Commit 8382d914 authored by Davidlohr Bueso's avatar Davidlohr Bueso Committed by Linus Torvalds

mm, hugetlb: improve page-fault scalability

The kernel can currently only handle a single hugetlb page fault at a
time.  This is due to a single mutex that serializes the entire path.
This lock protects from spurious OOM errors under conditions of low
availability of free hugepages.  This problem is specific to hugepages,
because it is normal to want to use every single hugepage in the system
- with normal pages we simply assume there will always be a few spare
pages which can be used temporarily until the race is resolved.

Address this problem by using a table of mutexes, allowing a better
chance of parallelization, where each hugepage is individually
serialized.  The hash key is selected depending on the mapping type.
For shared ones it consists of the address space and file offset being
faulted; while for private ones the mm and virtual address are used.
The size of the table is selected based on a compromise of collisions
and memory footprint of a series of database workloads.

Large database workloads that make heavy use of hugepages can be
particularly exposed to this issue, causing start-up times to be
painfully slow.  This patch reduces the startup time of a 10 Gb Oracle
DB (with ~5000 faults) from 37.5 secs to 25.7 secs.  Larger workloads
will naturally benefit even more.

NOTE:
The only downside to this patch, detected by Joonsoo Kim, is that a
small race is possible in private mappings: A child process (with its
own mm, after cow) can instantiate a page that is already being handled
by the parent in a cow fault.  When low on pages, can trigger spurious
OOMs.  I have not been able to think of a efficient way of handling
this...  but do we really care about such a tiny window? We already
maintain another theoretical race with normal pages.  If not, one
possible way to is to maintain the single hash for private mappings --
any workloads that *really* suffer from this scaling problem should
already use shared mappings.

[akpm@linux-foundation.org: remove stray + characters, go BUG if hugetlb_init() kmalloc fails]
Signed-off-by: default avatarDavidlohr Bueso <davidlohr@hp.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
parent 4e35f483
......@@ -22,6 +22,7 @@
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/page-isolation.h>
#include <linux/jhash.h>
#include <asm/page.h>
#include <asm/pgtable.h>
......@@ -53,6 +54,13 @@ static unsigned long __initdata default_hstate_size;
*/
DEFINE_SPINLOCK(hugetlb_lock);
/*
* Serializes faults on the same logical page. This is used to
* prevent spurious OOMs when the hugepage pool is fully utilized.
*/
static int num_fault_mutexes;
static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
bool free = (spool->count == 0) && (spool->used_hpages == 0);
......@@ -1961,11 +1969,14 @@ static void __exit hugetlb_exit(void)
}
kobject_put(hugepages_kobj);
kfree(htlb_fault_mutex_table);
}
module_exit(hugetlb_exit);
static int __init hugetlb_init(void)
{
int i;
/* Some platform decide whether they support huge pages at boot
* time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
* there is no such support
......@@ -1990,6 +2001,17 @@ static int __init hugetlb_init(void)
hugetlb_register_all_nodes();
hugetlb_cgroup_file_init();
#ifdef CONFIG_SMP
num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
num_fault_mutexes = 1;
#endif
htlb_fault_mutex_table =
kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
BUG_ON(!htlb_fault_mutex_table);
for (i = 0; i < num_fault_mutexes; i++)
mutex_init(&htlb_fault_mutex_table[i]);
return 0;
}
module_init(hugetlb_init);
......@@ -2767,15 +2789,14 @@ static bool hugetlbfs_pagecache_present(struct hstate *h,
}
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pte_t *ptep, unsigned int flags)
struct address_space *mapping, pgoff_t idx,
unsigned long address, pte_t *ptep, unsigned int flags)
{
struct hstate *h = hstate_vma(vma);
int ret = VM_FAULT_SIGBUS;
int anon_rmap = 0;
pgoff_t idx;
unsigned long size;
struct page *page;
struct address_space *mapping;
pte_t new_pte;
spinlock_t *ptl;
......@@ -2790,9 +2811,6 @@ static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
return ret;
}
mapping = vma->vm_file->f_mapping;
idx = vma_hugecache_offset(h, vma, address);
/*
* Use page lock to guard against racing truncation
* before we get page_table_lock.
......@@ -2902,17 +2920,53 @@ static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
goto out;
}
#ifdef CONFIG_SMP
static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
struct vm_area_struct *vma,
struct address_space *mapping,
pgoff_t idx, unsigned long address)
{
unsigned long key[2];
u32 hash;
if (vma->vm_flags & VM_SHARED) {
key[0] = (unsigned long) mapping;
key[1] = idx;
} else {
key[0] = (unsigned long) mm;
key[1] = address >> huge_page_shift(h);
}
hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
return hash & (num_fault_mutexes - 1);
}
#else
/*
* For uniprocesor systems we always use a single mutex, so just
* return 0 and avoid the hashing overhead.
*/
static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
struct vm_area_struct *vma,
struct address_space *mapping,
pgoff_t idx, unsigned long address)
{
return 0;
}
#endif
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, unsigned int flags)
{
pte_t *ptep;
pte_t entry;
pte_t *ptep, entry;
spinlock_t *ptl;
int ret;
u32 hash;
pgoff_t idx;
struct page *page = NULL;
struct page *pagecache_page = NULL;
static DEFINE_MUTEX(hugetlb_instantiation_mutex);
struct hstate *h = hstate_vma(vma);
struct address_space *mapping;
address &= huge_page_mask(h);
......@@ -2931,15 +2985,20 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
if (!ptep)
return VM_FAULT_OOM;
mapping = vma->vm_file->f_mapping;
idx = vma_hugecache_offset(h, vma, address);
/*
* Serialize hugepage allocation and instantiation, so that we don't
* get spurious allocation failures if two CPUs race to instantiate
* the same page in the page cache.
*/
mutex_lock(&hugetlb_instantiation_mutex);
hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
mutex_lock(&htlb_fault_mutex_table[hash]);
entry = huge_ptep_get(ptep);
if (huge_pte_none(entry)) {
ret = hugetlb_no_page(mm, vma, address, ptep, flags);
ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
goto out_mutex;
}
......@@ -3008,8 +3067,7 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
put_page(page);
out_mutex:
mutex_unlock(&hugetlb_instantiation_mutex);
mutex_unlock(&htlb_fault_mutex_table[hash]);
return ret;
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment