- 06 Nov, 2015 40 commits
-
-
Andrea Arcangeli authored
The stable_nodes can become stale at any time if the underlying pages gets freed. The stable_node gets collected and removed from the stable rbtree if that is detected during the rbtree lookups. Don't fail the lookup if running into stale stable_nodes, just restart the lookup after collecting the stale stable_nodes. Otherwise the CPU spent in the preparation stage is wasted and the lookup must be repeated at the next loop potentially failing a second time in a second stale stable_node. If we don't prune aggressively we delay the merging of the unstable node candidates and at the same time we delay the freeing of the stale stable_nodes. Keeping stale stable_nodes around wastes memory and it can't provide any benefit. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Petr Holasek <pholasek@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Andrea Arcangeli authored
While at it add it to the file and anon walks too. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Petr Holasek <pholasek@redhat.com> Acked-by: Davidlohr Bueso <dbueso@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vladimir Davydov authored
Before the previous patch ("memcg: unify slab and other kmem pages charging"), __mem_cgroup_from_kmem had to handle two types of kmem - slab pages and pages allocated with alloc_kmem_pages - memcg in the page struct. Now we can unify it. Since after it, this function becomes tiny we can fold it into mem_cgroup_from_kmem. [hughd@google.com: move mem_cgroup_from_kmem into list_lru.c] Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vladimir Davydov authored
We have memcg_kmem_charge and memcg_kmem_uncharge methods for charging and uncharging kmem pages to memcg, but currently they are not used for charging slab pages (i.e. they are only used for charging pages allocated with alloc_kmem_pages). The only reason why the slab subsystem uses special helpers, memcg_charge_slab and memcg_uncharge_slab, is that it needs to charge to the memcg of kmem cache while memcg_charge_kmem charges to the memcg that the current task belongs to. To remove this diversity, this patch adds an extra argument to __memcg_kmem_charge that can be a pointer to a memcg or NULL. If it is not NULL, the function tries to charge to the memcg it points to, otherwise it charge to the current context. Next, it makes the slab subsystem use this function to charge slab pages. Since memcg_charge_kmem and memcg_uncharge_kmem helpers are now used only in __memcg_kmem_charge and __memcg_kmem_uncharge, they are inlined. Since __memcg_kmem_charge stores a pointer to the memcg in the page struct, we don't need memcg_uncharge_slab anymore and can use free_kmem_pages. Besides, one can now detect which memcg a slab page belongs to by reading /proc/kpagecgroup. Note, this patch switches slab to charge-after-alloc design. Since this design is already used for all other memcg charges, it should not make any difference. [hannes@cmpxchg.org: better to have an outer function than a magic parameter for the memcg lookup] Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vladimir Davydov authored
Charging kmem pages proceeds in two steps. First, we try to charge the allocation size to the memcg the current task belongs to, then we allocate a page and "commit" the charge storing the pointer to the memcg in the page struct. Such a design looks overcomplicated, because there is not much sense in trying charging the allocation before actually allocating a page: we won't be able to consume much memory over the limit even if we charge after doing the actual allocation, besides we already charge user pages post factum, so being pedantic with kmem pages just looks pointless. So this patch simplifies the design by merging the "charge" and the "commit" steps into the same function, which takes the allocated page. Also, rename the charge and uncharge methods to memcg_kmem_charge and memcg_kmem_uncharge and make the charge method return error code instead of bool to conform to mem_cgroup_try_charge. Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Xishi Qiu authored
If kernelcore was not specified, or the kernelcore size is zero (required_movablecore >= totalpages), or the kernelcore size is larger than totalpages, there is no ZONE_MOVABLE. We should fill the zone with both kernel memory and movable memory. Signed-off-by: Xishi Qiu <qiuxishi@huawei.com> Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: <zhongjiang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Davidlohr Bueso authored
This function incurs in very hot paths and merely does a few loads for validity check. Lets inline it, such that we can save the function call overhead. (akpm: this is cosmetic - the compiler already inlines vmacache_valid_mm()) Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
yalin wang authored
Change HIGHMEM_ZONE to be the same as the DMA_ZONE macro. Signed-off-by: yalin wang <yalin.wang2010@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Laura Abbott authored
Srinivas Kandagatla reported bad page messages when trying to remove the bottom 2MB on an ARM based IFC6410 board BUG: Bad page state in process swapper pfn:fffa8 page:ef7fb500 count:0 mapcount:0 mapping: (null) index:0x0 flags: 0x96640253(locked|error|dirty|active|arch_1|reclaim|mlocked) page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set bad because of flags: flags: 0x200041(locked|active|mlocked) Modules linked in: CPU: 0 PID: 0 Comm: swapper Not tainted 3.19.0-rc3-00007-g412f9ba-dirty #816 Hardware name: Qualcomm (Flattened Device Tree) unwind_backtrace show_stack dump_stack bad_page free_pages_prepare free_hot_cold_page __free_pages free_highmem_page mem_init start_kernel Disabling lock debugging due to kernel taint Removing the lower 2MB made the start of the lowmem zone to no longer be page block aligned. IFC6410 uses CONFIG_FLATMEM where alloc_node_mem_map allocates memory for the mem_map. alloc_node_mem_map will offset for unaligned nodes with the assumption the pfn/page translation functions will account for the offset. The functions for CONFIG_FLATMEM do not offset however, resulting in overrunning the memmap array. Just use the allocated memmap without any offset when running with CONFIG_FLATMEM to avoid the overrun. Signed-off-by: Laura Abbott <laura@labbott.name> Signed-off-by: Laura Abbott <lauraa@codeaurora.org> Reported-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Tested-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Bjorn Andersson <bjorn.andersson@sonymobile.com> Cc: Santosh Shilimkar <ssantosh@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Kevin Hilman <khilman@linaro.org> Cc: Arnd Bergman <arnd@arndb.de> Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Andy Gross <agross@codeaurora.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Andrew Morton authored
With x86_64 (config http://ozlabs.org/~akpm/config-akpm2.txt) and old gcc (4.4.4), drivers/base/node.c:node_read_meminfo() is using 2344 bytes of stack. Uninlining node_page_state() reduces this to 440 bytes. The stack consumption issue is fixed by newer gcc (4.8.4) however with that compiler this patch reduces the node.o text size from 7314 bytes to 4578. Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Chen Gang authored
Make __install_special_mapping() args order match the caller, so the caller can pass their register args directly to callee with no touch. For most of architectures, args (at least the first 5th args) are in registers, so this change will have effect on most of architectures. For -O2, __install_special_mapping() may be inlined under most of architectures, but for -Os, it should not. So this change can get a little better performance for -Os, at least. Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Geliang Tang authored
(1) For !CONFIG_BUG cases, the bug call is a no-op, so we couldn't care less and the change is ok. (2) ppc and mips, which HAVE_ARCH_BUG_ON, do not rely on branch predictions as it seems to be pointless[1] and thus callers should not be trying to push an optimization in the first place. (3) For CONFIG_BUG and !HAVE_ARCH_BUG_ON cases, BUG_ON() contains an unlikely compiler flag already. Hence, we can drop unlikely behind BUG_ON(). [1] http://lkml.iu.edu/hypermail/linux/kernel/1101.3/02289.htmlSigned-off-by: Geliang Tang <geliangtang@163.com> Acked-by: Davidlohr Bueso <dave@stgolabs.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Chen Gang authored
When fget() fails we can return -EBADF directly. Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Chen Gang authored
It is still a little better to remove it, although it should be skipped by "-O2". Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>=0A= Acked-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vineet Gupta authored
