- 02 Jun, 2015 40 commits
-
-
Tejun Heo authored
With the previous three patches, all operations which acquire wb from inode are either under one of inode->i_lock, mapping->tree_lock or wb->list_lock or protected by unlocked_inode_to_wb transaction. This will be depended upon by foreign inode wb switching. This patch adds lockdep assertion to inode_to_wb() so that usages outside the above list locks can be caught easily. There are three exceptions. * locked_inode_to_wb_and_lock_list() is holding wb->list_lock but the wb may not be the inode's. Ensuring that is the function's role after all. Updated to deref inode->i_wb directly. * inode_wb_stat_unlocked_begin() is usually protected by combination of !I_WB_SWITCH and rcu_read_lock(). Updated to deref inode->i_wb directly. * inode_congested() wants to test whether inode->i_wb is set before starting the transaction. Added inode_to_wb_is_valid() which tests inode->i_wb directly. v5: might_lock() removed. It annotates that the lock is grabbed w/ irq enabled which isn't the case and triggering lockdep warning spuriously. v4: might_lock() added to unlocked_inode_to_wb_begin(). v3: inode_congested() conversion added. v2: locked_inode_to_wb_and_lock_list() was missing in the first version. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
Similar to wb stat updates, inode_congested() accesses the associated wb of an inode locklessly, which will break with foreign inode wb switching. This path updates inode_congested() to use unlocked inode wb access transaction introduced by the previous patch. Combined with the previous two patches, this makes all wb list and access operations to be protected by either of inode->i_lock, wb->list_lock, or mapping->tree_lock while wb switching is in progress. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
The mechanism for detecting whether an inode should switch its wb (bdi_writeback) association is now in place. This patch build the framework for the actual switching. This patch adds a new inode flag I_WB_SWITCHING, which has two functions. First, the easy one, it ensures that there's only one switching in progress for a give inode. Second, it's used as a mechanism to synchronize wb stat updates. The two stats, WB_RECLAIMABLE and WB_WRITEBACK, aren't event counters but track the current number of dirty pages and pages under writeback respectively. As such, when an inode is moved from one wb to another, the inode's portion of those stats have to be transferred together; unfortunately, this is a bit tricky as those stat updates are percpu operations which are performed without holding any lock in some places. This patch solves the problem in a similar way as memcg. Each such lockless stat updates are wrapped in transaction surrounded by unlocked_inode_to_wb_begin/end(). During normal operation, they map to rcu_read_lock/unlock(); however, if I_WB_SWITCHING is asserted, mapping->tree_lock is grabbed across the transaction. In turn, the switching path sets I_WB_SWITCHING and waits for a RCU grace period to pass before actually starting to switch, which guarantees that all stat update paths are synchronizing against mapping->tree_lock. This patch still doesn't implement the actual switching. v3: Updated on top of the recent cancel_dirty_page() updates. unlocked_inode_to_wb_begin() now nests inside mem_cgroup_begin_page_stat() to match the locking order. v2: The i_wb access transaction will be used for !stat accesses too. Function names and comments updated accordingly. s/inode_wb_stat_unlocked_{begin|end}/unlocked_inode_to_wb_{begin|end}/ s/switch_wb/switch_wbs/ Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
cgroup writeback currently assumes that inode to wb association doesn't change; however, with the planned foreign inode wb switching mechanism, the association will change dynamically. When an inode needs to be put on one of the IO lists of its wb, the current code simply calls inode_to_wb() and locks the returned wb; however, with the planned wb switching, the association may change before locking the wb and may even get released. This patch implements [locked_]inode_to_wb_and_lock_list() which pins the associated wb while holding i_lock, releases it, acquires wb->list_lock and verifies that the association hasn't changed inbetween. As the association will be protected by both locks among other things, this guarantees that the wb is the inode's associated wb until the list_lock is released. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
As concurrent write sharing of an inode is expected to be very rare and memcg only tracks page ownership on first-use basis severely confining the usefulness of such sharing, cgroup writeback tracks ownership per-inode. While the support for concurrent write sharing of an inode is deemed unnecessary, an inode being written to by different cgroups at different points in time is a lot more common, and, more importantly, charging only by first-use can too readily lead to grossly incorrect behaviors (single foreign page can lead to gigabytes of writeback to be incorrectly attributed). To resolve this issue, cgroup writeback detects the majority dirtier of an inode and will transfer the ownership to it. To avoid unnnecessary oscillation, the detection mechanism keeps track of history and gives out the switch verdict only if the foreign usage pattern is stable over a certain amount of time and/or writeback attempts. The detection mechanism has fairly low space and computation overhead. It adds 8 bytes to struct inode (one int and two u16's) and minimal amount of calculation per IO. The detection mechanism converges to the correct answer usually in several seconds of IO time when there's a clear majority dirtier. Even when there isn't, it can reach an acceptable answer fairly quickly under most circumstances. Please see wb_detach_inode() for more details. This patch only implements detection. Following patches will implement actual switching. v2: wbc_account_io() now checks whether the wbc is associated with a wb before dereferencing it. This can happen when pageout() is writing pages directly without going through the usual writeback path. As pageout() path is single-threaded, we don't want it to be blocked behind a slow cgroup and ultimately want it to delegate actual writing to the usual writeback path. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
Currently, for cgroup writeback, the IO submission paths directly associate the bio's with the blkcg from inode_to_wb_blkcg_css(); however, it'd be necessary to keep more writeback context to implement foreign inode writeback detection. wbc (writeback_control) is the natural fit for the extra context - it persists throughout the writeback of each inode and is passed all the way down to IO submission paths. This patch adds wbc_attach_and_unlock_inode(), wbc_detach_inode(), and wbc_attach_fdatawrite_inode() which are used to associate wbc with the inode being written back. IO submission paths now use wbc_init_bio() instead of directly associating bio's with blkcg themselves. This leaves inode_to_wb_blkcg_css() w/o any user. The function is removed. wbc currently only tracks the associated wb (bdi_writeback). Future patches will add more for foreign inode detection. The association is established under i_lock which will be depended upon when migrating foreign inodes to other wb's. As currently, once established, inode to wb association never changes, going through wbc when initializing bio's doesn't cause any behavior changes. v2: submit_blk_blkcg() now checks whether the wbc is associated with a wb before dereferencing it. This can happen when pageout() is writing pages directly without going through the usual writeback path. As pageout() path is single-threaded, we don't want it to be blocked behind a slow cgroup and ultimately want it to delegate actual writing to the usual writeback path. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
Currently, majority of cgroup writeback support including all the above functions are implemented in include/linux/backing-dev.h and mm/backing-dev.c; however, the portion closely related to writeback logic implemented in include/linux/writeback.h and mm/page-writeback.c will expand to support foreign writeback detection and correction. This patch moves wb[_try]_get() and wb_put() to include/linux/backing-dev-defs.h so that they can be used from writeback.h and inode_{attach|detach}_wb() to writeback.h and page-writeback.c. This is pure reorganization and doesn't introduce any functional changes. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
Because writeback wasn't cgroup aware before, the usual dirty throttling mechanism in balance_dirty_pages() didn't work for processes under memcg limit. The writeback path didn't know how much memory is available or how fast the dirty pages are being written out for a given memcg and balance_dirty_pages() didn't have any measure of IO back pressure for the memcg. To work around the issue, memcg implemented an ad-hoc dirty throttling mechanism in the direct reclaim path by stalling on pages under writeback which are encountered during direct reclaim scan. This is rather ugly and crude - none of the configurability, fairness, or bandwidth-proportional distribution of the normal path. The previous patches implemented proper memcg aware dirty throttling when cgroup writeback is in use making the ad-hoc mechanism unnecessary. This patch disables direct reclaim stalling for such case. Note: I disabled the parts which seemed obvious and it behaves fine while testing but my understanding of this code path is rudimentary and it's quite possible that I got something wrong. Please let me know if I got some wrong or more global_reclaim() sites should be updated. v2: The original patch removed the direct stalling mechanism which breaks legacy hierarchies. Conditionalize instead of removing. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
While cgroup writeback support now connects memcg and blkcg so that writeback IOs are properly attributed and controlled, the IO back pressure propagation mechanism implemented in balance_dirty_pages() and its subroutines wasn't aware of cgroup writeback. Processes belonging to a memcg may have access to only subset of total memory available in the system and not factoring this into dirty throttling rendered it completely ineffective for processes under memcg limits and memcg ended up building a separate ad-hoc degenerate mechanism directly into vmscan code to limit page dirtying. The previous patches updated balance_dirty_pages() and its subroutines so that they can deal with multiple wb_domain's (writeback domains) and defined per-memcg wb_domain. Processes belonging to a non-root memcg are bound to two wb_domains, global wb_domain and memcg wb_domain, and should be throttled according to IO pressures from both domains. This patch updates dirty throttling code so that it repeats similar calculations for the two domains - the differences between the two are few and minor - and applies the lower of the two sets of resulting constraints. wb_over_bg_thresh(), which controls when background writeback terminates, is also updated to consider both global and memcg wb_domains. It returns true if dirty is over bg_thresh for either domain. This makes the dirty throttling mechanism operational for memcg domains including writeback-bandwidth-proportional dirty page distribution inside them but the ad-hoc memcg throttling mechanism in vmscan is still in place. The next patch will rip it out. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
The amount of available memory to a memcg wb_domain can change as memcg configuration changes. A domain's ->dirty_limit exists to smooth out sudden drops in dirty threshold; however, when a domain's size actually drops significantly, it hinders the dirty throttling from adjusting to the new configuration leading to unexpected behaviors including unnecessary OOM kills. This patch resolves the issue by adding wb_domain_size_changed() which resets ->dirty_limit[_tstmp] and making memcg call it on configuration changes. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
Dirtyable memory is distributed to a wb (bdi_writeback) according to the relative bandwidth the wb is writing out in the whole system. This distribution is global - each wb is measured against all other wb's and gets the proportinately sized portion of the memory in the whole system. For cgroup writeback, the amount of dirtyable memory is scoped by memcg and thus each wb would need to be measured and controlled in its memcg. IOW, a wb will belong to two writeback domains - the global and memcg domains. The previous patches laid the groundwork to support the two wb_domains and this patch implements memcg wb_domain. memcg->cgwb_domain is initialized on css online and destroyed on css release, wb->memcg_completions is added, and __wb_writeout_inc() is updated to increment completions against both global and memcg wb_domains. The following patches will update balance_dirty_pages() and its subroutines to actually consider memcg wb_domain for throttling. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
wb_over_bg_thresh() currently uses global_dirty_limits() and wb_dirty_limit() both of which are wrappers around operations which take dirty_throttle_control. For cgroup writeback support, the function will be updated to also consider memcg wb_domains which requires the context information carried in dirty_throttle_control. This patch updates wb_over_bg_thresh() so that it uses the underlying wb_domain aware operations directly and builds the global dirty_throttle_control in the process. This patch doesn't introduce any behavioral changes. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
and rename it to wb_over_bg_thresh(). The function is closely tied to the dirty throttling mechanism implemented in page-writeback.c. This relocation will allow future updates necessary for cgroup writeback support. While at it, add function comment. This is pure reorganization and doesn't introduce any behavioral changes. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
global_dirty_limits() calculates thresh and bg_thresh (confusingly called *pdirty and *pbackground in the function) assuming global_wb_domain; however, cgroup writeback support requires considering per-memcg wb_domain too. This patch separates out domain_dirty_limits() which takes dirty_throttle_control out of global_dirty_limits(). As thresh and bg_thresh calculation needs the amount of dirtyable memory in the domain, dirty_throttle_control->avail is added. The new function calculates the two thresholds and store them directly in the dirty_throttle_control. Also, as memcg domains can't follow vm_dirty_bytes and dirty_background_bytes settings directly. If those are set and domain_dirty_limits() is invoked for a !global domain, the settings are translated to ratios by scaling them against globally available memory. dirty_throttle_control->gdtc is added to enable this when CONFIG_CGROUP_WRITEBACK. global_dirty_limits() is now a thin wrapper around domain_dirty_limits() and balance_dirty_pages() is updated to use the new function too. This patch doesn't introduce any behavioral changes. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
Currently __wb_writeout_inc() and hard_dirty_limit() assume global_wb_domain; however, cgroup writeback support requires considering per-memcg wb_domain too. This patch separates out domain-specific part of __wb_writeout_inc() into wb_domain_writeout_inc() which takes wb_domain as a parameter and adds the parameter to hard_dirty_limit(). This will allow these two functions to handle per-memcg wb_domains. This patch doesn't introduce any behavioral changes. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
Currently all dirty throttle operations use global_wb_domain; however, cgroup writeback support requires considering per-memcg wb_domain too. This patch adds dirty_throttle_control->dom and updates functions which are directly using globabl_wb_domain to use it instead. As this makes global_update_bandwidth() a misnomer, the function is renamed to domain_update_bandwidth(). This patch doesn't introduce any behavioral changes. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
wb->completions measures the wb's proportional write bandwidth in global_wb_domain and thus naturally tied to the wb_domain. This patch adds dirty_throttle_control->wb_completions which is initialized to wb->completions by GDTC_INIT() and updates __wb_dirty_limits() to use it instead of dereferencing wb->completions directly. This will allow dirty_throttle_control to represent different wb_domains and the matching wb completions. This patch doesn't introduce any behavioral changes. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
wb_position_ratio() is used to calculate pos_ratio, which is used for two purposes. wb_update_dirty_ratelimit() uses it to adjust wb->[balanced_]dirty_ratelimit gradually and balance_dirty_pages() to immediately adjust dirty_ratelimit right before applying it to determine pause duration. While wb_update_dirty_ratelimit() is separately rate limited from balance_dirty_pages(), on the run where the ratelimit is updated, we end up calculating pos_ratio twice with the same parameters. This patch adds dirty_throttle_control->pos_ratio. balance_dirty_pages() calculates it once per run and wb_update_dirty_ratelimit() uses the value stored in dirty_throttle_control. This removes the duplicate calculation and also will help implementing memcg wb_domain. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
wb_calc_thresh() calculates wb_thresh by scaling thresh according to the wb's portion in the system-wide write bandwidth. cgroup writeback support would need to calculate wb_thresh against memcg domain too. This patch renames wb_calc_thresh() to __wb_calc_thresh() and makes it take dirty_throttle_control so that the function can later be updated to calculate against different domains according to dirty_throttle_control. wb_calc_thresh() is now a thin wrapper around __wb_calc_thresh(). v2: The original version was incorrectly scaling dtc->dirty instead of dtc->thresh. This was due to the extremely confusing function and variable names. Added a rename patch and fixed this one. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
wb_bg_thresh is currently treated as a second-class citizen. It's only used when BDI_CAP_STRICTLIMIT is set and balance_dirty_pages() doesn't calculate it unless the cap is set. When the cap is set, the calculated value is not passed around but instead recalculated whenever it's used. wb_position_ratio() calculates it by scaling wb_thresh proportional to bg_thresh / thresh. wb_update_dirty_ratelimit() uses wb_dirty_limit() on bg_thresh, which should generally lead to a similar result as the proportional scaling but can also be way off in the presence of max/min_ratio settings. Avoiding wb_bg_thresh calculation saves us one u64 multiplication and divsion when BDI_CAP_STRICTLIMIT is not set. Given that balance_dirty_pages() is already ratelimited, this doesn't justify the incurred extra complexity. This patch adds wb_bg_thresh to dirty_throttle_control and makes wb_dirty_limits() always calculate it and updates the users to use the pre-calculated value. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
Dirty throttling implemented in balance_dirty_pages() and its subroutines makes use of a number of parameters which are passed around individually. This renders these functions somewhat unwieldy and makes it difficult to add or change the involved parameters. Also some functions use different or conflicting naming schemes for the same parameters making the code confusing to follow. This patch consolidates the main parameters into struct dirty_throttle_control so that they can be passed around easily and adding new paramters isn't painful. This also unifies how a given parameter is named and accessed. The drawback of using this type of control structure rather than explicit paramters is that it isn't immediately obvious which function accesses and modifies what; however, it's fairly clear that the benefits outweigh in this case. GDTC_INIT() macro is provided to ease initializing dirty_throttle_control for the global_wb_domain and balance_dirty_pages() uses a separate pointer to point to its global dirty_throttle_control. This is to make it uniform with memcg domain handling which will be added later. This patch doesn't introduce any behavioral changes. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
This patch is a part of the series to define wb_domain which represents a domain that wb's (bdi_writeback's) belong to and are measured against each other in. This will enable IO backpressure propagation for cgroup writeback. global_dirty_limit exists to regulate the global dirty threshold which is a property of the wb_domain. This patch moves hard_dirty_limit, dirty_lock, and update_time into wb_domain. This is pure reorganization and doesn't introduce any behavioral changes. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
Dirtyable memory is distributed to a wb (bdi_writeback) according to the relative bandwidth the wb is writing out in the whole system. This distribution is global - each wb is measured against all other wb's and gets the proportinately sized portion of the memory in the whole system. For cgroup writeback, the amount of dirtyable memory is scoped by memcg and thus each wb would need to be measured and controlled in its memcg. IOW, a wb will belong to two writeback domains - the global and memcg domains. Currently, what constitutes the global writeback domain are scattered across a number of global states. This patch starts collecting them into struct wb_domain. * fprop_global which serves as the basis for proportional bandwidth measurement and its period timer are moved into struct wb_domain. * global_wb_domain hosts the states for the global domain. * While at it, flatten wb_writeout_fraction() into its callers. This thin wrapper doesn't provide any actual benefits while getting in the way. This is pure reorganization and doesn't introduce any behavioral changes. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
__wb_update_bandwidth() is called from two places - fs/fs-writeback.c::balance_dirty_pages() and mm/page-writeback.c::wb_writeback(). The latter updates only the write bandwidth while the former also deals with the dirty ratelimit. The two callsites are distinguished by whether @thresh parameter is zero or not, which is cryptic. In addition, the two files define their own different versions of wb_update_bandwidth() on top of __wb_update_bandwidth(), which is confusing to say the least. This patch cleans up [__]wb_update_bandwidth() in the following ways. * __wb_update_bandwidth() now takes explicit @update_ratelimit parameter to gate dirty ratelimit handling. * mm/page-writeback.c::wb_update_bandwidth() is flattened into its caller - balance_dirty_pages(). * fs/fs-writeback.c::wb_update_bandwidth() is moved to mm/page-writeback.c and __wb_update_bandwidth() is made static. * While at it, add a lockdep assertion to __wb_update_bandwidth(). Except for the lockdep addition, this is pure reorganization and doesn't introduce any behavioral changes. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
The function name wb_dirty_limit(), its argument @dirty and the local variable @wb_dirty are mortally confusing given that the function calculates per-wb threshold value not dirty pages, especially given that @dirty and @wb_dirty are used elsewhere for dirty pages. Let's rename the function to wb_calc_thresh() and wb_dirty to wb_thresh. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
cpu_possible_mask represents the CPUs which are actually possible during that boot instance. For systems which don't support CPU hotplug, this will match cpu_online_mask exactly in most cases. Even for systems which support CPU hotplug, the number of possible CPU slots is highly unlikely to diverge greatly from the number of online CPUs. The only cases where the difference between possible and online caused problems were when the boot code failed to initialize the possible mask and left it fully set at NR_CPUS - 1. As such, most per-cpu constructs allocate for all possible CPUs and often iterate over the possibles, which also has the benefit of avoiding the blocking CPU hotplug synchronization. memcg open codes per-cpu stat counting for mem_cgroup_read_stat() and mem_cgroup_read_events(), which iterates over online CPUs and handles CPU hotplug operations explicitly. This complexity doesn't actually buy anything. Switch to iterating over the possibles and drop the explicit CPU hotplug handling. Eventually, we want to convert memcg to use percpu_counter instead of its own custom implementation which also benefits from quick access w/o summing for cases where larger error margin is acceptable. This will allow mem_cgroup_read_stat() to be called from non-sleepable contexts which will be used by cgroup writeback. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Michal Hocko <mhocko@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
Writeback now supports cgroup writeback and the generic writeback, buffer, libfs, and mpage helpers that ext2 uses are all updated to work with cgroup writeback. This patch enables cgroup writeback for ext2 by adding FS_CGROUP_WRITEBACK to its ->fs_flags. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: linux-ext4@vger.kernel.org Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
__mpage_writepage() is used to implement mpage_writepages() which in turn is used for ->writepages() of various filesystems. All writeback logic is now updated to handle cgroup writeback and the block cgroup to issue IOs for is encoded in writeback_control and can be retrieved from the inode; however, __mpage_writepage() currently ignores the blkcg indicated by the inode and issues all bio's without explicit blkcg association. This patch updates __mpage_writepage() so that the issued bio's are associated with inode_to_writeback_blkcg_css(inode). v2: Updated for per-inode wb association. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
[__]block_write_full_page() is used to implement ->writepage in various filesystems. All writeback logic is now updated to handle cgroup writeback and the block cgroup to issue IOs for is encoded in writeback_control and can be retrieved from the inode; however, [__]block_write_full_page() currently ignores the blkcg indicated by inode and issues all bio's without explicit blkcg association. This patch adds submit_bh_blkcg() which associates the bio with the specified blkio cgroup before issuing and uses it in __block_write_full_page() so that the issued bio's are associated with inode_to_wb_blkcg_css(inode). v2: Updated for per-inode wb association. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
__mark_inode_dirty() always dirtied the inode against the root wb (bdi_writeback). The previous patches added all the infrastructure necessary to attribute an inode against the wb of the dirtying cgroup. This patch updates __mark_inode_dirty() so that it uses the wb associated with the inode instead of unconditionally using the root one. Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all pages will keep being dirtied against the root wb. v2: Updated for per-inode wb association. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
[try_]writeback_inodes_sb[_nr]() and sync_inodes_sb() currently only handle dirty inodes on the root wb (bdi_writeback) of the target bdi. This patch implements bdi_split_work_to_wbs() and use it to make these functions handle multiple wb's. bdi_split_work_to_wbs() takes a base wb_writeback_work and create clones of it and issue them to the wb's of the target bdi. The base work's nr_pages is distributed using wb_split_bdi_pages() - ie. according to each wb's write bandwidth's proportion in the bdi. Cloning a bdi involves memory allocation which may fail. In such cases, bdi_split_work_to_wbs() issues the base work directly and waits for its completion before proceeding to the next wb to guarantee forward progress and correctness under memory pressure. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
try_writeback_inodes_sb_nr() wraps writeback_inodes_sb_nr() so that it handles s_umount locking and skips if writeback is already in progress. The in progress test is performed on the root wb (bdi_writeback) which isn't sufficient for cgroup writeback support. The test must be done per-wb. To prepare for the change, this patch factors out __writeback_inodes_sb_nr() from writeback_inodes_sb_nr() and adds @skip_if_busy and moves the in progress test right before queueing the wb_writeback_work. try_writeback_inodes_sb_nr() now just grabs s_umount and invokes __writeback_inodes_sb_nr() with asserted @skip_if_busy. This way, later addition of multiple wb handling can skip only the wb's which already have writeback in progress. This swaps the order between in progress test and s_umount test which can flip the return value when writeback is in progress and s_umount is being held by someone else but this shouldn't cause any meaningful difference. It's a fringe condition and the return value is an unsynchronized hint anyway. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
For cgroup writeback, multiple wb_writeback_work items may need to be issuedto accomplish a single task. The previous patch updated the waiting mechanism such that wb_wait_for_completion() can wait for multiple work items. Issuing mulitple work items involves memory allocation which may fail. As most writeback operations can't fail or blocked on memory allocation, in such cases, we'll fall back to sequential issuing of an on-stack work item, which would need to be waited upon sequentially. This patch implements wb_wait_for_single_work() which waits for a single work item independently from wb_completion waiting so that such fallback mechanism can be used without getting tangled with the usual issuing / completion operation. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
If the completion of a wb_writeback_work can be waited upon by setting its ->done to a struct completion and waiting on it; however, for cgroup writeback support, it's necessary to issue multiple work items to multiple bdi_writebacks and wait for the completion of all. This patch implements wb_completion which can wait for multiple work items and replaces the struct completion with it. It can be defined using DEFINE_WB_COMPLETION_ONSTACK(), used for multiple work items and waited for by wb_wait_for_completion(). Nobody currently issues multiple work items and this patch doesn't introduce any behavior changes. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
Currently, a wb_writeback_work is freed automatically on completion if it doesn't have ->done set. Add wb_writeback_work->auto_free to make the switch explicit. This will help cgroup writeback support where waiting for completion and whether to free automatically don't necessarily move together. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
wakeup_dirtytime_writeback() currently only starts writeback on the root wb (bdi_writeback). For cgroup writeback support, update the function to check all wbs. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
wakeup_flusher_threads() currently only starts writeback on the root wb (bdi_writeback). For cgroup writeback support, update the function to wake up all wbs and distribute the number of pages to write according to the proportion of each wb's write bandwidth, which is implemented in wb_split_bdi_pages(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
bdi_start_background_writeback() currently takes @bdi and kicks the root wb (bdi_writeback). In preparation for cgroup writeback support, make it take wb instead. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
writeback_in_progress() currently takes @bdi and returns whether writeback is in progress on its root wb (bdi_writeback). In preparation for cgroup writeback support, make it take wb instead. While at it, make it an inline function. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
-
Tejun Heo authored
For cgroup writeback support, all bdi-wide operations should be distributed to all its wb's (bdi_writeback's). This patch updates laptop_mode_timer_fn() so that it invokes wb_start_writeback() on all wb's rather than just the root one. As the intent is writing out all dirty data, there's no reason to split the number of pages to write. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
-