- 09 Jan, 2018 11 commits
-
-
Tejun Heo authored
The RCU protection has been expanded to cover both queueing and completion paths making ->queue_rq_srcu a misnomer. Rename it to ->srcu as suggested by Bart. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Bart Van Assche <Bart.VanAssche@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
Tejun Heo authored
After the recent updates to use generation number and state based synchronization, we can easily replace REQ_ATOM_STARTED usages by adding an extra state to distinguish completed but not yet freed state. Add MQ_RQ_COMPLETE and replace REQ_ATOM_STARTED usages with blk_mq_rq_state() tests. REQ_ATOM_STARTED no longer has any users left and is removed. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
Tejun Heo authored
After the recent updates to use generation number and state based synchronization, blk-mq no longer depends on REQ_ATOM_COMPLETE except to avoid firing the same timeout multiple times. Remove all REQ_ATOM_COMPLETE usages and use a new rq_flags flag RQF_MQ_TIMEOUT_EXPIRED to avoid firing the same timeout multiple times. This removes atomic bitops from hot paths too. v2: Removed blk_clear_rq_complete() from blk_mq_rq_timed_out(). v3: Added RQF_MQ_TIMEOUT_EXPIRED flag. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "jianchao.wang" <jianchao.w.wang@oracle.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
Tejun Heo authored
With issue/complete and timeout paths now using the generation number and state based synchronization, blk_abort_request() is the only one which depends on REQ_ATOM_COMPLETE for arbitrating completion. There's no reason for blk_abort_request() to be a completely separate path. This patch makes blk_abort_request() piggyback on the timeout path instead of trying to terminate the request directly. This removes the last dependency on REQ_ATOM_COMPLETE in blk-mq. Note that this makes blk_abort_request() asynchronous - it initiates abortion but the actual termination will happen after a short while, even when the caller owns the request. AFAICS, SCSI and ATA should be fine with that and I think mtip32xx and dasd should be safe but not completely sure. It'd be great if people who know the drivers take a look. v2: - Add comment explaining the lack of synchronization around ->deadline update as requested by Bart. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Asai Thambi SP <asamymuthupa@micron.com> Cc: Stefan Haberland <sth@linux.vnet.ibm.com> Cc: Jan Hoeppner <hoeppner@linux.vnet.ibm.com> Cc: Bart Van Assche <Bart.VanAssche@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
Tejun Heo authored
blk_mq_check_inflight() and blk_mq_poll_hybrid_sleep() test REQ_ATOM_COMPLETE to determine the request state. Both uses are speculative and we can test REQ_ATOM_STARTED and blk_mq_rq_state() for equivalent results. Replace the tests. This will allow removing REQ_ATOM_COMPLETE usages from blk-mq. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
Tejun Heo authored
Currently, blk-mq timeout path synchronizes against the usual issue/completion path using a complex scheme involving atomic bitflags, REQ_ATOM_*, memory barriers and subtle memory coherence rules. Unfortunately, it contains quite a few holes. There's a complex dancing around REQ_ATOM_STARTED and REQ_ATOM_COMPLETE between issue/completion and timeout paths; however, they don't have a synchronization point across request recycle instances and it isn't clear what the barriers add. blk_mq_check_expired() can easily read STARTED from N-2'th iteration, deadline from N-1'th, blk_mark_rq_complete() against Nth instance. In fact, it's pretty easy to make blk_mq_check_expired() terminate a later instance of a request. If we induce 5 sec delay before time_after_eq() test in blk_mq_check_expired(), shorten the timeout to 2s, and issue back-to-back large IOs, blk-mq starts timing out requests spuriously pretty quickly. Nothing actually timed out. It just made the call on a recycle instance of a request and then terminated a later instance long after the original instance finished. The scenario isn't theoretical either. This patch replaces the broken synchronization mechanism with a RCU and generation number based one. 1. Each request has a u64 generation + state value, which can be updated only by the request owner. Whenever a request becomes in-flight, the generation number gets bumped up too. This provides the basis for the timeout path to distinguish different recycle instances of the request. Also, marking a request in-flight and setting its deadline are protected with a seqcount so that the timeout path can fetch both values coherently. 2. The timeout path fetches the generation, state and deadline. If the verdict is timeout, it records the generation into a dedicated request abortion field and does RCU wait. 3. The completion path is also protected by RCU (from the previous patch) and checks whether the current generation number and state match the abortion field. If so, it skips completion. 4. The timeout path, after RCU wait, scans requests again and terminates the ones whose generation and state still match the ones requested for abortion. By now, the timeout path knows that either the generation number and state changed if it lost the race or the completion will yield to it and can safely timeout the request. While it's more lines of code, it's conceptually simpler, doesn't depend on direct use of subtle memory ordering or coherence, and hopefully doesn't terminate the wrong instance. While this change makes REQ_ATOM_COMPLETE synchronization unnecessary between issue/complete and timeout paths, REQ_ATOM_COMPLETE isn't removed yet as it's still used in other places. Future patches will move all state tracking to the new mechanism and remove all bitops in the hot paths. Note that this patch adds a comment explaining a race condition in BLK_EH_RESET_TIMER path. The race has always been there and this patch doesn't change it. It's just documenting the existing race. v2: - Fixed BLK_EH_RESET_TIMER handling as pointed out by Jianchao. - s/request->gstate_seqc/request->gstate_seq/ as suggested by Peter. - READ_ONCE() added in blk_mq_rq_update_state() as suggested by Peter. v3: - Fixed possible extended seqcount / u64_stats_sync read looping spotted by Peter. - MQ_RQ_IDLE was incorrectly being set in complete_request instead of free_request. Fixed. v4: - Rebased on top of hctx_lock() refactoring patch. - Added comment explaining the use of hctx_lock() in completion path. v5: - Added comments requested by Bart. - Note the addition of BLK_EH_RESET_TIMER race condition in the commit message. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "jianchao.wang" <jianchao.w.wang@oracle.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Bart Van Assche <Bart.VanAssche@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
Tejun Heo authored
Currently, blk-mq protects only the issue path with RCU. This patch puts the completion path under the same RCU protection. This will be used to synchronize issue/completion against timeout by later patches, which will also add the comments. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
Jens Axboe authored
Move the RCU vs SRCU logic into lock/unlock helpers, which makes the actual functional bits within the locked region much easier to read. tj: Reordered in front of timeout revamp patches and added the missing blk_mq_run_hw_queue() conversion. Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
Paolo Valente authored
On scheduler init, a reference to the root group, and a reference to its corresponding blkg are taken for the oom queue. Yet these references are not released on scheduler exit, which prevents these objects from be freed. This commit adds the missing reference releases. Reported-by: Davide Ferrari <davideferrari8@gmail.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
Paolo Valente authored
For each pair [device for which bfq is selected as I/O scheduler, group in blkio/io], bfq maintains a corresponding bfq group. Each such bfq group contains a set of async queues, with each async queue created on demand, i.e., when some I/O request arrives for it. On creation, an async queue gets an extra reference, to make sure that the queue is not freed as long as its bfq group exists. Accordingly, to allow the queue to be freed after the group exited, this extra reference must released on group exit. The above holds also for a bfq root group, i.e., for the bfq group corresponding to the root blkio/io root for a given device. Yet, by mistake, the references to the existing async queues of a root group are not released when the latter exits. This causes a memory leak when the instance of bfq for a given device exits. In a similar vein, bfqg_stats_xfer_dead is not executed for a root group. This commit fixes bfq_pd_offline so that the latter executes the above missing operations for a root group too. Reported-by: Holger Hoffstätte <holger@applied-asynchrony.com> Reported-by: Guoqing Jiang <gqjiang@suse.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: Davide Ferrari <davideferrari8@gmail.com> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
Ming Lei authored
HW queues may be unmapped in some cases, such as blk_mq_update_nr_hw_queues(), then we need to check it before calling blk_mq_tag_idle(), otherwise the following kernel oops can be triggered, so fix it by checking if the hw queue is unmapped since it doesn't make sense to idle the tags any more after hw queues are unmapped. [ 440.771298] Workqueue: nvme-wq nvme_rdma_del_ctrl_work [nvme_rdma] [ 440.779104] task: ffff894bae755ee0 ti: ffff893bf9bc8000 task.ti: ffff893bf9bc8000 [ 440.788359] RIP: 0010:[<ffffffffb730e2b4>] [<ffffffffb730e2b4>] __blk_mq_tag_idle+0x24/0x40 [ 440.798697] RSP: 0018:ffff893bf9bcbd10 EFLAGS: 00010286 [ 440.805538] RAX: 0000000000000000 RBX: ffff895bb131dc00 RCX: 000000000000011f [ 440.814426] RDX: 00000000ffffffff RSI: 0000000000000120 RDI: ffff895bb131dc00 [ 440.823301] RBP: ffff893bf9bcbd10 R08: 000000000001b860 R09: 4a51d361c00c0000 [ 440.832193] R10: b5907f32b4cc7003 R11: ffffd6cabfb57000 R12: ffff894bafd1e008 [ 440.841091] R13: 0000000000000001 R14: ffff895baf770000 R15: 0000000000000080 [ 440.849988] FS: 0000000000000000(0000) GS:ffff894bbdcc0000(0000) knlGS:0000000000000000 [ 440.859955] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 440.867274] CR2: 0000000000000008 CR3: 000000103d098000 CR4: 00000000001407e0 [ 440.876169] Call Trace: [ 440.879818] [<ffffffffb7309d68>] blk_mq_exit_hctx+0xd8/0xe0 [ 440.887051] [<ffffffffb730dc40>] blk_mq_free_queue+0xf0/0x160 [ 440.894465] [<ffffffffb72ff679>] blk_cleanup_queue+0xd9/0x150 [ 440.901881] [<ffffffffc08a802b>] nvme_ns_remove+0x5b/0xb0 [nvme_core] [ 440.910068] [<ffffffffc08a811b>] nvme_remove_namespaces+0x3b/0x60 [nvme_core] [ 440.919026] [<ffffffffc08b817b>] __nvme_rdma_remove_ctrl+0x2b/0xb0 [nvme_rdma] [ 440.928079] [<ffffffffc08b8237>] nvme_rdma_del_ctrl_work+0x17/0x20 [nvme_rdma] [ 440.937126] [<ffffffffb70ab58a>] process_one_work+0x17a/0x440 [ 440.944517] [<ffffffffb70ac3a8>] worker_thread+0x278/0x3c0 [ 440.951607] [<ffffffffb70ac130>] ? manage_workers.isra.24+0x2a0/0x2a0 [ 440.959760] [<ffffffffb70b352f>] kthread+0xcf/0xe0 [ 440.966055] [<ffffffffb70b3460>] ? insert_kthread_work+0x40/0x40 [ 440.973715] [<ffffffffb76d8658>] ret_from_fork+0x58/0x90 [ 440.980586] [<ffffffffb70b3460>] ? insert_kthread_work+0x40/0x40 [ 440.988229] Code: 5b 41 5c 5d c3 66 90 0f 1f 44 00 00 48 8b 87 20 01 00 00 f0 0f ba 77 40 01 19 d2 85 d2 75 08 c3 0f 1f 80 00 00 00 00 55 48 89 e5 <f0> ff 48 08 48 8d 78 10 e8 7f 0f 05 00 5d c3 0f 1f 00 66 2e 0f [ 441.011620] RIP [<ffffffffb730e2b4>] __blk_mq_tag_idle+0x24/0x40 [ 441.019301] RSP <ffff893bf9bcbd10> [ 441.024052] CR2: 0000000000000008 Reported-by: Zhang Yi <yizhan@redhat.com> Tested-by: Zhang Yi <yizhan@redhat.com> Signed-off-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
- 08 Jan, 2018 29 commits
-
-
Michael Lyle authored
Bcache needs to scale the dirty data in the cache over the multiple backing disks in order to calculate writeback rates for each. The previous code did this by multiplying the target number of dirty sectors by the backing device size, and expected it to fit into a uint64_t; this blows up on relatively small backing devices. The new approach figures out the bdev's share in 16384ths of the overall cached data. This is chosen to cope well when bdevs drastically vary in size and to ensure that bcache can cross the petabyte boundary for each backing device. This has been improved based on Tang Junhui's feedback to ensure that every device gets a share of dirty data, no matter how small it is compared to the total backing pool. The existing mechanism is very limited; this is purely a bug fix to remove limits on volume size. However, there still needs to be change to make this "fair" over many volumes where some are idle. Reported-by: Jack Douglas <jack@douglastechnology.co.uk> Signed-off-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
Coly Li authored
Bcache only does recoverable I/O for read operations by calling cached_dev_read_error(). For write opertions there is no I/O recovery for failed requests. But in bch_count_io_errors() no matter read or write I/Os, before errors counter reaches io error limit, pr_err() always prints "IO error on %, recoverying". For write requests this information is misleading, because there is no I/O recovery at all. This patch adds a parameter 'is_read' to bch_count_io_errors(), and only prints "recovering" by pr_err() when the bio direction is READ. Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
Coly Li authored
Member devices of struct cache_set is used to reference all attached bcache devices to this cache set. If it is treated as array of pointers, size of devices[] is indicated by member nr_uuids of struct cache_set. nr_uuids is calculated in drivers/md/super.c:bch_cache_set_alloc(), bucket_bytes(c) / sizeof(struct uuid_entry) Bucket size is determined by user space tool "make-bcache", by default it is 1024 sectors (defined in bcache-tools/make-bcache.c:main()). So default nr_uuids value is 4096 from the above calculation. Every time when bcache code iterates bcache devices of a cache set, all the 4096 pointers are checked even only 1 bcache device is attached to the cache set, that's a wast of time and unncessary. This patch adds a member devices_max_used to struct cache_set. Its value is 1 + the maximum used index of devices[] in a cache set. When iterating all valid bcache devices of a cache set, use c->devices_max_used in for-loop may reduce a lot of useless checking. Personally, my motivation of this patch is not for performance, I use it in bcache debugging, which helps me to narrow down the scape to check valid bcached devices of a cache set. Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
Zhai Zhaoxuan authored
The function cached_dev_make_request() and flash_dev_make_request() call generic_start_io_acct() with (struct bcache_device)->disk when they start a closure. Then the function bio_complete() calls generic_end_io_acct() with (struct search)->orig_bio->bi_disk when the closure has done. Since the `bi_disk` is not the bcache device, the generic_end_io_acct() is called with a wrong device queue. It causes the "inflight" (in struct hd_struct) counter keep increasing without decreasing. This patch fix the problem by calling generic_end_io_acct() with (struct bcache_device)->disk. Signed-off-by: Zhai Zhaoxuan <kxuanobj@gmail.com> Reviewed-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Coly Li <colyli@suse.de> Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
Kent Overstreet authored
[edit by mlyle: include sched/debug.h to get __sched] Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
Kent Overstreet authored
Eliminates cases where sync can race and fail to complete / get stuck. Removes many status flags and simplifies entering-and-exiting closure sleeping behaviors. [mlyle: fixed conflicts due to changed return behavior in mainline. extended commit comment, and squashed down two commits that were mostly contradictory to get to this state. Changed __set_current_state to set_current_state per Jens review comment] Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
Michael Lyle authored
If the control system would wait for at least half a second, and there's been no reqs hitting the backing disk for awhile: use an alternate mode where we have at most one contiguous set of writebacks in flight at a time. (But don't otherwise delay). If front-end IO appears, it will still be quick, as it will only have to contend with one real operation in flight. But otherwise, we'll be sending data to the backing disk as quickly as it can accept it (with one op at a time). Signed-off-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn> Acked-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
Michael Lyle authored
Writeback keys are presently iterated and dispatched for writeback in order of the logical block address on the backing device. Multiple may be, in parallel, read from the cache device and then written back (especially when there are contiguous I/O). However-- there was no guarantee with the existing code that the writes would be issued in LBA order, as the reads from the cache device are often re-ordered. In turn, when writing back quickly, the backing disk often has to seek backwards-- this slows writeback and increases utilization. This patch introduces an ordering mechanism that guarantees that the original order of issue is maintained for the write portion of the I/O. Performance for writeback is significantly improved when there are multiple contiguous keys or high writeback rates. Signed-off-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn> Tested-by: Tang Junhui <tang.junhui@zte.com.cn> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
Tang Junhui authored
in bch_debug_init(), ret is always 0, and the return value is useless, change it to return 0 if be success after calling debugfs_create_dir(), else return a non-zero value. Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn> Reviewed-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
Tang Junhui authored
In such scenario that there are some flash only volumes , and some cached devices, when many tasks request these devices in writeback mode, the write IOs may fall to the same bucket as bellow: | cached data | flash data | cached data | cached data| flash data| then after writeback of these cached devices, the bucket would be like bellow bucket: | free | flash data | free | free | flash data | So, there are many free space in this bucket, but since data of flash only volumes still exists, so this bucket cannot be reclaimable, which would cause waste of bucket space. In this patch, we segregate flash only volume write streams from cached devices, so data from flash only volumes and cached devices can store in different buckets. Compare to v1 patch, this patch do not add a additionally open bucket list, and it is try best to segregate flash only volume write streams from cached devices, sectors of flash only volumes may still be mixed with dirty sectors of cached device, but the number is very small. [mlyle: fixed commit log formatting, permissions, line endings] Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn> Reviewed-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
Vasyl Gomonovych authored
Fix ptr_ret.cocci warnings: drivers/md/bcache/btree.c:1800:1-3: WARNING: PTR_ERR_OR_ZERO can be used Use PTR_ERR_OR_ZERO rather than if(IS_ERR(...)) + PTR_ERR Generated by: scripts/coccinelle/api/ptr_ret.cocci Signed-off-by: Vasyl Gomonovych <gomonovych@gmail.com> Reviewed-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
Tang Junhui authored
Currently, when a cached device detaching from cache, writeback thread is not stopped, and writeback_rate_update work is not canceled. For example, after the following command: echo 1 >/sys/block/sdb/bcache/detach you can still see the writeback thread. Then you attach the device to the cache again, bcache will create another writeback thread, for example, after below command: echo ba0fb5cd-658a-4533-9806-6ce166d883b9 > /sys/block/sdb/bcache/attach then you will see 2 writeback threads. This patch stops writeback thread and cancels writeback_rate_update work when cached device detaching from cache. Compare with patch v1, this v2 patch moves code down into the register lock for safety in case of any future changes as Coly and Mike suggested. [edit by mlyle: commit log spelling/formatting] Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn> Reviewed-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
Rui Hua authored
The read request might meet error when searching the btree, but the error was not handled in cache_lookup(), and this kind of metadata failure will not go into cached_dev_read_error(), finally, the upper layer will receive bi_status=0. In this patch we judge the metadata error by the return value of bch_btree_map_keys(), there are two potential paths give rise to the error: 1. Because the btree is not totally cached in memery, we maybe get error when read btree node from cache device (see bch_btree_node_get()), the likely errno is -EIO, -ENOMEM 2. When read miss happens, bch_btree_insert_check_key() will be called to insert a "replace_key" to btree(see cached_dev_cache_miss(), just for doing preparatory work before insert the missed data to cache device), a failure can also happen in this situation, the likely errno is -ENOMEM bch_btree_map_keys() will return MAP_DONE in normal scenario, but we will get either -EIO or -ENOMEM in above two cases. if this happened, we should NOT recover data from backing device (when cache device is dirty) because we don't know whether bkeys the read request covered are all clean. And after that happened, s->iop.status is still its initially value(0) before we submit s->bio.bio, we set it to BLK_STS_IOERR, so it can go into cached_dev_read_error(), and finally it can be passed to upper layer, or recovered by reread from backing device. [edit by mlyle: patch formatting, word-wrap, comment spelling, commit log format] Signed-off-by: Hua Rui <huarui.dev@gmail.com> Reviewed-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
-
git://git.infradead.org/nvmeJens Axboe authored
Pull NVMe fixes from Christoph: "Below are the pending nvme updates for Linux 4.16. Just fixes and cleanups from various contributors this time around."
-
Israel Rukshin authored
There is a problem when another module (e.g. nvmet) takes a reference on the nvme block device and the physical nvme drive is removed. In that case nvme_free_ctrl() will not be called and the controller state will be "deleting" or "dead" unless nvmet module releases the block device. Later on, the same nvme drive probes back and nvme_init_subsystem() will be called and fail due to duplicate subnqn (if the nvme device doesn't support subsystem with multiple controllers). This will cause a probe failure. This commit changes the check of multiple controllers support at nvme_init_subsystem() by not counting all the controllers at "dead" or "deleting" state (this is safe because controllers at this state will never be active again). Fixes: ab9e00cc ("nvme: track subsystems") Reviewed-by: Max Gurtovoy <maxg@mellanox.com> Signed-off-by: Israel Rukshin <israelr@mellanox.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
-
Nitzan Carmi authored
The block device is backed by the transport so we must ensure that the transport driver will not be removed until all references are released. Otherwise, we might end up referencing freed memory. Reviewed-by: Max Gurtovoy <maxg@mellanox.com> Signed-off-by: Nitzan Carmi <nitzanc@mellanox.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
-
Jianchao Wang authored
When the io queues setup or tagset allocation failed, ctrl.tagset is NULL. But the scan work will still be queued and executed, then panic comes up due to NULL pointer reference of ctrl.tagset. To fix this, add a new ctrl state NVME_CTRL_ADMIN_ONLY to inidcate only admin queue is live. When non io queues or tagset allocation failed, ctrl enters into this state, scan work will not be started. But async event work and nvme dev ioctl will be still available. This will be helpful to do further investigation and recovery. Suggested-by: Sagi Grimberg <sagi@grimberg.me> Signed-off-by: Jianchao Wang <jianchao.w.wang@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
-
Max Gurtovoy authored
When an NVMe controller reports RTD3 Entry Latency larger than the value of shutdown_timeout module parameter, we update the shutdown_timeout accordingly to honor RTD3 Entry Latency. Use an informational debug level instead of a warning level for it. Signed-off-by: Max Gurtovoy <maxg@mellanox.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
-
Sagi Grimberg authored
Signed-off-by: Sagi Grimberg <sagi@grimberg.me> Signed-off-by: Christoph Hellwig <hch@lst.de>
-
Israel Rukshin authored
Make it symmetric to nvmet_alloc_ctrl(). Signed-off-by: Israel Rukshin <israelr@mellanox.com> Reviewed-by: Max Gurtovoy <maxg@mellanox.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
-
Israel Rukshin authored
Remove the allocated id on error. Signed-off-by: Israel Rukshin <israelr@mellanox.com> Reviewed-by: Max Gurtovoy <maxg@mellanox.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
-
Minwoo Im authored
The local variable __size__ will be set a bit later in a for-loop. Remove the explicit initialization at the beginning of this function. Signed-off-by: Minwoo Im <minwoo.im.dev@gmail.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
-
Roy Shterman authored
NVMe transport driver module unload may (and usually does) trigger iteration over the active controllers and delete them all (sometimes under a mutex). However, a controller can be created concurrently with module unload which can lead to leakage of resources (most important char device node leakage) in case the controller creation occured after the unload delete and drain sequence. To protect against this, we take a module reference to guarantee that the nvme transport driver is not unloaded while creating a controller. Signed-off-by: Roy Shterman <roys@lightbitslabs.com> Signed-off-by: Sagi Grimberg <sagi@grimberg.me> Reviewed-by: Max Gurtovoy <maxg@mellanox.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
-
James Smart authored
The current fc transport add_port routine validates that there is a matching port to the target port config. It then takes a reference on the targetport. The del_port removes the reference. Unfortunately, if the LLDD undergoes a hw reset or driver unload and wants to unreg the targetport, due to the reference, the targetport effectively can't be removed. It requires the admin to remove the port from the nvmet config first, which calls the del_port. Note: it appears nvmetcli clear skips over the del_port call (I'm not attempting to change that). There's no real reason to take the reference. With FC, there is nothing to enable or disable as the presence of the FC targetport implicitly means its enabled, and removal of the targtport means its disabled. Change add_port to simply validate and change remove_port to a noop. No references are taken on the targetport. Signed-off-by: James Smart <james.smart@broadcom.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
-
James Smart authored
The split between what the host accesses on its flows vs what the target side accesses was flawed. Abort handling didn't properly clear initiator vs target structure cross-reference and locks weren't used for synchronization. Thus, there were issues of freeing structures too soon and access after free. A couple of these existed pre the IN_ISR mods, but when the target upcalls were converted to work items, thus adding delays between the 2 sides of accesses, the problems became pronounced. Resolve by: - tracking io state mainly in the tgt-side io structure. - make the tgt-side io structure released by reference not by code flow. - when changing initiator structures, use locks for synchronization - aborts are clearly tracked for which side saw the abort, and after seeing the abort, cross-references are cleared under lock. Signed-off-by: James Smart <james.smart@broadcom.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
-
James Smart authored
The existing fcloop driver expects the target side upcalls to the transport to context switch, thus the calls into the nvmet layer are not done in the calling context of the host/initiator down calls. The xxx_IN_ISR feature flags are used to select this logic. The xxx_IN_ISR feature flags should go away in the nvmet_fc transport as no other lldd utilizes them. Both Broadcom and Cavium lldds have their own non-ISR deferred handlers thus the nvmet calls can be made directly. This patch converts the paths that make the target upcalls (command receive, abort receive) such that they schedule a work item rather than expecting the transport to schedule the work item. The patch also cleans up the following: - The completion path from target to host scheduled a host work element called "work". Rename it "tio_done_work" for code clarity. - The abort io path called a iniwork item to call the host side io done. This is no longer needed as the abort routine can make the same call. Signed-off-by: James Smart <james.smart@broadcom.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
-
James Smart authored
The current fcloop driver gets its lport structure from the private area co-allocated with the fc_localport. All is fine except the teardown path, which wants to wait on the completion, which is marked complete by the delete_localport callback performed after unregister_localport. The issue is, the nvme_fc transport frees the localport structure immediately after delete_localport is called, meaning the original routine is trying to wait on a complete that was just freed. Change such that a lport struct is allocated coincident with the addition and registration of a localport. The private area of the localport now contains just a backpointer to the real lport struct. Now, the completion can be waited for, and after completing, the new structure can be kfree'd. Signed-off-by: James Smart <james.smart@broadcom.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
-
James Smart authored
A test case revealed a race condition of an i/o completing on a thread parallel to the delete_association generating the aborts for the outstanding ios on the controller. The i/o completion was freeing the target fcloop context, thus the abort task referenced the just-freed memory. Correct by clearing the target/initiator cross pointers in the io completion and abort tasks before calling the callbacks. On aborts that detect already finished io's, ensure the complete context is called. Signed-off-by: James Smart <james.smart@broadcom.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
-
Sagi Grimberg authored
It is a bit chatty to report on each queue, log it only for debug purposes. Signed-off-by: Sagi Grimberg <sagi@grimberg.me> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Christoph Hellwig <hch@lst.de>
-