Commit 2b976203 authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 fixes from Thomas Gleixner:
 "The x86 updates contain:

   - A fix for a longstanding PAT bug, where PAT was reported on CPUs
     that do not support it, which leads to wrong caching attributes and
     missing MTRR updates

   - Prevent overwriting of the e820 firmware table, which causes kexec
     kernels to lose the fake mptable which is stored there.

   - Cleanup of the UV/BAU code, removing unused code and making local
     functions static"

* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/boot/e820: Introduce the bootloader provided e820_table_firmware[] table
  x86/boot/e820: Rename the e820_table_firmware to e820_table_kexec
  x86/boot/e820: Avoid overwriting e820_table_firmware
  x86/mm/pat: Don't report PAT on CPUs that don't support it
  x86/platform/uv/BAU: Minor cleanup, make some local functions static
parents 8d97a6c3 12df216c
...@@ -4,6 +4,7 @@ ...@@ -4,6 +4,7 @@
#include <asm/e820/types.h> #include <asm/e820/types.h>
extern struct e820_table *e820_table; extern struct e820_table *e820_table;
extern struct e820_table *e820_table_kexec;
extern struct e820_table *e820_table_firmware; extern struct e820_table *e820_table_firmware;
extern unsigned long pci_mem_start; extern unsigned long pci_mem_start;
......
...@@ -7,6 +7,7 @@ ...@@ -7,6 +7,7 @@
bool pat_enabled(void); bool pat_enabled(void);
void pat_disable(const char *reason); void pat_disable(const char *reason);
extern void pat_init(void); extern void pat_init(void);
extern void init_cache_modes(void);
extern int reserve_memtype(u64 start, u64 end, extern int reserve_memtype(u64 start, u64 end,
enum page_cache_mode req_pcm, enum page_cache_mode *ret_pcm); enum page_cache_mode req_pcm, enum page_cache_mode *ret_pcm);
......
...@@ -20,10 +20,12 @@ ...@@ -20,10 +20,12 @@
#include <asm/setup.h> #include <asm/setup.h>
/* /*
* We organize the E820 table into two main data structures: * We organize the E820 table into three main data structures:
* *
* - 'e820_table_firmware': the original firmware version passed to us by the * - 'e820_table_firmware': the original firmware version passed to us by the
* bootloader - not modified by the kernel. We use this to: * bootloader - not modified by the kernel. It is composed of two parts:
* the first 128 E820 memory entries in boot_params.e820_table and the remaining
* (if any) entries of the SETUP_E820_EXT nodes. We use this to:
* *
* - inform the user about the firmware's notion of memory layout * - inform the user about the firmware's notion of memory layout
* via /sys/firmware/memmap * via /sys/firmware/memmap
...@@ -31,6 +33,14 @@ ...@@ -31,6 +33,14 @@
* - the hibernation code uses it to generate a kernel-independent MD5 * - the hibernation code uses it to generate a kernel-independent MD5
* fingerprint of the physical memory layout of a system. * fingerprint of the physical memory layout of a system.
* *
* - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
* passed to us by the bootloader - the major difference between
* e820_table_firmware[] and this one is that, the latter marks the setup_data
* list created by the EFI boot stub as reserved, so that kexec can reuse the
* setup_data information in the second kernel. Besides, e820_table_kexec[]
* might also be modified by the kexec itself to fake a mptable.
* We use this to:
*
* - kexec, which is a bootloader in disguise, uses the original E820 * - kexec, which is a bootloader in disguise, uses the original E820
* layout to pass to the kexec-ed kernel. This way the original kernel * layout to pass to the kexec-ed kernel. This way the original kernel
* can have a restricted E820 map while the kexec()-ed kexec-kernel * can have a restricted E820 map while the kexec()-ed kexec-kernel
...@@ -46,9 +56,11 @@ ...@@ -46,9 +56,11 @@
* specific memory layout data during early bootup. * specific memory layout data during early bootup.
*/ */
static struct e820_table e820_table_init __initdata; static struct e820_table e820_table_init __initdata;
static struct e820_table e820_table_kexec_init __initdata;
static struct e820_table e820_table_firmware_init __initdata; static struct e820_table e820_table_firmware_init __initdata;
struct e820_table *e820_table __refdata = &e820_table_init; struct e820_table *e820_table __refdata = &e820_table_init;
struct e820_table *e820_table_kexec __refdata = &e820_table_kexec_init;
struct e820_table *e820_table_firmware __refdata = &e820_table_firmware_init; struct e820_table *e820_table_firmware __refdata = &e820_table_firmware_init;
/* For PCI or other memory-mapped resources */ /* For PCI or other memory-mapped resources */
...@@ -470,9 +482,9 @@ u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum ...@@ -470,9 +482,9 @@ u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum
return __e820__range_update(e820_table, start, size, old_type, new_type); return __e820__range_update(e820_table, start, size, old_type, new_type);
} }
static u64 __init e820__range_update_firmware(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
{ {
return __e820__range_update(e820_table_firmware, start, size, old_type, new_type); return __e820__range_update(e820_table_kexec, start, size, old_type, new_type);
} }
/* Remove a range of memory from the E820 table: */ /* Remove a range of memory from the E820 table: */
...@@ -546,9 +558,9 @@ void __init e820__update_table_print(void) ...@@ -546,9 +558,9 @@ void __init e820__update_table_print(void)
e820__print_table("modified"); e820__print_table("modified");
} }
static void __init e820__update_table_firmware(void) static void __init e820__update_table_kexec(void)
{ {
e820__update_table(e820_table_firmware); e820__update_table(e820_table_kexec);
} }
#define MAX_GAP_END 0x100000000ull #define MAX_GAP_END 0x100000000ull
...@@ -623,7 +635,7 @@ __init void e820__setup_pci_gap(void) ...@@ -623,7 +635,7 @@ __init void e820__setup_pci_gap(void)
/* /*
* Called late during init, in free_initmem(). * Called late during init, in free_initmem().
* *
* Initial e820_table and e820_table_firmware are largish __initdata arrays. * Initial e820_table and e820_table_kexec are largish __initdata arrays.
* *
* Copy them to a (usually much smaller) dynamically allocated area that is * Copy them to a (usually much smaller) dynamically allocated area that is
* sized precisely after the number of e820 entries. * sized precisely after the number of e820 entries.
...@@ -643,6 +655,12 @@ __init void e820__reallocate_tables(void) ...@@ -643,6 +655,12 @@ __init void e820__reallocate_tables(void)
memcpy(n, e820_table, size); memcpy(n, e820_table, size);
e820_table = n; e820_table = n;
size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
n = kmalloc(size, GFP_KERNEL);
BUG_ON(!n);
memcpy(n, e820_table_kexec, size);
e820_table_kexec = n;
size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries; size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
n = kmalloc(size, GFP_KERNEL); n = kmalloc(size, GFP_KERNEL);
BUG_ON(!n); BUG_ON(!n);
...@@ -669,6 +687,9 @@ void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len) ...@@ -669,6 +687,9 @@ void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
__append_e820_table(extmap, entries); __append_e820_table(extmap, entries);
e820__update_table(e820_table); e820__update_table(e820_table);
memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
early_memunmap(sdata, data_len); early_memunmap(sdata, data_len);
pr_info("e820: extended physical RAM map:\n"); pr_info("e820: extended physical RAM map:\n");
e820__print_table("extended"); e820__print_table("extended");
...@@ -727,7 +748,7 @@ core_initcall(e820__register_nvs_regions); ...@@ -727,7 +748,7 @@ core_initcall(e820__register_nvs_regions);
/* /*
* Allocate the requested number of bytes with the requsted alignment * Allocate the requested number of bytes with the requsted alignment
* and return (the physical address) to the caller. Also register this * and return (the physical address) to the caller. Also register this
* range in the 'firmware' E820 table as a reserved range. * range in the 'kexec' E820 table as a reserved range.
