- 25 Nov, 2015 8 commits
-
-
Paolo Bonzini authored
RDTSCP was never supported for AMD CPUs, which nobody noticed because Linux does not use it. But exactly the fact that Linux does not use it makes the implementation very simple; we can freely trash MSR_TSC_AUX while running the guest. Cc: Joerg Roedel <joro@8bytes.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
If we do not do this, it is not properly saved and restored across migration. Windows notices due to its self-protection mechanisms, and is very upset about it (blue screen of death). Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Andrey Smetanin authored
A new vcpu exit is introduced to notify the userspace of the changes in Hyper-V SynIC configuration triggered by guest writing to the corresponding MSRs. Changes v4: * exit into userspace only if guest writes into SynIC MSR's Changes v3: * added KVM_EXIT_HYPERV types and structs notes into docs Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Andrey Smetanin authored
SynIC (synthetic interrupt controller) is a lapic extension, which is controlled via MSRs and maintains for each vCPU - 16 synthetic interrupt "lines" (SINT's); each can be configured to trigger a specific interrupt vector optionally with auto-EOI semantics - a message page in the guest memory with 16 256-byte per-SINT message slots - an event flag page in the guest memory with 16 2048-bit per-SINT event flag areas The host triggers a SINT whenever it delivers a new message to the corresponding slot or flips an event flag bit in the corresponding area. The guest informs the host that it can try delivering a message by explicitly asserting EOI in lapic or writing to End-Of-Message (EOM) MSR. The userspace (qemu) triggers interrupts and receives EOM notifications via irqfd with resampler; for that, a GSI is allocated for each configured SINT, and irq_routing api is extended to support GSI-SINT mapping. Changes v4: * added activation of SynIC by vcpu KVM_ENABLE_CAP * added per SynIC active flag * added deactivation of APICv upon SynIC activation Changes v3: * added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into docs Changes v2: * do not use posted interrupts for Hyper-V SynIC AutoEOI vectors * add Hyper-V SynIC vectors into EOI exit bitmap * Hyper-V SyniIC SINT msr write logic simplified Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Andrey Smetanin authored
The decision on whether to use hardware APIC virtualization used to be taken globally, based on the availability of the feature in the CPU and the value of a module parameter. However, under certain circumstances we want to control it on per-vcpu basis. In particular, when the userspace activates HyperV synthetic interrupt controller (SynIC), APICv has to be disabled as it's incompatible with SynIC auto-EOI behavior. To achieve that, introduce 'apicv_active' flag on struct kvm_vcpu_arch, and kvm_vcpu_deactivate_apicv() function to turn APICv off. The flag is initialized based on the module parameter and CPU capability, and consulted whenever an APICv-specific action is performed. Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Andrey Smetanin authored
The function to determine if the vector is handled by ioapic used to rely on the fact that only ioapic-handled vectors were set up to cause vmexits when virtual apic was in use. We're going to break this assumption when introducing Hyper-V synthetic interrupts: they may need to cause vmexits too. To achieve that, introduce a new bitmap dedicated specifically for ioapic-handled vectors, and populate EOI exit bitmap from it for now. Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Andrey Smetanin authored
Actually kvm_arch_irq_routing_update() should be kvm_arch_post_irq_routing_update() as it's called at the end of irq routing update. This renaming frees kvm_arch_irq_routing_update function name. kvm_arch_irq_routing_update() weak function which will be used to update mappings for arch-specific irq routing entries (in particular, the upcoming Hyper-V synthetic interrupts). Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Gleb Natapov <gleb@kernel.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Roman Kagan <rkagan@virtuozzo.com> CC: Denis V. Lunev <den@openvz.org> CC: qemu-devel@nongnu.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Haozhong Zhang authored
This patch removes the vpid check when emulating nested invvpid instruction of type all-contexts invalidation. The existing code is incorrect because: (1) According to Intel SDM Vol 3, Section "INVVPID - Invalidate Translations Based on VPID", invvpid instruction does not check vpid in the invvpid descriptor when its type is all-contexts invalidation. (2) According to the same document, invvpid of type all-contexts invalidation does not require there is an active VMCS, so/and get_vmcs12() in the existing code may result in a NULL-pointer dereference. In practice, it can crash both KVM itself and L1 hypervisors that use invvpid (e.g. Xen). Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 24 Nov, 2015 9 commits
-
-
Paolo Bonzini authored
Merge tag 'kvm-arm-for-v4.4-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-master KVM/ARM Fixes for v4.4-rc3. Includes some timer fixes, properly unmapping PTEs, an errata fix, and two tweaks to the EL2 panic code.
-
Mark Rutland authored
If we call __kvm_hyp_panic while a guest context is active, we call __restore_sysregs before acquiring the system register values for the panic, in the process throwing away the PAR_EL1 value at the point of the panic. This patch modifies __kvm_hyp_panic to stash the PAR_EL1 value prior to restoring host register values, enabling us to report the original values at the point of the panic. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Mark Rutland authored
Currently __kvm_hyp_panic uses %p for values which are not pointers, such as the ESR value. This can confusingly lead to "(null)" being printed for the value. Use %x instead, and only use %p for host pointers. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Cc: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Christoffer Dall authored
We were probing the physial distributor state for the active state of a HW virtual IRQ, because we had seen evidence that the LR state was not cleared when the guest deactivated a virtual interrupted. However, this issue turned out to be a software bug in the GIC, which was solved by: 84aab5e68c2a5e1e18d81ae8308c3ce25d501b29 (KVM: arm/arm64: arch_timer: Preserve physical dist. active state on LR.active, 2015-11-24) Therefore, get rid of the complexities and just look at the LR. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Christoffer Dall authored
We were incorrectly removing the active state from the physical distributor on the timer interrupt when the timer output level was deasserted. We shouldn't be doing this without considering the virtual interrupt's active state, because the architecture requires that when an LR has the HW bit set and the pending or active bits set, then the physical interrupt must also have the corresponding bits set. This addresses an issue where we have been observing an inconsistency between the LR state and the physical distributor state where the LR state was active and the physical distributor was not active, which shouldn't happen. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Christoffer Dall authored
We were setting the physical active state on the GIC distributor in a preemptible section, which could cause us to set the active state on different physical CPU from the one we were actually going to run on, hacoc ensues. Since we are no longer descheduling/scheduling soft timers in the flush/sync timer functions, simply moving the timer flush into a non-preemptible section. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Marc Zyngier authored
Cortex-A57 parts up to r1p2 can misreport Stage 2 translation faults when a Stage 1 permission fault or device alignment fault should have been reported. This patch implements the workaround (which is to validate that the Stage-1 translation actually succeeds) by using code patching. Cc: stable@vger.kernel.org Reviewed-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Marc Zyngier authored
When running a 32bit guest under a 64bit hypervisor, the ARMv8 architecture defines a mapping of the 32bit registers in the 64bit space. This includes banked registers that are being demultiplexed over the 64bit ones. On exceptions caused by an operation involving a 32bit register, the HW exposes the register number in the ESR_EL2 register. It was so far understood that SW had to distinguish between AArch32 and AArch64 accesses (based on the current AArch32 mode and register number). It turns out that I misinterpreted the ARM ARM, and the clue is in D1.20.1: "For some exceptions, the exception syndrome given in the ESR_ELx identifies one or more register numbers from the issued instruction that generated the exception. Where the exception is taken from an Exception level using AArch32 these register numbers give the AArch64 view of the register." Which means that the HW is already giving us the translated version, and that we shouldn't try to interpret it at all (for example, doing an MMIO operation from the IRQ mode using the LR register leads to very unexpected behaviours). The fix is thus not to perform a call to vcpu_reg32() at all from vcpu_reg(), and use whatever register number is supplied directly. The only case we need to find out about the mapping is when we actively generate a register access, which only occurs when injecting a fault in a guest. Cc: stable@vger.kernel.org Reviewed-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
Ard Biesheuvel authored
The open coded tests for checking whether a PTE maps a page as uncached use a flawed '(pte_val(xxx) & CONST) != CONST' pattern, which is not guaranteed to work since the type of a mapping is not a set of mutually exclusive bits For HYP mappings, the type is an index into the MAIR table (i.e, the index itself does not contain any information whatsoever about the type of the mapping), and for stage-2 mappings it is a bit field where normal memory and device types are defined as follows: #define MT_S2_NORMAL 0xf #define MT_S2_DEVICE_nGnRE 0x1 I.e., masking *and* comparing with the latter matches on the former, and we have been getting lucky merely because the S2 device mappings also have the PTE_UXN bit set, or we would misidentify memory mappings as device mappings. Since the unmap_range() code path (which contains one instance of the flawed test) is used both for HYP mappings and stage-2 mappings, and considering the difference between the two, it is non-trivial to fix this by rewriting the tests in place, as it would involve passing down the type of mapping through all the functions. However, since HYP mappings and stage-2 mappings both deal with host physical addresses, we can simply check whether the mapping is backed by memory that is managed by the host kernel, and only perform the D-cache maintenance if this is the case. Cc: stable@vger.kernel.org Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Pavel Fedin <p.fedin@samsung.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-
- 23 Nov, 2015 1 commit
-
-
Linus Torvalds authored
-
- 22 Nov, 2015 20 commits
-
-
Linus Torvalds authored
Merge slub bulk allocator updates from Andrew Morton: "This missed the merge window because I was waiting for some repairs to come in. Nothing actually uses the bulk allocator yet and the changes to other code paths are pretty small. And the net guys are waiting for this so they can start merging the client code" More comments from Jesper Dangaard Brouer: "The kmem_cache_alloc_bulk() call, in mm/slub.c, were included in previous kernel. The present version contains a bug. Vladimir Davydov noticed it contained a bug, when kernel is compiled with CONFIG_MEMCG_KMEM (see commit 03ec0ed5: "slub: fix kmem cgroup bug in kmem_cache_alloc_bulk"). Plus the mem cgroup counterpart in kmem_cache_free_bulk() were missing (see commit 03374518 "slub: add missing kmem cgroup support to kmem_cache_free_bulk"). I don't consider the fix stable-material because there are no in-tree users of the API. But with known bugs (for memcg) I cannot start using the API in the net-tree" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: slab/slub: adjust kmem_cache_alloc_bulk API slub: add missing kmem cgroup support to kmem_cache_free_bulk slub: fix kmem cgroup bug in kmem_cache_alloc_bulk slub: optimize bulk slowpath free by detached freelist slub: support for bulk free with SLUB freelists
-
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/ttyLinus Torvalds authored
Pull tty/serial fixes from Greg KH: "Here are a few small tty/serial driver fixes for 4.4-rc2 that resolve some reported problems. All have been in linux-next, full details are in the shortlog below" * tag 'tty-4.4-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: serial: export fsl8250_handle_irq serial: 8250_mid: Add missing dependency tty: audit: Fix audit source serial: etraxfs-uart: Fix crash serial: fsl_lpuart: Fix earlycon support bcm63xx_uart: Use the device name when registering an interrupt tty: Fix direct use of tty buffer work tty: Fix tty_send_xchar() lock order inversion
-
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/stagingLinus Torvalds authored
Pull staging/IIO fixes from Greg KH: "Here are some staging and iio driver fixes for 4.4-rc2. All of these are in response to issues that have been reported and have been in linux-next for a while" * tag 'staging-4.4-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging: Revert "Staging: wilc1000: coreconfigurator: Drop unneeded wrapper functions" iio: adc: xilinx: Fix VREFN scale iio: si7020: Swap data byte order iio: adc: vf610_adc: Fix division by zero error iio:ad7793: Fix ad7785 product ID iio: ad5064: Fix ad5629/ad5669 shift iio:ad5064: Make sure ad5064_i2c_write() returns 0 on success iio: lpc32xx_adc: fix warnings caused by enabling unprepared clock staging: iio: select IRQ_WORK for IIO_DUMMY_EVGEN vf610_adc: Fix internal temperature calculation
-
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usbLinus Torvalds authored
Pull USB fixes from Greg KH: "Here are a number of USB fixes and new device ids for 4.4-rc2. All have been in linux-next and the details are in the shortlog" * tag 'usb-4.4-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb: (28 commits) usblp: do not set TASK_INTERRUPTIBLE before lock USB: MAINTAINERS: cxacru usb: kconfig: fix warning of select USB_OTG USB: option: add XS Stick W100-2 from 4G Systems xhci: Fix a race in usb2 LPM resume, blocking U3 for usb2 devices usb: xhci: fix checking ep busy for CFC xhci: Workaround to get Intel xHCI reset working more reliably usb: chipidea: imx: fix a possible NULL dereference usb: chipidea: usbmisc_imx: fix a possible NULL dereference usb: chipidea: otg: gadget module load and unload support usb: chipidea: debug: disable usb irq while role switch ARM: dts: imx27.dtsi: change the clock information for usb usb: chipidea: imx: refine clock operations to adapt for all platforms usb: gadget: atmel_usba_udc: Expose correct device speed usb: musb: enable usb_dma parameter usb: phy: phy-mxs-usb: fix a possible NULL dereference usb: dwc3: gadget: let us set lower max_speed usb: musb: fix tx fifo flush handling usb: gadget: f_loopback: fix the warning during the enumeration usb: dwc2: host: Fix remote wakeup when not in DWC2_L2 ...
-
git://git.linux-mips.org/pub/scm/ralf/upstream-linusLinus Torvalds authored
Pull MIPS fixes from Ralf Baechle: - Fix a flood of annoying build warnings - A number of fixes for Atheros 79xx platforms * 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus: MIPS: ath79: Add a machine entry for booting OF machines MIPS: ath79: Fix the size of the MISC INTC registers in ar9132.dtsi MIPS: ath79: Fix the DDR control initialization on ar71xx and ar934x MIPS: Fix flood of warnings about comparsion being always true.
-
git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linuxLinus Torvalds authored
Pull parisc update from Helge Deller: "This patchset adds Huge Page and HUGETLBFS support for parisc" Honestly, the hugepage support should have gone through in the merge window, and is not really an rc-time fix. But it only touches arch/parisc, and I cannot find it in myself to care. If one of the three parisc users notices a breakage, I will point at Helge and make rude farting noises. * 'parisc-4.4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux: parisc: Map kernel text and data on huge pages parisc: Add Huge Page and HUGETLBFS support parisc: Use long branch to do_syscall_trace_exit parisc: Increase initial kernel mapping to 32MB on 64bit kernel parisc: Initialize the fault vector earlier in the boot process. parisc: Add defines for Huge page support parisc: Drop unused MADV_xxxK_PAGES flags from asm/mman.h parisc: Drop definition of start_thread_som for HP-UX SOM binaries parisc: Fix wrong comment regarding first pmd entry flags
-
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds authored
Pull perf tool fixes from Thomas Gleixner: "A couple of fixes for perf tools: - Build system updates - Plug a memory leak in an error path of perf probe - Tear down probes correctly when adding fails - Fixes to the perf symbol handling - Fix ordering of event processing in buildid-list - Fix per DSO filtering in the histogram browser" * 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: perf probe: Clear probe_trace_event when add_probe_trace_event() fails perf probe: Fix memory leaking on failure by clearing all probe_trace_events perf inject: Also re-pipe lost_samples event perf buildid-list: Requires ordered events perf symbols: Fix dso lookup by long name and missing buildids perf symbols: Allow forcing reading of non-root owned files by root perf hists browser: The dso can be obtained from popup_action->ms.map->dso perf hists browser: Fix 'd' hotkey action to filter by DSO perf symbols: Rebuild rbtree when adjusting symbols for kcore tools: Add a "make all" rule tools: Actually install tmon in the install rule
-
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds authored
Pull x86 fixes from Thomas Gleixner: "This update contains: - MPX updates for handling 32bit processes - A fix for a long standing bug in 32bit signal frame handling related to FPU/XSAVE state - Handle get_xsave_addr() correctly in KVM - Fix SMAP check under paravirtualization - Add a comment to the static function trace entry to avoid further confusion about the difference to dynamic tracing" * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/cpu: Fix SMAP check in PVOPS environments x86/ftrace: Add comment on static function tracing x86/fpu: Fix get_xsave_addr() behavior under virtualization x86/fpu: Fix 32-bit signal frame handling x86/mpx: Fix 32-bit address space calculation x86/mpx: Do proper get_user() when running 32-bit binaries on 64-bit kernels
-
Jesper Dangaard Brouer authored
Adjust kmem_cache_alloc_bulk API before we have any real users. Adjust API to return type 'int' instead of previously type 'bool'. This is done to allow future extension of the bulk alloc API. A future extension could be to allow SLUB to stop at a page boundary, when specified by a flag, and then return the number of objects. The advantage of this approach, would make it easier to make bulk alloc run without local IRQs disabled. With an approach of cmpxchg "stealing" the entire c->freelist or page->freelist. To avoid overshooting we would stop processing at a slab-page boundary. Else we always end up returning some objects at the cost of another cmpxchg. To keep compatible with future users of this API linking against an older kernel when using the new flag, we need to return the number of allocated objects with this API change. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jesper Dangaard Brouer authored
Initial implementation missed support for kmem cgroup support in kmem_cache_free_bulk() call, add this. If CONFIG_MEMCG_KMEM is not enabled, the compiler should be smart enough to not add any asm code. Incoming bulk free objects can belong to different kmem cgroups, and object free call can happen at a later point outside memcg context. Thus, we need to keep the orig kmem_cache, to correctly verify if a memcg object match against its "root_cache" (s->memcg_params.root_cache). Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jesper Dangaard Brouer authored
The call slab_pre_alloc_hook() interacts with kmemgc and is not allowed to be called several times inside the bulk alloc for loop, due to the call to memcg_kmem_get_cache(). This would result in hitting the VM_BUG_ON in __memcg_kmem_get_cache. As suggested by Vladimir Davydov, change slab_post_alloc_hook() to be able to handle an array of objects. A subtle detail is, loop iterator "i" in slab_post_alloc_hook() must have same type (size_t) as size argument. This helps the compiler to easier realize that it can remove the loop, when all debug statements inside loop evaluates to nothing. Note, this is only an issue because the kernel is compiled with GCC option: -fno-strict-overflow In slab_alloc_node() the compiler inlines and optimizes the invocation of slab_post_alloc_hook(s, flags, 1, &object) by removing the loop and access object directly. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Reported-by: Vladimir Davydov <vdavydov@virtuozzo.com> Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com> Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jesper Dangaard Brouer authored
This change focus on improving the speed of object freeing in the "slowpath" of kmem_cache_free_bulk. The calls slab_free (fastpath) and __slab_free (slowpath) have been extended with support for bulk free, which amortize the overhead of the (locked) cmpxchg_double. To use the new bulking feature, we build what I call a detached freelist. The detached freelist takes advantage of three properties: 1) the free function call owns the object that is about to be freed, thus writing into this memory is synchronization-free. 2) many freelist's can co-exist side-by-side in the same slab-page each with a separate head pointer. 3) it is the visibility of the head pointer that needs synchronization. Given these properties, the brilliant part is that the detached freelist can be constructed without any need for synchronization. The freelist is constructed directly in the page objects, without any synchronization needed. The detached freelist is allocated on the stack of the function call kmem_cache_free_bulk. Thus, the freelist head pointer is not visible to other CPUs. All objects in a SLUB freelist must belong to the same slab-page. Thus, constructing the detached freelist is about matching objects that belong to the same slab-page. The bulk free array is scanned is a progressive manor with a limited look-ahead facility. Kmem debug support is handled in call of slab_free(). Notice kmem_cache_free_bulk no longer need to disable IRQs. This only slowed down single free bulk with approx 3 cycles. Performance data: Benchmarked[1] obj size 256 bytes on CPU i7-4790K @ 4.00GHz SLUB fastpath single object quick reuse: 47 cycles(tsc) 11.931 ns To get stable and comparable numbers, the kernel have been booted with "slab_merge" (this also improve performance for larger bulk sizes). Performance data, compared against fallback bulking: bulk - fallback bulk - improvement with this patch 1 - 62 cycles(tsc) 15.662 ns - 49 cycles(tsc) 12.407 ns- improved 21.0% 2 - 55 cycles(tsc) 13.935 ns - 30 cycles(tsc) 7.506 ns - improved 45.5% 3 - 53 cycles(tsc) 13.341 ns - 23 cycles(tsc) 5.865 ns - improved 56.6% 4 - 52 cycles(tsc) 13.081 ns - 20 cycles(tsc) 5.048 ns - improved 61.5% 8 - 50 cycles(tsc) 12.627 ns - 18 cycles(tsc) 4.659 ns - improved 64.0% 16 - 49 cycles(tsc) 12.412 ns - 17 cycles(tsc) 4.495 ns - improved 65.3% 30 - 49 cycles(tsc) 12.484 ns - 18 cycles(tsc) 4.533 ns - improved 63.3% 32 - 50 cycles(tsc) 12.627 ns - 18 cycles(tsc) 4.707 ns - improved 64.0% 34 - 96 cycles(tsc) 24.243 ns - 23 cycles(tsc) 5.976 ns - improved 76.0% 48 - 83 cycles(tsc) 20.818 ns - 21 cycles(tsc) 5.329 ns - improved 74.7% 64 - 74 cycles(tsc) 18.700 ns - 20 cycles(tsc) 5.127 ns - improved 73.0% 128 - 90 cycles(tsc) 22.734 ns - 27 cycles(tsc) 6.833 ns - improved 70.0% 158 - 99 cycles(tsc) 24.776 ns - 30 cycles(tsc) 7.583 ns - improved 69.7% 250 - 104 cycles(tsc) 26.089 ns - 37 cycles(tsc) 9.280 ns - improved 64.4% Performance data, compared current in-kernel bulking: bulk - curr in-kernel - improvement with this patch 1 - 46 cycles(tsc) - 49 cycles(tsc) - improved (cycles:-3) -6.5% 2 - 27 cycles(tsc) - 30 cycles(tsc) - improved (cycles:-3) -11.1% 3 - 21 cycles(tsc) - 23 cycles(tsc) - improved (cycles:-2) -9.5% 4 - 18 cycles(tsc) - 20 cycles(tsc) - improved (cycles:-2) -11.1% 8 - 17 cycles(tsc) - 18 cycles(tsc) - improved (cycles:-1) -5.9% 16 - 18 cycles(tsc) - 17 cycles(tsc) - improved (cycles: 1) 5.6% 30 - 18 cycles(tsc) - 18 cycles(tsc) - improved (cycles: 0) 0.0% 32 - 18 cycles(tsc) - 18 cycles(tsc) - improved (cycles: 0) 0.0% 34 - 78 cycles(tsc) - 23 cycles(tsc) - improved (cycles:55) 70.5% 48 - 60 cycles(tsc) - 21 cycles(tsc) - improved (cycles:39) 65.0% 64 - 49 cycles(tsc) - 20 cycles(tsc) - improved (cycles:29) 59.2% 128 - 69 cycles(tsc) - 27 cycles(tsc) - improved (cycles:42) 60.9% 158 - 79 cycles(tsc) - 30 cycles(tsc) - improved (cycles:49) 62.0% 250 - 86 cycles(tsc) - 37 cycles(tsc) - improved (cycles:49) 57.0% Performance with normal SLUB merging is significantly slower for larger bulking. This is believed to (primarily) be an effect of not having to share the per-CPU data-structures, as tuning per-CPU size can achieve similar performance. bulk - slab_nomerge - normal SLUB merge 1 - 49 cycles(tsc) - 49 cycles(tsc) - merge slower with cycles:0 2 - 30 cycles(tsc) - 30 cycles(tsc) - merge slower with cycles:0 3 - 23 cycles(tsc) - 23 cycles(tsc) - merge slower with cycles:0 4 - 20 cycles(tsc) - 20 cycles(tsc) - merge slower with cycles:0 8 - 18 cycles(tsc) - 18 cycles(tsc) - merge slower with cycles:0 16 - 17 cycles(tsc) - 17 cycles(tsc) - merge slower with cycles:0 30 - 18 cycles(tsc) - 23 cycles(tsc) - merge slower with cycles:5 32 - 18 cycles(tsc) - 22 cycles(tsc) - merge slower with cycles:4 34 - 23 cycles(tsc) - 22 cycles(tsc) - merge slower with cycles:-1 48 - 21 cycles(tsc) - 22 cycles(tsc) - merge slower with cycles:1 64 - 20 cycles(tsc) - 48 cycles(tsc) - merge slower with cycles:28 128 - 27 cycles(tsc) - 57 cycles(tsc) - merge slower with cycles:30 158 - 30 cycles(tsc) - 59 cycles(tsc) - merge slower with cycles:29 250 - 37 cycles(tsc) - 56 cycles(tsc) - merge slower with cycles:19 Joint work with Alexander Duyck. [1] https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/mm/slab_bulk_test01.c [akpm@linux-foundation.org: BUG_ON -> WARN_ON;return] Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Alexander Duyck <alexander.h.duyck@redhat.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jesper Dangaard Brouer authored
Make it possible to free a freelist with several objects by adjusting API of slab_free() and __slab_free() to have head, tail and an objects counter (cnt). Tail being NULL indicate single object free of head object. This allow compiler inline constant propagation in slab_free() and slab_free_freelist_hook() to avoid adding any overhead in case of single object free. This allows a freelist with several objects (all within the same slab-page) to be free'ed using a single locked cmpxchg_double in __slab_free() and with an unlocked cmpxchg_double in slab_free(). Object debugging on the free path is also extended to handle these freelists. When CONFIG_SLUB_DEBUG is enabled it will also detect if objects don't belong to the same slab-page. These changes are needed for the next patch to bulk free the detached freelists it introduces and constructs. Micro benchmarking showed no performance reduction due to this change, when debugging is turned off (compiled with CONFIG_SLUB_DEBUG). Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Alexander Duyck <alexander.h.duyck@redhat.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Helge Deller authored
Adjust the linker script and map_pages() to map kernel text and data on physical 1MB huge/large pages. Signed-off-by: Helge Deller <deller@gmx.de>
-
Helge Deller authored
This patch adds huge page support to allow userspace to allocate huge pages and to use hugetlbfs filesystem on 32- and 64-bit Linux kernels. A later patch will add kernel support to map kernel text and data on huge pages. The only requirement is, that the kernel needs to be compiled for a PA8X00 CPU (PA2.0 architecture). Older PA1.X CPUs do not support variable page sizes. 64bit Kernels are compiled for PA2.0 by default. Technically on parisc multiple physical huge pages may be needed to emulate standard 2MB huge pages. Signed-off-by: Helge Deller <deller@gmx.de>
-
Helge Deller authored
Use the 22bit instead of the 17bit branch instruction on a 64bit kernel to reach the do_syscall_trace_exit function from the gateway page. A huge page enabled kernel may need the additional branch distance bits. Signed-off-by: Helge Deller <deller@gmx.de>
-
Helge Deller authored
For the 64bit kernel the initially 16 MB kernel memory might become too small if you build a kernel with many modules built-in and with kernel text and data areas mapped on huge pages. This patch increases the initial mapping to 32MB for 64bit kernels and keeps 16MB for 32bit kernels. Signed-off-by: Helge Deller <deller@gmx.de>
-
Helge Deller authored
A fault vector on parisc needs to be 2K aligned. Furthermore the checksum of the fault vector needs to sum up to 0 which is being calculated and written at runtime. Up to now we aligned both PA20 and PA11 fault vectors on the same 4K page in order to easily write the checksum after having mapped the kernel read-only (by mapping this page only as read-write). But when we want to map the kernel text and data on huge pages this makes things harder. So, simplify it by aligning both fault vectors on 2K boundries and write the checksum before we map the page read-only. Signed-off-by: Helge Deller <deller@gmx.de>
-
Helge Deller authored
Huge pages on parisc will have the same size as one pmd table, which is on a 64bit kernel 2MB on a kernel with 4K kernel page sizes, and on a 32bit kernel 4MB when used with 4K kernel pages. Since parisc does not physically supports 2MB huge page sizes, emulate it with two consecutive 1MB page sizes instead. Keeping the same huge page size as one pmd will allow us to add transparent huge page support later on. Bit 21 in the pte flags was unused and will now be used to mark a page as huge page (_PAGE_HPAGE_BIT). Signed-off-by: Helge Deller <deller@gmx.de>
-
Helge Deller authored
Drop the MADV_xxK_PAGES flags, which were never used and were from a proposed API which was never integrated into the generic Linux kernel code. Cc: stable@vger.kernel.org Signed-off-by: Helge Deller <deller@gmx.de>
-
- 21 Nov, 2015 2 commits
-
-
Linus Torvalds authored
Merge misc fixes from Andrew Morton: "A bunch of fixes" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: slub: mark the dangling ifdef #else of CONFIG_SLUB_DEBUG slub: avoid irqoff/on in bulk allocation slub: create new ___slab_alloc function that can be called with irqs disabled mm: fix up sparse warning in gfpflags_allow_blocking ocfs2: fix umask ignored issue PM/OPP: add entry in MAINTAINERS kernel/panic.c: turn off locks debug before releasing console lock kernel/signal.c: unexport sigsuspend() kasan: fix kmemleak false-positive in kasan_module_alloc() fat: fix fake_offset handling on error path mm/hugetlbfs: fix bugs in fallocate hole punch of areas with holes mm/page-writeback.c: initialize m_dirty to avoid compile warning various: fix pci_set_dma_mask return value checking mm: loosen MADV_NOHUGEPAGE to enable Qemu postcopy on s390 mm: vmalloc: don't remove inexistent guard hole in remove_vm_area() tools/vm/page-types.c: support KPF_IDLE ncpfs: don't allow negative timeouts configfs: allow dynamic group creation MAINTAINERS: add Moritz as reviewer for FPGA Manager Framework slab.h: sprinkle __assume_aligned attributes
-
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds authored
Pull timer fixes from Thomas Gleixner: "Two timer fixlets from Arnd: - Use proper constant size in the FSL timer driver - Prevent a build error for legacy platforms" * 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: clocksource: Disallow drivers for ARCH_USES_GETTIMEOFFSET clocksource/fsl: Avoid harmless 64-bit warnings
-