_fail_status(req_status, msg);
		return;
	}
	
	i2o_report_common_status(req_status);

	if (cmd < 0x1F || (cmd >= 0xA0 && cmd <= 0xEF))
		i2o_report_common_dsc(detailed_status);	
	else if (h->class == I2O_CLASS_LAN && cmd >= 0x30 && cmd <= 0x3F)
		i2o_report_lan_dsc(detailed_status);
	else
		printk(" / DetailedStatus = %0#4x.\n", detailed_status); 
}

/* Used to dump a message to syslog during debugging */
void i2o_dump_message(u32 *msg)
{
#ifdef DRIVERDEBUG
	int i;
	printk(KERN_INFO "Dumping I2O message size %d @ %p\n", 
		msg[0]>>16&0xffff, msg);
	for(i = 0; i < ((msg[0]>>16)&0xffff); i++)
		printk(KERN_INFO "  msg[%d] = %0#10x\n", i, msg[i]);
#endif
}

/*
 * I2O reboot/shutdown notification.
 *
 * - Call each OSM's reboot notifier (if one exists)
 * - Quiesce each IOP in the system
 *
 * Each IOP has to be quiesced before we can ensure that the system
 * can be properly shutdown as a transaction that has already been
 * acknowledged still needs to be placed in permanent store on the IOP.
 * The SysQuiesce causes the IOP to force all HDMs to complete their
 * transactions before returning, so only at that point is it safe
 * 
 */
static int i2o_reboot_event(struct notifier_block *n, unsigned long code, void
*p)
{
	int i = 0;
	struct i2o_controller *c = NULL;

	if(code != SYS_RESTART && code != SYS_HALT && code != SYS_POWER_OFF)
		return NOTIFY_DONE;

	printk(KERN_INFO "Shutting down I2O system.\n");
	printk(KERN_INFO 
		"   This could take a few minutes if there are many devices attached\n");

	for(i = 0; i < MAX_I2O_MODULES; i++)
	{
		if(i2o_handlers[i] && i2o_handlers[i]->reboot_notify)
			i2o_handlers[i]->reboot_notify();
	}

	for(c = i2o_controller_chain; c; c = c->next)
	{
		if(i2o_quiesce_controller(c))
		{
3423 3424 3425
			printk(KERN_WARNING "i2o: Could not quiesce %s.\n"
			       "Verify setup on next system power up.\n",
			       c->name);
Linus Torvalds's avatar
Linus Torvalds committed
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
		}
	}

	printk(KERN_INFO "I2O system down.\n");
	return NOTIFY_DONE;
}


EXPORT_SYMBOL(i2o_controller_chain);
EXPORT_SYMBOL(i2o_num_controllers);
EXPORT_SYMBOL(i2o_find_controller);
EXPORT_SYMBOL(i2o_unlock_controller);
EXPORT_SYMBOL(i2o_status_get);

EXPORT_SYMBOL(i2o_install_handler);
EXPORT_SYMBOL(i2o_remove_handler);

3443 3444 3445 3446
EXPORT_SYMBOL(i2o_install_controller);
EXPORT_SYMBOL(i2o_delete_controller);
EXPORT_SYMBOL(i2o_run_queue);

Linus Torvalds's avatar
Linus Torvalds committed
3447 3448 3449 3450 3451 3452 3453
EXPORT_SYMBOL(i2o_claim_device);
EXPORT_SYMBOL(i2o_release_device);
EXPORT_SYMBOL(i2o_device_notify_on);
EXPORT_SYMBOL(i2o_device_notify_off);

EXPORT_SYMBOL(i2o_post_this);
EXPORT_SYMBOL(i2o_post_wait);
Linus Torvalds's avatar
Linus Torvalds committed
3454
EXPORT_SYMBOL(i2o_post_wait_mem);
Linus Torvalds's avatar
Linus Torvalds committed
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470

EXPORT_SYMBOL(i2o_query_scalar);
EXPORT_SYMBOL(i2o_set_scalar);
EXPORT_SYMBOL(i2o_query_table);
EXPORT_SYMBOL(i2o_clear_table);
EXPORT_SYMBOL(i2o_row_add_table);
EXPORT_SYMBOL(i2o_issue_params);

EXPORT_SYMBOL(i2o_event_register);
EXPORT_SYMBOL(i2o_event_ack);

EXPORT_SYMBOL(i2o_report_status);
EXPORT_SYMBOL(i2o_dump_message);

EXPORT_SYMBOL(i2o_get_class_name);

3471
EXPORT_SYMBOL_GPL(i2o_sys_init);
Linus Torvalds's avatar
Linus Torvalds committed
3472

Linus Torvalds's avatar
Linus Torvalds committed
3473 3474
MODULE_AUTHOR("Red Hat Software");
MODULE_DESCRIPTION("I2O Core");
Linus Torvalds's avatar
Linus Torvalds committed
3475 3476
MODULE_LICENSE("GPL");

3477
static int i2o_core_init(void)
Linus Torvalds's avatar
Linus Torvalds committed
3478 3479 3480 3481
{
	printk(KERN_INFO "I2O Core - (C) Copyright 1999 Red Hat Software\n");
	if (i2o_install_handler(&i2o_core_handler) < 0)
	{
3482
		printk(KERN_ERR "i2o_core: Unable to install core handler.\nI2O stack not loaded!");
Linus Torvalds's avatar
Linus Torvalds committed
3483 3484 3485 3486 3487 3488 3489 3490
		return 0;
	}

	core_context = i2o_core_handler.context;

	/*
	 * Initialize event handling thread
	 */	
3491

Linus Torvalds's avatar
Linus Torvalds committed
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
	init_MUTEX_LOCKED(&evt_sem);
	evt_pid = kernel_thread(i2o_core_evt, &evt_reply, CLONE_SIGHAND);
	if(evt_pid < 0)
	{
		printk(KERN_ERR "I2O: Could not create event handler kernel thread\n");
		i2o_remove_handler(&i2o_core_handler);
		return 0;
	}
	else
		printk(KERN_INFO "I2O: Event thread created as pid %d\n", evt_pid);

	if(i2o_num_controllers)
		i2o_sys_init();

	register_reboot_notifier(&i2o_reboot_notifier);

	return 0;
}

3511
static void i2o_core_exit(void)
Linus Torvalds's avatar
Linus Torvalds committed
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
{
	int stat;

	unregister_reboot_notifier(&i2o_reboot_notifier);

	if(i2o_num_controllers)
		i2o_sys_shutdown();

	/*
	 * If this is shutdown time, the thread has already been killed
	 */
	if(evt_running) {
Linus Torvalds's avatar
Linus Torvalds committed
3524
		printk("Terminating i2o threads...");
Linus Torvalds's avatar
Linus Torvalds committed
3525 3526
		stat = kill_proc(evt_pid, SIGTERM, 1);
		if(!stat) {
Linus Torvalds's avatar
Linus Torvalds committed
3527
			printk("waiting...");
Linus Torvalds's avatar
Linus Torvalds committed
3528
			wait_for_completion(&evt_dead);
Linus Torvalds's avatar
Linus Torvalds committed
3529
		}
Linus Torvalds's avatar
Linus Torvalds committed
3530
		printk("done.\n");
Linus Torvalds's avatar
Linus Torvalds committed
3531 3532 3533 3534 3535
	}
	i2o_remove_handler(&i2o_core_handler);
	unregister_reboot_notifier(&i2o_reboot_notifier);
}

3536 3537
module_init(i2o_core_init);
module_exit(i2o_core_exit);
Linus Torvalds's avatar
Linus Torvalds committed
3538