This came up when implementing HIHGMEM/PAE40 for ARC. The kmap() / kmap_atomic() generated code seemed needlessly bloated due to the way PageHighMem() macro is implemented. It derives the exact zone for page and then does pointer subtraction with first zone to infer the zone_type. The pointer arithmatic in turn generates the code bloat. PageHighMem(page) is_highmem(page_zone(page)) zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones Instead use is_highmem_idx() to work on zone_type available in page flags ----- Before ----- 80756348: mov_s r13,r0 8075634a: ld_s r2,[r13,0] 8075634c: lsr_s r2,r2,30 8075634e: mpy r2,r2,0x2a4 80756352: add_s r2,r2,0x80aef880 80756358: ld_s r3,[r2,28] 8075635a: sub_s r2,r2,r3 8075635c: breq r2,0x2a4,80756378 <kmap+0x48> 80756364: breq r2,0x548,80756378 <kmap+0x48> ----- After ----- 80756330: mov_s r13,r0 80756332: ld_s r2,[r13,0] 80756334: lsr_s r2,r2,30 80756336: sub_s r2,r2,1 80756338: brlo r2,2,80756348 <kmap+0x30> For x86 defconfig build (32 bit only) it saves around 900 bytes. For ARC defconfig with HIGHMEM, it saved around 2K bytes. ---->8------- ./scripts/bloat-o-meter x86/vmlinux-defconfig-pre x86/vmlinux-defconfig-post add/remove: 0/0 grow/shrink: 0/36 up/down: 0/-934 (-934) function old new delta saveable_page 162 154 -8 saveable_highmem_page 154 146 -8 skb_gro_reset_offset 147 131 -16 ... ... __change_page_attr_set_clr 1715 1678 -37 setup_data_read 434 394 -40 mon_bin_event 1967 1927 -40 swsusp_save 1148 1105 -43 _set_pages_array 549 493 -56 ---->8------- e.g. For ARC kmap() Signed-off-by: Vineet Gupta <vgupta@synopsys.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jennifer Herbert <jennifer.herbert@citrix.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Oleg Nesterov authored
Both "child->mm == mm" and "p->mm != mm" checks in oom_kill_process() are wrong. task->mm can be NULL if the task is the exited group leader. This means in particular that "kill sharing same memory" loop can miss a process with a zombie leader which uses the same ->mm. Note: the process_has_mm(child, p->mm) check is still not 100% correct, p->mm can be NULL too. This is minor, but probably deserves a fix or a comment anyway. [akpm@linux-foundation.org: document process_shares_mm() a bit] Signed-off-by: Oleg Nesterov <oleg@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Kyle Walker <kwalker@redhat.com> Cc: Stanislav Kozina <skozina@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Oleg Nesterov authored
Purely cosmetic, but the complex "if" condition looks annoying to me. Especially because it is not consistent with OOM_SCORE_ADJ_MIN check which adds another if/continue. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Kyle Walker <kwalker@redhat.com> Cc: Stanislav Kozina <skozina@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Oleg Nesterov authored
The fatal_signal_pending() was added to suppress unnecessary "sharing same memory" message, but it can't 100% help anyway because it can be false-negative; SIGKILL can be already dequeued. And worse, it can be false-positive due to exec or coredump. exec is mostly fine, but coredump is not. It is possible that the group leader has the pending SIGKILL because its sub-thread originated the coredump, in this case we must not skip this process. We could probably add the additional ->group_exit_task check but this patch just removes the wrong check along with pr_info(). Signed-off-by: Oleg Nesterov <oleg@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Kyle Walker <kwalker@redhat.com> Cc: Stanislav Kozina <skozina@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Oleg Nesterov authored
Cosmetic, but expand_upwards() and expand_downwards() overuse vma->vm_mm, a local variable makes sense imho. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Oleg Nesterov authored
"mm->locked_vm += grow" and vm_stat_account() in acct_stack_growth() are not safe; multiple threads using the same ->mm can do this at the same time trying to expans different vma's under down_read(mmap_sem). This means that one of the "locked_vm += grow" changes can be lost and we can miss munlock_vma_pages_all() later. Move this code into the caller(s) under mm->page_table_lock. All other updates to ->locked_vm hold mmap_sem for writing. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Xishi Qiu authored
If the user set "movablecore=xx" to a large number, corepages will overflow. Fix the problem. Signed-off-by: Xishi Qiu <qiuxishi@huawei.com> Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Acked-by: Tang Chen <tangchen@cn.fujitsu.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Alexandru Moise authored
In zone_reclaimable_pages(), `nr' is returned by a function which is declared as returning "unsigned long", so declare it such. Negative values are meaningless here. In zone_pagecache_reclaimable() we should also declare `delta' and `nr_pagecache_reclaimable' as being unsigned longs because they're used to store the values returned by zone_page_state() and zone_unmapped_file_pages() which also happen to return unsigned integers. [akpm@linux-foundation.org: make zone_pagecache_reclaimable() return ulong rather than long] Signed-off-by: Alexandru Moise <00moses.alexander00@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
David Rientjes authored
The oom killer takes task_lock() in a couple of places solely to protect printing the task's comm. A process's comm, including current's comm, may change due to /proc/pid/comm or PR_SET_NAME. The comm will always be NULL-terminated, so the worst race scenario would only be during update. We can tolerate a comm being printed that is in the middle of an update to avoid taking the lock. Other locations in the kernel have already dropped task_lock() when printing comm, so this is consistent. Signed-off-by: David Rientjes <rientjes@google.com> Suggested-by: Oleg Nesterov <oleg@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vlastimil Babka authored
Compaction returns prematurely with COMPACT_PARTIAL when contended or has fatal signal pending. This is ok for the callers, but might be misleading in the traces, as the usual reason to return COMPACT_PARTIAL is that we think the allocation should succeed. After this patch we distinguish the premature ending condition in the mm_compaction_finished and mm_compaction_end tracepoints. The contended status covers the following reasons: - lock contention or need_resched() detected in async compaction - fatal signal pending - too many pages isolated in the zone (only for async compaction) Further distinguishing the exact reason seems unnecessary for now. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vlastimil Babka authored
Some compaction tracepoints use zone->name to print which zone is being compacted. This works for in-kernel printing, but not userspace trace printing of raw captured trace such as via trace-cmd report. This patch uses zone_idx() instead of zone->name as the raw value, and when printing, converts the zone_type to string using the appropriate EM() macros and some ugly tricks to overcome the problem that half the values depend on CONFIG_ options and one does not simply use #ifdef inside of #define. trace-cmd output before: transhuge-stres-4235 [000] 453.149280: mm_compaction_finished: node=0 zone=ffffffff81815d7a order=9 ret=partial after: transhuge-stres-4235 [000] 453.149280: mm_compaction_finished: node=0 zone=Normal order=9 ret=partial Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Valentin Rothberg <valentinrothberg@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vlastimil Babka authored
Some compaction tracepoints convert the integer return values to strings using the compaction_status_string array. This works for in-kernel printing, but not userspace trace printing of raw captured trace such as via trace-cmd report. This patch converts the private array to appropriate tracepoint macros that result in proper userspace support. trace-cmd output before: transhuge-stres-4235 [000] 453.149280: mm_compaction_finished: node=0 zone=ffffffff81815d7a order=9 ret= after: transhuge-stres-4235 [000] 453.149280: mm_compaction_finished: node=0 zone=ffffffff81815d7a order=9 ret=partial Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Tetsuo Handa authored
oom_kill_process() sends SIGKILL to other thread groups sharing victim's mm. But printing "Kill process %d (%s) sharing same memory\n" lines makes no sense if they already have pending SIGKILL. This patch reduces the "Kill process" lines by printing that line with info level only if SIGKILL is not pending. Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Tetsuo Handa authored
At the for_each_process() loop in oom_kill_process(), we are comparing address of OOM victim's mm without holding a reference to that mm. If there are a lot of processes to compare or a lot of "Kill process %d (%s) sharing same memory" messages to print, for_each_process() loop could take very long time. It is possible that meanwhile the OOM victim exits and releases its mm, and then mm is allocated with the same address and assigned to some unrelated process. When we hit such race, the unrelated process will be killed by error. To make sure that the OOM victim's mm does not go away until for_each_process() loop finishes, get a reference on the OOM victim's mm before calling task_unlock(victim). [oleg@redhat.com: several fixes] Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Tetsuo Handa authored
It was confirmed that a local unprivileged user can consume all memory reserves and hang up that system using time lag between the OOM killer sets TIF_MEMDIE on an OOM victim and sends SIGKILL to that victim, for printk() inside for_each_process() loop at oom_kill_process() can consume many seconds when there are many thread groups sharing the same memory. Before starting oom-depleter process: Node 0 DMA: 3*4kB (UM) 6*8kB (U) 4*16kB (UEM) 0*32kB 0*64kB 1*128kB (M) 2*256kB (EM) 2*512kB (UE) 2*1024kB (EM) 1*2048kB (E) 1*4096kB (M) = 9980kB Node 0 DMA32: 31*4kB (UEM) 27*8kB (UE) 32*16kB (UE) 13*32kB (UE) 14*64kB (UM) 7*128kB (UM) 8*256kB (UM) 8*512kB (UM) 3*1024kB (U) 4*2048kB (UM) 362*4096kB (UM) = 1503220kB As of invoking the OOM killer: Node 0 DMA: 11*4kB (UE) 8*8kB (UEM) 6*16kB (UE) 2*32kB (EM) 0*64kB 1*128kB (U) 3*256kB (UEM) 2*512kB (UE) 3*1024kB (UEM) 1*2048kB (U) 0*4096kB = 7308kB Node 0 DMA32: 1049*4kB (UEM) 507*8kB (UE) 151*16kB (UE) 53*32kB (UEM) 83*64kB (UEM) 52*128kB (EM) 25*256kB (UEM) 11*512kB (M) 6*1024kB (UM) 1*2048kB (M) 0*4096kB = 44556kB Between the thread group leader got TIF_MEMDIE and receives SIGKILL: Node 0 DMA: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 0kB Node 0 DMA32: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 0kB The oom-depleter's thread group leader which got TIF_MEMDIE started memset() in user space after the OOM killer set TIF_MEMDIE, and it was free to abuse ALLOC_NO_WATERMARKS by TIF_MEMDIE for memset() in user space until SIGKILL is delivered. If SIGKILL is delivered before TIF_MEMDIE is set, the oom-depleter can terminate without touching memory reserves. Although the possibility of hitting this time lag is very small for 3.19 and earlier kernels because TIF_MEMDIE is set immediately before sending SIGKILL, preemption or long interrupts (an extreme example is SysRq-t) can step between and allow memory allocations which are not needed for terminating the OOM victim. Fixes: 83363b91 ("oom: make sure that TIF_MEMDIE is set under task_lock") Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> [4.0+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Yaowei Bai authored
Make mem_cgroup_inactive_anon_is_low return bool due to this particular function only using either one or zero as its return value. No functional change. Signed-off-by: Yaowei Bai <bywxiaobai@163.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Yaowei Bai authored
Make inactive_anon/file_is_low return bool due to these particular functions only using either one or zero as their return value. No functional change. Signed-off-by: Yaowei Bai <bywxiaobai@163.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Ebru Akagunduz authored
max_ptes_swap specifies how many pages can be brought in from swap when collapsing a group of pages into a transparent huge page. /sys/kernel/mm/transparent_hugepage/khugepaged/max_ptes_swap A higher value can cause excessive swap IO and waste memory. A lower value can prevent THPs from being collapsed, resulting fewer pages being collapsed into THPs, and lower memory access performance. Signed-off-by: Ebru Akagunduz <ebru.akagunduz@gmail.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jerome Marchand authored
Since commit 6539cc05 ("mm: memcontrol: fold mem_cgroup_do_charge()"), the order to pass to mem_cgroup_oom() is calculated by passing the number of pages to get_order() instead of the expected size in bytes. AFAICT, it only affects the value displayed in the oom warning message. This patch fix this. Michal said: : We haven't noticed that just because the OOM is enabled only for page : faults of order-0 (single page) and get_order work just fine. Thanks for : noticing this. If we ever start triggering OOM on different orders this : would be broken. Signed-off-by: Jerome Marchand <jmarchan@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Naoya Horiguchi authored
Currently kernel prints out results of every single unpoison event, which i= s not necessary because unpoison is purely a testing feature and testers can = get little or no information from lots of lines of unpoison log storm. So this patch ratelimits printk in unpoison_memory(). This patch introduces a file local ratelimit_state, which adds 64 bytes to memory-failure.o. If we apply pr_info_ratelimited() for 8 callsite below, 2= 56 bytes is added, so it's a win. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Junichi Nomura authored
filemap_fdatawait() is a function to wait for on-going writeback to complete but also consume and clear error status of the mapping set during writeback. The latter functionality is critical for applications to detect writeback error with system calls like fsync(2)/fdatasync(2). However filemap_fdatawait() is also used by sync(2) or FIFREEZE ioctl, which don't check error status of individual mappings. As a result, fsync() may not be able to detect writeback error if events happen in the following order: Application System admin ---------------------------------------------------------- write data on page cache Run sync command writeback completes with error filemap_fdatawait() clears error fsync returns success (but the data is not on disk) This patch adds filemap_fdatawait_keep_errors() for call sites where writeback error is not handled so that they don't clear error status. Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com> Acked-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Tejun Heo <tj@kernel.org> Cc: Fengguang Wu <fengguang.wu@gmail.com> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Yaowei Bai authored
Introduce is_via_compact_memory() helper indicating compacting via /proc/sys/vm/compact_memory to improve readability. To catch this situation in __compaction_suitable, use order as parameter directly instead of using struct compact_control. This patch has no functional changes. Signed-off-by: Yaowei Bai <bywxiaobai@163.com> Cc: Mel Gorman <mgorman@techsingularity.net> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Yaowei Bai authored
Delete unnecessary if to let inactive_anon_is_low_global return directly. No functional changes. Signed-off-by: Yaowei Bai <bywxiaobai@163.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Naoya Horiguchi authored
Currently there's no easy way to get per-process usage of hugetlb pages, which is inconvenient because userspace applications which use hugetlb typically want to control their processes on the basis of how much memory (including hugetlb) they use. So this patch simply provides easy access to the info via /proc/PID/status. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Joern Engel <joern@logfs.org> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Naoya Horiguchi authored
Currently /proc/PID/smaps provides no usage info for vma(VM_HUGETLB), which is inconvenient when we want to know per-task or per-vma base hugetlb usage. To solve this, this patch adds new fields for hugetlb usage like below: Size: 20480 kB Rss: 0 kB Pss: 0 kB Shared_Clean: 0 kB Shared_Dirty: 0 kB Private_Clean: 0 kB Private_Dirty: 0 kB Referenced: 0 kB Anonymous: 0 kB AnonHugePages: 0 kB Shared_Hugetlb: 18432 kB Private_Hugetlb: 2048 kB Swap: 0 kB KernelPageSize: 2048 kB MMUPageSize: 2048 kB Locked: 0 kB VmFlags: rd wr mr mw me de ht [hughd@google.com: fix Private_Hugetlb alignment ] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Joern Engel <joern@logfs.org> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Roman Gushchin authored
Maximal readahead size is limited now by two values: 1) by global 2Mb constant (MAX_READAHEAD in max_sane_readahead()) 2) by configurable per-device value* (bdi->ra_pages) There are devices, which require custom readahead limit. For instance, for RAIDs it's calculated as number of devices multiplied by chunk size times 2. Readahead size can never be larger than bdi->ra_pages * 2 value (POSIX_FADV_SEQUNTIAL doubles readahead size). If so, why do we need two limits? I suggest to completely remove this max_sane_readahead() stuff and use per-device readahead limit everywhere. Also, using right readahead size for RAID disks can significantly increase i/o performance: before: dd if=/dev/md2 of=/dev/null bs=100M count=100 100+0 records in 100+0 records out 10485760000 bytes (10 GB) copied, 12.9741 s, 808 MB/s after: $ dd if=/dev/md2 of=/dev/null bs=100M count=100 100+0 records in 100+0 records out 10485760000 bytes (10 GB) copied, 8.91317 s, 1.2 GB/s (It's an 8-disks RAID5 storage). This patch doesn't change sys_readahead and madvise(MADV_WILLNEED) behavior introduced by 6d2be915 ("mm/readahead.c: fix readahead failure for memoryless NUMA nodes and limit readahead pages"). Signed-off-by: Roman Gushchin <klamm@yandex-team.ru> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: onstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-