Commit 82fe246f authored by Roman Zippel's avatar Roman Zippel Committed by Linus Torvalds

[PATCH] new kernel configuration 7/7

This adds the remaining config files.
parent b5ae1625
#
# Cryptographic API Configuration
#
menu "Cryptographic options"
config CRYPTO
bool "Cryptographic API"
help
This option provides the core Cryptographic API.
config CRYPTO_MD4
tristate "MD4 digest algorithm"
depends on CRYPTO
help
MD4 message digest algorithm (RFC1320), including HMAC (RFC2104).
config CRYPTO_MD5
tristate "MD5 digest algorithm"
depends on CRYPTO
help
MD5 message digest algorithm (RFC1321), including HMAC (RFC2104, RFC2403).
config CRYPTO_SHA1
tristate "SHA-1 digest algorithm"
depends on CRYPTO
help
SHA-1 secure hash standard (FIPS 180-1), including HMAC (RFC2104, RFC2404).
config CRYPTO_DES
tristate "DES and Triple DES EDE cipher algorithms"
depends on CRYPTO
help
DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
config CRYPTO_TEST
tristate "Testing module"
depends on CRYPTO
help
Quick & dirty crypto test module.
endmenu
This diff is collapsed.
#
# NCP Filesystem configuration
#
config NCPFS_PACKET_SIGNING
bool "Packet signatures"
depends on NCP_FS
help
NCP allows packets to be signed for stronger security. If you want
security, say Y. Normal users can leave it off. To be able to use
packet signing you must use ncpfs > 2.0.12.
config NCPFS_IOCTL_LOCKING
bool "Proprietary file locking"
depends on NCP_FS
help
Allows locking of records on remote volumes. Say N unless you have
special applications which are able to utilize this locking scheme.
config NCPFS_STRONG
bool "Clear remove/delete inhibit when needed"
depends on NCP_FS
help
Allows manipulation of files flagged as Delete or Rename Inhibit.
To use this feature you must mount volumes with the ncpmount
parameter "-s" (ncpfs-2.0.12 and newer). Say Y unless you are not
mounting volumes with -f 444.
config NCPFS_NFS_NS
bool "Use NFS namespace if available"
depends on NCP_FS
help
Allows you to utilize NFS namespace on NetWare servers. It brings
you case sensitive filenames. Say Y. You can disable it at
mount-time with the `-N nfs' parameter of ncpmount.
config NCPFS_OS2_NS
bool "Use LONG (OS/2) namespace if available"
depends on NCP_FS
help
Allows you to utilize OS2/LONG namespace on NetWare servers.
Filenames in this namespace are limited to 255 characters, they are
case insensitive, and case in names is preserved. Say Y. You can
disable it at mount time with the -N os2 parameter of ncpmount.
config NCPFS_SMALLDOS
bool "Lowercase DOS filenames"
depends on NCP_FS
---help---
If you say Y here, every filename on a NetWare server volume using
the OS2/LONG namespace and created under DOS or on a volume using
DOS namespace will be converted to lowercase characters.
Saying N here will give you these filenames in uppercase.
This is only a cosmetic option since the OS2/LONG namespace is case
insensitive. The only major reason for this option is backward
compatibility when moving from DOS to OS2/LONG namespace support.
Long filenames (created by Win95) will not be affected.
This option does not solve the problem that filenames appear
differently under Linux and under Windows, since Windows does an
additional conversions on the client side. You can achieve similar
effects by saying Y to "Allow using of Native Language Support"
below.
config NCPFS_NLS
bool "Use Native Language Support"
depends on NCP_FS
help
Allows you to use codepages and I/O charsets for file name
translation between the server file system and input/output. This
may be useful, if you want to access the server with other operating
systems, e.g. Windows 95. See also NLS for more Information.
To select codepages and I/O charsets use ncpfs-2.2.0.13 or newer.
config NCPFS_EXTRAS
bool "Enable symbolic links and execute flags"
depends on NCP_FS
help
This enables the use of symbolic links and an execute permission
bit on NCPFS. The file server need not have long name space or NFS
name space loaded for these to work.
To use the new attributes, it is recommended to use the flags
'-f 600 -d 755' on the ncpmount command line.
This diff is collapsed.
#
# Partition configuration
#
config PARTITION_ADVANCED
bool "Advanced partition selection"
help
Say Y here if you would like to use hard disks under Linux which
were partitioned under an operating system running on a different
architecture than your Linux system.
Note that the answer to this question won't directly affect the
kernel: saying N will just cause the configurator to skip all
the questions about foreign partitioning schemes.
If unsure, say N.
config ACORN_PARTITION
bool "Acorn partition support" if PARTITION_ADVANCED
default y if !PARTITION_ADVANCED && ARCH_ACORN
help
Support hard disks partitioned under Acorn operating systems.
