rdma.c 52.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * NVMe over Fabrics RDMA host code.
 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
Israel Rukshin's avatar
Israel Rukshin committed
18
#include <rdma/mr_pool.h>
19 20 21 22
#include <linux/err.h>
#include <linux/string.h>
#include <linux/atomic.h>
#include <linux/blk-mq.h>
23
#include <linux/blk-mq-rdma.h>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#include <linux/types.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/scatterlist.h>
#include <linux/nvme.h>
#include <asm/unaligned.h>

#include <rdma/ib_verbs.h>
#include <rdma/rdma_cm.h>
#include <linux/nvme-rdma.h>

#include "nvme.h"
#include "fabrics.h"


39
#define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
40 41 42 43 44 45

#define NVME_RDMA_MAX_SEGMENTS		256

#define NVME_RDMA_MAX_INLINE_SEGMENTS	1

struct nvme_rdma_device {
46 47
	struct ib_device	*dev;
	struct ib_pd		*pd;
48 49 50 51 52 53 54 55 56 57 58 59
	struct kref		ref;
	struct list_head	entry;
};

struct nvme_rdma_qe {
	struct ib_cqe		cqe;
	void			*data;
	u64			dma;
};

struct nvme_rdma_queue;
struct nvme_rdma_request {
60
	struct nvme_request	req;
61 62
	struct ib_mr		*mr;
	struct nvme_rdma_qe	sqe;
63 64 65
	union nvme_result	result;
	__le16			status;
	refcount_t		ref;
66 67 68 69 70 71 72 73 74 75 76
	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
	u32			num_sge;
	int			nents;
	struct ib_reg_wr	reg_wr;
	struct ib_cqe		reg_cqe;
	struct nvme_rdma_queue  *queue;
	struct sg_table		sg_table;
	struct scatterlist	first_sgl[];
};

enum nvme_rdma_queue_flags {
77 78
	NVME_RDMA_Q_ALLOCATED		= 0,
	NVME_RDMA_Q_LIVE		= 1,
79
	NVME_RDMA_Q_TR_READY		= 2,
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
};

struct nvme_rdma_queue {
	struct nvme_rdma_qe	*rsp_ring;
	int			queue_size;
	size_t			cmnd_capsule_len;
	struct nvme_rdma_ctrl	*ctrl;
	struct nvme_rdma_device	*device;
	struct ib_cq		*ib_cq;
	struct ib_qp		*qp;

	unsigned long		flags;
	struct rdma_cm_id	*cm_id;
	int			cm_error;
	struct completion	cm_done;
};

struct nvme_rdma_ctrl {
	/* read only in the hot path */
	struct nvme_rdma_queue	*queues;

	/* other member variables */
	struct blk_mq_tag_set	tag_set;
	struct work_struct	err_work;

	struct nvme_rdma_qe	async_event_sqe;

	struct delayed_work	reconnect_work;

	struct list_head	list;

	struct blk_mq_tag_set	admin_tag_set;
	struct nvme_rdma_device	*device;

	u32			max_fr_pages;

116 117
	struct sockaddr_storage addr;
	struct sockaddr_storage src_addr;
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

	struct nvme_ctrl	ctrl;
};

static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
{
	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
}

static LIST_HEAD(device_list);
static DEFINE_MUTEX(device_list_mutex);

static LIST_HEAD(nvme_rdma_ctrl_list);
static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);

/*
 * Disabling this option makes small I/O goes faster, but is fundamentally
 * unsafe.  With it turned off we will have to register a global rkey that
 * allows read and write access to all physical memory.
 */
static bool register_always = true;
module_param(register_always, bool, 0444);
MODULE_PARM_DESC(register_always,
	 "Use memory registration even for contiguous memory regions");

static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
		struct rdma_cm_event *event);
static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);

147 148 149
static const struct blk_mq_ops nvme_rdma_mq_ops;
static const struct blk_mq_ops nvme_rdma_admin_mq_ops;

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
/* XXX: really should move to a generic header sooner or later.. */
static inline void put_unaligned_le24(u32 val, u8 *p)
{
	*p++ = val;
	*p++ = val >> 8;
	*p++ = val >> 16;
}

static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
{
	return queue - queue->ctrl->queues;
}

static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
{
	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
}

static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
		size_t capsule_size, enum dma_data_direction dir)
{
	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
	kfree(qe->data);
}

static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
		size_t capsule_size, enum dma_data_direction dir)
{
	qe->data = kzalloc(capsule_size, GFP_KERNEL);
	if (!qe->data)
		return -ENOMEM;

	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
	if (ib_dma_mapping_error(ibdev, qe->dma)) {
		kfree(qe->data);
		return -ENOMEM;
	}

	return 0;
}

static void nvme_rdma_free_ring(struct ib_device *ibdev,
		struct nvme_rdma_qe *ring, size_t ib_queue_size,
		size_t capsule_size, enum dma_data_direction dir)
{
	int i;

	for (i = 0; i < ib_queue_size; i++)
		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
	kfree(ring);
}

static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
		size_t ib_queue_size, size_t capsule_size,
		enum dma_data_direction dir)
{
	struct nvme_rdma_qe *ring;
	int i;

	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
	if (!ring)
		return NULL;

	for (i = 0; i < ib_queue_size; i++) {
		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
			goto out_free_ring;
	}

	return ring;

out_free_ring:
	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
	return NULL;
}

static void nvme_rdma_qp_event(struct ib_event *event, void *context)
{
227 228 229
	pr_debug("QP event %s (%d)\n",
		 ib_event_msg(event->event), event->event);

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
}

static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
{
	wait_for_completion_interruptible_timeout(&queue->cm_done,
			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
	return queue->cm_error;
}

static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
{
	struct nvme_rdma_device *dev = queue->device;
	struct ib_qp_init_attr init_attr;
	int ret;

	memset(&init_attr, 0, sizeof(init_attr));
	init_attr.event_handler = nvme_rdma_qp_event;
	/* +1 for drain */
	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
	/* +1 for drain */
	init_attr.cap.max_recv_wr = queue->queue_size + 1;
	init_attr.cap.max_recv_sge = 1;
	init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
	init_attr.qp_type = IB_QPT_RC;
	init_attr.send_cq = queue->ib_cq;
	init_attr.recv_cq = queue->ib_cq;

	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);

	queue->qp = queue->cm_id->qp;
	return ret;
}

264 265
static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
		struct request *rq, unsigned int hctx_idx)
266
{
267
	struct nvme_rdma_ctrl *ctrl = set->driver_data;
268
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
269
	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
270 271 272 273 274 275 276
	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
	struct nvme_rdma_device *dev = queue->device;

	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
			DMA_TO_DEVICE);
}

277 278 279
static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
		struct request *rq, unsigned int hctx_idx,
		unsigned int numa_node)
280
{
281
	struct nvme_rdma_ctrl *ctrl = set->driver_data;
282
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
283
	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
	struct nvme_rdma_device *dev = queue->device;
	struct ib_device *ibdev = dev->dev;
	int ret;

	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
			DMA_TO_DEVICE);
	if (ret)
		return ret;

	req->queue = queue;

	return 0;
}

static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
		unsigned int hctx_idx)
{
	struct nvme_rdma_ctrl *ctrl = data;
	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];

305
	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364

	hctx->driver_data = queue;
	return 0;
}

static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
		unsigned int hctx_idx)
{
	struct nvme_rdma_ctrl *ctrl = data;
	struct nvme_rdma_queue *queue = &ctrl->queues[0];

	BUG_ON(hctx_idx != 0);

	hctx->driver_data = queue;
	return 0;
}

static void nvme_rdma_free_dev(struct kref *ref)
{
	struct nvme_rdma_device *ndev =
		container_of(ref, struct nvme_rdma_device, ref);

	mutex_lock(&device_list_mutex);
	list_del(&ndev->entry);
	mutex_unlock(&device_list_mutex);

	ib_dealloc_pd(ndev->pd);
	kfree(ndev);
}

static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
{
	kref_put(&dev->ref, nvme_rdma_free_dev);
}

static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
{
	return kref_get_unless_zero(&dev->ref);
}

static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
{
	struct nvme_rdma_device *ndev;

	mutex_lock(&device_list_mutex);
	list_for_each_entry(ndev, &device_list, entry) {
		if (ndev->dev->node_guid == cm_id->device->node_guid &&
		    nvme_rdma_dev_get(ndev))
			goto out_unlock;
	}

	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
	if (!ndev)
		goto out_err;

	ndev->dev = cm_id->device;
	kref_init(&ndev->ref);

365 366
	ndev->pd = ib_alloc_pd(ndev->dev,
		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
367 368 369 370 371 372 373
	if (IS_ERR(ndev->pd))
		goto out_free_dev;

	if (!(ndev->dev->attrs.device_cap_flags &
	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
		dev_err(&ndev->dev->dev,
			"Memory registrations not supported.\n");
374
		goto out_free_pd;
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
	}

	list_add(&ndev->entry, &device_list);
out_unlock:
	mutex_unlock(&device_list_mutex);
	return ndev;

out_free_pd:
	ib_dealloc_pd(ndev->pd);
out_free_dev:
	kfree(ndev);
out_err:
	mutex_unlock(&device_list_mutex);
	return NULL;
}

static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
{
393 394 395 396 397 398 399 400
	struct nvme_rdma_device *dev;
	struct ib_device *ibdev;

	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
		return;

	dev = queue->device;
	ibdev = dev->dev;
401

Israel Rukshin's avatar
Israel Rukshin committed
402 403
	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);

404 405 406 407 408 409
	/*
	 * The cm_id object might have been destroyed during RDMA connection
	 * establishment error flow to avoid getting other cma events, thus
	 * the destruction of the QP shouldn't use rdma_cm API.
	 */
	ib_destroy_qp(queue->qp);
410 411 412 413 414 415 416 417
	ib_free_cq(queue->ib_cq);

	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
			sizeof(struct nvme_completion), DMA_FROM_DEVICE);

	nvme_rdma_dev_put(dev);
}

Israel Rukshin's avatar
Israel Rukshin committed
418 419 420 421 422 423
static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
{
	return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
		     ibdev->attrs.max_fast_reg_page_list_len);
}

424
static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
425
{
426
	struct ib_device *ibdev;
427 428 429 430 431
	const int send_wr_factor = 3;			/* MR, SEND, INV */
	const int cq_factor = send_wr_factor + 1;	/* + RECV */
	int comp_vector, idx = nvme_rdma_queue_idx(queue);
	int ret;

432 433 434 435 436 437 438
	queue->device = nvme_rdma_find_get_device(queue->cm_id);
	if (!queue->device) {
		dev_err(queue->cm_id->device->dev.parent,
			"no client data found!\n");
		return -ECONNREFUSED;
	}
	ibdev = queue->device->dev;
439 440

	/*
441 442
	 * Spread I/O queues completion vectors according their queue index.
	 * Admin queues can always go on completion vector 0.
443
	 */
444
	comp_vector = idx == 0 ? idx : idx - 1;
445 446

	/* +1 for ib_stop_cq */
447 448 449
	queue->ib_cq = ib_alloc_cq(ibdev, queue,
				cq_factor * queue->queue_size + 1,
				comp_vector, IB_POLL_SOFTIRQ);
450 451
	if (IS_ERR(queue->ib_cq)) {
		ret = PTR_ERR(queue->ib_cq);
452
		goto out_put_dev;
453 454 455 456 457 458 459 460 461 462 463 464 465
	}

	ret = nvme_rdma_create_qp(queue, send_wr_factor);
	if (ret)
		goto out_destroy_ib_cq;

	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
	if (!queue->rsp_ring) {
		ret = -ENOMEM;
		goto out_destroy_qp;
	}

Israel Rukshin's avatar
Israel Rukshin committed
466 467 468 469 470 471 472 473 474 475 476
	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
			      queue->queue_size,
			      IB_MR_TYPE_MEM_REG,
			      nvme_rdma_get_max_fr_pages(ibdev));
	if (ret) {
		dev_err(queue->ctrl->ctrl.device,
			"failed to initialize MR pool sized %d for QID %d\n",
			queue->queue_size, idx);
		goto out_destroy_ring;
	}

477 478
	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);

479 480
	return 0;

Israel Rukshin's avatar
Israel Rukshin committed
481 482 483
out_destroy_ring:
	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
484
out_destroy_qp:
485
	rdma_destroy_qp(queue->cm_id);
486 487
out_destroy_ib_cq:
	ib_free_cq(queue->ib_cq);
488 489
out_put_dev:
	nvme_rdma_dev_put(queue->device);
490 491 492
	return ret;
}

493
static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
494 495 496
		int idx, size_t queue_size)
{
	struct nvme_rdma_queue *queue;
497
	struct sockaddr *src_addr = NULL;
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
	int ret;

	queue = &ctrl->queues[idx];
	queue->ctrl = ctrl;
	init_completion(&queue->cm_done);

	if (idx > 0)
		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
	else
		queue->cmnd_capsule_len = sizeof(struct nvme_command);

	queue->queue_size = queue_size;

	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
			RDMA_PS_TCP, IB_QPT_RC);
	if (IS_ERR(queue->cm_id)) {
		dev_info(ctrl->ctrl.device,
			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
		return PTR_ERR(queue->cm_id);
	}

519
	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
520
		src_addr = (struct sockaddr *)&ctrl->src_addr;
521

522 523 524
	queue->cm_error = -ETIMEDOUT;
	ret = rdma_resolve_addr(queue->cm_id, src_addr,
			(struct sockaddr *)&ctrl->addr,
525 526 527 528 529 530 531 532 533 534
			NVME_RDMA_CONNECT_TIMEOUT_MS);
	if (ret) {
		dev_info(ctrl->ctrl.device,
			"rdma_resolve_addr failed (%d).\n", ret);
		goto out_destroy_cm_id;
	}

	ret = nvme_rdma_wait_for_cm(queue);
	if (ret) {
		dev_info(ctrl->ctrl.device,
535
			"rdma connection establishment failed (%d)\n", ret);
536 537 538
		goto out_destroy_cm_id;
	}

539
	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
540 541 542 543 544

	return 0;

out_destroy_cm_id:
	rdma_destroy_id(queue->cm_id);
545
	nvme_rdma_destroy_queue_ib(queue);
546 547 548 549 550
	return ret;
}

static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
{
551 552 553
	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
		return;

554 555 556 557 558 559
	rdma_disconnect(queue->cm_id);
	ib_drain_qp(queue->qp);
}

static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
{
560
	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
561 562
		return;

563 564 565 566
	nvme_rdma_destroy_queue_ib(queue);
	rdma_destroy_id(queue->cm_id);
}

567
static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
568
{
569 570 571 572
	int i;

	for (i = 1; i < ctrl->ctrl.queue_count; i++)
		nvme_rdma_free_queue(&ctrl->queues[i]);
573 574
}

575
static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
576 577 578
{
	int i;

579
	for (i = 1; i < ctrl->ctrl.queue_count; i++)
580
		nvme_rdma_stop_queue(&ctrl->queues[i]);
581 582
}

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
{
	int ret;

	if (idx)
		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
	else
		ret = nvmf_connect_admin_queue(&ctrl->ctrl);

	if (!ret)
		set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
	else
		dev_info(ctrl->ctrl.device,
			"failed to connect queue: %d ret=%d\n", idx, ret);
	return ret;
}

static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
601 602 603
{
	int i, ret = 0;

604
	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
605 606
		ret = nvme_rdma_start_queue(ctrl, i);
		if (ret)
607
			goto out_stop_queues;
608 609
	}

610 611
	return 0;

612
out_stop_queues:
613 614
	for (i--; i >= 1; i--)
		nvme_rdma_stop_queue(&ctrl->queues[i]);
615 616 617
	return ret;
}

618
static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
619
{
620
	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
621
	struct ib_device *ibdev = ctrl->device->dev;
622
	unsigned int nr_io_queues;
623 624
	int i, ret;

625
	nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
626 627 628 629 630 631 632 633 634

	/*
	 * we map queues according to the device irq vectors for
	 * optimal locality so we don't need more queues than
	 * completion vectors.
	 */
	nr_io_queues = min_t(unsigned int, nr_io_queues,
				ibdev->num_comp_vectors);

635 636 637 638
	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
	if (ret)
		return ret;

639 640
	ctrl->ctrl.queue_count = nr_io_queues + 1;
	if (ctrl->ctrl.queue_count < 2)
641 642 643 644 645
		return 0;

	dev_info(ctrl->ctrl.device,
		"creating %d I/O queues.\n", nr_io_queues);

646
	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
647 648 649
		ret = nvme_rdma_alloc_queue(ctrl, i,
				ctrl->ctrl.sqsize + 1);
		if (ret)
650 651 652 653 654 655
			goto out_free_queues;
	}

	return 0;

out_free_queues:
656
	for (i--; i >= 1; i--)
657
		nvme_rdma_free_queue(&ctrl->queues[i]);
658 659 660 661

	return ret;
}

662 663
static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
		struct blk_mq_tag_set *set)
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);

	blk_mq_free_tag_set(set);
	nvme_rdma_dev_put(ctrl->device);
}

static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
		bool admin)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
	struct blk_mq_tag_set *set;
	int ret;

	if (admin) {
		set = &ctrl->admin_tag_set;
		memset(set, 0, sizeof(*set));
		set->ops = &nvme_rdma_admin_mq_ops;
Keith Busch's avatar
Keith Busch committed
682
		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
683 684 685 686 687 688 689
		set->reserved_tags = 2; /* connect + keep-alive */
		set->numa_node = NUMA_NO_NODE;
		set->cmd_size = sizeof(struct nvme_rdma_request) +
			SG_CHUNK_SIZE * sizeof(struct scatterlist);
		set->driver_data = ctrl;
		set->nr_hw_queues = 1;
		set->timeout = ADMIN_TIMEOUT;
690
		set->flags = BLK_MQ_F_NO_SCHED;
691 692 693 694
	} else {
		set = &ctrl->tag_set;
		memset(set, 0, sizeof(*set));
		set->ops = &nvme_rdma_mq_ops;
695
		set->queue_depth = nctrl->sqsize + 1;
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
		set->reserved_tags = 1; /* fabric connect */
		set->numa_node = NUMA_NO_NODE;
		set->flags = BLK_MQ_F_SHOULD_MERGE;
		set->cmd_size = sizeof(struct nvme_rdma_request) +
			SG_CHUNK_SIZE * sizeof(struct scatterlist);
		set->driver_data = ctrl;
		set->nr_hw_queues = nctrl->queue_count - 1;
		set->timeout = NVME_IO_TIMEOUT;
	}

	ret = blk_mq_alloc_tag_set(set);
	if (ret)
		goto out;

	/*
	 * We need a reference on the device as long as the tag_set is alive,
	 * as the MRs in the request structures need a valid ib_device.
	 */
	ret = nvme_rdma_dev_get(ctrl->device);
	if (!ret) {
		ret = -EINVAL;
		goto out_free_tagset;
	}

	return set;

out_free_tagset:
	blk_mq_free_tag_set(set);
out:
	return ERR_PTR(ret);
}

728 729
static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
		bool remove)
730
{
731 732
	if (remove) {
		blk_cleanup_queue(ctrl->ctrl.admin_q);
733
		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
734
	}
735 736
	nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
		sizeof(struct nvme_command), DMA_TO_DEVICE);
737
	nvme_rdma_free_queue(&ctrl->queues[0]);
738 739
}

740 741
static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
		bool new)
742 743 744
{
	int error;

745
	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
746 747 748 749 750
	if (error)
		return error;

	ctrl->device = ctrl->queues[0].device;

Israel Rukshin's avatar
Israel Rukshin committed
751
	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
752

753 754 755 756 757
	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
			sizeof(struct nvme_command), DMA_TO_DEVICE);
	if (error)
		goto out_free_queue;

758 759
	if (new) {
		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
760 761
		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
			error = PTR_ERR(ctrl->ctrl.admin_tagset);
762
			goto out_free_async_qe;
763
		}
764

765 766 767 768 769
		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
		if (IS_ERR(ctrl->ctrl.admin_q)) {
			error = PTR_ERR(ctrl->ctrl.admin_q);
			goto out_free_tagset;
		}
770 771
	}

772
	error = nvme_rdma_start_queue(ctrl, 0);
773 774 775
	if (error)
		goto out_cleanup_queue;

776
	error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
777 778 779 780
			&ctrl->ctrl.cap);
	if (error) {
		dev_err(ctrl->ctrl.device,
			"prop_get NVME_REG_CAP failed\n");
781
		goto out_stop_queue;
782 783 784 785 786 787 788
	}

	ctrl->ctrl.sqsize =
		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);

	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
	if (error)
789
		goto out_stop_queue;
790 791

	ctrl->ctrl.max_hw_sectors =
792
		(ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
793 794 795

	error = nvme_init_identify(&ctrl->ctrl);
	if (error)
796
		goto out_stop_queue;
797 798 799

	return 0;

800 801
out_stop_queue:
	nvme_rdma_stop_queue(&ctrl->queues[0]);
802
out_cleanup_queue:
803 804
	if (new)
		blk_cleanup_queue(ctrl->ctrl.admin_q);
805
out_free_tagset:
806
	if (new)
807
		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
808 809 810
out_free_async_qe:
	nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
		sizeof(struct nvme_command), DMA_TO_DEVICE);
811 812 813 814 815
out_free_queue:
	nvme_rdma_free_queue(&ctrl->queues[0]);
	return error;
}

816 817 818 819 820
static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
		bool remove)
{
	if (remove) {
		blk_cleanup_queue(ctrl->ctrl.connect_q);
821
		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
822 823 824 825 826 827 828 829
	}
	nvme_rdma_free_io_queues(ctrl);
}

static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
{
	int ret;

830
	ret = nvme_rdma_alloc_io_queues(ctrl);
831 832 833 834 835
	if (ret)
		return ret;

	if (new) {
		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
836 837
		if (IS_ERR(ctrl->ctrl.tagset)) {
			ret = PTR_ERR(ctrl->ctrl.tagset);
838
			goto out_free_io_queues;
839
		}
840 841 842 843 844 845 846 847 848 849 850

		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
		if (IS_ERR(ctrl->ctrl.connect_q)) {
			ret = PTR_ERR(ctrl->ctrl.connect_q);
			goto out_free_tag_set;
		}
	} else {
		blk_mq_update_nr_hw_queues(&ctrl->tag_set,
			ctrl->ctrl.queue_count - 1);
	}

851
	ret = nvme_rdma_start_io_queues(ctrl);
852 853 854 855 856 857 858 859 860 861
	if (ret)
		goto out_cleanup_connect_q;

	return 0;

out_cleanup_connect_q:
	if (new)
		blk_cleanup_queue(ctrl->ctrl.connect_q);
out_free_tag_set:
	if (new)
862
		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
863 864 865
out_free_io_queues:
	nvme_rdma_free_io_queues(ctrl);
	return ret;
866 867
}

868 869 870 871 872 873 874 875
static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);

	cancel_work_sync(&ctrl->err_work);
	cancel_delayed_work_sync(&ctrl->reconnect_work);
}

876 877 878 879 880 881 882 883 884 885 886 887 888
static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);

	if (list_empty(&ctrl->list))
		goto free_ctrl;

	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_del(&ctrl->list);
	mutex_unlock(&nvme_rdma_ctrl_mutex);

	nvmf_free_options(nctrl->opts);
free_ctrl:
889
	kfree(ctrl->queues);
890 891 892
	kfree(ctrl);
}

893 894 895
static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
{
	/* If we are resetting/deleting then do nothing */
896
	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
897 898 899 900 901 902 903 904
		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
			ctrl->ctrl.state == NVME_CTRL_LIVE);
		return;
	}

	if (nvmf_should_reconnect(&ctrl->ctrl)) {
		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
			ctrl->ctrl.opts->reconnect_delay);
905
		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
906 907
				ctrl->ctrl.opts->reconnect_delay * HZ);
	} else {
908
		nvme_delete_ctrl(&ctrl->ctrl);
909 910 911
	}
}

912 913 914 915 916 917 918
static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
{
	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvme_rdma_ctrl, reconnect_work);
	bool changed;
	int ret;

919
	++ctrl->ctrl.nr_reconnects;
920

921
	ret = nvme_rdma_configure_admin_queue(ctrl, false);
922
	if (ret)
923
		goto requeue;
924

925
	if (ctrl->ctrl.queue_count > 1) {
926
		ret = nvme_rdma_configure_io_queues(ctrl, false);
927
		if (ret)
928
			goto destroy_admin;
929 930 931
	}

	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
932 933 934 935 936 937
	if (!changed) {
		/* state change failure is ok if we're in DELETING state */
		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
		return;
	}

938
	nvme_start_ctrl(&ctrl->ctrl);
939

940 941 942 943
	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
			ctrl->ctrl.nr_reconnects);

	ctrl->ctrl.nr_reconnects = 0;
944 945 946

	return;

947
destroy_admin:
948
	nvme_rdma_stop_queue(&ctrl->queues[0]);
949
	nvme_rdma_destroy_admin_queue(ctrl, false);
950
requeue:
951
	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
952
			ctrl->ctrl.nr_reconnects);
953
	nvme_rdma_reconnect_or_remove(ctrl);
954 955 956 957 958 959 960
}

static void nvme_rdma_error_recovery_work(struct work_struct *work)
{
	struct nvme_rdma_ctrl *ctrl = container_of(work,
			struct nvme_rdma_ctrl, err_work);

961
	nvme_stop_keep_alive(&ctrl->ctrl);
962

963
	if (ctrl->ctrl.queue_count > 1) {
964
		nvme_stop_queues(&ctrl->ctrl);
965
		nvme_rdma_stop_io_queues(ctrl);
966 967
		blk_mq_tagset_busy_iter(&ctrl->tag_set,
					nvme_cancel_request, &ctrl->ctrl);
968 969 970 971
		nvme_rdma_destroy_io_queues(ctrl, false);
	}

	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
972
	nvme_rdma_stop_queue(&ctrl->queues[0]);
973 974
	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
				nvme_cancel_request, &ctrl->ctrl);
975
	nvme_rdma_destroy_admin_queue(ctrl, false);
976

977 978 979 980
	/*
	 * queues are not a live anymore, so restart the queues to fail fast
	 * new IO
	 */
981
	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
982 983
	nvme_start_queues(&ctrl->ctrl);

984
	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
985 986
		/* state change failure is ok if we're in DELETING state */
		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
987 988 989
		return;
	}

990
	nvme_rdma_reconnect_or_remove(ctrl);
991 992 993 994
}

static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
{
995
	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
996 997
		return;

998
	queue_work(nvme_wq, &ctrl->err_work);
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
}

static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
		const char *op)
{
	struct nvme_rdma_queue *queue = cq->cq_context;
	struct nvme_rdma_ctrl *ctrl = queue->ctrl;

	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
		dev_info(ctrl->ctrl.device,
			     "%s for CQE 0x%p failed with status %s (%d)\n",
			     op, wc->wr_cqe,
			     ib_wc_status_msg(wc->status), wc->status);
	nvme_rdma_error_recovery(ctrl);
}

static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
{
	if (unlikely(wc->status != IB_WC_SUCCESS))
		nvme_rdma_wr_error(cq, wc, "MEMREG");
}

static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
{
1023 1024 1025 1026 1027
	struct nvme_rdma_request *req =
		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
	struct request *rq = blk_mq_rq_from_pdu(req);

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1028
		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1029 1030 1031 1032 1033 1034
		return;
	}

	if (refcount_dec_and_test(&req->ref))
		nvme_end_request(rq, req->status, req->result);

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
}

static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req)
{
	struct ib_send_wr *bad_wr;
	struct ib_send_wr wr = {
		.opcode		    = IB_WR_LOCAL_INV,
		.next		    = NULL,
		.num_sge	    = 0,
1045
		.send_flags	    = IB_SEND_SIGNALED,
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
		.ex.invalidate_rkey = req->mr->rkey,
	};

	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
	wr.wr_cqe = &req->reg_cqe;

	return ib_post_send(queue->qp, &wr, &bad_wr);
}

static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
		struct request *rq)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_device *dev = queue->device;
	struct ib_device *ibdev = dev->dev;

1062
	if (!blk_rq_payload_bytes(rq))
1063 1064
		return;

Israel Rukshin's avatar
Israel Rukshin committed
1065 1066 1067 1068 1069
	if (req->mr) {
		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
		req->mr = NULL;
	}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
			req->nents, rq_data_dir(rq) ==
				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);

	nvme_cleanup_cmd(rq);
	sg_free_table_chained(&req->sg_table, true);
}

static int nvme_rdma_set_sg_null(struct nvme_command *c)
{
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;

	sg->addr = 0;
	put_unaligned_le24(0, sg->length);
	put_unaligned_le32(0, sg->key);
	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
	return 0;
}

static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req, struct nvme_command *c)
{
	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;

	req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
	req->sge[1].length = sg_dma_len(req->sg_table.sgl);
	req->sge[1].lkey = queue->device->pd->local_dma_lkey;

	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
	sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;

	req->num_sge++;
	return 0;
}

static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req, struct nvme_command *c)
{
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;

	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1113
	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
	return 0;
}

static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req, struct nvme_command *c,
		int count)
{
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
	int nr;

Israel Rukshin's avatar
Israel Rukshin committed
1125 1126 1127 1128
	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
	if (WARN_ON_ONCE(!req->mr))
		return -EAGAIN;