* *
* This allows kexec to fake a new mptable, as if it came from the real * This allows kexec to fake a new mptable, as if it came from the real
* system. * system.
...@@ -738,9 +759,9 @@ u64 __init e820__memblock_alloc_reserved(u64 size, u64 align) ...@@ -738,9 +759,9 @@ u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
if (addr) { if (addr) {
e820__range_update_firmware(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED); e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
pr_info("e820: update e820_table_firmware for e820__memblock_alloc_reserved()\n"); pr_info("e820: update e820_table_kexec for e820__memblock_alloc_reserved()\n");
e820__update_table_firmware(); e820__update_table_kexec();
} }
return addr; return addr;
...@@ -923,13 +944,13 @@ void __init e820__reserve_setup_data(void) ...@@ -923,13 +944,13 @@ void __init e820__reserve_setup_data(void)
while (pa_data) { while (pa_data) {
data = early_memremap(pa_data, sizeof(*data)); data = early_memremap(pa_data, sizeof(*data));
e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
pa_data = data->next; pa_data = data->next;
early_memunmap(data, sizeof(*data)); early_memunmap(data, sizeof(*data));
} }
e820__update_table(e820_table); e820__update_table(e820_table);
e820__update_table(e820_table_kexec);
memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
pr_info("extended physical RAM map:\n"); pr_info("extended physical RAM map:\n");
e820__print_table("reserve setup_data"); e820__print_table("reserve setup_data");
...@@ -1062,6 +1083,7 @@ void __init e820__reserve_resources(void) ...@@ -1062,6 +1083,7 @@ void __init e820__reserve_resources(void)
res++; res++;
} }
/* Expose the bootloader-provided memory layout to the sysfs. */
for (i = 0; i < e820_table_firmware->nr_entries; i++) { for (i = 0; i < e820_table_firmware->nr_entries; i++) {
struct e820_entry *entry = e820_table_firmware->entries + i; struct e820_entry *entry = e820_table_firmware->entries + i;
...@@ -1175,6 +1197,7 @@ void __init e820__memory_setup(void) ...@@ -1175,6 +1197,7 @@ void __init e820__memory_setup(void)
who = x86_init.resources.memory_setup(); who = x86_init.resources.memory_setup();
memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
pr_info("e820: BIOS-provided physical RAM map:\n"); pr_info("e820: BIOS-provided physical RAM map:\n");
......
...@@ -100,14 +100,14 @@ static int setup_e820_entries(struct boot_params *params) ...@@ -100,14 +100,14 @@ static int setup_e820_entries(struct boot_params *params)
{ {
unsigned int nr_e820_entries; unsigned int nr_e820_entries;
nr_e820_entries = e820_table_firmware->nr_entries; nr_e820_entries = e820_table_kexec->nr_entries;
/* TODO: Pass entries more than E820_MAX_ENTRIES_ZEROPAGE in bootparams setup data */ /* TODO: Pass entries more than E820_MAX_ENTRIES_ZEROPAGE in bootparams setup data */
if (nr_e820_entries > E820_MAX_ENTRIES_ZEROPAGE) if (nr_e820_entries > E820_MAX_ENTRIES_ZEROPAGE)
nr_e820_entries = E820_MAX_ENTRIES_ZEROPAGE; nr_e820_entries = E820_MAX_ENTRIES_ZEROPAGE;
params->e820_entries = nr_e820_entries; params->e820_entries = nr_e820_entries;
memcpy(&params->e820_table, &e820_table_firmware->entries, nr_e820_entries*sizeof(struct e820_entry)); memcpy(&params->e820_table, &e820_table_kexec->entries, nr_e820_entries*sizeof(struct e820_entry));
return 0; return 0;
} }
......
...@@ -1075,6 +1075,13 @@ void __init setup_arch(char **cmdline_p) ...@@ -1075,6 +1075,13 @@ void __init setup_arch(char **cmdline_p)
max_possible_pfn = max_pfn; max_possible_pfn = max_pfn;
/*
* This call is required when the CPU does not support PAT. If
* mtrr_bp_init() invoked it already via pat_init() the call has no
* effect.
*/
init_cache_modes();
/* /*
* Define random base addresses for memory sections after max_pfn is * Define random base addresses for memory sections after max_pfn is
* defined and before each memory section base is used. * defined and before each memory section base is used.
......
...@@ -37,14 +37,14 @@ ...@@ -37,14 +37,14 @@
#undef pr_fmt #undef pr_fmt
#define pr_fmt(fmt) "" fmt #define pr_fmt(fmt) "" fmt
static bool boot_cpu_done; static bool __read_mostly boot_cpu_done;
static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
static int __read_mostly __pat_enabled = IS_ENABLED(CONFIG_X86_PAT); static bool __read_mostly pat_initialized;
static void init_cache_modes(void); static bool __read_mostly init_cm_done;
void pat_disable(const char *reason) void pat_disable(const char *reason)
{ {
if (!__pat_enabled) if (pat_disabled)
return; return;
if (boot_cpu_done) { if (boot_cpu_done) {
...@@ -52,10 +52,8 @@ void pat_disable(const char *reason) ...@@ -52,10 +52,8 @@ void pat_disable(const char *reason)
return; return;
} }
__pat_enabled = 0; pat_disabled = true;
pr_info("x86/PAT: %s\n", reason); pr_info("x86/PAT: %s\n", reason);
init_cache_modes();
} }
static int __init nopat(char *str) static int __init nopat(char *str)
...@@ -67,7 +65,7 @@ early_param("nopat", nopat); ...@@ -67,7 +65,7 @@ early_param("nopat", nopat);
bool pat_enabled(void) bool pat_enabled(void)
{ {
return !!__pat_enabled; return pat_initialized;
} }
EXPORT_SYMBOL_GPL(pat_enabled); EXPORT_SYMBOL_GPL(pat_enabled);
...@@ -205,6 +203,8 @@ static void __init_cache_modes(u64 pat) ...@@ -205,6 +203,8 @@ static void __init_cache_modes(u64 pat)
update_cache_mode_entry(i, cache); update_cache_mode_entry(i, cache);
} }
pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg); pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
init_cm_done = true;
} }
#define PAT(x, y) ((u64)PAT_ ## y << ((x)*8)) #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
...@@ -225,6 +225,7 @@ static void pat_bsp_init(u64 pat) ...@@ -225,6 +225,7 @@ static void pat_bsp_init(u64 pat)
} }
wrmsrl(MSR_IA32_CR_PAT, pat); wrmsrl(MSR_IA32_CR_PAT, pat);
pat_initialized = true;
__init_cache_modes(pat); __init_cache_modes(pat);
} }
...@@ -242,10 +243,9 @@ static void pat_ap_init(u64 pat) ...@@ -242,10 +243,9 @@ static void pat_ap_init(u64 pat)
wrmsrl(MSR_IA32_CR_PAT, pat); wrmsrl(MSR_IA32_CR_PAT, pat);
} }
static void init_cache_modes(void) void init_cache_modes(void)
{ {
u64 pat = 0; u64 pat = 0;
static int init_cm_done;
if (init_cm_done) if (init_cm_done)
return; return;
...@@ -287,8 +287,6 @@ static void init_cache_modes(void) ...@@ -287,8 +287,6 @@ static void init_cache_modes(void)
} }
__init_cache_modes(pat); __init_cache_modes(pat);
init_cm_done = 1;
} }
/** /**
...@@ -306,10 +304,8 @@ void pat_init(void) ...@@ -306,10 +304,8 @@ void pat_init(void)
u64 pat; u64 pat;
struct cpuinfo_x86 *c = &boot_cpu_data; struct cpuinfo_x86 *c = &boot_cpu_data;
if (!pat_enabled()) { if (pat_disabled)
init_cache_modes();
return; return;
}
if ((c->x86_vendor == X86_VENDOR_INTEL) && if ((c->x86_vendor == X86_VENDOR_INTEL) &&
(((c->x86 == 0x6) && (c->x86_model <= 0xd)) || (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
......
...@@ -587,32 +587,12 @@ static unsigned long uv2_3_read_status(unsigned long offset, int rshft, int desc ...@@ -587,32 +587,12 @@ static unsigned long uv2_3_read_status(unsigned long offset, int rshft, int desc
return ((read_lmmr(offset) >> rshft) & UV_ACT_STATUS_MASK) << 1; return ((read_lmmr(offset) >> rshft) & UV_ACT_STATUS_MASK) << 1;
} }
/*
* Return whether the status of the descriptor that is normally used for this
* cpu (the one indexed by its hub-relative cpu number) is busy.
* The status of the original 32 descriptors is always reflected in the 64
* bits of UVH_LB_BAU_SB_ACTIVATION_STATUS_0.
* The bit provided by the activation_status_2 register is irrelevant to
* the status if it is only being tested for busy or not busy.
*/
int normal_busy(struct bau_control *bcp)
{
int cpu = bcp->uvhub_cpu;
int mmr_offset;
int right_shift;
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
right_shift = cpu * UV_ACT_STATUS_SIZE;
return (((((read_lmmr(mmr_offset) >> right_shift) &
UV_ACT_STATUS_MASK)) << 1) == UV2H_DESC_BUSY);
}
/* /*
* Entered when a bau descriptor has gone into a permanent busy wait because * Entered when a bau descriptor has gone into a permanent busy wait because
* of a hardware bug. * of a hardware bug.
* Workaround the bug. * Workaround the bug.
*/ */
int handle_uv2_busy(struct bau_control *bcp) static int handle_uv2_busy(struct bau_control *bcp)
{ {
struct ptc_stats *stat = bcp->statp; struct ptc_stats *stat = bcp->statp;
...@@ -917,8 +897,9 @@ static void handle_cmplt(int completion_status, struct bau_desc *bau_desc, ...@@ -917,8 +897,9 @@ static void handle_cmplt(int completion_status, struct bau_desc *bau_desc,
* Returns 1 if it gives up entirely and the original cpu mask is to be * Returns 1 if it gives up entirely and the original cpu mask is to be
* returned to the kernel. * returned to the kernel.
*/ */
int uv_flush_send_and_wait(struct cpumask *flush_mask, struct bau_control *bcp, static int uv_flush_send_and_wait(struct cpumask *flush_mask,
struct bau_desc *bau_desc) struct bau_control *bcp,
struct bau_desc *bau_desc)
{ {
int seq_number = 0; int seq_number = 0;
int completion_stat = 0; int completion_stat = 0;
...@@ -1212,8 +1193,8 @@ const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask, ...@@ -1212,8 +1193,8 @@ const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
* Search the message queue for any 'other' unprocessed message with the * Search the message queue for any 'other' unprocessed message with the
* same software acknowledge resource bit vector as the 'msg' message. * same software acknowledge resource bit vector as the 'msg' message.
*/ */
struct bau_pq_entry *find_another_by_swack(struct bau_pq_entry *msg, static struct bau_pq_entry *find_another_by_swack(struct bau_pq_entry *msg,
struct bau_control *bcp) struct bau_control *bcp)
{ {
struct bau_pq_entry *msg_next = msg + 1; struct bau_pq_entry *msg_next = msg + 1;
unsigned char swack_vec = msg->swack_vec; unsigned char swack_vec = msg->swack_vec;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment