Commit 6089ae0b authored by Paolo Bonzini's avatar Paolo Bonzini

kvm: selftests: add sync_regs_test

This includes the infrastructure to map the test into the guest and
run code from the test program inside a VM.
Signed-off-by: default avatarKen Hofsass <hofsass@google.com>
Signed-off-by: default avatarPaolo Bonzini <pbonzini@redhat.com>
parent 783e9e51
......@@ -3,10 +3,11 @@ all:
top_srcdir = ../../../../
UNAME_M := $(shell uname -m)
LIBKVM = lib/assert.c lib/kvm_util.c lib/sparsebit.c
LIBKVM = lib/assert.c lib/elf.c lib/io.c lib/kvm_util.c lib/sparsebit.c
LIBKVM_x86_64 = lib/x86.c
TEST_GEN_PROGS_x86_64 = set_sregs_test
TEST_GEN_PROGS_x86_64 += sync_regs_test
TEST_GEN_PROGS += $(TEST_GEN_PROGS_$(UNAME_M))
LIBKVM += $(LIBKVM_$(UNAME_M))
......
......@@ -57,6 +57,9 @@ void kvm_vm_free(struct kvm_vm *vmp);
int kvm_memcmp_hva_gva(void *hva,
struct kvm_vm *vm, const vm_vaddr_t gva, size_t len);
void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename,
uint32_t data_memslot, uint32_t pgd_memslot);
void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
void vcpu_dump(FILE *stream, struct kvm_vm *vm,
uint32_t vcpuid, uint8_t indent);
......
/*
* tools/testing/selftests/kvm/lib/elf.c
*
* Copyright (C) 2018, Google LLC.
*
* This work is licensed under the terms of the GNU GPL, version 2.
*/
#include "test_util.h"
#include <bits/endian.h>
#include <linux/elf.h>
#include "kvm_util.h"
#include "kvm_util_internal.h"
static void elfhdr_get(const char *filename, Elf64_Ehdr *hdrp)
{
off_t offset_rv;
/* Open the ELF file. */
int fd;
fd = open(filename, O_RDONLY);
TEST_ASSERT(fd >= 0, "Failed to open ELF file,\n"
" filename: %s\n"
" rv: %i errno: %i", filename, fd, errno);
/* Read in and validate ELF Identification Record.
* The ELF Identification record is the first 16 (EI_NIDENT) bytes
* of the ELF header, which is at the beginning of the ELF file.
* For now it is only safe to read the first EI_NIDENT bytes. Once
* read and validated, the value of e_ehsize can be used to determine
* the real size of the ELF header.
*/
unsigned char ident[EI_NIDENT];
test_read(fd, ident, sizeof(ident));
TEST_ASSERT((ident[EI_MAG0] == ELFMAG0) && (ident[EI_MAG1] == ELFMAG1)
&& (ident[EI_MAG2] == ELFMAG2) && (ident[EI_MAG3] == ELFMAG3),
"ELF MAGIC Mismatch,\n"
" filename: %s\n"
" ident[EI_MAG0 - EI_MAG3]: %02x %02x %02x %02x\n"
" Expected: %02x %02x %02x %02x",
filename,
ident[EI_MAG0], ident[EI_MAG1], ident[EI_MAG2], ident[EI_MAG3],
ELFMAG0, ELFMAG1, ELFMAG2, ELFMAG3);
TEST_ASSERT(ident[EI_CLASS] == ELFCLASS64,
"Current implementation only able to handle ELFCLASS64,\n"
" filename: %s\n"
" ident[EI_CLASS]: %02x\n"
" expected: %02x",
filename,
ident[EI_CLASS], ELFCLASS64);
TEST_ASSERT(((BYTE_ORDER == LITTLE_ENDIAN)
&& (ident[EI_DATA] == ELFDATA2LSB))
|| ((BYTE_ORDER == BIG_ENDIAN)
&& (ident[EI_DATA] == ELFDATA2MSB)), "Current "
"implementation only able to handle\n"
"cases where the host and ELF file endianness\n"
"is the same:\n"
" host BYTE_ORDER: %u\n"
" host LITTLE_ENDIAN: %u\n"
" host BIG_ENDIAN: %u\n"
" ident[EI_DATA]: %u\n"
" ELFDATA2LSB: %u\n"
" ELFDATA2MSB: %u",
BYTE_ORDER, LITTLE_ENDIAN, BIG_ENDIAN,
ident[EI_DATA], ELFDATA2LSB, ELFDATA2MSB);
TEST_ASSERT(ident[EI_VERSION] == EV_CURRENT,
"Current implementation only able to handle current "
"ELF version,\n"
" filename: %s\n"
" ident[EI_VERSION]: %02x\n"
" expected: %02x",
filename, ident[EI_VERSION], EV_CURRENT);
/* Read in the ELF header.
* With the ELF Identification portion of the ELF header
* validated, especially that the value at EI_VERSION is
* as expected, it is now safe to read the entire ELF header.
*/
offset_rv = lseek(fd, 0, SEEK_SET);
TEST_ASSERT(offset_rv == 0, "Seek to ELF header failed,\n"
" rv: %zi expected: %i", offset_rv, 0);
test_read(fd, hdrp, sizeof(*hdrp));
TEST_ASSERT(hdrp->e_phentsize == sizeof(Elf64_Phdr),
"Unexpected physical header size,\n"
" hdrp->e_phentsize: %x\n"
" expected: %zx",
hdrp->e_phentsize, sizeof(Elf64_Phdr));
TEST_ASSERT(hdrp->e_shentsize == sizeof(Elf64_Shdr),
"Unexpected section header size,\n"
" hdrp->e_shentsize: %x\n"
" expected: %zx",
hdrp->e_shentsize, sizeof(Elf64_Shdr));
}
/* VM ELF Load
*
* Input Args:
* filename - Path to ELF file
*
* Output Args: None
*
* Input/Output Args:
* vm - Pointer to opaque type that describes the VM.
*
* Return: None, TEST_ASSERT failures for all error conditions
*
* Loads the program image of the ELF file specified by filename,
* into the virtual address space of the VM pointed to by vm. On entry
* the VM needs to not be using any of the virtual address space used
* by the image and it needs to have sufficient available physical pages, to
* back the virtual pages used to load the image.
*/
void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename,
uint32_t data_memslot, uint32_t pgd_memslot)
{
off_t offset, offset_rv;
Elf64_Ehdr hdr;
/* Open the ELF file. */
int fd;
fd = open(filename, O_RDONLY);
TEST_ASSERT(fd >= 0, "Failed to open ELF file,\n"
" filename: %s\n"
" rv: %i errno: %i", filename, fd, errno);
/* Read in the ELF header. */
elfhdr_get(filename, &hdr);
/* For each program header.
* The following ELF header members specify the location
* and size of the program headers:
*
* e_phoff - File offset to start of program headers
* e_phentsize - Size of each program header
* e_phnum - Number of program header entries
*/
for (unsigned int n1 = 0; n1 < hdr.e_phnum; n1++) {
/* Seek to the beginning of the program header. */
offset = hdr.e_phoff + (n1 * hdr.e_phentsize);
offset_rv = lseek(fd, offset, SEEK_SET);
TEST_ASSERT(offset_rv == offset,
"Failed to seek to begining of program header %u,\n"
" filename: %s\n"
" rv: %jd errno: %i",
n1, filename, (intmax_t) offset_rv, errno);
/* Read in the program header. */
Elf64_Phdr phdr;
test_read(fd, &phdr, sizeof(phdr));
/* Skip if this header doesn't describe a loadable segment. */
if (phdr.p_type != PT_LOAD)
continue;
/* Allocate memory for this segment within the VM. */
TEST_ASSERT(phdr.p_memsz > 0, "Unexpected loadable segment "
"memsize of 0,\n"
" phdr index: %u p_memsz: 0x%" PRIx64,
n1, (uint64_t) phdr.p_memsz);
vm_vaddr_t seg_vstart = phdr.p_vaddr;
seg_vstart &= ~(vm_vaddr_t)(vm->page_size - 1);
vm_vaddr_t seg_vend = phdr.p_vaddr + phdr.p_memsz - 1;
seg_vend |= vm->page_size - 1;
size_t seg_size = seg_vend - seg_vstart + 1;
vm_vaddr_t vaddr = vm_vaddr_alloc(vm, seg_size, seg_vstart,
data_memslot, pgd_memslot);
TEST_ASSERT(vaddr == seg_vstart, "Unable to allocate "
"virtual memory for segment at requested min addr,\n"
" segment idx: %u\n"
" seg_vstart: 0x%lx\n"
" vaddr: 0x%lx",
n1, seg_vstart, vaddr);
memset(addr_gva2hva(vm, vaddr), 0, seg_size);
/* TODO(lhuemill): Set permissions of each memory segment
* based on the least-significant 3 bits of phdr.p_flags.
*/
/* Load portion of initial state that is contained within
* the ELF file.
*/
if (phdr.p_filesz) {
offset_rv = lseek(fd, phdr.p_offset, SEEK_SET);
TEST_ASSERT(offset_rv == phdr.p_offset,
"Seek to program segment offset failed,\n"
" program header idx: %u errno: %i\n"
" offset_rv: 0x%jx\n"
" expected: 0x%jx\n",
n1, errno, (intmax_t) offset_rv,
(intmax_t) phdr.p_offset);
test_read(fd, addr_gva2hva(vm, phdr.p_vaddr),
phdr.p_filesz);
}
}
}
/*
* tools/testing/selftests/kvm/lib/io.c
*
* Copyright (C) 2018, Google LLC.
*
* This work is licensed under the terms of the GNU GPL, version 2.
*/
#include "test_util.h"
/* Test Write
*
* A wrapper for write(2), that automatically handles the following
* special conditions:
*
* + Interrupted system call (EINTR)
* + Write of less than requested amount
* + Non-block return (EAGAIN)
*
* For each of the above, an additional write is performed to automatically
* continue writing the requested data.
* There are also many cases where write(2) can return an unexpected
* error (e.g. EIO). Such errors cause a TEST_ASSERT failure.
*
* Note, for function signature compatibility with write(2), this function
* returns the number of bytes written, but that value will always be equal
* to the number of requested bytes. All other conditions in this and
* future enhancements to this function either automatically issue another
* write(2) or cause a TEST_ASSERT failure.
*
* Args:
* fd - Opened file descriptor to file to be written.
* count - Number of bytes to write.
*
* Output:
* buf - Starting address of data to be written.
*
* Return:
* On success, number of bytes written.
* On failure, a TEST_ASSERT failure is caused.
*/
ssize_t test_write(int fd, const void *buf, size_t count)
{
ssize_t rc;
ssize_t num_written = 0;
size_t num_left = count;
const char *ptr = buf;
/* Note: Count of zero is allowed (see "RETURN VALUE" portion of
* write(2) manpage for details.
*/
TEST_ASSERT(count >= 0, "Unexpected count, count: %li", count);
do {
rc = write(fd, ptr, num_left);
switch (rc) {
case -1:
TEST_ASSERT(errno == EAGAIN || errno == EINTR,
"Unexpected write failure,\n"
" rc: %zi errno: %i", rc, errno);
continue;
case 0:
TEST_ASSERT(false, "Unexpected EOF,\n"
" rc: %zi num_written: %zi num_left: %zu",
rc, num_written, num_left);
break;
default:
TEST_ASSERT(rc >= 0, "Unexpected ret from write,\n"
" rc: %zi errno: %i", rc, errno);
num_written += rc;
num_left -= rc;
ptr += rc;
break;
}
} while (num_written < count);
return num_written;
}
/* Test Read
*
* A wrapper for read(2), that automatically handles the following
* special conditions:
*
* + Interrupted system call (EINTR)
* + Read of less than requested amount
* + Non-block return (EAGAIN)
*
* For each of the above, an additional read is performed to automatically
* continue reading the requested data.
* There are also many cases where read(2) can return an unexpected
* error (e.g. EIO). Such errors cause a TEST_ASSERT failure. Note,
* it is expected that the file opened by fd at the current file position
* contains at least the number of requested bytes to be read. A TEST_ASSERT
* failure is produced if an End-Of-File condition occurs, before all the
* data is read. It is the callers responsibility to assure that sufficient
* data exists.
*
* Note, for function signature compatibility with read(2), this function
* returns the number of bytes read, but that value will always be equal
* to the number of requested bytes. All other conditions in this and
* future enhancements to this function either automatically issue another
* read(2) or cause a TEST_ASSERT failure.
*
* Args:
* fd - Opened file descriptor to file to be read.
* count - Number of bytes to read.
*
* Output:
* buf - Starting address of where to write the bytes read.
*
* Return:
* On success, number of bytes read.
* On failure, a TEST_ASSERT failure is caused.
*/
ssize_t test_read(int fd, void *buf, size_t count)
{
ssize_t rc;
ssize_t num_read = 0;
size_t num_left = count;
char *ptr = buf;
/* Note: Count of zero is allowed (see "If count is zero" portion of
* read(2) manpage for details.
*/
TEST_ASSERT(count >= 0, "Unexpected count, count: %li", count);
do {
rc = read(fd, ptr, num_left);
switch (rc) {
case -1:
TEST_ASSERT(errno == EAGAIN || errno == EINTR,
"Unexpected read failure,\n"
" rc: %zi errno: %i", rc, errno);
break;
case 0:
TEST_ASSERT(false, "Unexpected EOF,\n"
" rc: %zi num_read: %zi num_left: %zu",
rc, num_read, num_left);
break;
default:
TEST_ASSERT(rc > 0, "Unexpected ret from read,\n"
" rc: %zi errno: %i", rc, errno);
num_read += rc;
num_left -= rc;
ptr += rc;
break;
}
} while (num_read < count);
return num_read;
}
......@@ -687,6 +687,9 @@ struct kvm_vm *vm_create_default(uint32_t vcpuid, void *guest_code)
/* Create VM */
vm = vm_create(VM_MODE_FLAT48PG, DEFAULT_GUEST_PHY_PAGES, O_RDWR);
/* Setup guest code */
kvm_vm_elf_load(vm, program_invocation_name, 0, 0);
/* Setup IRQ Chip */
vm_create_irqchip(vm);
......
/*
* Test for x86 KVM_CAP_SYNC_REGS
*
* Copyright (C) 2018, Google LLC.
*
* This work is licensed under the terms of the GNU GPL, version 2.
*
* Verifies expected behavior of x86 KVM_CAP_SYNC_REGS functionality,
* including requesting an invalid register set, updates to/from values
* in kvm_run.s.regs when kvm_valid_regs and kvm_dirty_regs are toggled.
*/
#define _GNU_SOURCE /* for program_invocation_short_name */
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include "test_util.h"
#include "kvm_util.h"
#include "x86.h"
#define VCPU_ID 5
#define PORT_HOST_SYNC 0x1000
static void __exit_to_l0(uint16_t port, uint64_t arg0, uint64_t arg1)
{
__asm__ __volatile__("in %[port], %%al"
:
: [port]"d"(port), "D"(arg0), "S"(arg1)
: "rax");
}
#define exit_to_l0(_port, _arg0, _arg1) \
__exit_to_l0(_port, (uint64_t) (_arg0), (uint64_t) (_arg1))
#define GUEST_ASSERT(_condition) do { \
if (!(_condition)) \
exit_to_l0(PORT_ABORT, "Failed guest assert: " #_condition, 0);\
} while (0)
void guest_code(void)
{
for (;;) {
exit_to_l0(PORT_HOST_SYNC, "hello", 0);
asm volatile ("inc %r11");
}
}
static void compare_regs(struct kvm_regs *left, struct kvm_regs *right)
{
#define REG_COMPARE(reg) \
TEST_ASSERT(left->reg == right->reg, \
"Register " #reg \
" values did not match: 0x%llx, 0x%llx\n", \
left->reg, right->reg)
REG_COMPARE(rax);
REG_COMPARE(rbx);
REG_COMPARE(rcx);
REG_COMPARE(rdx);
REG_COMPARE(rsi);
REG_COMPARE(rdi);
REG_COMPARE(rsp);
REG_COMPARE(rbp);
REG_COMPARE(r8);
REG_COMPARE(r9);
REG_COMPARE(r10);
REG_COMPARE(r11);
REG_COMPARE(r12);
REG_COMPARE(r13);
REG_COMPARE(r14);
REG_COMPARE(r15);
REG_COMPARE(rip);
REG_COMPARE(rflags);
#undef REG_COMPARE
}
static void compare_sregs(struct kvm_sregs *left, struct kvm_sregs *right)
{
}
static void compare_vcpu_events(struct kvm_vcpu_events *left,
struct kvm_vcpu_events *right)
{
}
int main(int argc, char *argv[])
{
struct kvm_vm *vm;
struct kvm_run *run;
struct kvm_regs regs;
struct kvm_sregs sregs;
struct kvm_vcpu_events events;
int rv, cap;
/* Tell stdout not to buffer its content */
setbuf(stdout, NULL);
cap = kvm_check_cap(KVM_CAP_SYNC_REGS);
TEST_ASSERT((unsigned long)cap == KVM_SYNC_X86_VALID_FIELDS,
"KVM_CAP_SYNC_REGS (0x%x) != KVM_SYNC_X86_VALID_FIELDS (0x%lx)\n",
cap, KVM_SYNC_X86_VALID_FIELDS);
/* Create VM */
vm = vm_create_default(VCPU_ID, guest_code);
run = vcpu_state(vm, VCPU_ID);
/* Request reading invalid register set from VCPU. */
run->kvm_valid_regs = KVM_SYNC_X86_VALID_FIELDS << 1;
rv = _vcpu_run(vm, VCPU_ID);
TEST_ASSERT(rv < 0 && errno == EINVAL,
"Invalid kvm_valid_regs did not cause expected KVM_RUN error: %d\n",
rv);
vcpu_state(vm, VCPU_ID)->kvm_valid_regs = 0;
/* Request setting invalid register set into VCPU. */
run->kvm_dirty_regs = KVM_SYNC_X86_VALID_FIELDS << 1;
rv = _vcpu_run(vm, VCPU_ID);
TEST_ASSERT(rv < 0 && errno == EINVAL,
"Invalid kvm_dirty_regs did not cause expected KVM_RUN error: %d\n",
rv);
vcpu_state(vm, VCPU_ID)->kvm_dirty_regs = 0;
/* Request and verify all valid register sets. */
/* TODO: BUILD TIME CHECK: TEST_ASSERT(KVM_SYNC_X86_NUM_FIELDS != 3); */
run->kvm_valid_regs = KVM_SYNC_X86_VALID_FIELDS;
rv = _vcpu_run(vm, VCPU_ID);
TEST_ASSERT(run->exit_reason == KVM_EXIT_IO,
"Unexpected exit reason: %u (%s),\n",
run->exit_reason,
exit_reason_str(run->exit_reason));
vcpu_regs_get(vm, VCPU_ID, &regs);
compare_regs(&regs, &run->s.regs.regs);
vcpu_sregs_get(vm, VCPU_ID, &sregs);