1129 1130 1131 1132 1133
	/*
	 * Align the MR to a 4K page size to match the ctrl page size and
	 * the block virtual boundary.
	 */
	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1134
	if (unlikely(nr < count)) {
Israel Rukshin's avatar
Israel Rukshin committed
1135 1136
		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
		req->mr = NULL;
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
		if (nr < 0)
			return nr;
		return -EINVAL;
	}

	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));

	req->reg_cqe.done = nvme_rdma_memreg_done;
	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
	req->reg_wr.wr.opcode = IB_WR_REG_MR;
	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
	req->reg_wr.wr.num_sge = 0;
	req->reg_wr.mr = req->mr;
	req->reg_wr.key = req->mr->rkey;
	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
			     IB_ACCESS_REMOTE_READ |
			     IB_ACCESS_REMOTE_WRITE;

	sg->addr = cpu_to_le64(req->mr->iova);
	put_unaligned_le24(req->mr->length, sg->length);
	put_unaligned_le32(req->mr->rkey, sg->key);
	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
			NVME_SGL_FMT_INVALIDATE;

	return 0;
}

static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1165
		struct request *rq, struct nvme_command *c)
1166 1167 1168 1169
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_device *dev = queue->device;
	struct ib_device *ibdev = dev->dev;
1170
	int count, ret;
1171 1172

	req->num_sge = 1;
1173
	refcount_set(&req->ref, 2); /* send and recv completions */
1174 1175 1176

	c->common.flags |= NVME_CMD_SGL_METABUF;

1177
	if (!blk_rq_payload_bytes(rq))
1178 1179 1180
		return nvme_rdma_set_sg_null(c);

	req->sg_table.sgl = req->first_sgl;
1181 1182
	ret = sg_alloc_table_chained(&req->sg_table,
			blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1183 1184 1185
	if (ret)
		return -ENOMEM;

1186
	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1187

1188
	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1189 1190
		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
	if (unlikely(count <= 0)) {
1191 1192
		ret = -EIO;
		goto out_free_table;
1193 1194 1195
	}

	if (count == 1) {
1196 1197
		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
		    blk_rq_payload_bytes(rq) <=
1198 1199 1200 1201
				nvme_rdma_inline_data_size(queue)) {
			ret = nvme_rdma_map_sg_inline(queue, req, c);
			goto out;
		}
1202

1203 1204 1205 1206
		if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
			ret = nvme_rdma_map_sg_single(queue, req, c);
			goto out;
		}
1207 1208
	}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
out:
	if (unlikely(ret))
		goto out_unmap_sg;

	return 0;

out_unmap_sg:
	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
			req->nents, rq_data_dir(rq) ==
			WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
out_free_table:
	sg_free_table_chained(&req->sg_table, true);
	return ret;
1223 1224 1225 1226
}

static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
{
1227 1228 1229 1230 1231 1232 1233
	struct nvme_rdma_qe *qe =
		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
	struct nvme_rdma_request *req =
		container_of(qe, struct nvme_rdma_request, sqe);
	struct request *rq = blk_mq_rq_from_pdu(req);

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1234
		nvme_rdma_wr_error(cq, wc, "SEND");
1235 1236 1237 1238 1239
		return;
	}

	if (refcount_dec_and_test(&req->ref))
		nvme_end_request(rq, req->status, req->result);
1240 1241 1242 1243
}

static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1244
		struct ib_send_wr *first)
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
{
	struct ib_send_wr wr, *bad_wr;
	int ret;

	sge->addr   = qe->dma;
	sge->length = sizeof(struct nvme_command),
	sge->lkey   = queue->device->pd->local_dma_lkey;

	wr.next       = NULL;
	wr.wr_cqe     = &qe->cqe;
	wr.sg_list    = sge;
	wr.num_sge    = num_sge;
	wr.opcode     = IB_WR_SEND;
1258
	wr.send_flags = IB_SEND_SIGNALED;
1259 1260 1261 1262 1263 1264 1265

	if (first)
		first->next = &wr;
	else
		first = &wr;

	ret = ib_post_send(queue->qp, first, &bad_wr);
1266
	if (unlikely(ret)) {
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
		dev_err(queue->ctrl->ctrl.device,
			     "%s failed with error code %d\n", __func__, ret);
	}
	return ret;
}

static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
		struct nvme_rdma_qe *qe)
{
	struct ib_recv_wr wr, *bad_wr;
	struct ib_sge list;
	int ret;

	list.addr   = qe->dma;
	list.length = sizeof(struct nvme_completion);
	list.lkey   = queue->device->pd->local_dma_lkey;

	qe->cqe.done = nvme_rdma_recv_done;

	wr.next     = NULL;
	wr.wr_cqe   = &qe->cqe;
	wr.sg_list  = &list;
	wr.num_sge  = 1;

	ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1292
	if (unlikely(ret)) {
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		dev_err(queue->ctrl->ctrl.device,
			"%s failed with error code %d\n", __func__, ret);
	}
	return ret;
}

static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
{
	u32 queue_idx = nvme_rdma_queue_idx(queue);

	if (queue_idx == 0)
		return queue->ctrl->admin_tag_set.tags[queue_idx];
	return queue->ctrl->tag_set.tags[queue_idx - 1];
}

1308 1309 1310 1311 1312 1313
static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
{
	if (unlikely(wc->status != IB_WC_SUCCESS))
		nvme_rdma_wr_error(cq, wc, "ASYNC");
}

1314
static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
	struct nvme_rdma_queue *queue = &ctrl->queues[0];
	struct ib_device *dev = queue->device->dev;
	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
	struct nvme_command *cmd = sqe->data;
	struct ib_sge sge;
	int ret;

	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);

	memset(cmd, 0, sizeof(*cmd));
	cmd->common.opcode = nvme_admin_async_event;
Keith Busch's avatar
Keith Busch committed
1328
	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1329 1330 1331
	cmd->common.flags |= NVME_CMD_SGL_METABUF;
	nvme_rdma_set_sg_null(cmd);

1332 1333
	sqe->cqe.done = nvme_rdma_async_done;

1334 1335 1336
	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
			DMA_TO_DEVICE);

1337
	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	WARN_ON_ONCE(ret);
}

static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
		struct nvme_completion *cqe, struct ib_wc *wc, int tag)
{
	struct request *rq;
	struct nvme_rdma_request *req;
	int ret = 0;

	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
	if (!rq) {
		dev_err(queue->ctrl->ctrl.device,
			"tag 0x%x on QP %#x not found\n",
			cqe->command_id, queue->qp->qp_num);
		nvme_rdma_error_recovery(queue->ctrl);
		return ret;
	}
	req = blk_mq_rq_to_pdu(rq);

1358 1359
	req->status = cqe->status;
	req->result = cqe->result;
1360

1361 1362 1363 1364 1365 1366 1367
	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
		if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
			dev_err(queue->ctrl->ctrl.device,
				"Bogus remote invalidation for rkey %#x\n",
				req->mr->rkey);
			nvme_rdma_error_recovery(queue->ctrl);
		}
Israel Rukshin's avatar
Israel Rukshin committed
1368
	} else if (req->mr) {
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
		ret = nvme_rdma_inv_rkey(queue, req);
		if (unlikely(ret < 0)) {
			dev_err(queue->ctrl->ctrl.device,
				"Queueing INV WR for rkey %#x failed (%d)\n",
				req->mr->rkey, ret);
			nvme_rdma_error_recovery(queue->ctrl);
		}
		/* the local invalidation completion will end the request */
		return 0;
	}
1379

1380 1381 1382 1383 1384 1385
	if (refcount_dec_and_test(&req->ref)) {
		if (rq->tag == tag)
			ret = 1;
		nvme_end_request(rq, req->status, req->result);
	}

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	return ret;
}

static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
{
	struct nvme_rdma_qe *qe =
		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
	struct nvme_rdma_queue *queue = cq->cq_context;
	struct ib_device *ibdev = queue->device->dev;
	struct nvme_completion *cqe = qe->data;
	const size_t len = sizeof(struct nvme_completion);
	int ret = 0;

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		nvme_rdma_wr_error(cq, wc, "RECV");
		return 0;
	}

	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
	/*
	 * AEN requests are special as they don't time out and can
	 * survive any kind of queue freeze and often don't respond to
	 * aborts.  We don't even bother to allocate a struct request
	 * for them but rather special case them here.
	 */
	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
Keith Busch's avatar
Keith Busch committed
1412
			cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1413 1414
		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
				&cqe->result);
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	else
		ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);

	nvme_rdma_post_recv(queue, qe);
	return ret;
}

static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
{
	__nvme_rdma_recv_done(cq, wc, -1);
}

static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
{
	int ret, i;

	for (i = 0; i < queue->queue_size; i++) {
		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
		if (ret)
			goto out_destroy_queue_ib;
	}

	return 0;

out_destroy_queue_ib:
	nvme_rdma_destroy_queue_ib(queue);
	return ret;
}

static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
		struct rdma_cm_event *ev)
{
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
	struct rdma_cm_id *cm_id = queue->cm_id;
	int status = ev->status;
	const char *rej_msg;
	const struct nvme_rdma_cm_rej *rej_data;
	u8 rej_data_len;

	rej_msg = rdma_reject_msg(cm_id, status);
	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);

	if (rej_data && rej_data_len >= sizeof(u16)) {
		u16 sts = le16_to_cpu(rej_data->sts);
1459 1460

		dev_err(queue->ctrl->ctrl.device,
1461 1462
		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1463 1464
	} else {
		dev_err(queue->ctrl->ctrl.device,
1465
			"Connect rejected: status %d (%s).\n", status, rej_msg);
1466 1467 1468 1469 1470 1471 1472 1473 1474
	}

	return -ECONNRESET;
}

static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
{
	int ret;

1475 1476 1477
	ret = nvme_rdma_create_queue_ib(queue);
	if (ret)
		return ret;
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497

	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
	if (ret) {
		dev_err(queue->ctrl->ctrl.device,
			"rdma_resolve_route failed (%d).\n",
			queue->cm_error);
		goto out_destroy_queue;
	}

	return 0;

out_destroy_queue:
	nvme_rdma_destroy_queue_ib(queue);
	return ret;
}

static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
{
	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
	struct rdma_conn_param param = { };
1498
	struct nvme_rdma_cm_req priv = { };
1499 1500 1501 1502 1503 1504
	int ret;

	param.qp_num = queue->qp->qp_num;
	param.flow_control = 1;

	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1505 1506
	/* maximum retry count */
	param.retry_count = 7;
1507 1508 1509 1510 1511 1512
	param.rnr_retry_count = 7;
	param.private_data = &priv;
	param.private_data_len = sizeof(priv);

	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1513 1514 1515 1516 1517
	/*
	 * set the admin queue depth to the minimum size
	 * specified by the Fabrics standard.
	 */
	if (priv.qid == 0) {
1518 1519
		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1520
	} else {
1521 1522 1523 1524 1525
		/*
		 * current interpretation of the fabrics spec
		 * is at minimum you make hrqsize sqsize+1, or a
		 * 1's based representation of sqsize.
		 */
1526
		priv.hrqsize = cpu_to_le16(queue->queue_size);
1527
		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1528
	}
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566

	ret = rdma_connect(queue->cm_id, &param);
	if (ret) {
		dev_err(ctrl->ctrl.device,
			"rdma_connect failed (%d).\n", ret);
		goto out_destroy_queue_ib;
	}

	return 0;

out_destroy_queue_ib:
	nvme_rdma_destroy_queue_ib(queue);
	return ret;
}

static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
		struct rdma_cm_event *ev)
{
	struct nvme_rdma_queue *queue = cm_id->context;
	int cm_error = 0;

	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
		rdma_event_msg(ev->event), ev->event,
		ev->status, cm_id);

	switch (ev->event) {
	case RDMA_CM_EVENT_ADDR_RESOLVED:
		cm_error = nvme_rdma_addr_resolved(queue);
		break;
	case RDMA_CM_EVENT_ROUTE_RESOLVED:
		cm_error = nvme_rdma_route_resolved(queue);
		break;
	case RDMA_CM_EVENT_ESTABLISHED:
		queue->cm_error = nvme_rdma_conn_established(queue);
		/* complete cm_done regardless of success/failure */
		complete(&queue->cm_done);
		return 0;
	case RDMA_CM_EVENT_REJECTED:
1567
		nvme_rdma_destroy_queue_ib(queue);
1568 1569 1570 1571 1572
		cm_error = nvme_rdma_conn_rejected(queue, ev);
		break;
	case RDMA_CM_EVENT_ROUTE_ERROR:
	case RDMA_CM_EVENT_CONNECT_ERROR:
	case RDMA_CM_EVENT_UNREACHABLE:
1573 1574
		nvme_rdma_destroy_queue_ib(queue);
	case RDMA_CM_EVENT_ADDR_ERROR:
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
		dev_dbg(queue->ctrl->ctrl.device,
			"CM error event %d\n", ev->event);
		cm_error = -ECONNRESET;
		break;
	case RDMA_CM_EVENT_DISCONNECTED:
	case RDMA_CM_EVENT_ADDR_CHANGE:
	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
		dev_dbg(queue->ctrl->ctrl.device,
			"disconnect received - connection closed\n");
		nvme_rdma_error_recovery(queue->ctrl);
		break;
	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1587 1588
		/* device removal is handled via the ib_client API */
		break;
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	default:
		dev_err(queue->ctrl->ctrl.device,
			"Unexpected RDMA CM event (%d)\n", ev->event);
		nvme_rdma_error_recovery(queue->ctrl);
		break;
	}

	if (cm_error) {
		queue->cm_error = cm_error;
		complete(&queue->cm_done);
	}

	return 0;
}

static enum blk_eh_timer_return
nvme_rdma_timeout(struct request *rq, bool reserved)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);

1609 1610 1611 1612
	dev_warn(req->queue->ctrl->ctrl.device,
		 "I/O %d QID %d timeout, reset controller\n",
		 rq->tag, nvme_rdma_queue_idx(req->queue));

1613 1614 1615 1616
	/* queue error recovery */
	nvme_rdma_error_recovery(req->queue->ctrl);

	/* fail with DNR on cmd timeout */
1617
	nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1618

1619
	return BLK_EH_DONE;
1620 1621
}

1622
static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1623 1624 1625 1626 1627 1628 1629 1630 1631
		const struct blk_mq_queue_data *bd)
{
	struct nvme_ns *ns = hctx->queue->queuedata;
	struct nvme_rdma_queue *queue = hctx->driver_data;
	struct request *rq = bd->rq;
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_qe *sqe = &req->sqe;
	struct nvme_command *c = sqe->data;
	struct ib_device *dev;
1632
	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1633 1634
	blk_status_t ret;
	int err;
1635 1636 1637

	WARN_ON_ONCE(rq->tag < 0);

1638 1639
	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
		return nvmf_fail_nonready_command(rq);
1640

1641 1642 1643 1644 1645
	dev = queue->device->dev;
	ib_dma_sync_single_for_cpu(dev, sqe->dma,
			sizeof(struct nvme_command), DMA_TO_DEVICE);

	ret = nvme_setup_cmd(ns, rq, c);
1646
	if (ret)
1647 1648 1649 1650
		return ret;

	blk_mq_start_request(rq);

1651
	err = nvme_rdma_map_data(queue, rq, c);
1652
	if (unlikely(err < 0)) {
1653
		dev_err(queue->ctrl->ctrl.device,
1654
			     "Failed to map data (%d)\n", err);
1655 1656 1657 1658
		nvme_cleanup_cmd(rq);
		goto err;
	}

1659 1660
	sqe->cqe.done = nvme_rdma_send_done;

1661 1662 1663
	ib_dma_sync_single_for_device(dev, sqe->dma,
			sizeof(struct nvme_command), DMA_TO_DEVICE);

1664
	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
Israel Rukshin's avatar
Israel Rukshin committed
1665
			req->mr ? &req->reg_wr.wr : NULL);
1666
	if (unlikely(err)) {
1667 1668 1669 1670
		nvme_rdma_unmap_data(queue, rq);
		goto err;
	}

1671
	return BLK_STS_OK;
1672
err:
1673 1674 1675
	if (err == -ENOMEM || err == -EAGAIN)
		return BLK_STS_RESOURCE;
	return BLK_STS_IOERR;
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
}

static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
{
	struct nvme_rdma_queue *queue = hctx->driver_data;
	struct ib_cq *cq = queue->ib_cq;
	struct ib_wc wc;
	int found = 0;

	while (ib_poll_cq(cq, 1, &wc) > 0) {
		struct ib_cqe *cqe = wc.wr_cqe;

		if (cqe) {
			if (cqe->done == nvme_rdma_recv_done)
				found |= __nvme_rdma_recv_done(cq, &wc, tag);
			else
				cqe->done(cq, &wc);
		}
	}

	return found;
}

static void nvme_rdma_complete_rq(struct request *rq)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);

1703 1704
	nvme_rdma_unmap_data(req->queue, rq);
	nvme_complete_rq(rq);
1705 1706
}

1707 1708 1709 1710 1711 1712 1713
static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
{
	struct nvme_rdma_ctrl *ctrl = set->driver_data;

	return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
}

1714
static const struct blk_mq_ops nvme_rdma_mq_ops = {
1715 1716 1717 1718 1719 1720 1721
	.queue_rq	= nvme_rdma_queue_rq,
	.complete	= nvme_rdma_complete_rq,
	.init_request	= nvme_rdma_init_request,
	.exit_request	= nvme_rdma_exit_request,
	.init_hctx	= nvme_rdma_init_hctx,
	.poll		= nvme_rdma_poll,
	.timeout	= nvme_rdma_timeout,
1722
	.map_queues	= nvme_rdma_map_queues,
1723 1724
};

1725
static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1726 1727
	.queue_rq	= nvme_rdma_queue_rq,
	.complete	= nvme_rdma_complete_rq,
1728 1729
	.init_request	= nvme_rdma_init_request,
	.exit_request	= nvme_rdma_exit_request,
1730 1731 1732 1733
	.init_hctx	= nvme_rdma_init_admin_hctx,
	.timeout	= nvme_rdma_timeout,
};

1734
static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1735
{
1736
	if (ctrl->ctrl.queue_count > 1) {
1737
		nvme_stop_queues(&ctrl->ctrl);
1738
		nvme_rdma_stop_io_queues(ctrl);
1739 1740
		blk_mq_tagset_busy_iter(&ctrl->tag_set,
					nvme_cancel_request, &ctrl->ctrl);
1741
		nvme_rdma_destroy_io_queues(ctrl, shutdown);
1742 1743
	}

1744
	if (shutdown)
1745
		nvme_shutdown_ctrl(&ctrl->ctrl);
1746 1747
	else
		nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1748

1749
	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1750
	nvme_rdma_stop_queue(&ctrl->queues[0]);
1751 1752
	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
				nvme_cancel_request, &ctrl->ctrl);
1753
	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1754
	nvme_rdma_destroy_admin_queue(ctrl, shutdown);
1755 1756
}

1757
static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1758
{
1759
	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1760 1761 1762 1763
}

static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
{
1764 1765
	struct nvme_rdma_ctrl *ctrl =
		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1766 1767 1768
	int ret;
	bool changed;

1769
	nvme_stop_ctrl(&ctrl->ctrl);
1770
	nvme_rdma_shutdown_ctrl(ctrl, false);
1771

1772
	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1773 1774 1775 1776 1777
		/* state change failure should never happen */
		WARN_ON_ONCE(1);
		return;
	}

1778
	ret = nvme_rdma_configure_admin_queue(ctrl, false);
1779 1780
	if (ret)
		goto out_fail;
1781

1782
	if (ctrl->ctrl.queue_count > 1) {
1783
		ret = nvme_rdma_configure_io_queues(ctrl, false);
1784
		if (ret)
1785
			goto out_fail;
1786 1787 1788
	}

	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1789 1790 1791 1792 1793
	if (!changed) {
		/* state change failure is ok if we're in DELETING state */
		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
		return;
	}
1794

1795
	nvme_start_ctrl(&ctrl->ctrl);
1796 1797 1798

	return;

1799
out_fail:
1800 1801
	++ctrl->ctrl.nr_reconnects;
	nvme_rdma_reconnect_or_remove(ctrl);
1802 1803 1804 1805 1806
}

static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
	.name			= "rdma",
	.module			= THIS_MODULE,
1807
	.flags			= NVME_F_FABRICS,
1808 1809 1810 1811 1812
	.reg_read32		= nvmf_reg_read32,
	.reg_read64		= nvmf_reg_read64,
	.reg_write32		= nvmf_reg_write32,
	.free_ctrl		= nvme_rdma_free_ctrl,
	.submit_async_event	= nvme_rdma_submit_async_event,
1813
	.delete_ctrl		= nvme_rdma_delete_ctrl,
1814
	.get_address		= nvmf_get_address,
1815
	.stop_ctrl		= nvme_rdma_stop_ctrl,
1816 1817
};

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
static inline bool
__nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl,
	struct nvmf_ctrl_options *opts)
{
	char *stdport = __stringify(NVME_RDMA_IP_PORT);


	if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) ||
	    strcmp(opts->traddr, ctrl->ctrl.opts->traddr))
		return false;

	if (opts->mask & NVMF_OPT_TRSVCID &&
	    ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
		if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid))
			return false;
	} else if (opts->mask & NVMF_OPT_TRSVCID) {
		if (strcmp(opts->trsvcid, stdport))
			return false;
	} else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
		if (strcmp(stdport, ctrl->ctrl.opts->trsvcid))
			return false;
	}
	/* else, it's a match as both have stdport. Fall to next checks */

	/*
	 * checking the local address is rough. In most cases, one
	 * is not specified and the host port is selected by the stack.
	 *
	 * Assume no match if:
	 *  local address is specified and address is not the same
	 *  local address is not specified but remote is, or vice versa
	 *    (admin using specific host_traddr when it matters).
	 */
	if (opts->mask & NVMF_OPT_HOST_TRADDR &&
	    ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
		if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr))
			return false;
	} else if (opts->mask & NVMF_OPT_HOST_TRADDR ||
		   ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
		return false;
	/*
	 * if neither controller had an host port specified, assume it's
	 * a match as everything else matched.
	 */

	return true;
}

/*
 * Fails a connection request if it matches an existing controller
 * (association) with the same tuple:
 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
 *
 * if local address is not specified in the request, it will match an
 * existing controller with all the other parameters the same and no
 * local port address specified as well.
 *
 * The ports don't need to be compared as they are intrinsically
 * already matched by the port pointers supplied.
 */
static bool
nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
{
	struct nvme_rdma_ctrl *ctrl;
	bool found = false;

	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
		found = __nvme_rdma_options_match(ctrl, opts);
		if (found)
			break;
	}
	mutex_unlock(&nvme_rdma_ctrl_mutex);

	return found;
}

1895 1896 1897 1898 1899 1900
static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
		struct nvmf_ctrl_options *opts)
{
	struct nvme_rdma_ctrl *ctrl;
	int ret;
	bool changed;
1901
	char *port;
1902 1903 1904 1905 1906 1907 1908

	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
	if (!ctrl)
		return ERR_PTR(-ENOMEM);
	ctrl->ctrl.opts = opts;
	INIT_LIST_HEAD(&ctrl->list);

1909 1910 1911 1912 1913 1914 1915
	if (opts->mask & NVMF_OPT_TRSVCID)
		port = opts->trsvcid;
	else
		port = __stringify(NVME_RDMA_IP_PORT);

	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
			opts->traddr, port, &ctrl->addr);
1916
	if (ret) {
1917
		pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1918 1919 1920
		goto out_free_ctrl;
	}

1921
	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1922 1923
		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
			opts->host_traddr, NULL, &ctrl->src_addr);
1924
		if (ret) {
1925
			pr_err("malformed src address passed: %s\n",
1926 1927 1928 1929 1930
			       opts->host_traddr);
			goto out_free_ctrl;
		}
	}

1931 1932 1933 1934 1935
	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
		ret = -EALREADY;
		goto out_free_ctrl;
	}

1936 1937 1938
	INIT_DELAYED_WORK(&ctrl->reconnect_work,
			nvme_rdma_reconnect_ctrl_work);
	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1939
	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1940

1941
	ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1942
	ctrl->ctrl.sqsize = opts->queue_size - 1;
1943 1944 1945
	ctrl->ctrl.kato = opts->kato;

	ret = -ENOMEM;
1946
	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1947 1948
				GFP_KERNEL);
	if (!ctrl->queues)
1949 1950 1951 1952 1953 1954
		goto out_free_ctrl;

	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
				0 /* no quirks, we're perfect! */);
	if (ret)
		goto out_kfree_queues;
1955

1956 1957 1958
	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
	WARN_ON_ONCE(!changed);

1959
	ret = nvme_rdma_configure_admin_queue(ctrl, true);
1960
	if (ret)
1961
		goto out_uninit_ctrl;
1962 1963 1964 1965

	/* sanity check icdoff */
	if (ctrl->ctrl.icdoff) {
		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1966
		ret = -EINVAL;
1967 1968 1969 1970
		goto out_remove_admin_queue;
	}

	/* sanity check keyed sgls */
1971 1972 1973
	if (!(ctrl->ctrl.sgls & (1 << 2))) {
		dev_err(ctrl->ctrl.device,
			"Mandatory keyed sgls are not supported!\n");
1974
		ret = -EINVAL;
1975 1976 1977
		goto out_remove_admin_queue;
	}

1978
	/* only warn if argument is too large here, will clamp later */
1979 1980 1981 1982
	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
		dev_warn(ctrl->ctrl.device,
			"queue_size %zu > ctrl sqsize %u, clamping down\n",
			opts->queue_size, ctrl->ctrl.sqsize + 1);
1983 1984 1985 1986 1987 1988 1989 1990
	}

	/* warn if maxcmd is lower than sqsize+1 */
	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
		dev_warn(ctrl->ctrl.device,
			"sqsize %u > ctrl maxcmd %u, clamping down\n",
			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1991 1992
	}

1993
	if (opts->nr_io_queues) {
1994
		ret = nvme_rdma_configure_io_queues(ctrl, true);
1995 1996 1997 1998 1999 2000 2001
		if (ret)
			goto out_remove_admin_queue;
	}

	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
	WARN_ON_ONCE(!changed);

2002
	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2003 2004
		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);

2005
	nvme_get_ctrl(&ctrl->ctrl);
2006 2007 2008 2009 2010

	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
	mutex_unlock(&nvme_rdma_ctrl_mutex);

2011
	nvme_start_ctrl(&ctrl->ctrl);
2012 2013 2014 2015

	return &ctrl->ctrl;

out_remove_admin_queue:
2016
	nvme_rdma_stop_queue(&ctrl->queues[0]);
2017
	nvme_rdma_destroy_admin_queue(ctrl, true);
2018 2019 2020 2021 2022 2023
out_uninit_ctrl:
	nvme_uninit_ctrl(&ctrl->ctrl);
	nvme_put_ctrl(&ctrl->ctrl);
	if (ret > 0)
		ret = -EIO;
	return ERR_PTR(ret);
2024 2025
out_kfree_queues:
	kfree(ctrl->queues);
2026 2027 2028 2029 2030 2031 2032
out_free_ctrl:
	kfree(ctrl);
	return ERR_PTR(ret);
}

static struct nvmf_transport_ops nvme_rdma_transport = {
	.name		= "rdma",
2033
	.module		= THIS_MODULE,
2034
	.required_opts	= NVMF_OPT_TRADDR,
2035
	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2036
			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
2037 2038 2039
	.create_ctrl	= nvme_rdma_create_ctrl,
};

2040 2041 2042
static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
{
	struct nvme_rdma_ctrl *ctrl;
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
	struct nvme_rdma_device *ndev;
	bool found = false;

	mutex_lock(&device_list_mutex);
	list_for_each_entry(ndev, &device_list, entry) {
		if (ndev->dev == ib_device) {
			found = true;
			break;
		}
	}
	mutex_unlock(&device_list_mutex);

	if (!found)
		return;
2057 2058 2059 2060 2061 2062

	/* Delete all controllers using this device */
	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
		if (ctrl->device->dev != ib_device)
			continue;
2063
		nvme_delete_ctrl(&ctrl->ctrl);
2064 2065 2066
	}
	mutex_unlock(&nvme_rdma_ctrl_mutex);

2067
	flush_workqueue(nvme_delete_wq);
2068 2069 2070 2071 2072 2073 2074
}

static struct ib_client nvme_rdma_ib_client = {
	.name   = "nvme_rdma",
	.remove = nvme_rdma_remove_one
};

2075 2076
static int __init nvme_rdma_init_module(void)
{
2077 2078 2079
	int ret;

	ret = ib_register_client(&nvme_rdma_ib_client);
2080
	if (ret)
2081
		return ret;
2082 2083 2084 2085

	ret = nvmf_register_transport(&nvme_rdma_transport);
	if (ret)
		goto err_unreg_client;
2086

2087
	return 0;
2088

2089 2090 2091
err_unreg_client:
	ib_unregister_client(&nvme_rdma_ib_client);
	return ret;
2092 2093 2094 2095 2096
}

static void __exit nvme_rdma_cleanup_module(void)
{
	nvmf_unregister_transport(&nvme_rdma_transport);
2097
	ib_unregister_client(&nvme_rdma_ib_client);
2098 2099 2100 2101 2102 2103
}

module_init(nvme_rdma_init_module);
module_exit(nvme_rdma_cleanup_module);

MODULE_LICENSE("GPL v2");