Commit 56f1b31f authored by Ville Syrjälä's avatar Ville Syrjälä

drm/i915: Store CS timestamp frequency in Hz

kHz isn't accurate enough for storing the CS timestamp
frequency on some of the platforms. Store the value
in Hz instead.

Cc: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Signed-off-by: default avatarVille Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200302143943.32676-2-ville.syrjala@linux.intel.comReviewed-by: default avatarChris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: default avatarLionel Landwerlin <lionel.g.landwerlin@intel.com>
parent 2e270158
......@@ -1304,8 +1304,8 @@ static int i915_engine_info(struct seq_file *m, void *unused)
seq_printf(m, "GT awake? %s [%d]\n",
yesno(dev_priv->gt.awake),
atomic_read(&dev_priv->gt.wakeref.count));
seq_printf(m, "CS timestamp frequency: %u kHz\n",
RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz);
seq_printf(m, "CS timestamp frequency: %u Hz\n",
RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_hz);
p = drm_seq_file_printer(m);
for_each_uabi_engine(engine, dev_priv)
......@@ -1404,7 +1404,7 @@ static int
i915_perf_noa_delay_set(void *data, u64 val)
{
struct drm_i915_private *i915 = data;
const u32 clk = RUNTIME_INFO(i915)->cs_timestamp_frequency_khz;
const u32 clk = RUNTIME_INFO(i915)->cs_timestamp_frequency_hz / 1000;
/*
* This would lead to infinite waits as we're doing timestamp
......
......@@ -153,7 +153,7 @@ int i915_getparam_ioctl(struct drm_device *dev, void *data,
return -ENODEV;
break;
case I915_PARAM_CS_TIMESTAMP_FREQUENCY:
value = 1000 * RUNTIME_INFO(i915)->cs_timestamp_frequency_khz;
value = RUNTIME_INFO(i915)->cs_timestamp_frequency_hz;
break;
case I915_PARAM_MMAP_GTT_COHERENT:
value = INTEL_INFO(i915)->has_coherent_ggtt;
......
......@@ -1613,8 +1613,8 @@ static int alloc_noa_wait(struct i915_perf_stream *stream)
struct i915_vma *vma;
const u64 delay_ticks = 0xffffffffffffffff -
DIV_ROUND_UP_ULL(atomic64_read(&stream->perf->noa_programming_delay) *
RUNTIME_INFO(i915)->cs_timestamp_frequency_khz,
1000000);
RUNTIME_INFO(i915)->cs_timestamp_frequency_hz,
1000000000);
const u32 base = stream->engine->mmio_base;
#define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
u32 *batch, *ts0, *cs, *jump;
......@@ -3484,8 +3484,8 @@ i915_perf_open_ioctl_locked(struct i915_perf *perf,
static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
{
return div_u64(1000000 * (2ULL << exponent),
RUNTIME_INFO(perf->i915)->cs_timestamp_frequency_khz);
return div_u64(1000000000 * (2ULL << exponent),
RUNTIME_INFO(perf->i915)->cs_timestamp_frequency_hz);
}
/**
......@@ -4343,8 +4343,8 @@ void i915_perf_init(struct drm_i915_private *i915)
if (perf->ops.enable_metric_set) {
mutex_init(&perf->lock);
oa_sample_rate_hard_limit = 1000 *
(RUNTIME_INFO(i915)->cs_timestamp_frequency_khz / 2);
oa_sample_rate_hard_limit =
RUNTIME_INFO(i915)->cs_timestamp_frequency_hz / 2;
mutex_init(&perf->metrics_lock);
idr_init(&perf->metrics_idr);
......
......@@ -136,8 +136,8 @@ void intel_device_info_print_runtime(const struct intel_runtime_info *info,
sseu_dump(&info->sseu, p);
drm_printf(p, "rawclk rate: %u kHz\n", info->rawclk_freq);
drm_printf(p, "CS timestamp frequency: %u kHz\n",
info->cs_timestamp_frequency_khz);
drm_printf(p, "CS timestamp frequency: %u Hz\n",
info->cs_timestamp_frequency_hz);
}
static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
......@@ -678,12 +678,12 @@ static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
base_freq *= 1000;
base_freq *= 1000000;
frac_freq = ((ts_override &
GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
frac_freq = 1000 / (frac_freq + 1);
frac_freq = 1000000 / (frac_freq + 1);
return base_freq + frac_freq;
}
......@@ -691,8 +691,8 @@ static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
u32 rpm_config_reg)
{
u32 f19_2_mhz = 19200;
u32 f24_mhz = 24000;
u32 f19_2_mhz = 19200000;
u32 f24_mhz = 24000000;
u32 crystal_clock = (rpm_config_reg &
GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
......@@ -711,10 +711,10 @@ static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
u32 rpm_config_reg)
{
u32 f19_2_mhz = 19200;
u32 f24_mhz = 24000;
u32 f25_mhz = 25000;
u32 f38_4_mhz = 38400;
u32 f19_2_mhz = 19200000;
u32 f24_mhz = 24000000;
u32 f25_mhz = 25000000;
u32 f38_4_mhz = 38400000;
u32 crystal_clock = (rpm_config_reg &
GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
......@@ -736,9 +736,9 @@ static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
{
u32 f12_5_mhz = 12500;
u32 f19_2_mhz = 19200;
u32 f24_mhz = 24000;
u32 f12_5_mhz = 12500000;
u32 f19_2_mhz = 19200000;
u32 f24_mhz = 24000000;
if (INTEL_GEN(dev_priv) <= 4) {
/* PRMs say:
......@@ -747,7 +747,7 @@ static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
* hclks." (through the “Clocking Configuration”
* (“CLKCFG”) MCHBAR register)
*/
return RUNTIME_INFO(dev_priv)->rawclk_freq / 16;
return RUNTIME_INFO(dev_priv)->rawclk_freq * 1000 / 16;
} else if (INTEL_GEN(dev_priv) <= 8) {
/* PRMs say:
*
......@@ -1048,11 +1048,11 @@ void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
drm_dbg(&dev_priv->drm, "rawclk rate: %d kHz\n", runtime->rawclk_freq);
/* Initialize command stream timestamp frequency */
runtime->cs_timestamp_frequency_khz =
runtime->cs_timestamp_frequency_hz =
read_timestamp_frequency(dev_priv);
if (runtime->cs_timestamp_frequency_khz) {
if (runtime->cs_timestamp_frequency_hz) {
runtime->cs_timestamp_period_ns =
div_u64(1e6, runtime->cs_timestamp_frequency_khz);
div_u64(1e9, runtime->cs_timestamp_frequency_hz);
drm_dbg(&dev_priv->drm,
"CS timestamp wraparound in %lldms\n",
div_u64(mul_u32_u32(runtime->cs_timestamp_period_ns,
......
......@@ -221,7 +221,7 @@ struct intel_runtime_info {
u32 rawclk_freq;
u32 cs_timestamp_frequency_khz;
u32 cs_timestamp_frequency_hz;
u32 cs_timestamp_period_ns;
/* Media engine access to SFC per instance */
......
......@@ -262,8 +262,8 @@ static int live_noa_delay(void *arg)
delay = intel_read_status_page(stream->engine, 0x102);
delay -= intel_read_status_page(stream->engine, 0x100);
delay = div_u64(mul_u32_u32(delay, 1000 * 1000),
RUNTIME_INFO(i915)->cs_timestamp_frequency_khz);
delay = div_u64(mul_u32_u32(delay, 1000000000),
RUNTIME_INFO(i915)->cs_timestamp_frequency_hz);
pr_info("GPU delay: %uns, expected %lluns\n",
delay, expected);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment