- 18 Dec, 2014 2 commits
-
-
git://github.com/agraf/linux-2.6Paolo Bonzini authored
Patch queue for ppc - 2014-12-18 Highights this time around: - Removal of HV support for 970. It became a maintenance burden and received practically no testing. POWER8 with HV is available now, so just grab one of those boxes if PR isn't enough for you. - Some bug fixes and performance improvements - Tracepoints for book3s_hv
-
Paolo Bonzini authored
They are not used anymore by IA64, move them away. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 17 Dec, 2014 10 commits
-
-
Anton Blanchard authored
The in-kernel XICS emulation is faster than doing it all in QEMU and it has got a lot of testing, so enable it by default. Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Sam Bobroff authored
Currently the H_CONFER hcall is implemented in kernel virtual mode, meaning that whenever a guest thread does an H_CONFER, all the threads in that virtual core have to exit the guest. This is bad for performance because it interrupts the other threads even if they are doing useful work. The H_CONFER hcall is called by a guest VCPU when it is spinning on a spinlock and it detects that the spinlock is held by a guest VCPU that is currently not running on a physical CPU. The idea is to give this VCPU's time slice to the holder VCPU so that it can make progress towards releasing the lock. To avoid having the other threads exit the guest unnecessarily, we add a real-mode implementation of H_CONFER that checks whether the other threads are doing anything. If all the other threads are idle (i.e. in H_CEDE) or trying to confer (i.e. in H_CONFER), it returns H_TOO_HARD which causes a guest exit and allows the H_CONFER to be handled in virtual mode. Otherwise it spins for a short time (up to 10 microseconds) to give other threads the chance to observe that this thread is trying to confer. The spin loop also terminates when any thread exits the guest or when all other threads are idle or trying to confer. If the timeout is reached, the H_CONFER returns H_SUCCESS. In this case the guest VCPU will recheck the spinlock word and most likely call H_CONFER again. This also improves the implementation of the H_CONFER virtual mode handler. If the VCPU is part of a virtual core (vcore) which is runnable, there will be a 'runner' VCPU which has taken responsibility for running the vcore. In this case we yield to the runner VCPU rather than the target VCPU. We also introduce a check on the target VCPU's yield count: if it differs from the yield count passed to H_CONFER, the target VCPU has run since H_CONFER was called and may have already released the lock. This check is required by PAPR. Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Paul Mackerras authored
There are two ways in which a guest instruction can be obtained from the guest in the guest exit code in book3s_hv_rmhandlers.S. If the exit was caused by a Hypervisor Emulation interrupt (i.e. an illegal instruction), the offending instruction is in the HEIR register (Hypervisor Emulation Instruction Register). If the exit was caused by a load or store to an emulated MMIO device, we load the instruction from the guest by turning data relocation on and loading the instruction with an lwz instruction. Unfortunately, in the case where the guest has opposite endianness to the host, these two methods give results of different endianness, but both get put into vcpu->arch.last_inst. The HEIR value has been loaded using guest endianness, whereas the lwz will load the instruction using host endianness. The rest of the code that uses vcpu->arch.last_inst assumes it was loaded using host endianness. To fix this, we define a new vcpu field to store the HEIR value. Then, in kvmppc_handle_exit_hv(), we transfer the value from this new field to vcpu->arch.last_inst, doing a byte-swap if the guest and host endianness differ. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Paul Mackerras authored
This removes the code that was added to enable HV KVM to work on PPC970 processors. The PPC970 is an old CPU that doesn't support virtualizing guest memory. Removing PPC970 support also lets us remove the code for allocating and managing contiguous real-mode areas, the code for the !kvm->arch.using_mmu_notifiers case, the code for pinning pages of guest memory when first accessed and keeping track of which pages have been pinned, and the code for handling H_ENTER hypercalls in virtual mode. Book3S HV KVM is now supported only on POWER7 and POWER8 processors. The KVM_CAP_PPC_RMA capability now always returns 0. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Suresh E. Warrier authored
This patch adds trace points in the guest entry and exit code and also for exceptions handled by the host in kernel mode - hypercalls and page faults. The new events are added to /sys/kernel/debug/tracing/events under a new subsystem called kvm_hv. Acked-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Paul Mackerras authored
Currently the calculations of stolen time for PPC Book3S HV guests uses fields in both the vcpu struct and the kvmppc_vcore struct. The fields in the kvmppc_vcore struct are protected by the vcpu->arch.tbacct_lock of the vcpu that has taken responsibility for running the virtual core. This works correctly but confuses lockdep, because it sees that the code takes the tbacct_lock for a vcpu in kvmppc_remove_runnable() and then takes another vcpu's tbacct_lock in vcore_stolen_time(), and it thinks there is a possibility of deadlock, causing it to print reports like this: ============================================= [ INFO: possible recursive locking detected ] 3.18.0-rc7-kvm-00016-g8db4bc6 #89 Not tainted --------------------------------------------- qemu-system-ppc/6188 is trying to acquire lock: (&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb1fe8>] .vcore_stolen_time+0x48/0xd0 [kvm_hv] but task is already holding lock: (&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb25a0>] .kvmppc_remove_runnable.part.3+0x30/0xd0 [kvm_hv] other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&(&vcpu->arch.tbacct_lock)->rlock); lock(&(&vcpu->arch.tbacct_lock)->rlock); *** DEADLOCK *** May be due to missing lock nesting notation 3 locks held by qemu-system-ppc/6188: #0: (&vcpu->mutex){+.+.+.}, at: [<d00000000eb93f98>] .vcpu_load+0x28/0xe0 [kvm] #1: (&(&vcore->lock)->rlock){+.+...}, at: [<d00000000ecb41b0>] .kvmppc_vcpu_run_hv+0x530/0x1530 [kvm_hv] #2: (&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb25a0>] .kvmppc_remove_runnable.part.3+0x30/0xd0 [kvm_hv] stack backtrace: CPU: 40 PID: 6188 Comm: qemu-system-ppc Not tainted 3.18.0-rc7-kvm-00016-g8db4bc6 #89 Call Trace: [c000000b2754f3f0] [c000000000b31b6c] .dump_stack+0x88/0xb4 (unreliable) [c000000b2754f470] [c0000000000faeb8] .__lock_acquire+0x1878/0x2190 [c000000b2754f600] [c0000000000fbf0c] .lock_acquire+0xcc/0x1a0 [c000000b2754f6d0] [c000000000b2954c] ._raw_spin_lock_irq+0x4c/0x70 [c000000b2754f760] [d00000000ecb1fe8] .vcore_stolen_time+0x48/0xd0 [kvm_hv] [c000000b2754f7f0] [d00000000ecb25b4] .kvmppc_remove_runnable.part.3+0x44/0xd0 [kvm_hv] [c000000b2754f880] [d00000000ecb43ec] .kvmppc_vcpu_run_hv+0x76c/0x1530 [kvm_hv] [c000000b2754f9f0] [d00000000eb9f46c] .kvmppc_vcpu_run+0x2c/0x40 [kvm] [c000000b2754fa60] [d00000000eb9c9a4] .kvm_arch_vcpu_ioctl_run+0x54/0x160 [kvm] [c000000b2754faf0] [d00000000eb94538] .kvm_vcpu_ioctl+0x498/0x760 [kvm] [c000000b2754fcb0] [c000000000267eb4] .do_vfs_ioctl+0x444/0x770 [c000000b2754fd90] [c0000000002682a4] .SyS_ioctl+0xc4/0xe0 [c000000b2754fe30] [c0000000000092e4] syscall_exit+0x0/0x98 In order to make the locking easier to analyse, we change the code to use a spinlock in the kvmppc_vcore struct to protect the stolen_tb and preempt_tb fields. This lock needs to be an irq-safe lock since it is used in the kvmppc_core_vcpu_load_hv() and kvmppc_core_vcpu_put_hv() functions, which are called with the scheduler rq lock held, which is an irq-safe lock. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Rickard Strandqvist authored
Remove the function inst_set_field() that is not used anywhere. This was partially found by using a static code analysis program called cppcheck. Signed-off-by: Rickard Strandqvist <rickard_strandqvist@spectrumdigital.se> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Rickard Strandqvist authored
Remove the function get_fpr_index() that is not used anywhere. This was partially found by using a static code analysis program called cppcheck. Signed-off-by: Rickard Strandqvist <rickard_strandqvist@spectrumdigital.se> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Rickard Strandqvist authored
Removes some functions that are not used anywhere: kvmppc_core_load_guest_debugstate() kvmppc_core_load_host_debugstate() This was partially found by using a static code analysis program called cppcheck. Signed-off-by: Rickard Strandqvist <rickard_strandqvist@spectrumdigital.se> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Rickard Strandqvist authored
Remove the function sr_nx() that is not used anywhere. This was partially found by using a static code analysis program called cppcheck. Signed-off-by: Rickard Strandqvist <rickard_strandqvist@spectrumdigital.se> Signed-off-by: Alexander Graf <agraf@suse.de>
-
- 15 Dec, 2014 11 commits
-
-
Suresh E. Warrier authored
The kvmppc_vcore_blocked() code does not check for the wait condition after putting the process on the wait queue. This means that it is possible for an external interrupt to become pending, but the vcpu to remain asleep until the next decrementer interrupt. The fix is to make one last check for pending exceptions and ceded state before calling schedule(). Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Cédric Le Goater authored
When being restored from qemu, the kvm_get_htab_header are in native endian, but the ptes are big endian. This patch fixes restore on a KVM LE host. Qemu also needs a fix for this : http://lists.nongnu.org/archive/html/qemu-ppc/2014-11/msg00008.htmlSigned-off-by: Cédric Le Goater <clg@fr.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Suresh E. Warrier authored
This fixes some inaccuracies in the state machine for the virtualized ICP when implementing the H_IPI hcall (Set_MFFR and related states): 1. The old code wipes out any pending interrupts when the new MFRR is more favored than the CPPR but less favored than a pending interrupt (by always modifying xisr and the pending_pri). This can cause us to lose a pending external interrupt. The correct code here is to only modify the pending_pri and xisr in the ICP if the MFRR is equal to or more favored than the current pending pri (since in this case, it is guaranteed that that there cannot be a pending external interrupt). The code changes are required in both kvmppc_rm_h_ipi and kvmppc_h_ipi. 2. Again, in both kvmppc_rm_h_ipi and kvmppc_h_ipi, there is a check for whether MFRR is being made less favored AND further if new MFFR is also less favored than the current CPPR, we check for any resends pending in the ICP. These checks look like they are designed to cover the case where if the MFRR is being made less favored, we opportunistically trigger a resend of any interrupts that had been previously rejected. Although, this is not a state described by PAPR, this is an action we actually need to do especially if the CPPR is already at 0xFF. Because in this case, the resend bit will stay on until another ICP state change which may be a long time coming and the interrupt stays pending until then. The current code which checks for MFRR < CPPR is broken when CPPR is 0xFF since it will not get triggered in that case. Ideally, we would want to do a resend only if prio(pending_interrupt) < mfrr && prio(pending_interrupt) < cppr where pending interrupt is the one that was rejected. But we don't have the priority of the pending interrupt state saved, so we simply trigger a resend whenever the MFRR is made less favored. 3. In kvmppc_rm_h_ipi, where we save state to pass resends to the virtual mode, we also need to save the ICP whose need_resend we reset since this does not need to be my ICP (vcpu->arch.icp) as is incorrectly assumed by the current code. A new field rm_resend_icp is added to the kvmppc_icp structure for this purpose. Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Paul Mackerras authored
Testing with KSM active in the host showed occasional corruption of guest memory. Typically a page that should have contained zeroes would contain values that look like the contents of a user process stack (values such as 0x0000_3fff_xxxx_xxx). Code inspection in kvmppc_h_protect revealed that there was a race condition with the possibility of granting write access to a page which is read-only in the host page tables. The code attempts to keep the host mapping read-only if the host userspace PTE is read-only, but if that PTE had been temporarily made invalid for any reason, the read-only check would not trigger and the host HPTE could end up read-write. Examination of the guest HPT in the failure situation revealed that there were indeed shared pages which should have been read-only that were mapped read-write. To close this race, we don't let a page go from being read-only to being read-write, as far as the real HPTE mapping the page is concerned (the guest view can go to read-write, but the actual mapping stays read-only). When the guest tries to write to the page, we take an HDSI and let kvmppc_book3s_hv_page_fault take care of providing a writable HPTE for the page. This eliminates the occasional corruption of shared pages that was previously seen with KSM active. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Mahesh Salgaonkar authored
When we get an HMI (hypervisor maintenance interrupt) while in a guest, we see that guest enters into paused state. The reason is, in kvmppc_handle_exit_hv it falls through default path and returns to host instead of resuming guest. This causes guest to enter into paused state. HMI is a hypervisor only interrupt and it is safe to resume the guest since the host has handled it already. This patch adds a switch case to resume the guest. Without this patch we see guest entering into paused state with following console messages: [ 3003.329351] Severe Hypervisor Maintenance interrupt [Recovered] [ 3003.329356] Error detail: Timer facility experienced an error [ 3003.329359] HMER: 0840000000000000 [ 3003.329360] TFMR: 4a12000980a84000 [ 3003.329366] vcpu c0000007c35094c0 (40): [ 3003.329368] pc = c0000000000c2ba0 msr = 8000000000009032 trap = e60 [ 3003.329370] r 0 = c00000000021ddc0 r16 = 0000000000000046 [ 3003.329372] r 1 = c00000007a02bbd0 r17 = 00003ffff27d5d98 [ 3003.329375] r 2 = c0000000010980b8 r18 = 00001fffffc9a0b0 [ 3003.329377] r 3 = c00000000142d6b8 r19 = c00000000142d6b8 [ 3003.329379] r 4 = 0000000000000002 r20 = 0000000000000000 [ 3003.329381] r 5 = c00000000524a110 r21 = 0000000000000000 [ 3003.329383] r 6 = 0000000000000001 r22 = 0000000000000000 [ 3003.329386] r 7 = 0000000000000000 r23 = c00000000524a110 [ 3003.329388] r 8 = 0000000000000000 r24 = 0000000000000001 [ 3003.329391] r 9 = 0000000000000001 r25 = c00000007c31da38 [ 3003.329393] r10 = c0000000014280b8 r26 = 0000000000000002 [ 3003.329395] r11 = 746f6f6c2f68656c r27 = c00000000524a110 [ 3003.329397] r12 = 0000000028004484 r28 = c00000007c31da38 [ 3003.329399] r13 = c00000000fe01400 r29 = 0000000000000002 [ 3003.329401] r14 = 0000000000000046 r30 = c000000003011e00 [ 3003.329403] r15 = ffffffffffffffba r31 = 0000000000000002 [ 3003.329404] ctr = c00000000041a670 lr = c000000000272520 [ 3003.329405] srr0 = c00000000007e8d8 srr1 = 9000000000001002 [ 3003.329406] sprg0 = 0000000000000000 sprg1 = c00000000fe01400 [ 3003.329407] sprg2 = c00000000fe01400 sprg3 = 0000000000000005 [ 3003.329408] cr = 48004482 xer = 2000000000000000 dsisr = 42000000 [ 3003.329409] dar = 0000010015020048 [ 3003.329410] fault dar = 0000010015020048 dsisr = 42000000 [ 3003.329411] SLB (8 entries): [ 3003.329412] ESID = c000000008000000 VSID = 40016e7779000510 [ 3003.329413] ESID = d000000008000001 VSID = 400142add1000510 [ 3003.329414] ESID = f000000008000004 VSID = 4000eb1a81000510 [ 3003.329415] ESID = 00001f000800000b VSID = 40004fda0a000d90 [ 3003.329416] ESID = 00003f000800000c VSID = 400039f536000d90 [ 3003.329417] ESID = 000000001800000d VSID = 0001251b35150d90 [ 3003.329417] ESID = 000001000800000e VSID = 4001e46090000d90 [ 3003.329418] ESID = d000080008000019 VSID = 40013d349c000400 [ 3003.329419] lpcr = c048800001847001 sdr1 = 0000001b19000006 last_inst = ffffffff [ 3003.329421] trap=0xe60 | pc=0xc0000000000c2ba0 | msr=0x8000000000009032 [ 3003.329524] Severe Hypervisor Maintenance interrupt [Recovered] [ 3003.329526] Error detail: Timer facility experienced an error [ 3003.329527] HMER: 0840000000000000 [ 3003.329527] TFMR: 4a12000980a94000 [ 3006.359786] Severe Hypervisor Maintenance interrupt [Recovered] [ 3006.359792] Error detail: Timer facility experienced an error [ 3006.359795] HMER: 0840000000000000 [ 3006.359797] TFMR: 4a12000980a84000 Id Name State ---------------------------------------------------- 2 guest2 running 3 guest3 paused 4 guest4 running Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Paul Mackerras authored
The B (segment size) field in the RB operand for the tlbie instruction is two bits, which we get from the top two bits of the first doubleword of the HPT entry to be invalidated. These bits go in bits 8 and 9 of the RB operand (bits 54 and 55 in IBM bit numbering). The compute_tlbie_rb() function gets these bits as v >> (62 - 8), which is not correct as it will bring in the top 10 bits, not just the top two. These extra bits could corrupt the AP, AVAL and L fields in the RB value. To fix this we shift right 62 bits and then shift left 8 bits, so we only get the two bits of the B field. The first doubleword of the HPT entry is under the control of the guest kernel. In fact, Linux guests will always put zeroes in bits 54 -- 61 (IBM bits 2 -- 9), but we should not rely on guests doing this. Signed-off-by: Paul Mackerras <paulus@samba.org> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Aneesh Kumar K.V authored
In kvm_test_clear_dirty(), if we find an invalid HPTE we move on to the next HPTE without unlocking the invalid one. In fact we should never find an invalid and unlocked HPTE in the rmap chain, but for robustness we should unlock it. This adds the missing unlock. Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
-
Alexander Graf authored
When injecting an IRQ, we only document which IRQ priority (which translates to IRQ type) gets injected. However, when reading traces you don't necessarily have all the numbers in your head to know which IRQ really is meant. This patch converts the IRQ number field to a symbolic name that is in sync with the respective define. That way it's a lot easier for readers to figure out what interrupt gets injected. Signed-off-by: Alexander Graf <agraf@suse.de>
-
Paolo Bonzini authored
Merge tag 'kvm-arm-for-3.19-take2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD Second round of changes for KVM for arm/arm64 for v3.19; fixes reboot problems, clarifies VCPU init, and fixes a regression concerning the VGIC init flow. Conflicts: arch/ia64/kvm/kvm-ia64.c [deleted in HEAD and modified in kvmarm]
-
Christoffer Dall authored
It is curently possible to run a VM with architected timers support without creating an in-kernel VGIC, which will result in interrupts from the virtual timer going nowhere. To address this issue, move the architected timers initialization to the time when we run a VCPU for the first time, and then only initialize (and enable) the architected timers if we have a properly created and initialized in-kernel VGIC. When injecting interrupts from the virtual timer to the vgic, the current setup should ensure that this never calls an on-demand init of the VGIC, which is the only call path that could return an error from kvm_vgic_inject_irq(), so capture the return value and raise a warning if there's an error there. We also change the kvm_timer_init() function from returning an int to be a void function, since the function always succeeds. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Christoffer Dall authored
Userspace assumes that it can wire up IRQ injections after having created all VCPUs and after having created the VGIC, but potentially before starting the first VCPU. This can currently lead to lost IRQs because the state of that IRQ injection is not stored anywhere and we don't return an error to userspace. We haven't seen this problem manifest itself yet, presumably because guests reset the devices on boot, but this could cause issues with migration and other non-standard startup configurations. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
- 13 Dec, 2014 10 commits
-
-
Christoffer Dall authored
When the vgic initializes its internal state it does so based on the number of VCPUs available at the time. If we allow KVM to create more VCPUs after the VGIC has been initialized, we are likely to error out in unfortunate ways later, perform buffer overflows etc. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Eric Auger <eric.auger@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Christoffer Dall authored
Some code paths will need to check to see if the internal state of the vgic has been initialized (such as when creating new VCPUs), so introduce such a macro that checks the nr_cpus field which is set when the vgic has been initialized. Also set nr_cpus = 0 in kvm_vgic_destroy, because the error path in vgic_init() will call this function, and code should never errornously assume the vgic to be properly initialized after an error. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Eric Auger <eric.auger@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Christoffer Dall authored
The vgic_initialized() macro currently returns the state of the vgic->ready flag, which indicates if the vgic is ready to be used when running a VM, not specifically if its internal state has been initialized. Rename the macro accordingly in preparation for a more nuanced initialization flow. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Eric Auger <eric.auger@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Peter Maydell authored
VGIC initialization currently happens in three phases: (1) kvm_vgic_create() (triggered by userspace GIC creation) (2) vgic_init_maps() (triggered by userspace GIC register read/write requests, or from kvm_vgic_init() if not already run) (3) kvm_vgic_init() (triggered by first VM run) We were doing initialization of some state to correspond with the state of a freshly-reset GIC in kvm_vgic_init(); this is too late, since it will overwrite changes made by userspace using the register access APIs before the VM is run. Move this initialization earlier, into the vgic_init_maps() phase. This fixes a bug where QEMU could successfully restore a saved VM state snapshot into a VM that had already been run, but could not restore it "from cold" using the -loadvm command line option (the symptoms being that the restored VM would run but interrupts were ignored). Finally rename vgic_init_maps to vgic_init and renamed kvm_vgic_init to kvm_vgic_map_resources. [ This patch is originally written by Peter Maydell, but I have modified it somewhat heavily, renaming various bits and moving code around. If something is broken, I am to be blamed. - Christoffer ] Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Eric Auger <eric.auger@linaro.org> Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Christoffer Dall authored
Introduce a new function to unmap user RAM regions in the stage2 page tables. This is needed on reboot (or when the guest turns off the MMU) to ensure we fault in pages again and make the dcache, RAM, and icache coherent. Using unmap_stage2_range for the whole guest physical range does not work, because that unmaps IO regions (such as the GIC) which will not be recreated or in the best case faulted in on a page-by-page basis. Call this function on secondary and subsequent calls to the KVM_ARM_VCPU_INIT ioctl so that a reset VCPU will detect the guest Stage-1 MMU is off when faulting in pages and make the caches coherent. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Christoffer Dall authored
When a vcpu calls SYSTEM_OFF or SYSTEM_RESET with PSCI v0.2, the vcpus should really be turned off for the VM adhering to the suggestions in the PSCI spec, and it's the sane thing to do. Also, clarify the behavior and expectations for exits to user space with the KVM_EXIT_SYSTEM_EVENT case. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Christoffer Dall authored
It is not clear that this ioctl can be called multiple times for a given vcpu. Userspace already does this, so clarify the ABI. Also specify that userspace is expected to always make secondary and subsequent calls to the ioctl with the same parameters for the VCPU as the initial call (which userspace also already does). Add code to check that userspace doesn't violate that ABI in the future, and move the kvm_vcpu_set_target() function which is currently duplicated between the 32-bit and 64-bit versions in guest.c to a common static function in arm.c, shared between both architectures. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Christoffer Dall authored
When userspace resets the vcpu using KVM_ARM_VCPU_INIT, we should also reset the HCR, because we now modify the HCR dynamically to enable/disable trapping of guest accesses to the VM registers. This is crucial for reboot of VMs working since otherwise we will not be doing the necessary cache maintenance operations when faulting in pages with the guest MMU off. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Christoffer Dall authored
The implementation of KVM_ARM_VCPU_INIT is currently not doing what userspace expects, namely making sure that a vcpu which may have been turned off using PSCI is returned to its initial state, which would be powered on if userspace does not set the KVM_ARM_VCPU_POWER_OFF flag. Implement the expected functionality and clarify the ABI. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Christoffer Dall authored
If a VCPU was originally started with power off (typically to be brought up by PSCI in SMP configurations), there is no need to clear the POWER_OFF flag in the kernel, as this flag is only tested during the init ioctl itself. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
- 11 Dec, 2014 2 commits
-
-
Nadav Amit authored
commit d50eaa18 ("KVM: x86: Perform limit checks when assigning EIP") mistakenly used zero as cpl on em_ret_far. Use the actual one. Fixes: d50eaa18 Cc: stable@vger.kernel.org Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Bandan Das authored
If L0 has disabled EPT, don't advertise unrestricted mode at all since it depends on EPT to run real mode code. Fixes: 92fbc7b1 Cc: stable@vger.kernel.org Reviewed-by: Jan Kiszka <jan.kiszka@siemens.com> Signed-off-by: Bandan Das <bsd@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 10 Dec, 2014 4 commits
-
-
Nadav Amit authored
Intel SDM table 6-2 ("Priority Among Simultaneous Exceptions and Interrupts") shows that faults from decoding the next instruction got higher priority than general protection. Moving the protected-mode check before the CPL check to avoid wrong exception on vm86 mode. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Nadav Amit authored
The pushf instruction does not push eflags.VM, so emulation should not do so as well. Although eflags.RF should not be pushed as well, it is already cleared by the time pushf is executed. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Nadav Amit authored
The macro GP already sets the flag Prefix. Remove the redundant flag for 0f_38_f0 and 0f_38_f1 opcodes. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Andy Lutomirski authored
paravirt_enabled has the following effects: - Disables the F00F bug workaround warning. There is no F00F bug workaround any more because Linux's standard IDT handling already works around the F00F bug, but the warning still exists. This is only cosmetic, and, in any event, there is no such thing as KVM on a CPU with the F00F bug. - Disables 32-bit APM BIOS detection. On a KVM paravirt system, there should be no APM BIOS anyway. - Disables tboot. I think that the tboot code should check the CPUID hypervisor bit directly if it matters. - paravirt_enabled disables espfix32. espfix32 should *not* be disabled under KVM paravirt. The last point is the purpose of this patch. It fixes a leak of the high 16 bits of the kernel stack address on 32-bit KVM paravirt guests. Fixes CVE-2014-8134. Cc: stable@vger.kernel.org Suggested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 05 Dec, 2014 1 commit
-
-
Radim Krčmář authored
We reused host EBX and ECX, but KVM might not support all features; emulated XSAVE size should be smaller. EBX depends on unknown XCR0, so we default to ECX. SDM CPUID (EAX = 0DH, ECX = 0): EBX Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save area are not enabled. ECX Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the XSAVE/XRSTOR save area required by all supported features in the processor, i.e all the valid bit fields in XCR0. Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Tested-by: Wanpeng Li <wanpeng.li@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-