# bool ' Cumana partition support' CONFIG_ACORN_PARTITION_CUMANA
config ACORN_PARTITION_ICS
bool "ICS partition support" if PARTITION_ADVANCED && ACORN_PARTITION
default y if !PARTITION_ADVANCED && ARCH_ACORN
help
Say Y here if you would like to use hard disks under Linux which
were partitioned using the ICS interface on Acorn machines.
config ACORN_PARTITION_ADFS
bool "Native filecore partition support" if PARTITION_ADVANCED && ACORN_PARTITION
default y if !PARTITION_ADVANCED && ARCH_ACORN
help
The Acorn Disc Filing System is the standard file system of the
RiscOS operating system which runs on Acorn's ARM-based Risc PC
systems and the Acorn Archimedes range of machines. If you say
`Y' here, Linux will support disk partitions created under ADFS.
config ACORN_PARTITION_POWERTEC
bool "PowerTec partition support" if PARTITION_ADVANCED && ACORN_PARTITION
default y if !PARTITION_ADVANCED && ARCH_ACORN
help
Support reading partition tables created on Acorn machines using
the PowerTec SCSI drive.
config ACORN_PARTITION_RISCIX
bool "RISCiX partition support" if PARTITION_ADVANCED && ACORN_PARTITION
default y if !PARTITION_ADVANCED && ARCH_ACORN
help
Once upon a time, there was a native Unix port for the Acorn series
of machines called RISCiX. If you say 'Y' here, Linux will be able
to read disks partitioned under RISCiX.
config OSF_PARTITION
bool "Alpha OSF partition support" if PARTITION_ADVANCED
default y if !PARTITION_ADVANCED && ALPHA
help
Say Y here if you would like to use hard disks under Linux which
were partitioned on an Alpha machine.
config AMIGA_PARTITION
bool "Amiga partition table support" if PARTITION_ADVANCED
default y if !PARTITION_ADVANCED && (AMIGA || AFFS_FS=y)
help
Say Y here if you would like to use hard disks under Linux which
were partitioned under AmigaOS.
config ATARI_PARTITION
bool "Atari partition table support" if PARTITION_ADVANCED
default y if !PARTITION_ADVANCED && ATARI
help
Say Y here if you would like to use hard disks under Linux which
were partitioned under the Atari OS.
config IBM_PARTITION
bool "IBM disk label and partition support"
depends on PARTITION_ADVANCED && ARCH_S390
help
Say Y here if you would like to be able to read the hard disk
partition table format used by IBM DASD disks operating under CMS.
Otherwise, say N.
config MAC_PARTITION
bool "Macintosh partition map support" if PARTITION_ADVANCED
default y if !PARTITION_ADVANCED && MAC
help
Say Y here if you would like to use hard disks under Linux which
were partitioned on a Macintosh.
config MSDOS_PARTITION
bool "PC BIOS (MSDOS partition tables) support" if PARTITION_ADVANCED
default y if !PARTITION_ADVANCED && !AMIGA && !ATARI && !MAC && !SGI_IP22 && !ARM && !SGI_IP27
help
Say Y here if you would like to use hard disks under Linux which
were partitioned on an x86 PC (not necessarily by DOS).
config BSD_DISKLABEL
bool "BSD disklabel (FreeBSD partition tables) support"
depends on PARTITION_ADVANCED && MSDOS_PARTITION
help
FreeBSD uses its own hard disk partition scheme on your PC. It
requires only one entry in the primary partition table of your disk
and manages it similarly to DOS extended partitions, putting in its
first sector a new partition table in BSD disklabel format. Saying Y
here allows you to read these disklabels and further mount FreeBSD
partitions from within Linux if you have also said Y to "UFS
file system support", above. If you don't know what all this is
about, say N.
config MINIX_SUBPARTITION
bool "Minix subpartition support"
depends on PARTITION_ADVANCED && MSDOS_PARTITION
help
Minix 2.0.0/2.0.2 subpartition table support for Linux.
Say Y here if you want to mount and use Minix 2.0.0/2.0.2
subpartitions.
config SOLARIS_X86_PARTITION
bool "Solaris (x86) partition table support"
depends on PARTITION_ADVANCED && MSDOS_PARTITION
help
Like most systems, Solaris x86 uses its own hard disk partition
table format, incompatible with all others. Saying Y here allows you
to read these partition tables and further mount Solaris x86
partitions from within Linux if you have also said Y to "UFS
file system support", above.
config UNIXWARE_DISKLABEL
bool "Unixware slices support"
depends on PARTITION_ADVANCED && MSDOS_PARTITION
---help---
Like some systems, UnixWare uses its own slice table inside a
partition (VTOC - Virtual Table of Contents). Its format is
incompatible with all other OSes. Saying Y here allows you to read
VTOC and further mount UnixWare partitions read-only from within
Linux if you have also said Y to "UFS file system support" or
"System V and Coherent file system support", above.
This is mainly used to carry data from a UnixWare box to your
Linux box via a removable medium like magneto-optical, ZIP or
removable IDE drives. Note, however, that a good portable way to
transport files and directories between unixes (and even other
operating systems) is given by the tar program ("man tar" or
preferably "info tar").
If you don't know what all this is about, say N.
config LDM_PARTITION
bool "Windows Logical Disk Manager (Dynamic Disk) support"
depends on PARTITION_ADVANCED
---help---
Say Y here if you would like to use hard disks under Linux which
were partitioned using Windows 2000's or XP's Logical Disk Manager.
They are also known as "Dynamic Disks".
Windows 2000 introduced the concept of Dynamic Disks to get around
the limitations of the PC's partitioning scheme. The Logical Disk
Manager allows the user to repartition a disk and create spanned,
mirrored, striped or RAID volumes, all without the need for
rebooting.
Normal partitions are now called Basic Disks under Windows 2000 and
XP.
For a fuller description read <file:Documentation/ldm.txt>.
If unsure, say N.
config LDM_DEBUG
bool "Windows LDM extra logging"
depends on LDM_PARTITION
help
Say Y here if you would like LDM to log verbosely. This could be
helpful if the driver doesn't work as expected and you'd like to
report a bug.
If unsure, say N.
config SGI_PARTITION
bool "SGI partition support" if PARTITION_ADVANCED
default y if !PARTITION_ADVANCED && (SGI_IP22 || SGI_IP27)
help
Say Y here if you would like to be able to read the hard disk
partition table format used by SGI machines.
config ULTRIX_PARTITION
bool "Ultrix partition table support" if PARTITION_ADVANCED
default y if !PARTITION_ADVANCED && DECSTATION
help
Say Y here if you would like to be able to read the hard disk
partition table format used by DEC (now Compaq) Ultrix machines.
Otherwise, say N.
config SUN_PARTITION
bool "Sun partition tables support" if PARTITION_ADVANCED
default y if !PARTITION_ADVANCED && (SPARC32 || SPARC64)
---help---
Like most systems, SunOS uses its own hard disk partition table
format, incompatible with all others. Saying Y here allows you to
read these partition tables and further mount SunOS partitions from
within Linux if you have also said Y to "UFS file system support",
above. This is mainly used to carry data from a SPARC under SunOS to
your Linux box via a removable medium like magneto-optical or ZIP
drives; note however that a good portable way to transport files and
directories between unixes (and even other operating systems) is
given by the tar program ("man tar" or preferably "info tar"). If
you don't know what all this is about, say N.
config EFI_PARTITION
bool "EFI GUID Partition support"
depends on PARTITION_ADVANCED
help
Say Y here if you would like to use hard disks under Linux which
were partitioned using EFI GPT. Presently only useful on the
IA-64 platform.
# define_bool CONFIG_ACORN_PARTITION_CUMANA y
menu "Code maturity level options"
config EXPERIMENTAL
bool "Prompt for development and/or incomplete code/drivers"
---help---
Some of the various things that Linux supports (such as network
drivers, file systems, network protocols, etc.) can be in a state
of development where the functionality, stability, or the level of
testing is not yet high enough for general use. This is usually
known as the "alpha-test" phase among developers. If a feature is
currently in alpha-test, then the developers usually discourage
uninformed widespread use of this feature by the general public to
avoid "Why doesn't this work?" type mail messages. However, active
testing and use of these systems is welcomed. Just be aware that it
may not meet the normal level of reliability or it may fail to work
in some special cases. Detailed bug reports from people familiar
with the kernel internals are usually welcomed by the developers
(before submitting bug reports, please read the documents
<file:README>, <file:MAINTAINERS>, <file:REPORTING-BUGS>,
<file:Documentation/BUG-HUNTING>, and
<file:Documentation/oops-tracing.txt> in the kernel source).
This option will also make obsoleted drivers available. These are
drivers that have been replaced by something else, and/or are
scheduled to be removed in a future kernel release.
Unless you intend to help test and develop a feature or driver that
falls into this category, or you have a situation that requires
using these features, you should probably say N here, which will
cause the configurator to present you with fewer choices. If
you say Y here, you will be offered the choice of using features or
drivers that are currently considered to be in the alpha-test phase.
endmenu
menu "General setup"
config NET
bool "Networking support"
---help---
Unless you really know what you are doing, you should say Y here.
The reason is that some programs need kernel networking support even
when running on a stand-alone machine that isn't connected to any
other computer. If you are upgrading from an older kernel, you
should consider updating your networking tools too because changes
in the kernel and the tools often go hand in hand. The tools are
contained in the package net-tools, the location and version number
of which are given in <file:Documentation/Changes>.
For a general introduction to Linux networking, it is highly
recommended to read the NET-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
config SYSVIPC
bool "System V IPC"
---help---
Inter Process Communication is a suite of library functions and
system calls which let processes (running programs) synchronize and
exchange information. It is generally considered to be a good thing,
and some programs won't run unless you say Y here. In particular, if
you want to run the DOS emulator dosemu under Linux (read the
DOSEMU-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>), you'll need to say Y
here.
You can find documentation about IPC with "info ipc" and also in
section 6.4 of the Linux Programmer's Guide, available from
<http://www.linuxdoc.org/docs.html#guide>.
config BSD_PROCESS_ACCT
bool "BSD Process Accounting"
help
If you say Y here, a user level program will be able to instruct the
kernel (via a special system call) to write process accounting
information to a file: whenever a process exits, information about
that process will be appended to the file by the kernel. The
information includes things such as creation time, owning user,
command name, memory usage, controlling terminal etc. (the complete
list is in the struct acct in <file:include/linux/acct.h>). It is
up to the user level program to do useful things with this
information. This is generally a good idea, so say Y.
config SYSCTL
bool "Sysctl support"
---help---
The sysctl interface provides a means of dynamically changing
certain kernel parameters and variables on the fly without requiring
a recompile of the kernel or reboot of the system. The primary
interface consists of a system call, but if you say Y to "/proc
file system support", a tree of modifiable sysctl entries will be
generated beneath the /proc/sys directory. They are explained in the
files in <file:Documentation/sysctl/>. Note that enabling this
option will enlarge the kernel by at least 8 KB.
As it is generally a good thing, you should say Y here unless
building a kernel for install/rescue disks or your system is very
limited in memory.
endmenu
menu "Loadable module support"
config MODULES
bool "Enable loadable module support"
help
Kernel modules are small pieces of compiled code which can be
inserted in or removed from the running kernel, using the programs
insmod and rmmod. This is described in the file
<file:Documentation/modules.txt>, including the fact that you have
to say "make modules" in order to compile the modules that you chose
during kernel configuration. Modules can be device drivers, file
systems, binary executable formats, and so on. If you think that you
may want to make use of modules with this kernel in the future, then
say Y here. If unsure, say Y.
config MODVERSIONS
bool "Set version information on all module symbols"
depends on MODULES
---help---
Usually, modules have to be recompiled whenever you switch to a new
kernel. Saying Y here makes it possible, and safe, to use the
same modules even after compiling a new kernel; this requires the
program modprobe. All the software needed for module support is in
the modutils package (check the file <file:Documentation/Changes>
for location and latest version). NOTE: if you say Y here but don't
have the program genksyms (which is also contained in the above
mentioned modutils package), then the building of your kernel will
fail. If you are going to use modules that are generated from
non-kernel sources, you would benefit from this option. Otherwise
it's not that important. So, N ought to be a safe bet.
config KMOD
bool "Kernel module loader"
depends on MODULES
help
Normally when you have selected some drivers and/or file systems to
be created as loadable modules, you also have the responsibility to
load the corresponding modules (using the programs insmod or
modprobe) before you can use them. If you say Y here however, the
kernel will be able to load modules for itself: when a part of the
kernel needs a module, it runs modprobe with the appropriate
arguments, thereby loading the module if it is available. (This is a
replacement for kerneld.) Say Y here and read about configuring it
in <file:Documentation/kmod.txt>.
endmenu
#
# Library configuration
#
menu "Library routines"
config CRC32
tristate "CRC32 functions"
help
This option is provided for the case where no in-kernel-tree
modules require CRC32 functions, but a module built outside the
kernel tree does. Such modules that use library CRC32 functions
require M here.
#
# Do we need the compression support?
#
config ZLIB_INFLATE
tristate
default m if CRAMFS!=y && PPP_DEFLATE!=y && JFFS2_FS!=y && ZISOFS_FS!=y && (CRAMFS=m || PPP_DEFLATE=m || JFFS2_FS=m || ZISOFS_FS=m)
default y if CRAMFS=y || PPP_DEFLATE=y || JFFS2_FS=y || ZISOFS_FS=y
config ZLIB_DEFLATE
tristate
default m if PPP_DEFLATE!=y && JFFS2_FS!=y && (PPP_DEFLATE=m || JFFS2_FS=m)
default y if PPP_DEFLATE=y || JFFS2_FS=y
endmenu
This diff is collapsed.
#
# Amateur Radio protocols and AX.25 device configuration
#
# 19971130 Now in an own category to make correct compilation of the
# AX.25 stuff easier...
# Joerg Reuter DL1BKE <jreuter@yaina.de>
# 19980129 Moved to net/ax25/Config.in, sourcing device drivers.
menu "Amateur Radio support"
config HAMRADIO
bool "Amateur Radio support"
help
If you want to connect your Linux box to an amateur radio, answer Y
here. You want to read <http://www.tapr.org/tapr/html/pkthome.html> and
the AX25-HOWTO, available from <http://www.linuxdoc.org/docs.html#howto>.
Note that the answer to this question won't directly affect the
kernel: saying N will just cause the configurator to skip all
the questions about amateur radio.
comment "Packet Radio protocols"
depends on HAMRADIO && NET
config AX25
tristate "Amateur Radio AX.25 Level 2 protocol"
depends on HAMRADIO && NET
---help---
This is the protocol used for computer communication over amateur
radio. It is either used by itself for point-to-point links, or to
carry other protocols such as tcp/ip. To use it, you need a device
that connects your Linux box to your amateur radio. You can either
use a low speed TNC (a Terminal Node Controller acts as a kind of
modem connecting your computer's serial port to your radio's
microphone input and speaker output) supporting the KISS protocol or
one of the various SCC cards that are supported by the generic Z8530
or the DMA SCC driver. Another option are the Baycom modem serial
and parallel port hacks or the sound card modem (supported by their
own drivers). If you say Y here, you also have to say Y to one of
those drivers.
Information about where to get supporting software for Linux amateur
radio as well as information about how to configure an AX.25 port is
contained in the AX25-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>. You might also want to
check out the file <file:Documentation/networking/ax25.txt> in the
kernel source. More information about digital amateur radio in
general is on the WWW at
<http://www.tapr.org/tapr/html/pkthome.html>.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called ax25.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt>.
config AX25_DAMA_SLAVE
bool "AX.25 DAMA Slave support"
depends on AX25
help
DAMA is a mechanism to prevent collisions when doing AX.25
networking. A DAMA server (called "master") accepts incoming traffic
from clients (called "slaves") and redistributes it to other slaves.
If you say Y here, your Linux box will act as a DAMA slave; this is
transparent in that you don't have to do any special DAMA
configuration. (Linux cannot yet act as a DAMA server.) If unsure,
say N.
# bool ' AX.25 DAMA Master support' CONFIG_AX25_DAMA_MASTER
config NETROM
tristate "Amateur Radio NET/ROM protocol"
depends on AX25
---help---
NET/ROM is a network layer protocol on top of AX.25 useful for
routing.
A comprehensive listing of all the software for Linux amateur radio
users as well as information about how to configure an AX.25 port is
contained in the AX25-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>. You also might want to
check out the file <file:Documentation/networking/ax25.txt>. More
information about digital amateur radio in general is on the WWW at
<http://www.tapr.org/tapr/html/pkthome.html>.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called netrom.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt>.
config ROSE
tristate "Amateur Radio X.25 PLP (Rose)"
depends on AX25
---help---
The Packet Layer Protocol (PLP) is a way to route packets over X.25
connections in general and amateur radio AX.25 connections in
particular, essentially an alternative to NET/ROM.
A comprehensive listing of all the software for Linux amateur radio
users as well as information about how to configure an AX.25 port is
contained in the AX25-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>. You also might want to
check out the file <file:Documentation/networking/ax25.txt>. More
information about digital amateur radio in general is on the WWW at
<http://www.tapr.org/tapr/html/pkthome.html>.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called rose.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt>.
menu "AX.25 network device drivers"
depends on HAMRADIO && NET && AX25!=n
source "drivers/net/hamradio/Kconfig"
endmenu
endmenu
#
# Bluetooth subsystem configuration
#
menu "Bluetooth support"
depends on NET
config BT
tristate "Bluetooth subsystem support"
---help---
Bluetooth is low-cost, low-power, short-range wireless technology.
It was designed as a replacement for cables and other short-range
technologies like IrDA. Bluetooth operates in personal area range
that typically extends up to 10 meters. More information about
Bluetooth can be found at <http://www.bluetooth.com/>.
Linux Bluetooth subsystem consist of several layers:
Bluetooth Core (HCI device and connection manager, scheduler)
HCI Device drivers (interface to the hardware)
L2CAP Module (L2CAP protocol)
SCO Module (SCO links)
RFCOMM Module (RFCOMM protocol)
BNEP Module (BNEP protocol)
Say Y here to enable Linux Bluetooth support and to build Bluetooth Core
layer.
To use Linux Bluetooth subsystem, you will need several user-space
utilities like hciconfig and hcid. These utilities and updates to
Bluetooth kernel modules are provided in the BlueZ packages.
For more information, see <http://bluez.sourceforge.net/>.
If you want to compile Bluetooth Core as module (bluetooth.o) say M here.
config BT_L2CAP
tristate "L2CAP protocol support"
depends on BT
help
L2CAP (Logical Link Control and Adaptation Protocol) provides
connection oriented and connection-less data transport. L2CAP
support is required for most Bluetooth applications.
Say Y here to compile L2CAP support into the kernel or say M to
compile it as module (l2cap.o).
config BT_SCO
tristate "SCO links support"
depends on BT
help
SCO link provides voice transport over Bluetooth. SCO support is
required for voice applications like Headset and Audio.
Say Y here to compile SCO support into the kernel or say M to
compile it as module (sco.o).
source "net/bluetooth/rfcomm/Kconfig"
source "net/bluetooth/bnep/Kconfig"
source "drivers/bluetooth/Kconfig"
endmenu
config BT_BNEP
tristate "BNEP protocol support"
depends on BT_L2CAP
---help---
BNEP (Bluetooth Network Encapsulation Protocol) is Ethernet
emulation layer on top of Bluetooth. BNEP is required for Bluetooth
PAN (Personal Area Network).
To use BNEP, you will need user-space utilities provided in the
BlueZ-PAN package.
For more information, see <http://bluez.sourceforge.net>.
Say Y here to compile BNEP support into the kernel or say M to
compile it as module (bnep.o).
config BT_BNEP_MC_FILTER
bool "Multicast filter support"
depends on BT_BNEP
help
This option enables the multicast filter support for BNEP.
config BT_BNEP_PROTO_FILTER
bool "Protocol filter support"
depends on BT_BNEP
help
This option enables the protocol filter support for BNEP.
config BT_RFCOMM
tristate "RFCOMM protocol support"
depends on BT_L2CAP
help
RFCOMM provides connection oriented stream transport. RFCOMM
support is required for Dialup Networking, OBEX and other Bluetooth
applications.
Say Y here to compile RFCOMM support into the kernel or say M to
compile it as module (rfcomm.o).
config BT_RFCOMM_TTY
bool "RFCOMM TTY support"
depends on BT_RFCOMM
help
This option enables TTY emulation support for RFCOMM channels.
#
# Bridge netfilter configuration
#
config BRIDGE_NF_EBTABLES
tristate "Bridge: ebtables"
depends on NETFILTER && BRIDGE
config BRIDGE_EBT_T_FILTER
tristate "ebt: filter table support"
depends on BRIDGE_NF_EBTABLES
help
The ebtables filter table is used to define frame filtering rules at
local input, forwarding and local output. See the man page for
ebtables(8).
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config BRIDGE_EBT_T_NAT
tristate "ebt: nat table support"
depends on BRIDGE_NF_EBTABLES
help
The ebtables nat table is used to define rules that alter the MAC
source address (MAC SNAT) or the MAC destination address (MAC DNAT).
See the man page for ebtables(8).
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config BRIDGE_EBT_BROUTE
tristate "ebt: broute table support"
depends on BRIDGE_NF_EBTABLES
help
The ebtables broute table is used to define rules that decide between
bridging and routing frames, giving Linux the functionality of a
brouter. See the man page for ebtables(8) and examples on the ebtables
website.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config BRIDGE_EBT_LOG
tristate "ebt: log support"
depends on BRIDGE_NF_EBTABLES
help
This option adds the log target, that you can use in any rule in
any ebtables table. It records the frame header to the syslog.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config BRIDGE_EBT_IPF
tristate "ebt: IP filter support"
depends on BRIDGE_NF_EBTABLES
help
This option adds the IP match, which allows basic IP header field
filtering.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config BRIDGE_EBT_ARPF
tristate "ebt: ARP filter support"
depends on BRIDGE_NF_EBTABLES
help
This option adds the ARP match, which allows ARP and RARP header field
filtering.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config BRIDGE_EBT_VLANF
tristate "ebt: 802.1Q VLAN filter support (EXPERIMENTAL)"
depends on BRIDGE_NF_EBTABLES
help
This option adds the 802.1Q vlan match, which allows the filtering of
802.1Q vlan fields.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config BRIDGE_EBT_MARKF
tristate "ebt: mark filter support"
depends on BRIDGE_NF_EBTABLES
help
This option adds the mark match, which allows matching frames based on
the 'nfmark' value in the frame. This can be set by the mark target.
This value is the same as the one used in the iptables mark match and
target.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config BRIDGE_EBT_SNAT
tristate "ebt: snat target support"
depends on BRIDGE_NF_EBTABLES
help
This option adds the MAC SNAT target, which allows altering the MAC
source address of frames.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config BRIDGE_EBT_DNAT
tristate "ebt: dnat target support"
depends on BRIDGE_NF_EBTABLES
help
This option adds the MAC DNAT target, which allows altering the MAC
destination address of frames.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config BRIDGE_EBT_REDIRECT
tristate "ebt: redirect target support"
depends on BRIDGE_NF_EBTABLES
help
This option adds the MAC redirect target, which allows altering the MAC
destination address of a frame to that of the device it arrived on.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config BRIDGE_EBT_MARK_T
tristate "ebt: mark target support"
depends on BRIDGE_NF_EBTABLES
help
This option adds the mark target, which allows marking frames by
setting the 'nfmark' value in the frame.
This value is the same as the one used in the iptables mark match and
target.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
#
# DECnet configuration
#
config DECNET_SIOCGIFCONF
bool "DECnet: SIOCGIFCONF support"
depends on DECNET
help
This option should only be turned on if you are really sure that
you know what you are doing. It can break other applications which
use this system call and the proper way to get the information
provided by this call is to use rtnetlink.
If unsure, say N.
config DECNET_ROUTER
bool "DECnet: router support (EXPERIMENTAL)"
depends on DECNET && EXPERIMENTAL
---help---
Add support for turning your DECnet Endnode into a level 1 or 2
router. This is an unfinished option for developers only. If you
do say Y here, then make sure that you also say Y to "Kernel/User
network link driver", "Routing messages" and "Network packet
filtering". The first two are required to allow configuration via
rtnetlink (currently you need Alexey Kuznetsov's iproute2 package
from <ftp://ftp.inr.ac.ru/>). The "Network packet filtering" option
will be required for the forthcoming routing daemon to work.
See <file:Documentation/networking/decnet.txt> for more information.
config DECNET_ROUTE_FWMARK
bool "DECnet: use FWMARK value as routing key (EXPERIMENTAL)"
depends on DECNET_ROUTER && NETFILTER
help
If you say Y here, you will be able to specify different routes for
packets with different FWMARK ("firewalling mark") values
(see ipchains(8), "-m" argument).
This diff is collapsed.
This diff is collapsed.
#
# IPv6 configuration
#
source "net/ipv6/netfilter/Kconfig"
#
# IP netfilter configuration
#
menu "IPv6: Netfilter Configuration"
depends on INET && EXPERIMENTAL && IPV6!=n && NETFILTER
#tristate 'Connection tracking (required for masq/NAT)' CONFIG_IP6_NF_CONNTRACK
#if [ "$CONFIG_IP6_NF_CONNTRACK" != "n" ]; then
# dep_tristate ' FTP protocol support' CONFIG_IP6_NF_FTP $CONFIG_IP6_NF_CONNTRACK
#fi
config IP6_NF_QUEUE
tristate "Userspace queueing via NETLINK (EXPERIMENTAL)"
---help---
This option adds a queue handler to the kernel for IPv6
packets which lets us to receive the filtered packets
with QUEUE target using libiptc as we can do with
the IPv4 now.
(C) Fernando Anton 2001
IPv64 Project - Work based in IPv64 draft by Arturo Azcorra.
Universidad Carlos III de Madrid
Universidad Politecnica de Alcala de Henares
email: fanton@it.uc3m.es
If you want to compile it as a module, say M here and read
Documentation/modules.txt. If unsure, say `N'.
config IP6_NF_IPTABLES
tristate "IP6 tables support (required for filtering/masq/NAT)"
help
ip6tables is a general, extensible packet identification framework.
Currently only the packet filtering and packet mangling subsystem
for IPv6 use this, but connection tracking is going to follow.
Say 'Y' or 'M' here if you want to use either of those.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
# The simple matches.
config IP6_NF_MATCH_LIMIT
tristate "limit match support"
depends on IP6_NF_IPTABLES
help
limit matching allows you to control the rate at which a rule can be
matched: mainly useful in combination with the LOG target ("LOG
target support", below) and to avoid some Denial of Service attacks.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config IP6_NF_MATCH_MAC
tristate "MAC address match support"
depends on IP6_NF_IPTABLES
help
mac matching allows you to match packets based on the source
Ethernet address of the packet.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config IP6_NF_MATCH_MULTIPORT
tristate "Multiple port match support"
depends on IP6_NF_IPTABLES
help
Multiport matching allows you to match TCP or UDP packets based on
a series of source or destination ports: normally a rule can only
match a single range of ports.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config IP6_NF_MATCH_OWNER
tristate "Owner match support (EXPERIMENTAL)"
depends on IP6_NF_IPTABLES
help
Packet owner matching allows you to match locally-generated packets
based on who created them: the user, group, process or session.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
# dep_tristate ' MAC address match support' CONFIG_IP6_NF_MATCH_MAC $CONFIG_IP6_NF_IPTABLES
config IP6_NF_MATCH_MARK
tristate "netfilter MARK match support"
depends on IP6_NF_IPTABLES
help
Netfilter mark matching allows you to match packets based on the
`nfmark' value in the packet. This can be set by the MARK target
(see below).
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config IP6_NF_MATCH_LENGTH
tristate "Packet Length match support"
depends on IP6_NF_IPTABLES
help
This option allows you to match the length of a packet against a
specific value or range of values.
If you want to compile it as a module, say M here and read
Documentation/modules.txt. If unsure, say `N'.
config IP6_NF_MATCH_EUI64
tristate "EUI64 address check (EXPERIMENTAL)"
depends on IP6_NF_IPTABLES
help
This module performs checking on the IPv6 source address
Compares the last 64 bits with the EUI64 (delivered
from the MAC address) address
If you want to compile it as a module, say M here and read
Documentation/modules.txt. If unsure, say `N'.
# dep_tristate ' Multiple port match support' CONFIG_IP6_NF_MATCH_MULTIPORT $CONFIG_IP6_NF_IPTABLES
# dep_tristate ' TOS match support' CONFIG_IP6_NF_MATCH_TOS $CONFIG_IP6_NF_IPTABLES
# if [ "$CONFIG_IP6_NF_CONNTRACK" != "n" ]; then
# dep_tristate ' Connection state match support' CONFIG_IP6_NF_MATCH_STATE $CONFIG_IP6_NF_CONNTRACK $CONFIG_IP6_NF_IPTABLES
# fi
# if [ "$CONFIG_EXPERIMENTAL" = "y" ]; then
# dep_tristate ' Unclean match support (EXPERIMENTAL)' CONFIG_IP6_NF_MATCH_UNCLEAN $CONFIG_IP6_NF_IPTABLES
# dep_tristate ' Owner match support (EXPERIMENTAL)' CONFIG_IP6_NF_MATCH_OWNER $CONFIG_IP6_NF_IPTABLES
# fi
# The targets
config IP6_NF_FILTER
tristate "Packet filtering"
depends on IP6_NF_IPTABLES
help
Packet filtering defines a table `filter', which has a series of
rules for simple packet filtering at local input, forwarding and
local output. See the man page for iptables(8).
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config IP6_NF_TARGET_LOG
tristate "LOG target support"
depends on IP6_NF_FILTER
help
This option adds a `LOG' target, which allows you to create rules in
any iptables table which records the packet header to the syslog.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
# if [ "$CONFIG_IP6_NF_FILTER" != "n" ]; then
# dep_tristate ' REJECT target support' CONFIG_IP6_NF_TARGET_REJECT $CONFIG_IP6_NF_FILTER
# if [ "$CONFIG_EXPERIMENTAL" = "y" ]; then
# dep_tristate ' MIRROR target support (EXPERIMENTAL)' CONFIG_IP6_NF_TARGET_MIRROR $CONFIG_IP6_NF_FILTER
# fi
# fi
config IP6_NF_MANGLE
tristate "Packet mangling"
depends on IP6_NF_IPTABLES
help
This option adds a `mangle' table to iptables: see the man page for
iptables(8). This table is used for various packet alterations
which can effect how the packet is routed.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
# dep_tristate ' TOS target support' CONFIG_IP6_NF_TARGET_TOS $CONFIG_IP_NF_MANGLE
config IP6_NF_TARGET_MARK
tristate "MARK target support"
depends on IP6_NF_MANGLE
help
This option adds a `MARK' target, which allows you to create rules
in the `mangle' table which alter the netfilter mark (nfmark) field
associated with the packet packet prior to routing. This can change
the routing method (see `Use netfilter MARK value as routing
key') and can also be used by other subsystems to change their
behavior.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
#dep_tristate ' LOG target support' CONFIG_IP6_NF_TARGET_LOG $CONFIG_IP6_NF_IPTABLES
endmenu
#
# IPX configuration
#
config IPX_INTERN
bool "IPX: Full internal IPX network"
depends on IPX
---help---
Every IPX network has an address that identifies it. Sometimes it is
useful to give an IPX "network" address to your Linux box as well
(for example if your box is acting as a file server for different
IPX networks: it will then be accessible from everywhere using the
same address). The way this is done is to create a virtual internal
"network" inside your box and to assign an IPX address to this
network. Say Y here if you want to do this; read the IPX-HOWTO at
<http://www.linuxdoc.org/docs.html#howto> for details.
The full internal IPX network enables you to allocate sockets on
different virtual nodes of the internal network. This is done by
evaluating the field sipx_node of the socket address given to the
bind call. So applications should always initialize the node field
to 0 when binding a socket on the primary network. In this case the
socket is assigned the default node that has been given to the
kernel when the internal network was created. By enabling the full
internal IPX network the cross-forwarding of packets targeted at
'special' sockets to sockets listening on the primary network is
disabled. This might break existing applications, especially RIP/SAP
daemons. A RIP/SAP daemon that works well with the full internal net
can be found on <ftp://ftp.gwdg.de/pub/linux/misc/ncpfs/>.
If you don't know what you are doing, say N.
#
# IrDA protocol configuration
#
menu "IrDA (infrared) support"
depends on NET
config IRDA
tristate "IrDA subsystem support"
---help---
Say Y here if you want to build support for the IrDA (TM) protocols.
The Infrared Data Associations (tm) specifies standards for wireless
infrared communication and is supported by most laptops and PDA's.
To use Linux support for the IrDA (tm) protocols, you will also need
some user-space utilities like irattach. For more information, see
the file <file:Documentation/networking/irda.txt>. You also want to
read the IR-HOWTO, available at
<http://www.linuxdoc.org/docs.html#howto>.
If you want to exchange bits of data (vCal, vCard) with a PDA, you
will need to install some OBEX application, such as OpenObex :
<http://sourceforge.net/projects/openobex/>
This support is also available as a module called irda.o. If you
want to compile it as a module, say M here and read
<file:Documentation/modules.txt>.
comment "IrDA protocols"
depends on IRDA
source "net/irda/irlan/Kconfig"
source "net/irda/irnet/Kconfig"
source "net/irda/ircomm/Kconfig"
config IRDA_ULTRA
bool "Ultra (connectionless) protocol"
depends on IRDA
help
Say Y here to support the connectionless Ultra IRDA protocol.
Ultra allows to exchange data over IrDA with really simple devices
(watch, beacon) without the overhead of the IrDA protocol (no handshaking,
no management frames, simple fixed header).
Ultra is available as a special socket : socket(AF_IRDA, SOCK_DGRAM, 1);
comment "IrDA options"
depends on IRDA
config IRDA_CACHE_LAST_LSAP
bool "Cache last LSAP"
depends on IRDA
help
Say Y here if you want IrLMP to cache the last LSAP used. This
makes sense since most frames will be sent/received on the same
connection. Enabling this option will save a hash-lookup per frame.
If unsure, say Y.
config IRDA_FAST_RR
bool "Fast RRs (low latency)"
depends on IRDA
---help---
Say Y here is you want IrLAP to send fast RR (Receive Ready) frames
when acting as a primary station.
Disabling this option will make latency over IrDA very bad. Enabling
this option will make the IrDA stack send more packet than strictly
necessary, thus reduce your battery life (but not that much).
Fast RR will make IrLAP send out a RR frame immediately when
receiving a frame if its own transmit queue is currently empty. This
will give a lot of speed improvement when receiving much data since
the secondary station will not have to wait the max. turn around
time (usually 500ms) before it is allowed to transmit the next time.
If the transmit queue of the secondary is also empty, the primary will
start backing-off before sending another RR frame, waiting longer
each time until the back-off reaches the max. turn around time.
This back-off increase in controlled via
/proc/sys/net/irda/fast_poll_increase
If unsure, say Y.
config IRDA_DEBUG
bool "Debug information"
depends on IRDA
help
Say Y here if you want the IrDA subsystem to write debug information
to your syslog. You can change the debug level in
/proc/sys/net/irda/debug .
When this option is enabled, the IrDA also perform many extra internal
verifications which will usually prevent the kernel to crash in case of
bugs.
If unsure, say Y (since it makes it easier to find the bugs).
source "drivers/net/irda/Kconfig"
endmenu
config IRCOMM
tristate "IrCOMM protocol"
depends on IRDA
help
Say Y here if you want to build support for the IrCOMM protocol. If
you want to compile it as a module (you will get ircomm.o and
ircomm-tty.o), say M here and read <file:Documentation/modules.txt>.
IrCOMM implements serial port emulation, and makes it possible to
use all existing applications that understands TTY's with an
infrared link. Thus you should be able to use application like PPP,
minicom and others. Enabling this option will create two modules
called ircomm and ircomm_tty.
config IRLAN
tristate "IrLAN protocol"
depends on IRDA
help
Say Y here if you want to build support for the IrLAN protocol. If
you want to compile it as a module (irlan.o), say M here and read
<file:Documentation/modules.txt>. IrLAN emulates an Ethernet and
makes it possible to put up a wireless LAN using infrared beams.
The IrLAN protocol can be used to talk with infrared access points
like the HP NetbeamIR, or the ESI JetEye NET. You can also connect
to another Linux machine running the IrLAN protocol for ad-hoc
networking!
config IRNET
tristate "IrNET protocol"
depends on IRDA && PPP
help
Say Y here if you want to build support for the IrNET protocol. If
you want to compile it as a module (irnet.o), say M here and read
<file:Documentation/modules.txt>. IrNET is a PPP driver, so you
will also need a working PPP subsystem (driver, daemon and
config)...
IrNET is an alternate way to tranfer TCP/IP traffic over IrDA. It
uses synchronous PPP over a set of point to point IrDA sockets. You
can use it between Linux machine or with W2k.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment