- 23 Jun, 2005 40 commits
-
-
john stultz authored
Currently the x86-64 HPET code assumes the entire HPET implementation from the spec is present. This breaks on boxes that do not implement the optional legacy timer replacement functionality portion of the spec. This patch fixes this issue, allowing x86-64 systems that cannot use the HPET for the timer interrupt and RTC to still use the HPET as a time source. I've tested this patch on a system systems without HPET, with HPET but without legacy timer replacement, as well as HPET with legacy timer replacement. This version adds a minor check to cap the HPET counter value in gettimeoffset_hpet to avoid possible time inconsistencies. Please ignore the A2 version I sent to you earlier. Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Alexander Nyberg authored
Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Andrew Morton authored
Consolidate the mtrr sanity checking, add a dump_stack(). Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Andrew Morton authored
x86_64's cpu_khz is unsigned int and there is no reason why x86 needs to use unsigned long. So make cpu_khz unsigned int on x86 as well. Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Alexey Dobriyan authored
* EXPORT_SYMBOL's moved to other files * #include <linux/config.h>, <linux/module.h> where needed * #include's in i386_ksyms.c cleaned up * After copy-paste, redundant due to Makefiles rules preprocessor directives removed: #ifdef CONFIG_FOO EXPORT_SYMBOL(foo); #endif obj-$(CONFIG_FOO) += foo.o * Tiny reformat to fit in 80 columns Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Alexey Dobriyan authored
csum_and_copy_to_user is static inline and uses VERIFY_WRITE. Patch allows to remove asm/uaccess.h from i386_ksyms.c without dependency surprises. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Aleksey Gorelov authored
According to the VIA 82C586B datasheet (still available from http://gkernel.sourceforge.net/specs/via/586b.pdf.bz2) this chip need a special PIRQ mapping. Signed-off-by: Karsten Keil <kkeil@suse.de> Signed-off-by: Aleksey Gorelov <aleksey_gorelov@phoenix.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Natalie Protasevich authored
I have submitted the patch for x86_64, this is submission for i386. The patch changes the way IRQs are handed out to PCI devices. Currently, each I/O APIC pin gets associated with an IRQ, no matter if the pin is used or not. This imposes severe limitation on systems that have designs that employ many I/O APICs, only utilizing couple lines of each, such as P64H2 chipset. It is used in ES7000, and currently, there is no way to boot the system with more that 9 I/O APICs. The simple change below allows to boot a system with say 64 (or more) I/O APICs, each providing 1 slot, which otherwise impossible because of the IRQ gaps created for unused lines on each I/O APIC. It does not resolve the problem with number of devices that exceeds number of possible IRQs, but eases up a tension for IRQs on any large system with potentually large number of devices. Signed-off-by: Natalie Protasevich <Natalie.Protasevich@unisys.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Christoph Lameter authored
It allows a selectable timer interrupt frequency of 100, 250 and 1000 HZ. Reducing the timer frequency may have important performance benefits on large systems. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Christoph Lameter authored
Make the timer frequency selectable. The timer interrupt may cause bus and memory contention in large NUMA systems since the interrupt occurs on each processor HZ times per second. Signed-off-by: Christoph Lameter <christoph@lameter.com> Signed-off-by: Shai Fultheim <shai@scalex86.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Jan Beulich authored
Allow early printk code to take advantage of the full size of the screen, not just the first 25 lines. Signed-off-by: Jan Beulich <jbeulich@novell.com> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Jan Beulich authored
Get the i386 watchdog tick calculation into a state where it can also be used on CPUs with frequencies beyond 4GHz, and it consolidates the calculation into a single place (for potential furture adjustments). Signed-off-by: Jan Beulich <jbeulich@novell.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Natalie Protasevich authored
This patch is per Andi's request to remove NO_IOAPIC_CHECK from genapic and use heuristics to prevent unique I/O APIC ID check for systems that don't need it. The patch disables unique I/O APIC ID check for Xeon-based and other platforms that don't use serial APIC bus for interrupt delivery. Andi stated that AMD systems don't need unique IO_APIC_IDs either. Signed-off-by: Natalie Protasevich <Natalie.Protasevich@unisys.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Roland McGrath authored
This problem was first noticed on PPC and has already been fixed there. But the exact same issue applies to other platforms in the same way. The signal blocking for sa_mask and the handled signal takes place after the handler setup. When the stack is bogus, the handler setup forces a SIGSEGV. But then this will be blocked, and returning to user mode will fault again and iterate. This patch fixes the problem by checking whether signal handler setup failed, and not doing the signal-blocking if so. This copies what was done in the ppc code. I think all architectures' signal handler setup code follows this pattern and needs the change. Signed-off-by: Roland McGrath <roland@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Christoph Lameter authored
Patch to allocate the control structures for for ide devices on the node of the device itself (for NUMA systems). The patch depends on the Slab API change patch by Manfred and me (in mm) and the pcidev_to_node patch that I posted today. Does some realignment too. Signed-off-by: Justin M. Forbes <jmforbes@linuxtx.org> Signed-off-by: Christoph Lameter <christoph@lameter.com> Signed-off-by: Pravin Shelar <pravin@calsoftinc.com> Signed-off-by: Shobhit Dayal <shobhit@calsoftinc.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Christoph Lameter authored
Define pcibus_to_node to be able to figure out which NUMA node contains a given PCI device. This defines pcibus_to_node(bus) in include/linux/topology.h and adjusts the macros for i386 and x86_64 that already provided a way to determine the cpumask of a pci device. x86_64 was changed to not build an array of cpumasks anymore. Instead an array of nodes is build which can be used to generate the cpumask via node_to_cpumask. Signed-off-by: Christoph Lameter <christoph@lameter.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Christoph Lameter authored
asm-generic/topology.h must also be included if CONFIG_NUMA is set in order to provide the fall back pcibus_to_node function. Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Hirokazu Takata authored
Use asm-generic/topology.h to fix yet another pcibus_to_node() build error. Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Venkatesh Pallipadi authored
Issue: Current tsc based delay_calibration can result in significant errors in loops_per_jiffy count when the platform events like SMIs (System Management Interrupts that are non-maskable) are present. This could lead to potential kernel panic(). This issue is becoming more visible with 2.6 kernel (as default HZ is 1000) and on platforms with higher SMI handling latencies. During the boot time, SMIs are mostly used by BIOS (for things like legacy keyboard emulation). Description: The psuedocode for current delay calibration with tsc based delay looks like (0) Estimate a value for loops_per_jiffy (1) While (loops_per_jiffy estimate is accurate enough) (2) wait for jiffy transition (jiffy1) (3) Note down current tsc (tsc1) (4) loop until tsc becomes tsc1 + loops_per_jiffy (5) check whether jiffy changed since jiffy1 or not and refine loops_per_jiffy estimate Consider the following cases Case 1: If SMIs happen between (2) and (3) above, we can end up with a loops_per_jiffy value that is too low. This results in shorted delays and kernel can panic () during boot (Mostly at IOAPIC timer initialization timer_irq_works() as we don't have enough timer interrupts in a specified interval). Case 2: If SMIs happen between (3) and (4) above, then we can end up with a loops_per_jiffy value that is too high. And with current i386 code, too high lpj value (greater than 17M) can result in a overflow in delay.c:__const_udelay() again resulting in shorter delay and panic(). Solution: The patch below makes the calibration routine aware of asynchronous events like SMIs. We increase the delay calibration time and also identify any significant errors (greater than 12.5%) in the calibration and notify it to user. Patch below changes both i386 and x86-64 architectures to use this new and improved calibrate_delay_direct() routine. Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Ian Campbell authored
The attached patch causes the various arch specific install.sh scripts to look for ${CROSS_COMPILE}installkernel rather than just installkernel (in both /sbin/ and ~/bin/ where the script already did this). This allows you to have e.g. arm-linux-installkernel as a handy way to install on your cross target. It also prevents the script picking up on the host /sbin/installkernel which causes the script to fall through and do the install itself (which is what I actually use myself, with $INSTALL_PATH set). I don't believe it causes back-compatibility problems since calling the host installkernel was never likely to work or be what you wanted when cross compiling anyway. If $CROSS_COMPILE isn't set then nothing changes. I only use ARM and i386 myself but I figured it couldn't hurt to do the whole lot. I've cc'd those who I hope are the arch maintainers for files that I've touched. Signed-off-by: Ian Campbell <icampbell@arcom.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
H. Peter Anvin authored
This allows the i386 architecture to be built on a system with a biarch compiler that defaults to x86-64, merely by specifying ARCH=i386. As previously discussed, this uses the equivalent logic to the ppc port. Signed-Off-By: H. Peter Anvin <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Martin J. Bligh authored
This helps a lot when debugging out of memory stuff - useful especially to see if all the memory is sucked into slab, etc. Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Matt Tolentino authored
This patch adds in the necessary support for sparsemem such that x86-64 kernels may use sparsemem as an alternative to discontigmem for NUMA kernels. Note that this does no preclude one from continuing to build NUMA kernels using discontigmem, but merely allows the option to build NUMA kernels with sparsemem. Interestingly, the use of sparsemem in lieu of discontigmem in NUMA kernels results in reduced text size for otherwise equivalent kernels as shown in the example builds below: text data bss dec hex filename 2371036 765884 1237108 4374028 42be0c vmlinux.discontig 2366549 776484 1302772 4445805 43d66d vmlinux.sparse Signed-off-by: Matt Tolentino <matthew.e.tolentino@intel.com> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Matt Tolentino authored
In order to use the alternative sparsemem implmentation for NUMA kernels, we need to reorganize the config options. This patch effectively abstracts out the CONFIG_DISCONTIGMEM options to CONFIG_NUMA in most cases. Thus, the discontigmem implementation may be employed as always, but the sparsemem implementation may be used alternatively. Signed-off-by: Matt Tolentino <matthew.e.tolentino@intel.com> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Matt Tolentino authored
Add the requisite arch specific Kconfig options to enable the use of the sparsemem implementation for NUMA kernels on x86-64. Signed-off-by: Matt Tolentino <matthew.e.tolentino@intel.com> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Matt Tolentino authored
This patch pulls out all remaining direct references to contig_page_data from arch/x86-64, thus saving an ifdef in one case. Signed-off-by: Matt Tolentino <matthew.e.tolentino@intel.com> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Andy Whitcroft authored
Provide the architecture specific implementation for SPARSEMEM for PPC64 systems. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Mike Kravetz <kravetz@us.ibm.com> (in part) Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Andy Whitcroft authored
Provide hooks for PPC64 to allow memory models to be informed of installed memory areas. This allows SPARSEMEM to instantiate mem_map for the populated areas. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Andy Whitcroft authored
Provide an implementation of early_pfn_to_nid for PPC64. This is used by memory models to determine the node from which to take allocations before the memory allocators are fully initialised. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Andy Whitcroft authored
Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Andy Whitcroft authored
The part of the sparsemem patch which modifies memmap_init_zone() has recently become a problem. It changes behavior so that there is a call to pfn_to_page() for each individual page inside of a node's range: node_start_pfn through node_end_pfn. It used to simply do this once, at the beginning of the node, but having sparsemem's non-contiguous mem_map[]s inside of a node made it necessary to change. Mike Kravetz recently wrote a patch which made the NUMA code accept some new kinds of layouts. The system's memory was laid out like this, with node 0's memory in two pieces: one before and one after node 1's memory: Node 0: +++++ +++++ Node 1: +++++ Previous behavior before Mike's patch was to assign nodes like this: Node 0: 00000 XXXXX Node 1: 11111 Where the 'X' areas were simply thrown away. The new behavior was to make the pg_data_t span node 0 across all of its areas, including areas that are really node 1's: Node 0: 000000000000000 Node 1: 11111 This wastes a little bit of mem_map space, but ends up being OK, and more fully utilizes the system's memory. memmap_init_zone() initializes all of the "struct page"s for node 0, even for the "hole", but those never get used, because there is no pfn_to_page() that resolves to those pages. However, only calling pfn_to_page() once, memmap_init_zone() always uses the pages that were allocated for node0->node_mem_map because: struct page *start = pfn_to_page(start_pfn); // effectively start = &node->node_mem_map[0] for (page = start; page < (start + size); page++) { init_page_here();... page++; } Slow, and wasteful, but generally harmless. But, modify that to call pfn_to_page() for each loop iteration (like sparsemem does): for (pfn = start_pfn; pfn < < (start_pfn + size); pfn++++) { page = pfn_to_page(pfn); } And you end up trying to initialize node 1's pages too early, along with bogus data from node 0. This patch checks for those weird layouts and declines to touch the pages, making the more frequent pfn_to_page() calls OK to do. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Andy Whitcroft authored
Provide the architecture specific implementation for SPARSEMEM for i386 SMP and NUMA systems. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Andy Whitcroft authored
Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Andy Whitcroft authored
Allow architectures to indicate that they will be providing hooks to indice installed memory areas, memory_present(). Provide prototypes for the i386 implementation. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Andy Whitcroft authored
Provide a default implementation for early_pfn_to_nid returning node 0. Allow architectures to override this with their own implementation out of asm/mmzone.h. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Mike Kravetz authored
This patch changes some of the default behavior in the ppc64 Kconfig file that was recently changed/added to 2.6.12-rc2-mm1 by Dave Hansen in preparation for SPARSEMEM. Patch allows the display of both FLAT and DISCONTIG models on pseries. As before, default is DISCONTIG for SMP and PSERIES and FLAT for others. Signed-off-by: Mike Kravetz <kravetz@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Dave Hansen authored
This gives DISCONTIGMEM a bit more help text to explain what it does, not just when to choose it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Dave Hansen authored
I got some feedback from users who think that the new "Memory Model" menu is a little invasive. This patch will hide that menu, except when CONFIG_EXPERIMENTAL is enabled *or* when an individual architecture wants it. An individual arch may want to enable it because they've removed their arch-specific DISCONTIG prompt in favor of the mm/Kconfig one. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Dave Hansen authored
This used to be used to disable FLATMEM selection, but I decided to change it to be done generically when DISCONTIG is enabled. The option is unused, so this kills it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-
Dave Hansen authored
The following patch applies on top of 2.6.12-rc2-mm1. It fixes a minor user interaction issue, and an early reference to SPARSEMEM. This "choice" menu would always default to FLATMEM, as it was listed first. Move it to the end so that the other defaults have a chance first. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
-