compare_sregs(&sregs, &run->s.regs.sregs);
vcpu_events_get(vm, VCPU_ID, &events);
compare_vcpu_events(&events, &run->s.regs.events);
/* Set and verify various register values. */
run->s.regs.regs.r11 = 0xBAD1DEA;
run->s.regs.sregs.apic_base = 1 << 11;
/* TODO run->s.regs.events.XYZ = ABC; */
run->kvm_valid_regs = KVM_SYNC_X86_VALID_FIELDS;
run->kvm_dirty_regs = KVM_SYNC_X86_REGS | KVM_SYNC_X86_SREGS;
rv = _vcpu_run(vm, VCPU_ID);
TEST_ASSERT(run->exit_reason == KVM_EXIT_IO,
"Unexpected exit reason: %u (%s),\n",
run->exit_reason,
exit_reason_str(run->exit_reason));
TEST_ASSERT(run->s.regs.regs.r11 == 0xBAD1DEA + 1,
"r11 sync regs value incorrect 0x%llx.",
run->s.regs.regs.r11);
TEST_ASSERT(run->s.regs.sregs.apic_base == 1 << 11,
"apic_base sync regs value incorrect 0x%llx.",
run->s.regs.sregs.apic_base);
vcpu_regs_get(vm, VCPU_ID, &regs);
compare_regs(&regs, &run->s.regs.regs);
vcpu_sregs_get(vm, VCPU_ID, &sregs);
compare_sregs(&sregs, &run->s.regs.sregs);
vcpu_events_get(vm, VCPU_ID, &events);
compare_vcpu_events(&events, &run->s.regs.events);
/* Clear kvm_dirty_regs bits, verify new s.regs values are
* overwritten with existing guest values.
*/
run->kvm_valid_regs = KVM_SYNC_X86_VALID_FIELDS;
run->kvm_dirty_regs = 0;
run->s.regs.regs.r11 = 0xDEADBEEF;
rv = _vcpu_run(vm, VCPU_ID);
TEST_ASSERT(run->exit_reason == KVM_EXIT_IO,
"Unexpected exit reason: %u (%s),\n",
run->exit_reason,
exit_reason_str(run->exit_reason));
TEST_ASSERT(run->s.regs.regs.r11 != 0xDEADBEEF,
"r11 sync regs value incorrect 0x%llx.",
run->s.regs.regs.r11);
/* Clear kvm_valid_regs bits and kvm_dirty_bits.
* Verify s.regs values are not overwritten with existing guest values
* and that guest values are not overwritten with kvm_sync_regs values.
*/
run->kvm_valid_regs = 0;
run->kvm_dirty_regs = 0;
run->s.regs.regs.r11 = 0xAAAA;
regs.r11 = 0xBAC0;
vcpu_regs_set(vm, VCPU_ID, &regs);
rv = _vcpu_run(vm, VCPU_ID);
TEST_ASSERT(run->exit_reason == KVM_EXIT_IO,
"Unexpected exit reason: %u (%s),\n",
run->exit_reason,
exit_reason_str(run->exit_reason));
TEST_ASSERT(run->s.regs.regs.r11 == 0xAAAA,
"r11 sync regs value incorrect 0x%llx.",
run->s.regs.regs.r11);
vcpu_regs_get(vm, VCPU_ID, &regs);
TEST_ASSERT(regs.r11 == 0xBAC0 + 1,
"r11 guest value incorrect 0x%llx.",
regs.r11);
/* Clear kvm_valid_regs bits. Verify s.regs values are not overwritten
* with existing guest values but that guest values are overwritten
* with kvm_sync_regs values.
*/
run->kvm_valid_regs = 0;
run->kvm_dirty_regs = KVM_SYNC_X86_VALID_FIELDS;
run->s.regs.regs.r11 = 0xBBBB;
rv = _vcpu_run(vm, VCPU_ID);
TEST_ASSERT(run->exit_reason == KVM_EXIT_IO,
"Unexpected exit reason: %u (%s),\n",
run->exit_reason,
exit_reason_str(run->exit_reason));
TEST_ASSERT(run->s.regs.regs.r11 == 0xBBBB,
"r11 sync regs value incorrect 0x%llx.",
run->s.regs.regs.r11);
vcpu_regs_get(vm, VCPU_ID, &regs);
TEST_ASSERT(regs.r11 == 0xBBBB + 1,
"r11 guest value incorrect 0x%llx.",
regs.r11);
kvm_vm_free(vm);
return 0;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment