opt_range.cc 268 KB
Newer Older
unknown's avatar
unknown committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */

unknown's avatar
unknown committed
17 18 19 20 21
/*
  TODO:
  Fix that MAYBE_KEY are stored in the tree so that we can detect use
  of full hash keys for queries like:

unknown's avatar
unknown committed
22 23
  select s.id, kws.keyword_id from sites as s,kws where s.id=kws.site_id and kws.keyword_id in (204,205);

unknown's avatar
unknown committed
24 25
*/

26 27
/*
  Classes in this file are used in the following way:
unknown's avatar
unknown committed
28 29
  1. For a selection condition a tree of SEL_IMERGE/SEL_TREE/SEL_ARG objects
     is created. #of rows in table and index statistics are ignored at this
30
     step.
unknown's avatar
unknown committed
31 32 33 34
  2. Created SEL_TREE and index stats data are used to construct a
     TABLE_READ_PLAN-derived object (TRP_*). Several 'candidate' table read
     plans may be created.
  3. The least expensive table read plan is used to create a tree of
35 36 37 38
     QUICK_SELECT_I-derived objects which are later used for row retrieval.
     QUICK_RANGEs are also created in this step.
*/

39
#ifdef USE_PRAGMA_IMPLEMENTATION
unknown's avatar
unknown committed
40 41 42 43 44 45 46 47 48 49 50 51
#pragma implementation				// gcc: Class implementation
#endif

#include "mysql_priv.h"
#include <m_ctype.h>
#include "sql_select.h"

#ifndef EXTRA_DEBUG
#define test_rb_tree(A,B) {}
#define test_use_count(A) {}
#endif

52
/*
53
  Convert double value to #rows. Currently this does floor(), and we
54 55
  might consider using round() instead.
*/
56
#define double2rows(x) ((ha_rows)(x))
57

unknown's avatar
unknown committed
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int sel_cmp(Field *f,char *a,char *b,uint8 a_flag,uint8 b_flag);

static char is_null_string[2]= {1,0};

class SEL_ARG :public Sql_alloc
{
public:
  uint8 min_flag,max_flag,maybe_flag;
  uint8 part;					// Which key part
  uint8 maybe_null;
  uint16 elements;				// Elements in tree
  ulong use_count;				// use of this sub_tree
  Field *field;
  char *min_value,*max_value;			// Pointer to range

  SEL_ARG *left,*right,*next,*prev,*parent,*next_key_part;
  enum leaf_color { BLACK,RED } color;
  enum Type { IMPOSSIBLE, MAYBE, MAYBE_KEY, KEY_RANGE } type;

  SEL_ARG() {}
  SEL_ARG(SEL_ARG &);
  SEL_ARG(Field *,const char *,const char *);
  SEL_ARG(Field *field, uint8 part, char *min_value, char *max_value,
	  uint8 min_flag, uint8 max_flag, uint8 maybe_flag);
  SEL_ARG(enum Type type_arg)
unknown's avatar
unknown committed
83 84 85
    :elements(1),use_count(1),left(0),next_key_part(0),color(BLACK),
     type(type_arg)
  {}
unknown's avatar
unknown committed
86 87
  inline bool is_same(SEL_ARG *arg)
  {
88
    if (type != arg->type || part != arg->part)
unknown's avatar
unknown committed
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
      return 0;
    if (type != KEY_RANGE)
      return 1;
    return cmp_min_to_min(arg) == 0 && cmp_max_to_max(arg) == 0;
  }
  inline void merge_flags(SEL_ARG *arg) { maybe_flag|=arg->maybe_flag; }
  inline void maybe_smaller() { maybe_flag=1; }
  inline int cmp_min_to_min(SEL_ARG* arg)
  {
    return sel_cmp(field,min_value, arg->min_value, min_flag, arg->min_flag);
  }
  inline int cmp_min_to_max(SEL_ARG* arg)
  {
    return sel_cmp(field,min_value, arg->max_value, min_flag, arg->max_flag);
  }
  inline int cmp_max_to_max(SEL_ARG* arg)
  {
    return sel_cmp(field,max_value, arg->max_value, max_flag, arg->max_flag);
  }
  inline int cmp_max_to_min(SEL_ARG* arg)
  {
    return sel_cmp(field,max_value, arg->min_value, max_flag, arg->min_flag);
  }
  SEL_ARG *clone_and(SEL_ARG* arg)
  {						// Get overlapping range
    char *new_min,*new_max;
    uint8 flag_min,flag_max;
    if (cmp_min_to_min(arg) >= 0)
    {
      new_min=min_value; flag_min=min_flag;
    }
    else
    {
      new_min=arg->min_value; flag_min=arg->min_flag; /* purecov: deadcode */
    }
    if (cmp_max_to_max(arg) <= 0)
    {
      new_max=max_value; flag_max=max_flag;
    }
    else
    {
      new_max=arg->max_value; flag_max=arg->max_flag;
    }
    return new SEL_ARG(field, part, new_min, new_max, flag_min, flag_max,
		       test(maybe_flag && arg->maybe_flag));
  }
  SEL_ARG *clone_first(SEL_ARG *arg)
  {						// min <= X < arg->min
    return new SEL_ARG(field,part, min_value, arg->min_value,
		       min_flag, arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX,
		       maybe_flag | arg->maybe_flag);
  }
  SEL_ARG *clone_last(SEL_ARG *arg)
  {						// min <= X <= key_max
    return new SEL_ARG(field, part, min_value, arg->max_value,
		       min_flag, arg->max_flag, maybe_flag | arg->maybe_flag);
  }
  SEL_ARG *clone(SEL_ARG *new_parent,SEL_ARG **next);

  bool copy_min(SEL_ARG* arg)
  {						// Get overlapping range
    if (cmp_min_to_min(arg) > 0)
    {
      min_value=arg->min_value; min_flag=arg->min_flag;
      if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
	  (NO_MAX_RANGE | NO_MIN_RANGE))
	return 1;				// Full range
    }
    maybe_flag|=arg->maybe_flag;
    return 0;
  }
  bool copy_max(SEL_ARG* arg)
  {						// Get overlapping range
    if (cmp_max_to_max(arg) <= 0)
    {
      max_value=arg->max_value; max_flag=arg->max_flag;
      if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
	  (NO_MAX_RANGE | NO_MIN_RANGE))
	return 1;				// Full range
    }
    maybe_flag|=arg->maybe_flag;
    return 0;
  }

  void copy_min_to_min(SEL_ARG *arg)
  {
    min_value=arg->min_value; min_flag=arg->min_flag;
  }
  void copy_min_to_max(SEL_ARG *arg)
  {
    max_value=arg->min_value;
    max_flag=arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX;
  }
  void copy_max_to_min(SEL_ARG *arg)
  {
    min_value=arg->max_value;
    min_flag=arg->max_flag & NEAR_MAX ? 0 : NEAR_MIN;
  }
187
  void store_min(uint length,char **min_key,uint min_key_flag)
unknown's avatar
unknown committed
188
  {
unknown's avatar
unknown committed
189 190 191
    if ((min_flag & GEOM_FLAG) ||
        (!(min_flag & NO_MIN_RANGE) &&
	!(min_key_flag & (NO_MIN_RANGE | NEAR_MIN))))
unknown's avatar
unknown committed
192 193 194 195
    {
      if (maybe_null && *min_value)
      {
	**min_key=1;
unknown's avatar
unknown committed
196
	bzero(*min_key+1,length-1);
unknown's avatar
unknown committed
197 198
      }
      else
unknown's avatar
unknown committed
199 200
	memcpy(*min_key,min_value,length);
      (*min_key)+= length;
unknown's avatar
unknown committed
201
    }
202
  }
unknown's avatar
unknown committed
203 204 205
  void store(uint length,char **min_key,uint min_key_flag,
	     char **max_key, uint max_key_flag)
  {
206
    store_min(length, min_key, min_key_flag);
unknown's avatar
unknown committed
207 208 209 210 211 212
    if (!(max_flag & NO_MAX_RANGE) &&
	!(max_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
    {
      if (maybe_null && *max_value)
      {
	**max_key=1;
unknown's avatar
unknown committed
213
	bzero(*max_key+1,length-1);
unknown's avatar
unknown committed
214 215
      }
      else
unknown's avatar
unknown committed
216 217
	memcpy(*max_key,max_value,length);
      (*max_key)+= length;
unknown's avatar
unknown committed
218 219 220 221 222 223
    }
  }

  void store_min_key(KEY_PART *key,char **range_key, uint *range_key_flag)
  {
    SEL_ARG *key_tree= first();
unknown's avatar
unknown committed
224
    key_tree->store(key[key_tree->part].store_length,
unknown's avatar
unknown committed
225 226 227 228 229 230 231 232 233 234 235 236
		    range_key,*range_key_flag,range_key,NO_MAX_RANGE);
    *range_key_flag|= key_tree->min_flag;
    if (key_tree->next_key_part &&
	key_tree->next_key_part->part == key_tree->part+1 &&
	!(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN)) &&
	key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
      key_tree->next_key_part->store_min_key(key,range_key, range_key_flag);
  }

  void store_max_key(KEY_PART *key,char **range_key, uint *range_key_flag)
  {
    SEL_ARG *key_tree= last();
unknown's avatar
unknown committed
237
    key_tree->store(key[key_tree->part].store_length,
unknown's avatar
unknown committed
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
		    range_key, NO_MIN_RANGE, range_key,*range_key_flag);
    (*range_key_flag)|= key_tree->max_flag;
    if (key_tree->next_key_part &&
	key_tree->next_key_part->part == key_tree->part+1 &&
	!(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX)) &&
	key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
      key_tree->next_key_part->store_max_key(key,range_key, range_key_flag);
  }

  SEL_ARG *insert(SEL_ARG *key);
  SEL_ARG *tree_delete(SEL_ARG *key);
  SEL_ARG *find_range(SEL_ARG *key);
  SEL_ARG *rb_insert(SEL_ARG *leaf);
  friend SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key, SEL_ARG *par);
#ifdef EXTRA_DEBUG
  friend int test_rb_tree(SEL_ARG *element,SEL_ARG *parent);
  void test_use_count(SEL_ARG *root);
#endif
  SEL_ARG *first();
  SEL_ARG *last();
  void make_root();
  inline bool simple_key()
  {
    return !next_key_part && elements == 1;
  }
  void increment_use_count(long count)
  {
    if (next_key_part)
    {
      next_key_part->use_count+=count;
      count*= (next_key_part->use_count-count);
      for (SEL_ARG *pos=next_key_part->first(); pos ; pos=pos->next)
	if (pos->next_key_part)
	  pos->increment_use_count(count);
    }
  }
  void free_tree()
  {
    for (SEL_ARG *pos=first(); pos ; pos=pos->next)
      if (pos->next_key_part)
      {
	pos->next_key_part->use_count--;
	pos->next_key_part->free_tree();
      }
  }

  inline SEL_ARG **parent_ptr()
  {
    return parent->left == this ? &parent->left : &parent->right;
  }
  SEL_ARG *clone_tree();
};

unknown's avatar
unknown committed
291
class SEL_IMERGE;
unknown's avatar
unknown committed
292

293

unknown's avatar
unknown committed
294 295 296 297 298
class SEL_TREE :public Sql_alloc
{
public:
  enum Type { IMPOSSIBLE, ALWAYS, MAYBE, KEY, KEY_SMALLER } type;
  SEL_TREE(enum Type type_arg) :type(type_arg) {}
unknown's avatar
unknown committed
299
  SEL_TREE() :type(KEY)
unknown's avatar
unknown committed
300
  {
unknown's avatar
unknown committed
301
    keys_map.clear_all();
unknown's avatar
unknown committed
302 303
    bzero((char*) keys,sizeof(keys));
  }
unknown's avatar
unknown committed
304
  SEL_ARG *keys[MAX_KEY];
305 306
  key_map keys_map;        /* bitmask of non-NULL elements in keys */

unknown's avatar
unknown committed
307 308
  /*
    Possible ways to read rows using index_merge. The list is non-empty only
309 310 311
    if type==KEY. Currently can be non empty only if keys_map.is_clear_all().
  */
  List<SEL_IMERGE> merges;
unknown's avatar
unknown committed
312

313 314
  /* The members below are filled/used only after get_mm_tree is done */
  key_map ror_scans_map;   /* bitmask of ROR scan-able elements in keys */
315
  uint    n_ror_scans;     /* number of set bits in ror_scans_map */
316 317 318 319

  struct st_ror_scan_info **ror_scans;     /* list of ROR key scans */
  struct st_ror_scan_info **ror_scans_end; /* last ROR scan */
  /* Note that #records for each key scan is stored in table->quick_rows */
unknown's avatar
unknown committed
320 321 322 323
};


typedef struct st_qsel_param {
324
  THD	*thd;
unknown's avatar
unknown committed
325
  TABLE *table;
326 327
  KEY_PART *key_parts,*key_parts_end;
  KEY_PART *key[MAX_KEY]; /* First key parts of keys used in the query */
328
  MEM_ROOT *mem_root, *old_root;
329
  table_map prev_tables,read_tables,current_table;
330
  uint baseflag, max_key_part, range_count;
unknown's avatar
unknown committed
331

332 333 334
  uint keys; /* number of keys used in the query */

  /* used_key_no -> table_key_no translation table */
unknown's avatar
unknown committed
335
  uint real_keynr[MAX_KEY];
336

unknown's avatar
unknown committed
337 338
  char min_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH],
    max_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH];
339
  bool quick;				// Don't calulate possible keys
340
  COND *cond;
341

unknown's avatar
unknown committed
342
  uint fields_bitmap_size;
343 344 345 346
  MY_BITMAP needed_fields;    /* bitmask of fields needed by the query */

  key_map *needed_reg;        /* ptr to SQL_SELECT::needed_reg */

347 348
  uint *imerge_cost_buff;     /* buffer for index_merge cost estimates */
  uint imerge_cost_buff_size; /* size of the buffer */
unknown's avatar
unknown committed
349 350 351

 /* TRUE if last checked tree->key can be used for ROR-scan */
  bool is_ror_scan;
unknown's avatar
unknown committed
352 353
} PARAM;

354 355 356 357 358
class TABLE_READ_PLAN;
  class TRP_RANGE;
  class TRP_ROR_INTERSECT;
  class TRP_ROR_UNION;
  class TRP_ROR_INDEX_MERGE;
359
  class TRP_GROUP_MIN_MAX;
360 361 362

struct st_ror_scan_info;

363
static SEL_TREE * get_mm_parts(PARAM *param,COND *cond_func,Field *field,
unknown's avatar
unknown committed
364 365
			       Item_func::Functype type,Item *value,
			       Item_result cmp_type);
366 367
static SEL_ARG *get_mm_leaf(PARAM *param,COND *cond_func,Field *field,
			    KEY_PART *key_part,
unknown's avatar
unknown committed
368 369
			    Item_func::Functype type,Item *value);
static SEL_TREE *get_mm_tree(PARAM *param,COND *cond);
370 371

static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts);
unknown's avatar
unknown committed
372 373 374 375 376
static ha_rows check_quick_select(PARAM *param,uint index,SEL_ARG *key_tree);
static ha_rows check_quick_keys(PARAM *param,uint index,SEL_ARG *key_tree,
				char *min_key,uint min_key_flag,
				char *max_key, uint max_key_flag);

unknown's avatar
unknown committed
377
QUICK_RANGE_SELECT *get_quick_select(PARAM *param,uint index,
unknown's avatar
unknown committed
378
                                     SEL_ARG *key_tree,
unknown's avatar
unknown committed
379
                                     MEM_ROOT *alloc = NULL);
380
static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree,
unknown's avatar
unknown committed
381
                                       bool index_read_must_be_used,
382 383 384 385 386 387
                                       double read_time);
static
TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param, SEL_TREE *tree,
                                          double read_time,
                                          bool *are_all_covering);
static
unknown's avatar
unknown committed
388 389
TRP_ROR_INTERSECT *get_best_covering_ror_intersect(PARAM *param,
                                                   SEL_TREE *tree,
390 391 392 393
                                                   double read_time);
static
TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param, SEL_IMERGE *imerge,
                                         double read_time);
394 395
static
TRP_GROUP_MIN_MAX *get_best_group_min_max(PARAM *param, SEL_TREE *tree);
396
static int get_index_merge_params(PARAM *param, key_map& needed_reg,
unknown's avatar
unknown committed
397
                           SEL_IMERGE *imerge, double *read_time,
398
                           ha_rows* imerge_rows);
unknown's avatar
unknown committed
399
static double get_index_only_read_time(const PARAM* param, ha_rows records,
400 401
                                       int keynr);

unknown's avatar
unknown committed
402
#ifndef DBUG_OFF
403 404
static void print_sel_tree(PARAM *param, SEL_TREE *tree, key_map *tree_map,
                           const char *msg);
unknown's avatar
unknown committed
405 406
static void print_ror_scans_arr(TABLE *table, const char *msg,
                                struct st_ror_scan_info **start,
407 408 409
                                struct st_ror_scan_info **end);
static void print_rowid(byte* val, int len);
static void print_quick(QUICK_SELECT_I *quick, const key_map *needed_reg);
unknown's avatar
unknown committed
410
#endif
411

unknown's avatar
unknown committed
412 413 414 415 416 417
static SEL_TREE *tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
static SEL_TREE *tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
static SEL_ARG *sel_add(SEL_ARG *key1,SEL_ARG *key2);
static SEL_ARG *key_or(SEL_ARG *key1,SEL_ARG *key2);
static SEL_ARG *key_and(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag);
static bool get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1);
unknown's avatar
unknown committed
418
bool get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
unknown's avatar
unknown committed
419 420 421 422 423
			   SEL_ARG *key_tree,char *min_key,uint min_key_flag,
			   char *max_key,uint max_key_flag);
static bool eq_tree(SEL_ARG* a,SEL_ARG *b);

static SEL_ARG null_element(SEL_ARG::IMPOSSIBLE);
unknown's avatar
unknown committed
424
static bool null_part_in_key(KEY_PART *key_part, const char *key,
unknown's avatar
unknown committed
425
                             uint length);
unknown's avatar
unknown committed
426 427 428 429
bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2, PARAM* param);


/*
unknown's avatar
unknown committed
430
  SEL_IMERGE is a list of possible ways to do index merge, i.e. it is
unknown's avatar
unknown committed
431
  a condition in the following form:
unknown's avatar
unknown committed
432
   (t_1||t_2||...||t_N) && (next)
unknown's avatar
unknown committed
433

unknown's avatar
unknown committed
434
  where all t_i are SEL_TREEs, next is another SEL_IMERGE and no pair
unknown's avatar
unknown committed
435 436 437 438 439 440 441 442 443 444 445
  (t_i,t_j) contains SEL_ARGS for the same index.

  SEL_TREE contained in SEL_IMERGE always has merges=NULL.

  This class relies on memory manager to do the cleanup.
*/

class SEL_IMERGE : public Sql_alloc
{
  enum { PREALLOCED_TREES= 10};
public:
unknown's avatar
unknown committed
446
  SEL_TREE *trees_prealloced[PREALLOCED_TREES];
unknown's avatar
unknown committed
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
  SEL_TREE **trees;             /* trees used to do index_merge   */
  SEL_TREE **trees_next;        /* last of these trees            */
  SEL_TREE **trees_end;         /* end of allocated space         */

  SEL_ARG  ***best_keys;        /* best keys to read in SEL_TREEs */

  SEL_IMERGE() :
    trees(&trees_prealloced[0]),
    trees_next(trees),
    trees_end(trees + PREALLOCED_TREES)
  {}
  int or_sel_tree(PARAM *param, SEL_TREE *tree);
  int or_sel_tree_with_checks(PARAM *param, SEL_TREE *new_tree);
  int or_sel_imerge_with_checks(PARAM *param, SEL_IMERGE* imerge);
};


unknown's avatar
unknown committed
464
/*
unknown's avatar
unknown committed
465 466
  Add SEL_TREE to this index_merge without any checks,

unknown's avatar
unknown committed
467 468
  NOTES
    This function implements the following:
unknown's avatar
unknown committed
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
      (x_1||...||x_N) || t = (x_1||...||x_N||t), where x_i, t are SEL_TREEs

  RETURN
     0 - OK
    -1 - Out of memory.
*/

int SEL_IMERGE::or_sel_tree(PARAM *param, SEL_TREE *tree)
{
  if (trees_next == trees_end)
  {
    const int realloc_ratio= 2;		/* Double size for next round */
    uint old_elements= (trees_end - trees);
    uint old_size= sizeof(SEL_TREE**) * old_elements;
    uint new_size= old_size * realloc_ratio;
    SEL_TREE **new_trees;
    if (!(new_trees= (SEL_TREE**)alloc_root(param->mem_root, new_size)))
      return -1;
    memcpy(new_trees, trees, old_size);
    trees=      new_trees;
    trees_next= trees + old_elements;
    trees_end=  trees + old_elements * realloc_ratio;
  }
  *(trees_next++)= tree;
  return 0;
}


/*
  Perform OR operation on this SEL_IMERGE and supplied SEL_TREE new_tree,
  combining new_tree with one of the trees in this SEL_IMERGE if they both
  have SEL_ARGs for the same key.
unknown's avatar
unknown committed
501

unknown's avatar
unknown committed
502 503 504 505 506
  SYNOPSIS
    or_sel_tree_with_checks()
      param    PARAM from SQL_SELECT::test_quick_select
      new_tree SEL_TREE with type KEY or KEY_SMALLER.

unknown's avatar
unknown committed
507
  NOTES
unknown's avatar
unknown committed
508
    This does the following:
unknown's avatar
unknown committed
509 510
    (t_1||...||t_k)||new_tree =
     either
unknown's avatar
unknown committed
511 512 513
       = (t_1||...||t_k||new_tree)
     or
       = (t_1||....||(t_j|| new_tree)||...||t_k),
unknown's avatar
unknown committed
514

unknown's avatar
unknown committed
515
     where t_i, y are SEL_TREEs.
unknown's avatar
unknown committed
516 517
    new_tree is combined with the first t_j it has a SEL_ARG on common
    key with. As a consequence of this, choice of keys to do index_merge
unknown's avatar
unknown committed
518 519
    read may depend on the order of conditions in WHERE part of the query.

unknown's avatar
unknown committed
520
  RETURN
unknown's avatar
unknown committed
521
    0  OK
unknown's avatar
unknown committed
522
    1  One of the trees was combined with new_tree to SEL_TREE::ALWAYS,
unknown's avatar
unknown committed
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
       and (*this) should be discarded.
   -1  An error occurred.
*/

int SEL_IMERGE::or_sel_tree_with_checks(PARAM *param, SEL_TREE *new_tree)
{
  for (SEL_TREE** tree = trees;
       tree != trees_next;
       tree++)
  {
    if (sel_trees_can_be_ored(*tree, new_tree, param))
    {
      *tree = tree_or(param, *tree, new_tree);
      if (!*tree)
        return 1;
      if (((*tree)->type == SEL_TREE::MAYBE) ||
          ((*tree)->type == SEL_TREE::ALWAYS))
        return 1;
      /* SEL_TREE::IMPOSSIBLE is impossible here */
      return 0;
    }
  }

546
  /* New tree cannot be combined with any of existing trees. */
unknown's avatar
unknown committed
547 548 549 550 551 552 553 554 555
  return or_sel_tree(param, new_tree);
}


/*
  Perform OR operation on this index_merge and supplied index_merge list.

  RETURN
    0 - OK
unknown's avatar
unknown committed
556
    1 - One of conditions in result is always TRUE and this SEL_IMERGE
unknown's avatar
unknown committed
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        should be discarded.
   -1 - An error occurred
*/

int SEL_IMERGE::or_sel_imerge_with_checks(PARAM *param, SEL_IMERGE* imerge)
{
  for (SEL_TREE** tree= imerge->trees;
       tree != imerge->trees_next;
       tree++)
  {
    if (or_sel_tree_with_checks(param, *tree))
      return 1;
  }
  return 0;
}


unknown's avatar
unknown committed
574
/*
575
  Perform AND operation on two index_merge lists and store result in *im1.
unknown's avatar
unknown committed
576 577 578 579 580 581 582 583 584 585 586
*/

inline void imerge_list_and_list(List<SEL_IMERGE> *im1, List<SEL_IMERGE> *im2)
{
  im1->concat(im2);
}


/*
  Perform OR operation on 2 index_merge lists, storing result in first list.

unknown's avatar
unknown committed
587
  NOTES
unknown's avatar
unknown committed
588 589 590
    The following conversion is implemented:
     (a_1 &&...&& a_N)||(b_1 &&...&& b_K) = AND_i,j(a_i || b_j) =>
      => (a_1||b_1).
unknown's avatar
unknown committed
591 592

    i.e. all conjuncts except the first one are currently dropped.
unknown's avatar
unknown committed
593 594
    This is done to avoid producing N*K ways to do index_merge.

unknown's avatar
unknown committed
595
    If (a_1||b_1) produce a condition that is always TRUE, NULL is returned
unknown's avatar
unknown committed
596
    and index_merge is discarded (while it is actually possible to try
597
    harder).
unknown's avatar
unknown committed
598

599 600
    As a consequence of this, choice of keys to do index_merge read may depend
    on the order of conditions in WHERE part of the query.
unknown's avatar
unknown committed
601 602

  RETURN
603
    0     OK, result is stored in *im1
unknown's avatar
unknown committed
604 605 606
    other Error, both passed lists are unusable
*/

unknown's avatar
unknown committed
607
int imerge_list_or_list(PARAM *param,
unknown's avatar
unknown committed
608 609 610 611 612 613
                        List<SEL_IMERGE> *im1,
                        List<SEL_IMERGE> *im2)
{
  SEL_IMERGE *imerge= im1->head();
  im1->empty();
  im1->push_back(imerge);
unknown's avatar
unknown committed
614

unknown's avatar
unknown committed
615 616 617 618 619 620 621 622
  return imerge->or_sel_imerge_with_checks(param, im2->head());
}


/*
  Perform OR operation on index_merge list and key tree.

  RETURN
623
    0     OK, result is stored in *im1.
unknown's avatar
unknown committed
624 625 626
    other Error
*/

unknown's avatar
unknown committed
627
int imerge_list_or_tree(PARAM *param,
unknown's avatar
unknown committed
628 629 630 631 632 633 634 635 636 637 638 639
                        List<SEL_IMERGE> *im1,
                        SEL_TREE *tree)
{
  SEL_IMERGE *imerge;
  List_iterator<SEL_IMERGE> it(*im1);
  while((imerge= it++))
  {
    if (imerge->or_sel_tree_with_checks(param, tree))
      it.remove();
  }
  return im1->is_empty();
}
unknown's avatar
unknown committed
640 641

/***************************************************************************
unknown's avatar
unknown committed
642
** Basic functions for SQL_SELECT and QUICK_RANGE_SELECT
unknown's avatar
unknown committed
643 644 645 646 647 648 649 650 651
***************************************************************************/

	/* make a select from mysql info
	   Error is set as following:
	   0 = ok
	   1 = Got some error (out of memory?)
	   */

SQL_SELECT *make_select(TABLE *head, table_map const_tables,
unknown's avatar
unknown committed
652 653 654 655
			table_map read_tables, COND *conds,
                        bool allow_null_cond,
                        int *error)
                        
unknown's avatar
unknown committed
656 657 658 659 660
{
  SQL_SELECT *select;
  DBUG_ENTER("make_select");

  *error=0;
661 662

  if (!conds && !allow_null_cond)
unknown's avatar
unknown committed
663 664 665
    DBUG_RETURN(0);
  if (!(select= new SQL_SELECT))
  {
666 667
    *error= 1;			// out of memory
    DBUG_RETURN(0);		/* purecov: inspected */
unknown's avatar
unknown committed
668 669 670 671 672 673
  }
  select->read_tables=read_tables;
  select->const_tables=const_tables;
  select->head=head;
  select->cond=conds;

unknown's avatar
unknown committed
674
  if (head->sort.io_cache)
unknown's avatar
unknown committed
675
  {
unknown's avatar
unknown committed
676
    select->file= *head->sort.io_cache;
unknown's avatar
unknown committed
677 678
    select->records=(ha_rows) (select->file.end_of_file/
			       head->file->ref_length);
unknown's avatar
unknown committed
679 680
    my_free((gptr) (head->sort.io_cache),MYF(0));
    head->sort.io_cache=0;
unknown's avatar
unknown committed
681 682 683 684 685 686 687
  }
  DBUG_RETURN(select);
}


SQL_SELECT::SQL_SELECT() :quick(0),cond(0),free_cond(0)
{
unknown's avatar
unknown committed
688
  quick_keys.clear_all(); needed_reg.clear_all();
unknown's avatar
unknown committed
689 690 691 692
  my_b_clear(&file);
}


693
void SQL_SELECT::cleanup()
unknown's avatar
unknown committed
694 695
{
  delete quick;
696
  quick= 0;
unknown's avatar
unknown committed
697
  if (free_cond)
698 699
  {
    free_cond=0;
unknown's avatar
unknown committed
700
    delete cond;
701
    cond= 0;
unknown's avatar
unknown committed
702
  }
unknown's avatar
unknown committed
703 704 705
  close_cached_file(&file);
}

706 707 708 709 710 711

SQL_SELECT::~SQL_SELECT()
{
  cleanup();
}

unknown's avatar
unknown committed
712
#undef index					// Fix for Unixware 7
unknown's avatar
unknown committed
713

unknown's avatar
unknown committed
714 715
QUICK_SELECT_I::QUICK_SELECT_I()
  :max_used_key_length(0),
716
   used_key_parts(0)
unknown's avatar
unknown committed
717 718
{}

unknown's avatar
unknown committed
719
QUICK_RANGE_SELECT::QUICK_RANGE_SELECT(THD *thd, TABLE *table, uint key_nr,
unknown's avatar
unknown committed
720
                                       bool no_alloc, MEM_ROOT *parent_alloc)
721
  :dont_free(0),error(0),free_file(0),in_range(0),cur_range(NULL),range(0)
unknown's avatar
unknown committed
722
{
unknown's avatar
unknown committed
723
  sorted= 0;
unknown's avatar
unknown committed
724 725
  index= key_nr;
  head=  table;
unknown's avatar
unknown committed
726
  key_part_info= head->key_info[index].key_part;
727
  my_init_dynamic_array(&ranges, sizeof(QUICK_RANGE*), 16, 16);
unknown's avatar
unknown committed
728

unknown's avatar
unknown committed
729
  /* 'thd' is not accessible in QUICK_RANGE_SELECT::reset(). */
unknown's avatar
unknown committed
730 731 732 733 734 735
  multi_range_bufsiz= thd->variables.read_rnd_buff_size;
  multi_range_count= thd->variables.multi_range_count;
  multi_range_length= 0;
  multi_range= NULL;
  multi_range_buff= NULL;

unknown's avatar
unknown committed
736
  if (!no_alloc && !parent_alloc)
unknown's avatar
unknown committed
737
  {
738 739
    // Allocates everything through the internal memroot
    init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
unknown's avatar
unknown committed
740
    thd->mem_root= &alloc;
unknown's avatar
unknown committed
741 742 743
  }
  else
    bzero((char*) &alloc,sizeof(alloc));
unknown's avatar
unknown committed
744 745
  file= head->file;
  record= head->record[0];
unknown's avatar
unknown committed
746 747
}

unknown's avatar
unknown committed
748

unknown's avatar
unknown committed
749 750
int QUICK_RANGE_SELECT::init()
{
unknown's avatar
unknown committed
751
  DBUG_ENTER("QUICK_RANGE_SELECT::init");
unknown's avatar
unknown committed
752

unknown's avatar
unknown committed
753 754 755 756 757 758 759 760 761 762
  if (file->inited == handler::NONE)
    DBUG_RETURN(error= file->ha_index_init(index));
  error= 0;
  DBUG_RETURN(0);
}


void QUICK_RANGE_SELECT::range_end()
{
  if (file->inited != handler::NONE)
763
    file->ha_index_or_rnd_end();
unknown's avatar
unknown committed
764 765
}

unknown's avatar
unknown committed
766

unknown's avatar
unknown committed
767
QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT()
unknown's avatar
unknown committed
768
{
769
  DBUG_ENTER("QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT");
unknown's avatar
unknown committed
770 771
  if (!dont_free)
  {
unknown's avatar
unknown committed
772 773
    /* file is NULL for CPK scan on covering ROR-intersection */
    if (file) 
774
    {
unknown's avatar
unknown committed
775 776 777 778 779 780 781
      range_end();
      file->extra(HA_EXTRA_NO_KEYREAD);
      if (free_file)
      {
        DBUG_PRINT("info", ("Freeing separate handler %p (free=%d)", file,
                            free_file));
        file->reset();
unknown's avatar
unknown committed
782
        file->external_lock(current_thd, F_UNLCK);
unknown's avatar
unknown committed
783 784
        file->close();
      }
unknown's avatar
unknown committed
785
    }
unknown's avatar
unknown committed
786
    delete_dynamic(&ranges); /* ranges are allocated in alloc */
unknown's avatar
unknown committed
787 788
    free_root(&alloc,MYF(0));
  }
unknown's avatar
unknown committed
789 790 791 792
  if (multi_range)
    my_free((char*) multi_range, MYF(0));
  if (multi_range_buff)
    my_free((char*) multi_range_buff, MYF(0));
unknown's avatar
unknown committed
793
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
794 795
}

unknown's avatar
unknown committed
796

unknown's avatar
unknown committed
797
QUICK_INDEX_MERGE_SELECT::QUICK_INDEX_MERGE_SELECT(THD *thd_param,
unknown's avatar
unknown committed
798
                                                   TABLE *table)
unknown's avatar
unknown committed
799
  :pk_quick_select(NULL), thd(thd_param)
unknown's avatar
unknown committed
800
{
801
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::QUICK_INDEX_MERGE_SELECT");
unknown's avatar
unknown committed
802 803
  index= MAX_KEY;
  head= table;
804
  bzero(&read_record, sizeof(read_record));
805
  init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
806
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
807 808 809 810
}

int QUICK_INDEX_MERGE_SELECT::init()
{
unknown's avatar
unknown committed
811 812
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::init");
  DBUG_RETURN(0);
unknown's avatar
unknown committed
813 814
}

815
int QUICK_INDEX_MERGE_SELECT::reset()
unknown's avatar
unknown committed
816
{
817
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::reset");
unknown's avatar
unknown committed
818
  DBUG_RETURN(read_keys_and_merge());
unknown's avatar
unknown committed
819 820
}

unknown's avatar
unknown committed
821
bool
unknown's avatar
unknown committed
822 823
QUICK_INDEX_MERGE_SELECT::push_quick_back(QUICK_RANGE_SELECT *quick_sel_range)
{
unknown's avatar
unknown committed
824 825
  /*
    Save quick_select that does scan on clustered primary key as it will be
826
    processed separately.
827
  */
unknown's avatar
unknown committed
828
  if (head->file->primary_key_is_clustered() &&
829
      quick_sel_range->index == head->s->primary_key)
830 831 832 833
    pk_quick_select= quick_sel_range;
  else
    return quick_selects.push_back(quick_sel_range);
  return 0;
unknown's avatar
unknown committed
834 835 836 837
}

QUICK_INDEX_MERGE_SELECT::~QUICK_INDEX_MERGE_SELECT()
{
unknown's avatar
unknown committed
838 839
  List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
  QUICK_RANGE_SELECT* quick;
840
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::~QUICK_INDEX_MERGE_SELECT");
unknown's avatar
unknown committed
841 842 843
  quick_it.rewind();
  while ((quick= quick_it++))
    quick->file= NULL;
unknown's avatar
unknown committed
844
  quick_selects.delete_elements();
845
  delete pk_quick_select;
unknown's avatar
unknown committed
846
  free_root(&alloc,MYF(0));
847
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
848 849
}

850 851 852 853 854

QUICK_ROR_INTERSECT_SELECT::QUICK_ROR_INTERSECT_SELECT(THD *thd_param,
                                                       TABLE *table,
                                                       bool retrieve_full_rows,
                                                       MEM_ROOT *parent_alloc)
unknown's avatar
unknown committed
855
  : cpk_quick(NULL), thd(thd_param), need_to_fetch_row(retrieve_full_rows),
unknown's avatar
unknown committed
856
    scans_inited(FALSE)
857 858
{
  index= MAX_KEY;
unknown's avatar
unknown committed
859
  head= table;
860 861
  record= head->record[0];
  if (!parent_alloc)
862
    init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
863 864
  else
    bzero(&alloc, sizeof(MEM_ROOT));
unknown's avatar
unknown committed
865
  last_rowid= (byte*)alloc_root(parent_alloc? parent_alloc : &alloc,
866 867 868
                                head->file->ref_length);
}

869

unknown's avatar
unknown committed
870
/*
871 872 873
  Do post-constructor initialization.
  SYNOPSIS
    QUICK_ROR_INTERSECT_SELECT::init()
unknown's avatar
unknown committed
874

875 876 877 878 879
  RETURN
    0      OK
    other  Error code
*/

880 881
int QUICK_ROR_INTERSECT_SELECT::init()
{
unknown's avatar
unknown committed
882 883 884
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::init");
 /* Check if last_rowid was successfully allocated in ctor */
  DBUG_RETURN(!last_rowid);
885 886 887 888
}


/*
889 890 891 892
  Initialize this quick select to be a ROR-merged scan.

  SYNOPSIS
    QUICK_RANGE_SELECT::init_ror_merged_scan()
unknown's avatar
unknown committed
893
      reuse_handler If TRUE, use head->file, otherwise create a separate
894 895 896 897
                    handler object

  NOTES
    This function creates and prepares for subsequent use a separate handler
unknown's avatar
unknown committed
898
    object if it can't reuse head->file. The reason for this is that during
899 900 901
    ROR-merge several key scans are performed simultaneously, and a single
    handler is only capable of preserving context of a single key scan.

unknown's avatar
unknown committed
902
    In ROR-merge the quick select doing merge does full records retrieval,
903
    merged quick selects read only keys.
unknown's avatar
unknown committed
904 905

  RETURN
906 907 908 909
    0  ROR child scan initialized, ok to use.
    1  error
*/

910
int QUICK_RANGE_SELECT::init_ror_merged_scan(bool reuse_handler)
911 912
{
  handler *save_file= file;
913
  DBUG_ENTER("QUICK_RANGE_SELECT::init_ror_merged_scan");
unknown's avatar
unknown committed
914

915 916 917 918
  if (reuse_handler)
  {
    DBUG_PRINT("info", ("Reusing handler %p", file));
    if (file->extra(HA_EXTRA_KEYREAD) ||
919
        file->extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) ||
920 921 922 923
        init() || reset())
    {
      DBUG_RETURN(1);
    }
unknown's avatar
unknown committed
924
    DBUG_RETURN(0);
925 926 927 928 929 930 931 932
  }

  /* Create a separate handler object for this quick select */
  if (free_file)
  {
    /* already have own 'handler' object. */
    DBUG_RETURN(0);
  }
unknown's avatar
unknown committed
933

unknown's avatar
unknown committed
934
  THD *thd= current_thd;
935
  if (!(file= get_new_handler(head, head->s->db_type)))
936 937
    goto failure;
  DBUG_PRINT("info", ("Allocated new handler %p", file));
938
  if (file->ha_open(head->s->path, head->db_stat, HA_OPEN_IGNORE_IF_LOCKED))
939
  {
unknown's avatar
unknown committed
940
    /* Caller will free the memory */
941 942
    goto failure;
  }
unknown's avatar
unknown committed
943 944
  if (file->external_lock(thd, F_RDLCK))
    goto failure;
unknown's avatar
unknown committed
945 946

  if (file->extra(HA_EXTRA_KEYREAD) ||
947
      file->extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) ||
948 949
      init() || reset())
  {
unknown's avatar
unknown committed
950
    file->external_lock(thd, F_UNLCK);
951 952 953
    file->close();
    goto failure;
  }
unknown's avatar
unknown committed
954
  free_file= TRUE;
955 956 957 958 959 960 961 962
  last_rowid= file->ref;
  DBUG_RETURN(0);

failure:
  file= save_file;
  DBUG_RETURN(1);
}

963 964 965 966 967

/*
  Initialize this quick select to be a part of a ROR-merged scan.
  SYNOPSIS
    QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan()
unknown's avatar
unknown committed
968
      reuse_handler If TRUE, use head->file, otherwise create separate
969
                    handler object.
unknown's avatar
unknown committed
970
  RETURN
971 972 973 974
    0     OK
    other error code
*/
int QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan(bool reuse_handler)
975 976 977
{
  List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
  QUICK_RANGE_SELECT* quick;
978
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan");
979 980

  /* Initialize all merged "children" quick selects */
unknown's avatar
unknown committed
981
  DBUG_ASSERT(!need_to_fetch_row || reuse_handler);
982 983 984
  if (!need_to_fetch_row && reuse_handler)
  {
    quick= quick_it++;
unknown's avatar
unknown committed
985
    /*
986
      There is no use of this->file. Use it for the first of merged range
987 988
      selects.
    */
unknown's avatar
unknown committed
989
    if (quick->init_ror_merged_scan(TRUE))
990 991 992 993 994
      DBUG_RETURN(1);
    quick->file->extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS);
  }
  while((quick= quick_it++))
  {
unknown's avatar
unknown committed
995
    if (quick->init_ror_merged_scan(FALSE))
996 997
      DBUG_RETURN(1);
    quick->file->extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS);
998
    /* All merged scans share the same record buffer in intersection. */
999 1000 1001
    quick->record= head->record[0];
  }

unknown's avatar
unknown committed
1002
  if (need_to_fetch_row && head->file->ha_rnd_init(1))
1003 1004 1005 1006 1007 1008 1009
  {
    DBUG_PRINT("error", ("ROR index_merge rnd_init call failed"));
    DBUG_RETURN(1);
  }
  DBUG_RETURN(0);
}

1010

unknown's avatar
unknown committed
1011
/*
1012 1013 1014 1015 1016 1017 1018 1019
  Initialize quick select for row retrieval.
  SYNOPSIS
    reset()
  RETURN
    0      OK
    other  Error code
*/

1020 1021 1022
int QUICK_ROR_INTERSECT_SELECT::reset()
{
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::reset");
unknown's avatar
unknown committed
1023 1024
  if (!scans_inited && init_ror_merged_scan(TRUE))
    DBUG_RETURN(1);
unknown's avatar
unknown committed
1025
  scans_inited= TRUE;
unknown's avatar
unknown committed
1026 1027 1028 1029 1030
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  QUICK_RANGE_SELECT *quick;
  while ((quick= it++))
    quick->reset();
  DBUG_RETURN(0);
1031 1032
}

1033 1034 1035

/*
  Add a merged quick select to this ROR-intersection quick select.
unknown's avatar
unknown committed
1036

1037 1038 1039 1040 1041 1042
  SYNOPSIS
    QUICK_ROR_INTERSECT_SELECT::push_quick_back()
      quick Quick select to be added. The quick select must return
            rows in rowid order.
  NOTES
    This call can only be made before init() is called.
unknown's avatar
unknown committed
1043

1044
  RETURN
unknown's avatar
unknown committed
1045
    FALSE OK
unknown's avatar
unknown committed
1046
    TRUE  Out of memory.
1047 1048
*/

unknown's avatar
unknown committed
1049
bool
1050 1051
QUICK_ROR_INTERSECT_SELECT::push_quick_back(QUICK_RANGE_SELECT *quick)
{
1052
  return quick_selects.push_back(quick);
1053 1054 1055
}

QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT()
unknown's avatar
unknown committed
1056
{
1057
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT");
unknown's avatar
unknown committed
1058
  quick_selects.delete_elements();
1059 1060
  delete cpk_quick;
  free_root(&alloc,MYF(0));
unknown's avatar
unknown committed
1061 1062
  if (need_to_fetch_row && head->file->inited != handler::NONE)
    head->file->ha_rnd_end();
1063 1064 1065
  DBUG_VOID_RETURN;
}

unknown's avatar
unknown committed
1066

1067 1068
QUICK_ROR_UNION_SELECT::QUICK_ROR_UNION_SELECT(THD *thd_param,
                                               TABLE *table)
unknown's avatar
unknown committed
1069
  : thd(thd_param), scans_inited(FALSE)
1070 1071 1072 1073 1074 1075
{
  index= MAX_KEY;
  head= table;
  rowid_length= table->file->ref_length;
  record= head->record[0];
  init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
unknown's avatar
unknown committed
1076
  thd_param->mem_root= &alloc;
1077 1078
}

1079 1080 1081 1082 1083

/*
  Do post-constructor initialization.
  SYNOPSIS
    QUICK_ROR_UNION_SELECT::init()
unknown's avatar
unknown committed
1084

1085 1086 1087 1088 1089
  RETURN
    0      OK
    other  Error code
*/

1090 1091
int QUICK_ROR_UNION_SELECT::init()
{
unknown's avatar
unknown committed
1092
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::init");
1093
  if (init_queue(&queue, quick_selects.elements, 0,
unknown's avatar
unknown committed
1094
                 FALSE , QUICK_ROR_UNION_SELECT::queue_cmp,
1095 1096 1097
                 (void*) this))
  {
    bzero(&queue, sizeof(QUEUE));
unknown's avatar
unknown committed
1098
    DBUG_RETURN(1);
1099
  }
unknown's avatar
unknown committed
1100

1101
  if (!(cur_rowid= (byte*)alloc_root(&alloc, 2*head->file->ref_length)))
unknown's avatar
unknown committed
1102
    DBUG_RETURN(1);
1103
  prev_rowid= cur_rowid + head->file->ref_length;
unknown's avatar
unknown committed
1104
  DBUG_RETURN(0);
1105 1106
}

1107

1108
/*
unknown's avatar
unknown committed
1109
  Comparison function to be used QUICK_ROR_UNION_SELECT::queue priority
1110 1111
  queue.

1112 1113 1114 1115 1116 1117
  SYNPOSIS
    QUICK_ROR_UNION_SELECT::queue_cmp()
      arg   Pointer to QUICK_ROR_UNION_SELECT
      val1  First merged select
      val2  Second merged select
*/
unknown's avatar
unknown committed
1118

1119 1120
int QUICK_ROR_UNION_SELECT::queue_cmp(void *arg, byte *val1, byte *val2)
{
1121
  QUICK_ROR_UNION_SELECT *self= (QUICK_ROR_UNION_SELECT*)arg;
1122 1123 1124 1125
  return self->head->file->cmp_ref(((QUICK_SELECT_I*)val1)->last_rowid,
                                   ((QUICK_SELECT_I*)val2)->last_rowid);
}

1126

unknown's avatar
unknown committed
1127
/*
1128 1129 1130
  Initialize quick select for row retrieval.
  SYNOPSIS
    reset()
unknown's avatar
unknown committed
1131

1132 1133 1134 1135 1136
  RETURN
    0      OK
    other  Error code
*/

1137 1138 1139 1140 1141
int QUICK_ROR_UNION_SELECT::reset()
{
  QUICK_SELECT_I* quick;
  int error;
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::reset");
unknown's avatar
unknown committed
1142
  have_prev_rowid= FALSE;
unknown's avatar
unknown committed
1143 1144 1145 1146 1147 1148 1149 1150 1151
  if (!scans_inited)
  {
    QUICK_SELECT_I *quick;
    List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
    while ((quick= it++))
    {
      if (quick->init_ror_merged_scan(FALSE))
        DBUG_RETURN(1);
    }
unknown's avatar
unknown committed
1152
    scans_inited= TRUE;
unknown's avatar
unknown committed
1153 1154
  }
  queue_remove_all(&queue);
unknown's avatar
unknown committed
1155 1156
  /*
    Initialize scans for merged quick selects and put all merged quick
1157 1158 1159 1160 1161
    selects into the queue.
  */
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  while ((quick= it++))
  {
unknown's avatar
unknown committed
1162
    if (quick->reset())
unknown's avatar
unknown committed
1163
      DBUG_RETURN(1);
1164 1165 1166 1167
    if ((error= quick->get_next()))
    {
      if (error == HA_ERR_END_OF_FILE)
        continue;
unknown's avatar
unknown committed
1168
      DBUG_RETURN(error);
1169 1170 1171 1172 1173
    }
    quick->save_last_pos();
    queue_insert(&queue, (byte*)quick);
  }

unknown's avatar
unknown committed
1174
  if (head->file->ha_rnd_init(1))
1175 1176 1177 1178 1179 1180 1181 1182 1183
  {
    DBUG_PRINT("error", ("ROR index_merge rnd_init call failed"));
    DBUG_RETURN(1);
  }

  DBUG_RETURN(0);
}


unknown's avatar
unknown committed
1184
bool
1185 1186 1187 1188 1189 1190 1191 1192 1193
QUICK_ROR_UNION_SELECT::push_quick_back(QUICK_SELECT_I *quick_sel_range)
{
  return quick_selects.push_back(quick_sel_range);
}

QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT()
{
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT");
  delete_queue(&queue);
unknown's avatar
unknown committed
1194
  quick_selects.delete_elements();
1195 1196
  if (head->file->inited != handler::NONE)
    head->file->ha_rnd_end();
1197 1198
  free_root(&alloc,MYF(0));
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
1199 1200
}

1201

unknown's avatar
unknown committed
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
QUICK_RANGE::QUICK_RANGE()
  :min_key(0),max_key(0),min_length(0),max_length(0),
   flag(NO_MIN_RANGE | NO_MAX_RANGE)
{}

SEL_ARG::SEL_ARG(SEL_ARG &arg) :Sql_alloc()
{
  type=arg.type;
  min_flag=arg.min_flag;
  max_flag=arg.max_flag;
  maybe_flag=arg.maybe_flag;
  maybe_null=arg.maybe_null;
  part=arg.part;
  field=arg.field;
  min_value=arg.min_value;
  max_value=arg.max_value;
  next_key_part=arg.next_key_part;
  use_count=1; elements=1;
}


inline void SEL_ARG::make_root()
{
  left=right= &null_element;
  color=BLACK;
  next=prev=0;
  use_count=0; elements=1;
}

SEL_ARG::SEL_ARG(Field *f,const char *min_value_arg,const char *max_value_arg)
  :min_flag(0), max_flag(0), maybe_flag(0), maybe_null(f->real_maybe_null()),
   elements(1), use_count(1), field(f), min_value((char*) min_value_arg),
   max_value((char*) max_value_arg), next(0),prev(0),
   next_key_part(0),color(BLACK),type(KEY_RANGE)
{
  left=right= &null_element;
}

SEL_ARG::SEL_ARG(Field *field_,uint8 part_,char *min_value_,char *max_value_,
		 uint8 min_flag_,uint8 max_flag_,uint8 maybe_flag_)
  :min_flag(min_flag_),max_flag(max_flag_),maybe_flag(maybe_flag_),
   part(part_),maybe_null(field_->real_maybe_null()), elements(1),use_count(1),
   field(field_), min_value(min_value_), max_value(max_value_),
   next(0),prev(0),next_key_part(0),color(BLACK),type(KEY_RANGE)
{
  left=right= &null_element;
}

SEL_ARG *SEL_ARG::clone(SEL_ARG *new_parent,SEL_ARG **next_arg)
{
  SEL_ARG *tmp;
  if (type != KEY_RANGE)
  {
1255 1256
    if (!(tmp= new SEL_ARG(type)))
      return 0;					// out of memory
unknown's avatar
unknown committed
1257 1258 1259 1260 1261 1262
    tmp->prev= *next_arg;			// Link into next/prev chain
    (*next_arg)->next=tmp;
    (*next_arg)= tmp;
  }
  else
  {
1263 1264 1265
    if (!(tmp= new SEL_ARG(field,part, min_value,max_value,
			   min_flag, max_flag, maybe_flag)))
      return 0;					// OOM
unknown's avatar
unknown committed
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
    tmp->parent=new_parent;
    tmp->next_key_part=next_key_part;
    if (left != &null_element)
      tmp->left=left->clone(tmp,next_arg);

    tmp->prev= *next_arg;			// Link into next/prev chain
    (*next_arg)->next=tmp;
    (*next_arg)= tmp;

    if (right != &null_element)
1276 1277
      if (!(tmp->right= right->clone(tmp,next_arg)))
	return 0;				// OOM
unknown's avatar
unknown committed
1278 1279
  }
  increment_use_count(1);
1280
  tmp->color= color;
unknown's avatar
unknown committed
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
  return tmp;
}

SEL_ARG *SEL_ARG::first()
{
  SEL_ARG *next_arg=this;
  if (!next_arg->left)
    return 0;					// MAYBE_KEY
  while (next_arg->left != &null_element)
    next_arg=next_arg->left;
  return next_arg;
}

SEL_ARG *SEL_ARG::last()
{
  SEL_ARG *next_arg=this;
  if (!next_arg->right)
    return 0;					// MAYBE_KEY
  while (next_arg->right != &null_element)
    next_arg=next_arg->right;
  return next_arg;
}

1304

unknown's avatar
unknown committed
1305 1306 1307
/*
  Check if a compare is ok, when one takes ranges in account
  Returns -2 or 2 if the ranges where 'joined' like  < 2 and >= 2
1308
*/
unknown's avatar
unknown committed
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

static int sel_cmp(Field *field, char *a,char *b,uint8 a_flag,uint8 b_flag)
{
  int cmp;
  /* First check if there was a compare to a min or max element */
  if (a_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
  {
    if ((a_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) ==
	(b_flag & (NO_MIN_RANGE | NO_MAX_RANGE)))
      return 0;
    return (a_flag & NO_MIN_RANGE) ? -1 : 1;
  }
  if (b_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
    return (b_flag & NO_MIN_RANGE) ? 1 : -1;

  if (field->real_maybe_null())			// If null is part of key
  {
    if (*a != *b)
    {
      return *a ? -1 : 1;
    }
    if (*a)
      goto end;					// NULL where equal
unknown's avatar
unknown committed
1332
    a++; b++;					// Skip NULL marker
unknown's avatar
unknown committed
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
  }
  cmp=field->key_cmp((byte*) a,(byte*) b);
  if (cmp) return cmp < 0 ? -1 : 1;		// The values differed

  // Check if the compared equal arguments was defined with open/closed range
 end:
  if (a_flag & (NEAR_MIN | NEAR_MAX))
  {
    if ((a_flag & (NEAR_MIN | NEAR_MAX)) == (b_flag & (NEAR_MIN | NEAR_MAX)))
      return 0;
    if (!(b_flag & (NEAR_MIN | NEAR_MAX)))
      return (a_flag & NEAR_MIN) ? 2 : -2;
    return (a_flag & NEAR_MIN) ? 1 : -1;
  }
  if (b_flag & (NEAR_MIN | NEAR_MAX))
    return (b_flag & NEAR_MIN) ? -2 : 2;
  return 0;					// The elements where equal
}


SEL_ARG *SEL_ARG::clone_tree()
{
  SEL_ARG tmp_link,*next_arg,*root;
  next_arg= &tmp_link;
1357
  root= clone((SEL_ARG *) 0, &next_arg);
unknown's avatar
unknown committed
1358 1359
  next_arg->next=0;				// Fix last link
  tmp_link.next->prev=0;			// Fix first link
1360 1361
  if (root)					// If not OOM
    root->use_count= 0;
unknown's avatar
unknown committed
1362 1363 1364
  return root;
}

1365

unknown's avatar
unknown committed
1366
/*
unknown's avatar
unknown committed
1367
  Table rows retrieval plan. Range optimizer creates QUICK_SELECT_I-derived
1368 1369 1370 1371 1372
  objects from table read plans.
*/
class TABLE_READ_PLAN
{
public:
unknown's avatar
unknown committed
1373 1374
  /*
    Plan read cost, with or without cost of full row retrieval, depending
1375 1376
    on plan creation parameters.
  */
unknown's avatar
unknown committed
1377
  double read_cost;
1378
  ha_rows records; /* estimate of #rows to be examined */
unknown's avatar
unknown committed
1379

unknown's avatar
unknown committed
1380 1381
  /*
    If TRUE, the scan returns rows in rowid order. This is used only for
1382 1383
    scans that can be both ROR and non-ROR.
  */
1384
  bool is_ror;
unknown's avatar
unknown committed
1385

1386 1387 1388 1389 1390
  /*
    Create quick select for this plan.
    SYNOPSIS
     make_quick()
       param               Parameter from test_quick_select
unknown's avatar
unknown committed
1391
       retrieve_full_rows  If TRUE, created quick select will do full record
1392 1393
                           retrieval.
       parent_alloc        Memory pool to use, if any.
unknown's avatar
unknown committed
1394

1395 1396
    NOTES
      retrieve_full_rows is ignored by some implementations.
unknown's avatar
unknown committed
1397 1398

    RETURN
1399 1400 1401
      created quick select
      NULL on any error.
  */
1402 1403 1404 1405
  virtual QUICK_SELECT_I *make_quick(PARAM *param,
                                     bool retrieve_full_rows,
                                     MEM_ROOT *parent_alloc=NULL) = 0;

1406
  /* Table read plans are allocated on MEM_ROOT and are never deleted */
1407 1408
  static void *operator new(size_t size, MEM_ROOT *mem_root)
  { return (void*) alloc_root(mem_root, (uint) size); }
unknown's avatar
unknown committed
1409
  static void operator delete(void *ptr,size_t size) { TRASH(ptr, size); }
1410
  static void operator delete(void *ptr, MEM_ROOT *mem_root) { /* Never called */ }
1411 1412 1413 1414 1415 1416 1417
};

class TRP_ROR_INTERSECT;
class TRP_ROR_UNION;
class TRP_INDEX_MERGE;


1418
/*
unknown's avatar
unknown committed
1419
  Plan for a QUICK_RANGE_SELECT scan.
1420 1421 1422
  TRP_RANGE::make_quick ignores retrieve_full_rows parameter because
  QUICK_RANGE_SELECT doesn't distinguish between 'index only' scans and full
  record retrieval scans.
unknown's avatar
unknown committed
1423
*/
unknown's avatar
unknown committed
1424

1425
class TRP_RANGE : public TABLE_READ_PLAN
unknown's avatar
unknown committed
1426
{
1427
public:
1428 1429
  SEL_ARG *key; /* set of intervals to be used in "range" method retrieval */
  uint     key_idx; /* key number in PARAM::key */
unknown's avatar
unknown committed
1430

unknown's avatar
unknown committed
1431
  TRP_RANGE(SEL_ARG *key_arg, uint idx_arg)
1432 1433
   : key(key_arg), key_idx(idx_arg)
  {}
unknown's avatar
unknown committed
1434

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
                             MEM_ROOT *parent_alloc)
  {
    DBUG_ENTER("TRP_RANGE::make_quick");
    QUICK_RANGE_SELECT *quick;
    if ((quick= get_quick_select(param, key_idx, key, parent_alloc)))
    {
      quick->records= records;
      quick->read_time= read_cost;
    }
    DBUG_RETURN(quick);
  }
};
unknown's avatar
unknown committed
1448 1449


1450 1451
/* Plan for QUICK_ROR_INTERSECT_SELECT scan. */

1452 1453 1454
class TRP_ROR_INTERSECT : public TABLE_READ_PLAN
{
public:
unknown's avatar
unknown committed
1455
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
1456
                             MEM_ROOT *parent_alloc);
unknown's avatar
unknown committed
1457

1458
  /* Array of pointers to ROR range scans used in this intersection */
1459
  struct st_ror_scan_info **first_scan;
1460 1461
  struct st_ror_scan_info **last_scan; /* End of the above array */
  struct st_ror_scan_info *cpk_scan;  /* Clustered PK scan, if there is one */
unknown's avatar
unknown committed
1462
  bool is_covering; /* TRUE if no row retrieval phase is necessary */
1463
  double index_scan_costs; /* SUM(cost(index_scan)) */
1464 1465
};

1466

unknown's avatar
unknown committed
1467
/*
1468 1469
  Plan for QUICK_ROR_UNION_SELECT scan.
  QUICK_ROR_UNION_SELECT always retrieves full rows, so retrieve_full_rows
unknown's avatar
unknown committed
1470
  is ignored by make_quick.
1471
*/
1472

1473 1474 1475
class TRP_ROR_UNION : public TABLE_READ_PLAN
{
public:
unknown's avatar
unknown committed
1476
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
1477
                             MEM_ROOT *parent_alloc);
1478 1479
  TABLE_READ_PLAN **first_ror; /* array of ptrs to plans for merged scans */
  TABLE_READ_PLAN **last_ror;  /* end of the above array */
1480 1481
};

1482 1483 1484 1485

/*
  Plan for QUICK_INDEX_MERGE_SELECT scan.
  QUICK_ROR_INTERSECT_SELECT always retrieves full rows, so retrieve_full_rows
unknown's avatar
unknown committed
1486
  is ignored by make_quick.
1487 1488
*/

1489 1490 1491
class TRP_INDEX_MERGE : public TABLE_READ_PLAN
{
public:
unknown's avatar
unknown committed
1492
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
1493
                             MEM_ROOT *parent_alloc);
1494 1495
  TRP_RANGE **range_scans; /* array of ptrs to plans of merged scans */
  TRP_RANGE **range_scans_end; /* end of the array */
1496 1497 1498
};


1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
/*
  Plan for a QUICK_GROUP_MIN_MAX_SELECT scan. 
*/

class TRP_GROUP_MIN_MAX : public TABLE_READ_PLAN
{
private:
  bool have_min, have_max;
  KEY_PART_INFO *min_max_arg_part;
  uint group_prefix_len;
  uint used_key_parts;
  uint group_key_parts;
  KEY *index_info;
  uint index;
  uint key_infix_len;
  byte key_infix[MAX_KEY_LENGTH];
  SEL_TREE *range_tree; /* Represents all range predicates in the query. */
  SEL_ARG  *index_tree; /* The SEL_ARG sub-tree corresponding to index_info. */
  uint param_idx; /* Index of used key in param->key. */
  /* Number of records selected by the ranges in index_tree. */
public:
  ha_rows quick_prefix_records;
public:
1522 1523 1524 1525
  TRP_GROUP_MIN_MAX(bool have_min_arg, bool have_max_arg,
                    KEY_PART_INFO *min_max_arg_part_arg,
                    uint group_prefix_len_arg, uint used_key_parts_arg,
                    uint group_key_parts_arg, KEY *index_info_arg,
1526 1527
                    uint index_arg, uint key_infix_len_arg,
                    byte *key_infix_arg,
1528 1529 1530 1531 1532 1533 1534 1535 1536
                    SEL_TREE *tree_arg, SEL_ARG *index_tree_arg,
                    uint param_idx_arg, ha_rows quick_prefix_records_arg)
  : have_min(have_min_arg), have_max(have_max_arg),
    min_max_arg_part(min_max_arg_part_arg),
    group_prefix_len(group_prefix_len_arg), used_key_parts(used_key_parts_arg),
    group_key_parts(group_key_parts_arg), index_info(index_info_arg),
    index(index_arg), key_infix_len(key_infix_len_arg), range_tree(tree_arg),
    index_tree(index_tree_arg), param_idx(param_idx_arg),
    quick_prefix_records(quick_prefix_records_arg)
1537 1538 1539 1540
    {
      if (key_infix_len)
        memcpy(this->key_infix, key_infix_arg, key_infix_len);
    }
1541 1542 1543 1544 1545 1546

  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
                             MEM_ROOT *parent_alloc);
};


unknown's avatar
unknown committed
1547
/*
1548
  Fill param->needed_fields with bitmap of fields used in the query.
unknown's avatar
unknown committed
1549
  SYNOPSIS
1550 1551
    fill_used_fields_bitmap()
      param Parameter from test_quick_select function.
unknown's avatar
unknown committed
1552

1553 1554 1555
  NOTES
    Clustered PK members are not put into the bitmap as they are implicitly
    present in all keys (and it is impossible to avoid reading them).
unknown's avatar
unknown committed
1556 1557 1558
  RETURN
    0  Ok
    1  Out of memory.
1559 1560 1561 1562 1563
*/

static int fill_used_fields_bitmap(PARAM *param)
{
  TABLE *table= param->table;
1564
  param->fields_bitmap_size= (table->s->fields/8 + 1);
1565 1566 1567
  uchar *tmp;
  uint pk;
  if (!(tmp= (uchar*)alloc_root(param->mem_root,param->fields_bitmap_size)) ||
unknown's avatar
unknown committed
1568
      bitmap_init(&param->needed_fields, tmp, param->fields_bitmap_size*8,
unknown's avatar
unknown committed
1569
                  FALSE))
1570
    return 1;
unknown's avatar
unknown committed
1571

1572
  bitmap_clear_all(&param->needed_fields);
1573
  for (uint i= 0; i < table->s->fields; i++)
1574 1575 1576 1577 1578
  {
    if (param->thd->query_id == table->field[i]->query_id)
      bitmap_set_bit(&param->needed_fields, i+1);
  }

1579
  pk= param->table->s->primary_key;
1580 1581
  if (param->table->file->primary_key_is_clustered() && pk != MAX_KEY)
  {
1582
    /* The table uses clustered PK and it is not internally generated */
1583
    KEY_PART_INFO *key_part= param->table->key_info[pk].key_part;
unknown's avatar
unknown committed
1584
    KEY_PART_INFO *key_part_end= key_part +
1585
                                 param->table->key_info[pk].key_parts;
unknown's avatar
unknown committed
1586
    for (;key_part != key_part_end; ++key_part)
1587 1588 1589 1590 1591 1592 1593 1594
    {
      bitmap_clear_bit(&param->needed_fields, key_part->fieldnr);
    }
  }
  return 0;
}


unknown's avatar
unknown committed
1595
/*
unknown's avatar
unknown committed
1596
  Test if a key can be used in different ranges
unknown's avatar
unknown committed
1597 1598

  SYNOPSIS
1599 1600 1601 1602 1603
    SQL_SELECT::test_quick_select()
      thd               Current thread
      keys_to_use       Keys to use for range retrieval
      prev_tables       Tables assumed to be already read when the scan is
                        performed (but not read at the moment of this call)
unknown's avatar
unknown committed
1604 1605 1606
      limit             Query limit
      force_quick_range Prefer to use range (instead of full table scan) even
                        if it is more expensive.
1607 1608 1609 1610 1611

  NOTES
    Updates the following in the select parameter:
      needed_reg - Bits for keys with may be used if all prev regs are read
      quick      - Parameter to use when reading records.
unknown's avatar
unknown committed
1612

1613 1614 1615
    In the table struct the following information is updated:
      quick_keys - Which keys can be used
      quick_rows - How many rows the key matches
unknown's avatar
unknown committed
1616

1617 1618 1619 1620
  TODO
   Check if this function really needs to modify keys_to_use, and change the
   code to pass it by reference if it doesn't.

unknown's avatar
unknown committed
1621
   In addition to force_quick_range other means can be (an usually are) used
1622 1623
   to make this function prefer range over full table scan. Figure out if
   force_quick_range is really needed.
unknown's avatar
unknown committed
1624

1625 1626 1627 1628
  RETURN
   -1 if impossible select (i.e. certainly no rows will be selected)
    0 if can't use quick_select
    1 if found usable ranges and quick select has been successfully created.
unknown's avatar
unknown committed
1629
*/
unknown's avatar
unknown committed
1630

1631 1632
int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
				  table_map prev_tables,
unknown's avatar
unknown committed
1633 1634 1635 1636
				  ha_rows limit, bool force_quick_range)
{
  uint idx;
  double scan_time;
1637
  DBUG_ENTER("SQL_SELECT::test_quick_select");
unknown's avatar
unknown committed
1638 1639 1640
  DBUG_PRINT("enter",("keys_to_use: %lu  prev_tables: %lu  const_tables: %lu",
		      keys_to_use.to_ulonglong(), (ulong) prev_tables,
		      (ulong) const_tables));
1641
  DBUG_PRINT("info", ("records=%lu", (ulong)head->file->records));
unknown's avatar
unknown committed
1642 1643
  delete quick;
  quick=0;
1644 1645 1646
  needed_reg.clear_all();
  quick_keys.clear_all();
  if ((specialflag & SPECIAL_SAFE_MODE) && ! force_quick_range ||
unknown's avatar
unknown committed
1647 1648
      !limit)
    DBUG_RETURN(0); /* purecov: inspected */
unknown's avatar
unknown committed
1649 1650
  if (keys_to_use.is_clear_all())
    DBUG_RETURN(0);
1651
  records= head->file->records;
unknown's avatar
unknown committed
1652 1653
  if (!records)
    records++;					/* purecov: inspected */
1654 1655
  scan_time= (double) records / TIME_FOR_COMPARE + 1;
  read_time= (double) head->file->scan_time() + scan_time + 1.1;
1656 1657
  if (head->force_index)
    scan_time= read_time= DBL_MAX;
unknown's avatar
unknown committed
1658
  if (limit < records)
1659
    read_time= (double) records + scan_time + 1; // Force to use index
unknown's avatar
unknown committed
1660
  else if (read_time <= 2.0 && !force_quick_range)
1661
    DBUG_RETURN(0);				/* No need for quick select */
unknown's avatar
unknown committed
1662

1663
  DBUG_PRINT("info",("Time to scan table: %g", read_time));
unknown's avatar
unknown committed
1664

1665 1666
  keys_to_use.intersect(head->keys_in_use_for_query);
  if (!keys_to_use.is_clear_all())
unknown's avatar
unknown committed
1667
  {
1668
    MEM_ROOT alloc;
1669
    SEL_TREE *tree= NULL;
unknown's avatar
unknown committed
1670
    KEY_PART *key_parts;
unknown's avatar
unknown committed
1671
    KEY *key_info;
unknown's avatar
unknown committed
1672
    PARAM param;
unknown's avatar
unknown committed
1673

unknown's avatar
unknown committed
1674
    /* set up parameter that is passed to all functions */
1675
    param.thd= thd;
unknown's avatar
unknown committed
1676
    param.baseflag=head->file->table_flags();
unknown's avatar
unknown committed
1677 1678 1679 1680 1681
    param.prev_tables=prev_tables | const_tables;
    param.read_tables=read_tables;
    param.current_table= head->map;
    param.table=head;
    param.keys=0;
1682
    param.mem_root= &alloc;
1683
    param.old_root= thd->mem_root;
1684
    param.needed_reg= &needed_reg;
1685
    param.imerge_cost_buff_size= 0;
unknown's avatar
unknown committed
1686

unknown's avatar
unknown committed
1687
    thd->no_errors=1;				// Don't warn about NULL
1688
    init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
1689 1690 1691 1692
    if (!(param.key_parts= (KEY_PART*) alloc_root(&alloc,
                                                  sizeof(KEY_PART)*
                                                  head->s->key_parts)) ||
        fill_used_fields_bitmap(&param))
unknown's avatar
unknown committed
1693
    {
unknown's avatar
unknown committed
1694
      thd->no_errors=0;
1695
      free_root(&alloc,MYF(0));			// Return memory & allocator
unknown's avatar
unknown committed
1696 1697 1698
      DBUG_RETURN(0);				// Can't use range
    }
    key_parts= param.key_parts;
1699
    thd->mem_root= &alloc;
unknown's avatar
unknown committed
1700 1701 1702 1703

    /*
      Make an array with description of all key parts of all table keys.
      This is used in get_mm_parts function.
1704
    */
unknown's avatar
unknown committed
1705
    key_info= head->key_info;
1706
    for (idx=0 ; idx < head->s->keys ; idx++, key_info++)
unknown's avatar
unknown committed
1707
    {
unknown's avatar
unknown committed
1708
      KEY_PART_INFO *key_part_info;
1709
      if (!keys_to_use.is_set(idx))
unknown's avatar
unknown committed
1710 1711 1712 1713 1714
	continue;
      if (key_info->flags & HA_FULLTEXT)
	continue;    // ToDo: ft-keys in non-ft ranges, if possible   SerG

      param.key[param.keys]=key_parts;
unknown's avatar
unknown committed
1715 1716 1717
      key_part_info= key_info->key_part;
      for (uint part=0 ; part < key_info->key_parts ;
	   part++, key_parts++, key_part_info++)
unknown's avatar
unknown committed
1718
      {
unknown's avatar
unknown committed
1719 1720 1721 1722 1723 1724
	key_parts->key=		 param.keys;
	key_parts->part=	 part;
	key_parts->length=       key_part_info->length;
	key_parts->store_length= key_part_info->store_length;
	key_parts->field=	 key_part_info->field;
	key_parts->null_bit=	 key_part_info->null_bit;
1725
        key_parts->image_type =
unknown's avatar
unknown committed
1726
          (key_info->flags & HA_SPATIAL) ? Field::itMBR : Field::itRAW;
unknown's avatar
unknown committed
1727 1728 1729 1730 1731
      }
      param.real_keynr[param.keys++]=idx;
    }
    param.key_parts_end=key_parts;

unknown's avatar
unknown committed
1732 1733 1734 1735
    /* Calculate cost of full index read for the shortest covering index */
    if (!head->used_keys.is_clear_all())
    {
      int key_for_use= find_shortest_key(head, &head->used_keys);
1736 1737 1738
      double key_read_time= (get_index_only_read_time(&param, records,
                                                     key_for_use) +
                             (double) records / TIME_FOR_COMPARE);
unknown's avatar
unknown committed
1739 1740 1741 1742 1743
      DBUG_PRINT("info",  ("'all'+'using index' scan will be using key %d, "
                           "read time %g", key_for_use, key_read_time));
      if (key_read_time < read_time)
        read_time= key_read_time;
    }
unknown's avatar
unknown committed
1744

1745 1746 1747 1748 1749
    TABLE_READ_PLAN *best_trp= NULL;
    TRP_GROUP_MIN_MAX *group_trp;
    double best_read_time= read_time;

    if (cond)
unknown's avatar
unknown committed
1750
    {
unknown's avatar
unknown committed
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
      if ((tree= get_mm_tree(&param,cond)))
      {
        if (tree->type == SEL_TREE::IMPOSSIBLE)
        {
          records=0L;                      /* Return -1 from this function. */
          read_time= (double) HA_POS_ERROR;
          goto free_mem;
        }
        if (tree->type != SEL_TREE::KEY &&
            tree->type != SEL_TREE::KEY_SMALLER)
          goto free_mem;
      }
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
    }

    /*
      Try to construct a QUICK_GROUP_MIN_MAX_SELECT.
      Notice that it can be constructed no matter if there is a range tree.
    */
    group_trp= get_best_group_min_max(&param, tree);
    if (group_trp && group_trp->read_cost < best_read_time)
    {
      best_trp= group_trp;
      best_read_time= best_trp->read_cost;
    }

    if (tree)
unknown's avatar
unknown committed
1777
    {
unknown's avatar
unknown committed
1778 1779 1780
      /*
        It is possible to use a range-based quick select (but it might be
        slower than 'all' table scan).
1781 1782
      */
      if (tree->merges.is_empty())
unknown's avatar
unknown committed
1783
      {
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
        TRP_RANGE         *range_trp;
        TRP_ROR_INTERSECT *rori_trp;
        bool can_build_covering= FALSE;

        /* Get best 'range' plan and prepare data for making other plans */
        if ((range_trp= get_key_scans_params(&param, tree, FALSE,
                                             best_read_time)))
        {
          best_trp= range_trp;
          best_read_time= best_trp->read_cost;
        }

unknown's avatar
unknown committed
1796
        /*
1797 1798 1799
          Simultaneous key scans and row deletes on several handler
          objects are not allowed so don't use ROR-intersection for
          table deletes.
unknown's avatar
unknown committed
1800
        */
1801 1802 1803 1804
        if ((thd->lex->sql_command != SQLCOM_DELETE))
#ifdef NOT_USED
          if ((thd->lex->sql_command != SQLCOM_UPDATE))
#endif
unknown's avatar
unknown committed
1805
        {
unknown's avatar
unknown committed
1806
          /*
1807 1808
            Get best non-covering ROR-intersection plan and prepare data for
            building covering ROR-intersection.
unknown's avatar
unknown committed
1809
          */
1810 1811
          if ((rori_trp= get_best_ror_intersect(&param, tree, best_read_time,
                                                &can_build_covering)))
unknown's avatar
unknown committed
1812
          {
1813 1814
            best_trp= rori_trp;
            best_read_time= best_trp->read_cost;
unknown's avatar
unknown committed
1815 1816
            /*
              Try constructing covering ROR-intersect only if it looks possible
1817 1818
              and worth doing.
            */
1819 1820 1821 1822
            if (!rori_trp->is_covering && can_build_covering &&
                (rori_trp= get_best_covering_ror_intersect(&param, tree,
                                                           best_read_time)))
              best_trp= rori_trp;
unknown's avatar
unknown committed
1823 1824
          }
        }
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
      }
      else
      {
        /* Try creating index_merge/ROR-union scan. */
        SEL_IMERGE *imerge;
        TABLE_READ_PLAN *best_conj_trp= NULL, *new_conj_trp;
        LINT_INIT(new_conj_trp); /* no empty index_merge lists possible */

        DBUG_PRINT("info",("No range reads possible,"
                           " trying to construct index_merge"));
        List_iterator_fast<SEL_IMERGE> it(tree->merges);
        while ((imerge= it++))
unknown's avatar
unknown committed
1837
        {
1838 1839 1840 1841
          new_conj_trp= get_best_disjunct_quick(&param, imerge, best_read_time);
          if (!best_conj_trp || (new_conj_trp && new_conj_trp->read_cost <
                                 best_conj_trp->read_cost))
            best_conj_trp= new_conj_trp;
1842
        }
1843 1844 1845 1846
        if (best_conj_trp)
          best_trp= best_conj_trp;
      }
    }
unknown's avatar
unknown committed
1847

1848
    thd->mem_root= param.old_root;
1849 1850 1851 1852 1853 1854 1855 1856 1857

    /* If we got a read plan, create a quick select from it. */
    if (best_trp)
    {
      records= best_trp->records;
      if (!(quick= best_trp->make_quick(&param, TRUE)) || quick->init())
      {
        delete quick;
        quick= NULL;
unknown's avatar
unknown committed
1858 1859
      }
    }
1860 1861

  free_mem:
1862
    free_root(&alloc,MYF(0));			// Return memory & allocator
1863
    thd->mem_root= param.old_root;
unknown's avatar
unknown committed
1864
    thd->no_errors=0;
unknown's avatar
unknown committed
1865
  }
unknown's avatar
unknown committed
1866

1867
  DBUG_EXECUTE("info", print_quick(quick, &needed_reg););
unknown's avatar
unknown committed
1868

unknown's avatar
unknown committed
1869 1870 1871 1872 1873 1874 1875
  /*
    Assume that if the user is using 'limit' we will only need to scan
    limit rows if we are using a key
  */
  DBUG_RETURN(records ? test(quick) : -1);
}

unknown's avatar
unknown committed
1876

unknown's avatar
unknown committed
1877
/*
1878 1879 1880 1881
  Get cost of 'sweep' full records retrieval.
  SYNOPSIS
    get_sweep_read_cost()
      param            Parameter from test_quick_select
unknown's avatar
unknown committed
1882
      records          # of records to be retrieved
1883
  RETURN
unknown's avatar
unknown committed
1884
    cost of sweep
1885
*/
1886

1887
double get_sweep_read_cost(const PARAM *param, ha_rows records)
1888
{
1889
  double result;
1890
  DBUG_ENTER("get_sweep_read_cost");
1891 1892
  if (param->table->file->primary_key_is_clustered())
  {
1893
    result= param->table->file->read_time(param->table->s->primary_key,
1894
                                          records, records);
1895 1896
  }
  else
unknown's avatar
unknown committed
1897
  {
1898
    double n_blocks=
unknown's avatar
unknown committed
1899
      ceil(ulonglong2double(param->table->file->data_file_length) / IO_SIZE);
1900 1901 1902 1903
    double busy_blocks=
      n_blocks * (1.0 - pow(1.0 - 1.0/n_blocks, rows2double(records)));
    if (busy_blocks < 1.0)
      busy_blocks= 1.0;
unknown's avatar
unknown committed
1904
    DBUG_PRINT("info",("sweep: nblocks=%g, busy_blocks=%g", n_blocks,
1905
                       busy_blocks));
1906
    /*
unknown's avatar
unknown committed
1907
      Disabled: Bail out if # of blocks to read is bigger than # of blocks in
1908 1909 1910 1911 1912 1913 1914 1915
      table data file.
    if (max_cost != DBL_MAX  && (busy_blocks+index_reads_cost) >= n_blocks)
      return 1;
    */
    JOIN *join= param->thd->lex->select_lex.join;
    if (!join || join->tables == 1)
    {
      /* No join, assume reading is done in one 'sweep' */
unknown's avatar
unknown committed
1916
      result= busy_blocks*(DISK_SEEK_BASE_COST +
1917 1918 1919 1920
                          DISK_SEEK_PROP_COST*n_blocks/busy_blocks);
    }
    else
    {
unknown's avatar
unknown committed
1921
      /*
1922 1923 1924
        Possibly this is a join with source table being non-last table, so
        assume that disk seeks are random here.
      */
1925
      result= busy_blocks;
1926 1927
    }
  }
1928
  DBUG_PRINT("info",("returning cost=%g", result));
1929
  DBUG_RETURN(result);
1930
}
1931 1932


1933 1934 1935 1936
/*
  Get best plan for a SEL_IMERGE disjunctive expression.
  SYNOPSIS
    get_best_disjunct_quick()
1937 1938
      param     Parameter from check_quick_select function
      imerge    Expression to use
1939
      read_time Don't create scans with cost > read_time
unknown's avatar
unknown committed
1940

1941
  NOTES
1942
    index_merge cost is calculated as follows:
unknown's avatar
unknown committed
1943
    index_merge_cost =
1944 1945 1946 1947 1948
      cost(index_reads) +         (see #1)
      cost(rowid_to_row_scan) +   (see #2)
      cost(unique_use)            (see #3)

    1. cost(index_reads) =SUM_i(cost(index_read_i))
unknown's avatar
unknown committed
1949 1950
       For non-CPK scans,
         cost(index_read_i) = {cost of ordinary 'index only' scan}
1951 1952 1953 1954 1955
       For CPK scan,
         cost(index_read_i) = {cost of non-'index only' scan}

    2. cost(rowid_to_row_scan)
      If table PK is clustered then
unknown's avatar
unknown committed
1956
        cost(rowid_to_row_scan) =
1957
          {cost of ordinary clustered PK scan with n_ranges=n_rows}
unknown's avatar
unknown committed
1958 1959

      Otherwise, we use the following model to calculate costs:
1960
      We need to retrieve n_rows rows from file that occupies n_blocks blocks.
unknown's avatar
unknown committed
1961
      We assume that offsets of rows we need are independent variates with
1962
      uniform distribution in [0..max_file_offset] range.
unknown's avatar
unknown committed
1963

1964 1965
      We'll denote block as "busy" if it contains row(s) we need to retrieve
      and "empty" if doesn't contain rows we need.
unknown's avatar
unknown committed
1966

1967
      Probability that a block is empty is (1 - 1/n_blocks)^n_rows (this
unknown's avatar
unknown committed
1968
      applies to any block in file). Let x_i be a variate taking value 1 if
1969
      block #i is empty and 0 otherwise.
unknown's avatar
unknown committed
1970

1971 1972
      Then E(x_i) = (1 - 1/n_blocks)^n_rows;

unknown's avatar
unknown committed
1973 1974
      E(n_empty_blocks) = E(sum(x_i)) = sum(E(x_i)) =
        = n_blocks * ((1 - 1/n_blocks)^n_rows) =
1975 1976 1977 1978
       ~= n_blocks * exp(-n_rows/n_blocks).

      E(n_busy_blocks) = n_blocks*(1 - (1 - 1/n_blocks)^n_rows) =
       ~= n_blocks * (1 - exp(-n_rows/n_blocks)).
unknown's avatar
unknown committed
1979

1980 1981
      Average size of "hole" between neighbor non-empty blocks is
           E(hole_size) = n_blocks/E(n_busy_blocks).
unknown's avatar
unknown committed
1982

1983 1984 1985 1986 1987 1988
      The total cost of reading all needed blocks in one "sweep" is:

      E(n_busy_blocks)*
       (DISK_SEEK_BASE_COST + DISK_SEEK_PROP_COST*n_blocks/E(n_busy_blocks)).

    3. Cost of Unique use is calculated in Unique::get_use_cost function.
unknown's avatar
unknown committed
1989 1990 1991 1992 1993

  ROR-union cost is calculated in the same way index_merge, but instead of
  Unique a priority queue is used.

  RETURN
1994 1995
    Created read plan
    NULL - Out of memory or no read scan could be built.
1996
*/
1997

1998 1999
static
TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param, SEL_IMERGE *imerge,
2000
                                         double read_time)
2001 2002 2003 2004 2005 2006 2007
{
  SEL_TREE **ptree;
  TRP_INDEX_MERGE *imerge_trp= NULL;
  uint n_child_scans= imerge->trees_next - imerge->trees;
  TRP_RANGE **range_scans;
  TRP_RANGE **cur_child;
  TRP_RANGE **cpk_scan= NULL;
unknown's avatar
unknown committed
2008
  bool imerge_too_expensive= FALSE;
2009 2010 2011 2012
  double imerge_cost= 0.0;
  ha_rows cpk_scan_records= 0;
  ha_rows non_cpk_scan_records= 0;
  bool pk_is_clustered= param->table->file->primary_key_is_clustered();
unknown's avatar
unknown committed
2013 2014
  bool all_scans_ror_able= TRUE;
  bool all_scans_rors= TRUE;
2015 2016 2017 2018 2019 2020 2021 2022 2023
  uint unique_calc_buff_size;
  TABLE_READ_PLAN **roru_read_plans;
  TABLE_READ_PLAN **cur_roru_plan;
  double roru_index_costs;
  ha_rows roru_total_records;
  double roru_intersect_part= 1.0;
  DBUG_ENTER("get_best_disjunct_quick");
  DBUG_PRINT("info", ("Full table scan cost =%g", read_time));

unknown's avatar
unknown committed
2024
  if (!(range_scans= (TRP_RANGE**)alloc_root(param->mem_root,
2025 2026 2027
                                             sizeof(TRP_RANGE*)*
                                             n_child_scans)))
    DBUG_RETURN(NULL);
2028
  /*
2029 2030 2031
    Collect best 'range' scan for each of disjuncts, and, while doing so,
    analyze possibility of ROR scans. Also calculate some values needed by
    other parts of the code.
2032
  */
2033
  for (ptree= imerge->trees, cur_child= range_scans;
2034
       ptree != imerge->trees_next;
2035
       ptree++, cur_child++)
2036
  {
2037 2038
    DBUG_EXECUTE("info", print_sel_tree(param, *ptree, &(*ptree)->keys_map,
                                        "tree in SEL_IMERGE"););
unknown's avatar
unknown committed
2039
    if (!(*cur_child= get_key_scans_params(param, *ptree, TRUE, read_time)))
2040 2041
    {
      /*
2042
        One of index scans in this index_merge is more expensive than entire
2043 2044 2045
        table read for another available option. The entire index_merge (and
        any possible ROR-union) will be more expensive then, too. We continue
        here only to update SQL_SELECT members.
2046
      */
unknown's avatar
unknown committed
2047
      imerge_too_expensive= TRUE;
2048 2049 2050
    }
    if (imerge_too_expensive)
      continue;
unknown's avatar
unknown committed
2051

2052 2053 2054
    imerge_cost += (*cur_child)->read_cost;
    all_scans_ror_able &= ((*ptree)->n_ror_scans > 0);
    all_scans_rors &= (*cur_child)->is_ror;
unknown's avatar
unknown committed
2055
    if (pk_is_clustered &&
2056 2057
        param->real_keynr[(*cur_child)->key_idx] ==
        param->table->s->primary_key)
2058
    {
2059 2060
      cpk_scan= cur_child;
      cpk_scan_records= (*cur_child)->records;
2061 2062
    }
    else
2063
      non_cpk_scan_records += (*cur_child)->records;
2064
  }
unknown's avatar
unknown committed
2065

2066
  DBUG_PRINT("info", ("index_merge scans cost=%g", imerge_cost));
unknown's avatar
unknown committed
2067
  if (imerge_too_expensive || (imerge_cost > read_time) ||
2068 2069
      (non_cpk_scan_records+cpk_scan_records >= param->table->file->records) &&
      read_time != DBL_MAX)
2070
  {
unknown's avatar
unknown committed
2071 2072
    /*
      Bail out if it is obvious that both index_merge and ROR-union will be
2073
      more expensive
2074
    */
2075 2076
    DBUG_PRINT("info", ("Sum of index_merge scans is more expensive than "
                        "full table scan, bailing out"));
unknown's avatar
unknown committed
2077
    DBUG_RETURN(NULL);
2078
  }
2079
  if (all_scans_rors)
2080
  {
2081 2082
    roru_read_plans= (TABLE_READ_PLAN**)range_scans;
    goto skip_to_ror_scan;
2083
  }
unknown's avatar
unknown committed
2084 2085
  if (cpk_scan)
  {
2086 2087
    /*
      Add one ROWID comparison for each row retrieved on non-CPK scan.  (it
unknown's avatar
unknown committed
2088 2089 2090
      is done in QUICK_RANGE_SELECT::row_in_ranges)
     */
    imerge_cost += non_cpk_scan_records / TIME_FOR_COMPARE_ROWID;
2091 2092 2093
  }

  /* Calculate cost(rowid_to_row_scan) */
2094
  imerge_cost += get_sweep_read_cost(param, non_cpk_scan_records);
unknown's avatar
unknown committed
2095
  DBUG_PRINT("info",("index_merge cost with rowid-to-row scan: %g",
2096
                     imerge_cost));
2097 2098
  if (imerge_cost > read_time)
    goto build_ror_index_merge;
2099 2100

  /* Add Unique operations cost */
unknown's avatar
unknown committed
2101 2102
  unique_calc_buff_size=
    Unique::get_cost_calc_buff_size(non_cpk_scan_records,
2103 2104 2105 2106 2107 2108
                                    param->table->file->ref_length,
                                    param->thd->variables.sortbuff_size);
  if (param->imerge_cost_buff_size < unique_calc_buff_size)
  {
    if (!(param->imerge_cost_buff= (uint*)alloc_root(param->mem_root,
                                                     unique_calc_buff_size)))
2109
      DBUG_RETURN(NULL);
2110 2111 2112
    param->imerge_cost_buff_size= unique_calc_buff_size;
  }

unknown's avatar
unknown committed
2113
  imerge_cost +=
2114
    Unique::get_use_cost(param->imerge_cost_buff, non_cpk_scan_records,
unknown's avatar
unknown committed
2115 2116
                         param->table->file->ref_length,
                         param->thd->variables.sortbuff_size);
unknown's avatar
unknown committed
2117
  DBUG_PRINT("info",("index_merge total cost: %g (wanted: less then %g)",
2118 2119 2120 2121 2122 2123 2124
                     imerge_cost, read_time));
  if (imerge_cost < read_time)
  {
    if ((imerge_trp= new (param->mem_root)TRP_INDEX_MERGE))
    {
      imerge_trp->read_cost= imerge_cost;
      imerge_trp->records= non_cpk_scan_records + cpk_scan_records;
unknown's avatar
unknown committed
2125
      imerge_trp->records= min(imerge_trp->records,
2126 2127 2128 2129 2130 2131
                               param->table->file->records);
      imerge_trp->range_scans= range_scans;
      imerge_trp->range_scans_end= range_scans + n_child_scans;
      read_time= imerge_cost;
    }
  }
unknown's avatar
unknown committed
2132

unknown's avatar
unknown committed
2133
build_ror_index_merge:
2134 2135
  if (!all_scans_ror_able || param->thd->lex->sql_command == SQLCOM_DELETE)
    DBUG_RETURN(imerge_trp);
unknown's avatar
unknown committed
2136

2137 2138
  /* Ok, it is possible to build a ROR-union, try it. */
  bool dummy;
unknown's avatar
unknown committed
2139
  if (!(roru_read_plans=
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
          (TABLE_READ_PLAN**)alloc_root(param->mem_root,
                                        sizeof(TABLE_READ_PLAN*)*
                                        n_child_scans)))
    DBUG_RETURN(imerge_trp);
skip_to_ror_scan:
  roru_index_costs= 0.0;
  roru_total_records= 0;
  cur_roru_plan= roru_read_plans;

  /* Find 'best' ROR scan for each of trees in disjunction */
  for (ptree= imerge->trees, cur_child= range_scans;
       ptree != imerge->trees_next;
       ptree++, cur_child++, cur_roru_plan++)
2153
  {
2154 2155
    /*
      Assume the best ROR scan is the one that has cheapest full-row-retrieval
unknown's avatar
unknown committed
2156 2157
      scan cost.
      Also accumulate index_only scan costs as we'll need them to calculate
2158 2159 2160 2161 2162 2163 2164
      overall index_intersection cost.
    */
    double cost;
    if ((*cur_child)->is_ror)
    {
      /* Ok, we have index_only cost, now get full rows scan cost */
      cost= param->table->file->
unknown's avatar
unknown committed
2165
              read_time(param->real_keynr[(*cur_child)->key_idx], 1,
2166 2167 2168 2169 2170 2171 2172
                        (*cur_child)->records) +
              rows2double((*cur_child)->records) / TIME_FOR_COMPARE;
    }
    else
      cost= read_time;

    TABLE_READ_PLAN *prev_plan= *cur_child;
unknown's avatar
unknown committed
2173
    if (!(*cur_roru_plan= get_best_ror_intersect(param, *ptree, cost,
2174 2175 2176 2177 2178 2179 2180 2181 2182
                                                 &dummy)))
    {
      if (prev_plan->is_ror)
        *cur_roru_plan= prev_plan;
      else
        DBUG_RETURN(imerge_trp);
      roru_index_costs += (*cur_roru_plan)->read_cost;
    }
    else
unknown's avatar
unknown committed
2183 2184
      roru_index_costs +=
        ((TRP_ROR_INTERSECT*)(*cur_roru_plan))->index_scan_costs;
2185
    roru_total_records += (*cur_roru_plan)->records;
unknown's avatar
unknown committed
2186
    roru_intersect_part *= (*cur_roru_plan)->records /
2187
                           param->table->file->records;
2188
  }
2189

unknown's avatar
unknown committed
2190 2191
  /*
    rows to retrieve=
2192
      SUM(rows_in_scan_i) - table_rows * PROD(rows_in_scan_i / table_rows).
2193
    This is valid because index_merge construction guarantees that conditions
2194 2195 2196
    in disjunction do not share key parts.
  */
  roru_total_records -= (ha_rows)(roru_intersect_part*
unknown's avatar
unknown committed
2197 2198 2199
                                  param->table->file->records);
  /* ok, got a ROR read plan for each of the disjuncts
    Calculate cost:
2200 2201 2202 2203 2204 2205
    cost(index_union_scan(scan_1, ... scan_n)) =
      SUM_i(cost_of_index_only_scan(scan_i)) +
      queue_use_cost(rowid_len, n) +
      cost_of_row_retrieval
    See get_merge_buffers_cost function for queue_use_cost formula derivation.
  */
unknown's avatar
unknown committed
2206

2207
  double roru_total_cost;
unknown's avatar
unknown committed
2208 2209 2210
  roru_total_cost= roru_index_costs +
                   rows2double(roru_total_records)*log((double)n_child_scans) /
                   (TIME_FOR_COMPARE_ROWID * M_LN2) +
2211 2212
                   get_sweep_read_cost(param, roru_total_records);

unknown's avatar
unknown committed
2213
  DBUG_PRINT("info", ("ROR-union: cost %g, %d members", roru_total_cost,
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
                      n_child_scans));
  TRP_ROR_UNION* roru;
  if (roru_total_cost < read_time)
  {
    if ((roru= new (param->mem_root) TRP_ROR_UNION))
    {
      roru->first_ror= roru_read_plans;
      roru->last_ror= roru_read_plans + n_child_scans;
      roru->read_cost= roru_total_cost;
      roru->records= roru_total_records;
      DBUG_RETURN(roru);
    }
  }
  DBUG_RETURN(imerge_trp);
2228 2229 2230 2231 2232 2233 2234
}


/*
  Calculate cost of 'index only' scan for given index and number of records.

  SYNOPSIS
2235
    get_index_only_read_time()
2236 2237 2238 2239 2240
      param    parameters structure
      records  #of records to read
      keynr    key to read

  NOTES
unknown's avatar
unknown committed
2241
    It is assumed that we will read trough the whole key range and that all
2242 2243 2244 2245
    key blocks are half full (normally things are much better). It is also
    assumed that each time we read the next key from the index, the handler
    performs a random seek, thus the cost is proportional to the number of
    blocks read.
2246 2247 2248 2249 2250 2251

  TODO:
    Move this to handler->read_time() by adding a flag 'index-only-read' to
    this call. The reason for doing this is that the current function doesn't
    handle the case when the row is stored in the b-tree (like in innodb
    clustered index)
2252 2253
*/

unknown's avatar
unknown committed
2254
static double get_index_only_read_time(const PARAM* param, ha_rows records,
unknown's avatar
unknown committed
2255
                                       int keynr)
2256 2257 2258 2259 2260 2261 2262
{
  double read_time;
  uint keys_per_block= (param->table->file->block_size/2/
			(param->table->key_info[keynr].key_length+
			 param->table->file->ref_length) + 1);
  read_time=((double) (records+keys_per_block-1)/
             (double) keys_per_block);
2263
  return read_time;
2264 2265
}

2266

2267 2268
typedef struct st_ror_scan_info
{
2269 2270 2271 2272 2273
  uint      idx;      /* # of used key in param->keys */
  uint      keynr;    /* # of used key in table */
  ha_rows   records;  /* estimate of # records this scan will return */

  /* Set of intervals over key fields that will be used for row retrieval. */
unknown's avatar
unknown committed
2274
  SEL_ARG   *sel_arg;
2275 2276

  /* Fields used in the query and covered by this ROR scan. */
unknown's avatar
unknown committed
2277 2278
  MY_BITMAP covered_fields;
  uint      used_fields_covered; /* # of set bits in covered_fields */
2279
  int       key_rec_length; /* length of key record (including rowid) */
2280 2281

  /*
2282 2283
    Cost of reading all index records with values in sel_arg intervals set
    (assuming there is no need to access full table records)
unknown's avatar
unknown committed
2284 2285
  */
  double    index_read_cost;
2286 2287 2288
  uint      first_uncovered_field; /* first unused bit in covered_fields */
  uint      key_components; /* # of parts in the key */
} ROR_SCAN_INFO;
2289 2290 2291


/*
unknown's avatar
unknown committed
2292
  Create ROR_SCAN_INFO* structure with a single ROR scan on index idx using
2293
  sel_arg set of intervals.
unknown's avatar
unknown committed
2294

2295 2296
  SYNOPSIS
    make_ror_scan()
2297 2298 2299
      param    Parameter from test_quick_select function
      idx      Index of key in param->keys
      sel_arg  Set of intervals for a given key
unknown's avatar
unknown committed
2300

2301
  RETURN
unknown's avatar
unknown committed
2302
    NULL - out of memory
2303
    ROR scan structure containing a scan for {idx, sel_arg}
2304 2305 2306 2307 2308 2309 2310 2311 2312
*/

static
ROR_SCAN_INFO *make_ror_scan(const PARAM *param, int idx, SEL_ARG *sel_arg)
{
  ROR_SCAN_INFO *ror_scan;
  uchar *bitmap_buf;
  uint keynr;
  DBUG_ENTER("make_ror_scan");
unknown's avatar
unknown committed
2313

2314 2315 2316 2317 2318 2319
  if (!(ror_scan= (ROR_SCAN_INFO*)alloc_root(param->mem_root,
                                             sizeof(ROR_SCAN_INFO))))
    DBUG_RETURN(NULL);

  ror_scan->idx= idx;
  ror_scan->keynr= keynr= param->real_keynr[idx];
unknown's avatar
unknown committed
2320 2321
  ror_scan->key_rec_length= (param->table->key_info[keynr].key_length +
                             param->table->file->ref_length);
2322 2323
  ror_scan->sel_arg= sel_arg;
  ror_scan->records= param->table->quick_rows[keynr];
unknown's avatar
unknown committed
2324 2325

  if (!(bitmap_buf= (uchar*)alloc_root(param->mem_root,
unknown's avatar
unknown committed
2326
                                       param->fields_bitmap_size)))
2327
    DBUG_RETURN(NULL);
unknown's avatar
unknown committed
2328

2329
  if (bitmap_init(&ror_scan->covered_fields, bitmap_buf,
unknown's avatar
unknown committed
2330
                  param->fields_bitmap_size*8, FALSE))
2331 2332
    DBUG_RETURN(NULL);
  bitmap_clear_all(&ror_scan->covered_fields);
unknown's avatar
unknown committed
2333

2334
  KEY_PART_INFO *key_part= param->table->key_info[keynr].key_part;
unknown's avatar
unknown committed
2335
  KEY_PART_INFO *key_part_end= key_part +
2336 2337 2338 2339 2340 2341
                               param->table->key_info[keynr].key_parts;
  for (;key_part != key_part_end; ++key_part)
  {
    if (bitmap_is_set(&param->needed_fields, key_part->fieldnr))
      bitmap_set_bit(&ror_scan->covered_fields, key_part->fieldnr);
  }
unknown's avatar
unknown committed
2342
  ror_scan->index_read_cost=
2343 2344 2345 2346 2347 2348
    get_index_only_read_time(param, param->table->quick_rows[ror_scan->keynr],
                             ror_scan->keynr);
  DBUG_RETURN(ror_scan);
}


unknown's avatar
unknown committed
2349
/*
2350 2351 2352 2353 2354 2355 2356
  Compare two ROR_SCAN_INFO** by  E(#records_matched) * key_record_length.
  SYNOPSIS
    cmp_ror_scan_info()
      a ptr to first compared value
      b ptr to second compared value

  RETURN
unknown's avatar
unknown committed
2357
   -1 a < b
2358 2359
    0 a = b
    1 a > b
2360
*/
unknown's avatar
unknown committed
2361

2362
static int cmp_ror_scan_info(ROR_SCAN_INFO** a, ROR_SCAN_INFO** b)
2363 2364 2365 2366 2367 2368 2369
{
  double val1= rows2double((*a)->records) * (*a)->key_rec_length;
  double val2= rows2double((*b)->records) * (*b)->key_rec_length;
  return (val1 < val2)? -1: (val1 == val2)? 0 : 1;
}

/*
unknown's avatar
unknown committed
2370 2371 2372
  Compare two ROR_SCAN_INFO** by
   (#covered fields in F desc,
    #components asc,
2373
    number of first not covered component asc)
2374 2375 2376 2377 2378 2379 2380

  SYNOPSIS
    cmp_ror_scan_info_covering()
      a ptr to first compared value
      b ptr to second compared value

  RETURN
unknown's avatar
unknown committed
2381
   -1 a < b
2382 2383
    0 a = b
    1 a > b
2384
*/
unknown's avatar
unknown committed
2385

2386
static int cmp_ror_scan_info_covering(ROR_SCAN_INFO** a, ROR_SCAN_INFO** b)
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
{
  if ((*a)->used_fields_covered > (*b)->used_fields_covered)
    return -1;
  if ((*a)->used_fields_covered < (*b)->used_fields_covered)
    return 1;
  if ((*a)->key_components < (*b)->key_components)
    return -1;
  if ((*a)->key_components > (*b)->key_components)
    return 1;
  if ((*a)->first_uncovered_field < (*b)->first_uncovered_field)
    return -1;
  if ((*a)->first_uncovered_field > (*b)->first_uncovered_field)
    return 1;
  return 0;
}

unknown's avatar
unknown committed
2403

2404
/* Auxiliary structure for incremental ROR-intersection creation */
unknown's avatar
unknown committed
2405
typedef struct
2406 2407 2408
{
  const PARAM *param;
  MY_BITMAP covered_fields; /* union of fields covered by all scans */
unknown's avatar
unknown committed
2409
  /*
2410
    Fraction of table records that satisfies conditions of all scans.
unknown's avatar
unknown committed
2411
    This is the number of full records that will be retrieved if a
2412 2413
    non-index_only index intersection will be employed.
  */
2414 2415 2416 2417
  double out_rows;
  /* TRUE if covered_fields is a superset of needed_fields */
  bool is_covering;

2418
  ha_rows index_records; /* sum(#records to look in indexes) */
2419 2420
  double index_scan_costs; /* SUM(cost of 'index-only' scans) */
  double total_cost;
2421
} ROR_INTERSECT_INFO;
2422 2423


2424 2425 2426 2427
/*
  Allocate a ROR_INTERSECT_INFO and initialize it to contain zero scans.

  SYNOPSIS
unknown's avatar
unknown committed
2428 2429 2430
    ror_intersect_init()
      param         Parameter from test_quick_select

2431 2432 2433 2434 2435 2436
  RETURN
    allocated structure
    NULL on error
*/

static
2437
ROR_INTERSECT_INFO* ror_intersect_init(const PARAM *param)
2438 2439 2440
{
  ROR_INTERSECT_INFO *info;
  uchar* buf;
unknown's avatar
unknown committed
2441
  if (!(info= (ROR_INTERSECT_INFO*)alloc_root(param->mem_root,
2442 2443 2444 2445 2446 2447
                                              sizeof(ROR_INTERSECT_INFO))))
    return NULL;
  info->param= param;
  if (!(buf= (uchar*)alloc_root(param->mem_root, param->fields_bitmap_size)))
    return NULL;
  if (bitmap_init(&info->covered_fields, buf, param->fields_bitmap_size*8,
unknown's avatar
unknown committed
2448
                  FALSE))
2449
    return NULL;
2450
  info->is_covering= FALSE;
2451
  info->index_scan_costs= 0.0;
2452 2453 2454
  info->index_records= 0;
  info->out_rows= param->table->file->records;
  bitmap_clear_all(&info->covered_fields);
2455 2456 2457
  return info;
}

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
void ror_intersect_cpy(ROR_INTERSECT_INFO *dst, const ROR_INTERSECT_INFO *src)
{
  dst->param= src->param;
  memcpy(dst->covered_fields.bitmap, src->covered_fields.bitmap, 
         src->covered_fields.bitmap_size);
  dst->out_rows= src->out_rows;
  dst->is_covering= src->is_covering;
  dst->index_records= src->index_records;
  dst->index_scan_costs= src->index_scan_costs;
  dst->total_cost= src->total_cost;
}
unknown's avatar
unknown committed
2469 2470


2471
/*
2472
  Get selectivity of a ROR scan wrt ROR-intersection.
2473

2474
  SYNOPSIS
2475 2476 2477 2478
    ror_scan_selectivity()
      info  ROR-interection 
      scan  ROR scan
      
2479
  NOTES
2480
    Suppose we have a condition on several keys
unknown's avatar
unknown committed
2481 2482
    cond=k_11=c_11 AND k_12=c_12 AND ...  // parts of first key
         k_21=c_21 AND k_22=c_22 AND ...  // parts of second key
2483
          ...
2484
         k_n1=c_n1 AND k_n3=c_n3 AND ...  (1) //parts of the key used by *scan
unknown's avatar
unknown committed
2485

2486 2487
    where k_ij may be the same as any k_pq (i.e. keys may have common parts).

unknown's avatar
unknown committed
2488
    A full row is retrieved if entire condition holds.
2489 2490

    The recursive procedure for finding P(cond) is as follows:
unknown's avatar
unknown committed
2491

2492
    First step:
unknown's avatar
unknown committed
2493
    Pick 1st part of 1st key and break conjunction (1) into two parts:
2494 2495
      cond= (k_11=c_11 AND R)

unknown's avatar
unknown committed
2496
    Here R may still contain condition(s) equivalent to k_11=c_11.
2497 2498
    Nevertheless, the following holds:

unknown's avatar
unknown committed
2499
      P(k_11=c_11 AND R) = P(k_11=c_11) * P(R | k_11=c_11).
2500 2501 2502 2503 2504

    Mark k_11 as fixed field (and satisfied condition) F, save P(F),
    save R to be cond and proceed to recursion step.

    Recursion step:
2505
    We have a set of fixed fields/satisfied conditions) F, probability P(F),
2506 2507 2508
    and remaining conjunction R
    Pick next key part on current key and its condition "k_ij=c_ij".
    We will add "k_ij=c_ij" into F and update P(F).
2509
    Lets denote k_ij as t,  R = t AND R1, where R1 may still contain t. Then
2510

2511
     P((t AND R1)|F) = P(t|F) * P(R1|t|F) = P(t|F) * P(R1|(t AND F)) (2)
2512 2513 2514 2515 2516 2517 2518

    (where '|' mean conditional probability, not "or")

    Consider the first multiplier in (2). One of the following holds:
    a) F contains condition on field used in t (i.e. t AND F = F).
      Then P(t|F) = 1

unknown's avatar
unknown committed
2519 2520
    b) F doesn't contain condition on field used in t. Then F and t are
     considered independent.
2521

unknown's avatar
unknown committed
2522
     P(t|F) = P(t|(fields_before_t_in_key AND other_fields)) =
2523 2524
          = P(t|fields_before_t_in_key).

2525 2526
     P(t|fields_before_t_in_key) = #records(fields_before_t_in_key) /
                                   #records(fields_before_t_in_key, t)
unknown's avatar
unknown committed
2527 2528

    The second multiplier is calculated by applying this step recursively.
2529

2530 2531 2532 2533 2534
  IMPLEMENTATION
    This function calculates the result of application of the "recursion step"
    described above for all fixed key members of a single key, accumulating set
    of covered fields, selectivity, etc.

unknown's avatar
unknown committed
2535
    The calculation is conducted as follows:
2536
    Lets denote #records(keypart1, ... keypartK) as n_k. We need to calculate
unknown's avatar
unknown committed
2537

2538 2539
     n_{k1}      n_{k_2}
    --------- * ---------  * .... (3)
unknown's avatar
unknown committed
2540
     n_{k1-1}    n_{k2_1}
2541

unknown's avatar
unknown committed
2542 2543 2544 2545
    where k1,k2,... are key parts which fields were not yet marked as fixed
    ( this is result of application of option b) of the recursion step for
      parts of a single key).
    Since it is reasonable to expect that most of the fields are not marked
unknown's avatar
unknown committed
2546
    as fixed, we calculate (3) as
2547 2548 2549

                                  n_{i1}      n_{i_2}
    (3) = n_{max_key_part}  / (   --------- * ---------  * ....  )
unknown's avatar
unknown committed
2550 2551 2552 2553
                                  n_{i1-1}    n_{i2_1}

    where i1,i2, .. are key parts that were already marked as fixed.

2554 2555
    In order to minimize number of expensive records_in_range calls we group
    and reduce adjacent fractions.
unknown's avatar
unknown committed
2556

2557
  RETURN
2558 2559
    Selectivity of given ROR scan.
    
2560 2561
*/

2562 2563
static double ror_scan_selectivity(const ROR_INTERSECT_INFO *info, 
                                   const ROR_SCAN_INFO *scan)
2564 2565
{
  double selectivity_mult= 1.0;
2566
  KEY_PART_INFO *key_part= info->param->table->key_info[scan->keynr].key_part;
unknown's avatar
unknown committed
2567
  byte key_val[MAX_KEY_LENGTH+MAX_FIELD_WIDTH]; /* key values tuple */
2568
  char *key_ptr= (char*) key_val;
2569 2570
  SEL_ARG *sel_arg, *tuple_arg= NULL;
  bool cur_covered;
2571 2572
  bool prev_covered= test(bitmap_is_set(&info->covered_fields,
                                        key_part->fieldnr));
unknown's avatar
unknown committed
2573 2574 2575 2576 2577 2578
  key_range min_range;
  key_range max_range;
  min_range.key= (byte*) key_val;
  min_range.flag= HA_READ_KEY_EXACT;
  max_range.key= (byte*) key_val;
  max_range.flag= HA_READ_AFTER_KEY;
2579 2580
  ha_rows prev_records= info->param->table->file->records;
  DBUG_ENTER("ror_intersect_selectivity");
unknown's avatar
unknown committed
2581 2582 2583

  for (sel_arg= scan->sel_arg; sel_arg;
       sel_arg= sel_arg->next_key_part)
2584
  {
2585
    DBUG_PRINT("info",("sel_arg step"));
2586
    cur_covered= test(bitmap_is_set(&info->covered_fields,
unknown's avatar
unknown committed
2587
                                    key_part[sel_arg->part].fieldnr));
2588
    if (cur_covered != prev_covered)
2589
    {
2590
      /* create (part1val, ..., part{n-1}val) tuple. */
unknown's avatar
unknown committed
2591 2592
      ha_rows records;
      if (!tuple_arg)
2593
      {
unknown's avatar
unknown committed
2594 2595
        tuple_arg= scan->sel_arg;
        /* Here we use the length of the first key part */
2596
        tuple_arg->store_min(key_part->store_length, &key_ptr, 0);
unknown's avatar
unknown committed
2597 2598 2599 2600
      }
      while (tuple_arg->next_key_part != sel_arg)
      {
        tuple_arg= tuple_arg->next_key_part;
2601
        tuple_arg->store_min(key_part[tuple_arg->part].store_length, &key_ptr, 0);
unknown's avatar
unknown committed
2602
      }
2603
      min_range.length= max_range.length= ((char*) key_ptr - (char*) key_val);
unknown's avatar
unknown committed
2604 2605
      records= (info->param->table->file->
                records_in_range(scan->keynr, &min_range, &max_range));
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
      if (cur_covered)
      {
        /* uncovered -> covered */
        double tmp= rows2double(records)/rows2double(prev_records);
        DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp));
        selectivity_mult *= tmp;
        prev_records= HA_POS_ERROR;
      }
      else
      {
        /* covered -> uncovered */
unknown's avatar
unknown committed
2617
        prev_records= records;
2618
      }
2619
    }
2620 2621 2622 2623
    prev_covered= cur_covered;
  }
  if (!prev_covered)
  {
2624
    double tmp= rows2double(info->param->table->quick_rows[scan->keynr]) /
2625 2626
                rows2double(prev_records);
    DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp));
unknown's avatar
unknown committed
2627
    selectivity_mult *= tmp;
2628
  }
2629 2630 2631
  DBUG_PRINT("info", ("Returning multiplier: %g", selectivity_mult));
  DBUG_RETURN(selectivity_mult);
}
2632

unknown's avatar
unknown committed
2633

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
/*
  Check if adding a ROR scan to a ROR-intersection reduces its cost of
  ROR-intersection and if yes, update parameters of ROR-intersection,
  including its cost.

  SYNOPSIS
    ror_intersect_add()
      param        Parameter from test_quick_select
      info         ROR-intersection structure to add the scan to.
      ror_scan     ROR scan info to add.
      is_cpk_scan  If TRUE, add the scan as CPK scan (this can be inferred
                   from other parameters and is passed separately only to
                   avoid duplicating the inference code)

  NOTES
    Adding a ROR scan to ROR-intersect "makes sense" iff the cost of ROR-
    intersection decreases. The cost of ROR-intersection is calculated as
    follows:

    cost= SUM_i(key_scan_cost_i) + cost_of_full_rows_retrieval

    When we add a scan the first increases and the second decreases.

    cost_of_full_rows_retrieval=
      (union of indexes used covers all needed fields) ?
        cost_of_sweep_read(E(rows_to_retrieve), rows_in_table) :
        0

    E(rows_to_retrieve) = #rows_in_table * ror_scan_selectivity(null, scan1) *
                           ror_scan_selectivity({scan1}, scan2) * ... *
                           ror_scan_selectivity({scan1,...}, scanN). 
  RETURN
    TRUE   ROR scan added to ROR-intersection, cost updated.
    FALSE  It doesn't make sense to add this ROR scan to this ROR-intersection.
*/

static bool ror_intersect_add(ROR_INTERSECT_INFO *info,
unknown's avatar
unknown committed
2671
                              ROR_SCAN_INFO* ror_scan, bool is_cpk_scan)
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
{
  double selectivity_mult= 1.0;

  DBUG_ENTER("ror_intersect_add");
  DBUG_PRINT("info", ("Current out_rows= %g", info->out_rows));
  DBUG_PRINT("info", ("Adding scan on %s",
                      info->param->table->key_info[ror_scan->keynr].name));
  DBUG_PRINT("info", ("is_cpk_scan=%d",is_cpk_scan));

  selectivity_mult = ror_scan_selectivity(info, ror_scan);
2682 2683 2684
  if (selectivity_mult == 1.0)
  {
    /* Don't add this scan if it doesn't improve selectivity. */
2685
    DBUG_PRINT("info", ("The scan doesn't improve selectivity."));
unknown's avatar
unknown committed
2686
    DBUG_RETURN(FALSE);
2687
  }
2688 2689 2690 2691
  
  info->out_rows *= selectivity_mult;
  DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost));
  
2692
  if (is_cpk_scan)
unknown's avatar
unknown committed
2693
  {
2694 2695 2696 2697 2698 2699
    /*
      CPK scan is used to filter out rows. We apply filtering for 
      each record of every scan. Assuming 1/TIME_FOR_COMPARE_ROWID
      per check this gives us:
    */
    info->index_scan_costs += rows2double(info->index_records) / 
2700 2701 2702 2703
                              TIME_FOR_COMPARE_ROWID;
  }
  else
  {
2704
    info->index_records += info->param->table->quick_rows[ror_scan->keynr];
2705 2706
    info->index_scan_costs += ror_scan->index_read_cost;
    bitmap_union(&info->covered_fields, &ror_scan->covered_fields);
2707 2708 2709 2710 2711 2712
    if (!info->is_covering && bitmap_is_subset(&info->param->needed_fields,
                                               &info->covered_fields))
    {
      DBUG_PRINT("info", ("ROR-intersect is covering now"));
      info->is_covering= TRUE;
    }
2713
  }
unknown's avatar
unknown committed
2714

2715
  info->total_cost= info->index_scan_costs;
2716
  DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost));
2717 2718
  if (!info->is_covering)
  {
2719 2720 2721
    info->total_cost += 
      get_sweep_read_cost(info->param, double2rows(info->out_rows));
    DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost));
2722
  }
2723
  DBUG_PRINT("info", ("New out_rows= %g", info->out_rows));
unknown's avatar
unknown committed
2724
  DBUG_PRINT("info", ("New cost= %g, %scovering", info->total_cost,
2725
                      info->is_covering?"" : "non-"));
2726
  DBUG_RETURN(TRUE);
2727 2728
}

2729

unknown's avatar
unknown committed
2730 2731
/*
  Get best ROR-intersection plan using non-covering ROR-intersection search
2732 2733 2734 2735
  algorithm. The returned plan may be covering.

  SYNOPSIS
    get_best_ror_intersect()
2736 2737 2738
      param            Parameter from test_quick_select function.
      tree             Transformed restriction condition to be used to look
                       for ROR scans.
2739
      read_time        Do not return read plans with cost > read_time.
unknown's avatar
unknown committed
2740
      are_all_covering [out] set to TRUE if union of all scans covers all
2741 2742
                       fields needed by the query (and it is possible to build
                       a covering ROR-intersection)
2743

2744
  NOTES
2745 2746 2747 2748 2749
    get_key_scans_params must be called before this function can be called.
    
    When this function is called by ROR-union construction algorithm it
    assumes it is building an uncovered ROR-intersection (and thus # of full
    records to be retrieved is wrong here). This is a hack.
unknown's avatar
unknown committed
2750

2751
  IMPLEMENTATION
2752
    The approximate best non-covering plan search algorithm is as follows:
2753

2754 2755 2756 2757
    find_min_ror_intersection_scan()
    {
      R= select all ROR scans;
      order R by (E(#records_matched) * key_record_length).
unknown's avatar
unknown committed
2758

2759 2760 2761 2762 2763 2764
      S= first(R); -- set of scans that will be used for ROR-intersection
      R= R-first(S);
      min_cost= cost(S);
      min_scan= make_scan(S);
      while (R is not empty)
      {
2765 2766
        firstR= R - first(R);
        if (!selectivity(S + firstR < selectivity(S)))
2767
          continue;
2768
          
2769 2770 2771 2772 2773 2774 2775 2776 2777
        S= S + first(R);
        if (cost(S) < min_cost)
        {
          min_cost= cost(S);
          min_scan= make_scan(S);
        }
      }
      return min_scan;
    }
2778

2779
    See ror_intersect_add function for ROR intersection costs.
2780

2781
    Special handling for Clustered PK scans
unknown's avatar
unknown committed
2782 2783
    Clustered PK contains all table fields, so using it as a regular scan in
    index intersection doesn't make sense: a range scan on CPK will be less
2784 2785
    expensive in this case.
    Clustered PK scan has special handling in ROR-intersection: it is not used
unknown's avatar
unknown committed
2786
    to retrieve rows, instead its condition is used to filter row references
2787
    we get from scans on other keys.
2788 2789

  RETURN
unknown's avatar
unknown committed
2790
    ROR-intersection table read plan
2791
    NULL if out of memory or no suitable plan found.
2792 2793
*/

2794 2795 2796 2797 2798 2799
static
TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param, SEL_TREE *tree,
                                          double read_time,
                                          bool *are_all_covering)
{
  uint idx;
2800
  double min_cost= DBL_MAX;
2801
  DBUG_ENTER("get_best_ror_intersect");
2802

2803
  if ((tree->n_ror_scans < 2) || !param->table->file->records)
2804
    DBUG_RETURN(NULL);
2805 2806

  /*
2807 2808
    Step1: Collect ROR-able SEL_ARGs and create ROR_SCAN_INFO for each of 
    them. Also find and save clustered PK scan if there is one.
2809
  */
2810
  ROR_SCAN_INFO **cur_ror_scan;
2811
  ROR_SCAN_INFO *cpk_scan= NULL;
2812
  uint cpk_no;
unknown's avatar
unknown committed
2813
  bool cpk_scan_used= FALSE;
2814

2815 2816 2817 2818
  if (!(tree->ror_scans= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
                                                     sizeof(ROR_SCAN_INFO*)*
                                                     param->keys)))
    return NULL;
2819 2820
  cpk_no= ((param->table->file->primary_key_is_clustered()) ?
           param->table->s->primary_key : MAX_KEY);
unknown's avatar
unknown committed
2821

2822
  for (idx= 0, cur_ror_scan= tree->ror_scans; idx < param->keys; idx++)
2823
  {
2824
    ROR_SCAN_INFO *scan;
2825
    if (!tree->ror_scans_map.is_set(idx))
2826
      continue;
2827
    if (!(scan= make_ror_scan(param, idx, tree->keys[idx])))
2828
      return NULL;
2829
    if (param->real_keynr[idx] == cpk_no)
2830
    {
2831 2832
      cpk_scan= scan;
      tree->n_ror_scans--;
2833 2834
    }
    else
2835
      *(cur_ror_scan++)= scan;
2836
  }
unknown's avatar
unknown committed
2837

2838
  tree->ror_scans_end= cur_ror_scan;
unknown's avatar
unknown committed
2839 2840
  DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "original",
                                          tree->ror_scans,
2841 2842
                                          tree->ror_scans_end););
  /*
unknown's avatar
unknown committed
2843
    Ok, [ror_scans, ror_scans_end) is array of ptrs to initialized
2844 2845
    ROR_SCAN_INFO's.
    Step 2: Get best ROR-intersection using an approximate algorithm.
2846 2847 2848
  */
  qsort(tree->ror_scans, tree->n_ror_scans, sizeof(ROR_SCAN_INFO*),
        (qsort_cmp)cmp_ror_scan_info);
unknown's avatar
unknown committed
2849 2850
  DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "ordered",
                                          tree->ror_scans,
2851
                                          tree->ror_scans_end););
unknown's avatar
unknown committed
2852

2853 2854 2855 2856 2857 2858 2859 2860 2861
  ROR_SCAN_INFO **intersect_scans; /* ROR scans used in index intersection */
  ROR_SCAN_INFO **intersect_scans_end;
  if (!(intersect_scans= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
                                                     sizeof(ROR_SCAN_INFO*)*
                                                     tree->n_ror_scans)))
    return NULL;
  intersect_scans_end= intersect_scans;

  /* Create and incrementally update ROR intersection. */
2862 2863 2864
  ROR_INTERSECT_INFO *intersect, *intersect_best;
  if (!(intersect= ror_intersect_init(param)) || 
      !(intersect_best= ror_intersect_init(param)))
2865
    return NULL;
unknown's avatar
unknown committed
2866

2867
  /* [intersect_scans,intersect_scans_best) will hold the best intersection */
unknown's avatar
unknown committed
2868
  ROR_SCAN_INFO **intersect_scans_best;
2869
  cur_ror_scan= tree->ror_scans;
2870
  intersect_scans_best= intersect_scans;
2871
  while (cur_ror_scan != tree->ror_scans_end && !intersect->is_covering)
2872
  {
2873
    /* S= S + first(R);  R= R - first(R); */
unknown's avatar
unknown committed
2874
    if (!ror_intersect_add(intersect, *cur_ror_scan, FALSE))
2875 2876 2877 2878 2879 2880
    {
      cur_ror_scan++;
      continue;
    }
    
    *(intersect_scans_end++)= *(cur_ror_scan++);
unknown's avatar
unknown committed
2881

2882
    if (intersect->total_cost < min_cost)
2883
    {
2884
      /* Local minimum found, save it */
2885
      ror_intersect_cpy(intersect_best, intersect);
2886
      intersect_scans_best= intersect_scans_end;
2887
      min_cost = intersect->total_cost;
2888 2889
    }
  }
unknown's avatar
unknown committed
2890

2891 2892 2893 2894 2895 2896
  if (intersect_scans_best == intersect_scans)
  {
    DBUG_PRINT("info", ("None of scans increase selectivity"));
    DBUG_RETURN(NULL);
  }
    
2897 2898 2899 2900
  DBUG_EXECUTE("info",print_ror_scans_arr(param->table,
                                          "best ROR-intersection",
                                          intersect_scans,
                                          intersect_scans_best););
unknown's avatar
unknown committed
2901

2902
  *are_all_covering= intersect->is_covering;
unknown's avatar
unknown committed
2903
  uint best_num= intersect_scans_best - intersect_scans;
2904 2905
  ror_intersect_cpy(intersect, intersect_best);

2906 2907
  /*
    Ok, found the best ROR-intersection of non-CPK key scans.
2908 2909
    Check if we should add a CPK scan. If the obtained ROR-intersection is 
    covering, it doesn't make sense to add CPK scan.
2910 2911
  */
  if (cpk_scan && !intersect->is_covering)
2912
  {
2913
    if (ror_intersect_add(intersect, cpk_scan, TRUE) && 
2914
        (intersect->total_cost < min_cost))
2915
    {
unknown's avatar
unknown committed
2916
      cpk_scan_used= TRUE;
2917
      intersect_best= intersect; //just set pointer here
2918 2919
    }
  }
unknown's avatar
unknown committed
2920

2921
  /* Ok, return ROR-intersect plan if we have found one */
2922
  TRP_ROR_INTERSECT *trp= NULL;
2923
  if (min_cost < read_time && (cpk_scan_used || best_num > 1))
2924
  {
2925 2926
    if (!(trp= new (param->mem_root) TRP_ROR_INTERSECT))
      DBUG_RETURN(trp);
unknown's avatar
unknown committed
2927 2928
    if (!(trp->first_scan=
           (ROR_SCAN_INFO**)alloc_root(param->mem_root,
2929 2930 2931 2932
                                       sizeof(ROR_SCAN_INFO*)*best_num)))
      DBUG_RETURN(NULL);
    memcpy(trp->first_scan, intersect_scans, best_num*sizeof(ROR_SCAN_INFO*));
    trp->last_scan=  trp->first_scan + best_num;
2933 2934 2935 2936 2937 2938
    trp->is_covering= intersect_best->is_covering;
    trp->read_cost= intersect_best->total_cost;
    /* Prevent divisons by zero */
    ha_rows best_rows = double2rows(intersect_best->out_rows);
    if (!best_rows)
      best_rows= 1;
2939
    trp->records= best_rows;
2940 2941 2942 2943 2944
    trp->index_scan_costs= intersect_best->index_scan_costs;
    trp->cpk_scan= cpk_scan_used? cpk_scan: NULL;
    DBUG_PRINT("info", ("Returning non-covering ROR-intersect plan:"
                        "cost %g, records %lu",
                        trp->read_cost, (ulong) trp->records));
unknown's avatar
unknown committed
2945
  }
2946
  DBUG_RETURN(trp);
2947 2948 2949 2950
}


/*
2951
  Get best covering ROR-intersection.
2952
  SYNOPSIS
2953
    get_best_covering_ror_intersect()
2954 2955 2956
      param     Parameter from test_quick_select function.
      tree      SEL_TREE with sets of intervals for different keys.
      read_time Don't return table read plans with cost > read_time.
2957

unknown's avatar
unknown committed
2958 2959
  RETURN
    Best covering ROR-intersection plan
2960
    NULL if no plan found.
2961 2962

  NOTES
2963
    get_best_ror_intersect must be called for a tree before calling this
unknown's avatar
unknown committed
2964
    function for it.
2965
    This function invalidates tree->ror_scans member values.
unknown's avatar
unknown committed
2966

2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
  The following approximate algorithm is used:
    I=set of all covering indexes
    F=set of all fields to cover
    S={}

    do {
      Order I by (#covered fields in F desc,
                  #components asc,
                  number of first not covered component asc);
      F=F-covered by first(I);
      S=S+first(I);
      I=I-first(I);
    } while F is not empty.
2980 2981
*/

2982
static
unknown's avatar
unknown committed
2983 2984
TRP_ROR_INTERSECT *get_best_covering_ror_intersect(PARAM *param,
                                                   SEL_TREE *tree,
2985
                                                   double read_time)
2986
{
2987
  ROR_SCAN_INFO **ror_scan_mark;
unknown's avatar
unknown committed
2988
  ROR_SCAN_INFO **ror_scans_end= tree->ror_scans_end;
2989 2990 2991 2992
  DBUG_ENTER("get_best_covering_ror_intersect");
  uint nbits= param->fields_bitmap_size*8;

  for (ROR_SCAN_INFO **scan= tree->ror_scans; scan != ror_scans_end; ++scan)
unknown's avatar
unknown committed
2993
    (*scan)->key_components=
2994
      param->table->key_info[(*scan)->keynr].key_parts;
unknown's avatar
unknown committed
2995

2996 2997
  /*
    Run covering-ROR-search algorithm.
unknown's avatar
unknown committed
2998
    Assume set I is [ror_scan .. ror_scans_end)
2999
  */
unknown's avatar
unknown committed
3000

3001 3002
  /*I=set of all covering indexes */
  ror_scan_mark= tree->ror_scans;
unknown's avatar
unknown committed
3003

3004 3005
  uchar buf[MAX_KEY/8+1];
  MY_BITMAP covered_fields;
unknown's avatar
unknown committed
3006
  if (bitmap_init(&covered_fields, buf, nbits, FALSE))
3007 3008 3009 3010 3011
    DBUG_RETURN(0);
  bitmap_clear_all(&covered_fields);

  double total_cost= 0.0f;
  ha_rows records=0;
unknown's avatar
unknown committed
3012 3013
  bool all_covered;

3014 3015 3016 3017 3018 3019
  DBUG_PRINT("info", ("Building covering ROR-intersection"));
  DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
                                           "building covering ROR-I",
                                           ror_scan_mark, ror_scans_end););
  do {
    /*
unknown's avatar
unknown committed
3020
      Update changed sorting info:
3021
        #covered fields,
unknown's avatar
unknown committed
3022
	number of first not covered component
3023 3024 3025 3026 3027
      Calculate and save these values for each of remaining scans.
    */
    for (ROR_SCAN_INFO **scan= ror_scan_mark; scan != ror_scans_end; ++scan)
    {
      bitmap_subtract(&(*scan)->covered_fields, &covered_fields);
unknown's avatar
unknown committed
3028
      (*scan)->used_fields_covered=
3029
        bitmap_bits_set(&(*scan)->covered_fields);
unknown's avatar
unknown committed
3030
      (*scan)->first_uncovered_field=
3031 3032 3033 3034 3035 3036 3037 3038 3039
        bitmap_get_first(&(*scan)->covered_fields);
    }

    qsort(ror_scan_mark, ror_scans_end-ror_scan_mark, sizeof(ROR_SCAN_INFO*),
          (qsort_cmp)cmp_ror_scan_info_covering);

    DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
                                             "remaining scans",
                                             ror_scan_mark, ror_scans_end););
unknown's avatar
unknown committed
3040

3041 3042 3043
    /* I=I-first(I) */
    total_cost += (*ror_scan_mark)->index_read_cost;
    records += (*ror_scan_mark)->records;
unknown's avatar
unknown committed
3044
    DBUG_PRINT("info", ("Adding scan on %s",
3045 3046 3047 3048 3049 3050 3051
                        param->table->key_info[(*ror_scan_mark)->keynr].name));
    if (total_cost > read_time)
      DBUG_RETURN(NULL);
    /* F=F-covered by first(I) */
    bitmap_union(&covered_fields, &(*ror_scan_mark)->covered_fields);
    all_covered= bitmap_is_subset(&param->needed_fields, &covered_fields);
  } while (!all_covered && (++ror_scan_mark < ror_scans_end));
unknown's avatar
unknown committed
3052

3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
  if (!all_covered)
    DBUG_RETURN(NULL); /* should not happen actually */

  /*
    Ok, [tree->ror_scans .. ror_scan) holds covering index_intersection with
    cost total_cost.
  */
  DBUG_PRINT("info", ("Covering ROR-intersect scans cost: %g", total_cost));
  DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
                                           "creating covering ROR-intersect",
                                           tree->ror_scans, ror_scan_mark););
unknown's avatar
unknown committed
3064

3065
  /* Add priority queue use cost. */
unknown's avatar
unknown committed
3066 3067
  total_cost += rows2double(records)*
                log((double)(ror_scan_mark - tree->ror_scans)) /
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
                (TIME_FOR_COMPARE_ROWID * M_LN2);
  DBUG_PRINT("info", ("Covering ROR-intersect full cost: %g", total_cost));

  if (total_cost > read_time)
    DBUG_RETURN(NULL);

  TRP_ROR_INTERSECT *trp;
  if (!(trp= new (param->mem_root) TRP_ROR_INTERSECT))
    DBUG_RETURN(trp);
  uint best_num= (ror_scan_mark - tree->ror_scans);
  if (!(trp->first_scan= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
                                                     sizeof(ROR_SCAN_INFO*)*
                                                     best_num)))
    DBUG_RETURN(NULL);
  memcpy(trp->first_scan, ror_scan_mark, best_num*sizeof(ROR_SCAN_INFO*));
  trp->last_scan=  trp->first_scan + best_num;
unknown's avatar
unknown committed
3084
  trp->is_covering= TRUE;
3085 3086 3087
  trp->read_cost= total_cost;
  trp->records= records;

3088 3089 3090
  DBUG_PRINT("info",
             ("Returning covering ROR-intersect plan: cost %g, records %lu",
              trp->read_cost, (ulong) trp->records));
3091
  DBUG_RETURN(trp);
3092 3093 3094
}


unknown's avatar
unknown committed
3095
/*
unknown's avatar
unknown committed
3096
  Get best "range" table read plan for given SEL_TREE.
3097
  Also update PARAM members and store ROR scans info in the SEL_TREE.
3098
  SYNOPSIS
3099
    get_key_scans_params
3100
      param        parameters from test_quick_select
unknown's avatar
unknown committed
3101
      tree         make range select for this SEL_TREE
unknown's avatar
unknown committed
3102
      index_read_must_be_used if TRUE, assume 'index only' option will be set
3103
                             (except for clustered PK indexes)
3104 3105
      read_time    don't create read plans with cost > read_time.
  RETURN
unknown's avatar
unknown committed
3106
    Best range read plan
3107
    NULL if no plan found or error occurred
unknown's avatar
unknown committed
3108 3109
*/

3110
static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree,
unknown's avatar
unknown committed
3111
                                       bool index_read_must_be_used,
3112
                                       double read_time)
unknown's avatar
unknown committed
3113 3114
{
  int idx;
3115 3116 3117
  SEL_ARG **key,**end, **key_to_read= NULL;
  ha_rows best_records;
  TRP_RANGE* read_plan= NULL;
3118
  bool pk_is_clustered= param->table->file->primary_key_is_clustered();
3119 3120
  DBUG_ENTER("get_key_scans_params");
  LINT_INIT(best_records); /* protected by key_to_read */
unknown's avatar
unknown committed
3121
  /*
unknown's avatar
unknown committed
3122 3123
    Note that there may be trees that have type SEL_TREE::KEY but contain no
    key reads at all, e.g. tree for expression "key1 is not null" where key1
3124
    is defined as "not null".
unknown's avatar
unknown committed
3125 3126
  */
  DBUG_EXECUTE("info", print_sel_tree(param, tree, &tree->keys_map,
3127 3128 3129 3130
                                      "tree scans"););
  tree->ror_scans_map.clear_all();
  tree->n_ror_scans= 0;
  for (idx= 0,key=tree->keys, end=key+param->keys;
unknown's avatar
unknown committed
3131 3132 3133 3134 3135 3136 3137
       key != end ;
       key++,idx++)
  {
    ha_rows found_records;
    double found_read_time;
    if (*key)
    {
3138
      uint keynr= param->real_keynr[idx];
unknown's avatar
unknown committed
3139 3140
      if ((*key)->type == SEL_ARG::MAYBE_KEY ||
          (*key)->maybe_flag)
3141
        param->needed_reg->set_bit(keynr);
unknown's avatar
unknown committed
3142

unknown's avatar
unknown committed
3143 3144
      bool read_index_only= index_read_must_be_used ? TRUE :
                            (bool) param->table->used_keys.is_set(keynr);
3145

3146 3147 3148 3149 3150 3151
      found_records= check_quick_select(param, idx, *key);
      if (param->is_ror_scan)
      {
        tree->n_ror_scans++;
        tree->ror_scans_map.set_bit(idx);
      }
3152
      double cpu_cost= (double) found_records / TIME_FOR_COMPARE;
unknown's avatar
unknown committed
3153
      if (found_records != HA_POS_ERROR && found_records > 2 &&
unknown's avatar
unknown committed
3154
          read_index_only &&
unknown's avatar
unknown committed
3155
          (param->table->file->index_flags(keynr, param->max_key_part,1) &
unknown's avatar
unknown committed
3156
           HA_KEYREAD_ONLY) &&
3157
          !(pk_is_clustered && keynr == param->table->s->primary_key))
3158 3159 3160 3161 3162
      {
        /*
          We can resolve this by only reading through this key. 
          0.01 is added to avoid races between range and 'index' scan.
        */
3163
        found_read_time= get_index_only_read_time(param,found_records,keynr) +
3164 3165
                         cpu_cost + 0.01;
      }
unknown's avatar
unknown committed
3166
      else
3167
      {
unknown's avatar
unknown committed
3168
        /*
3169 3170 3171
          cost(read_through_index) = cost(disk_io) + cost(row_in_range_checks)
          The row_in_range check is in QUICK_RANGE_SELECT::cmp_next function.
        */
3172 3173 3174
	found_read_time= param->table->file->read_time(keynr,
                                                       param->range_count,
                                                       found_records) +
3175 3176
			 cpu_cost + 0.01;
      }
3177 3178 3179
      DBUG_PRINT("info",("key %s: found_read_time: %g (cur. read_time: %g)",
                         param->table->key_info[keynr].name, found_read_time,
                         read_time));
3180

3181 3182
      if (read_time > found_read_time && found_records != HA_POS_ERROR
          /*|| read_time == DBL_MAX*/ )
unknown's avatar
unknown committed
3183
      {
3184
        read_time=    found_read_time;
unknown's avatar
unknown committed
3185
        best_records= found_records;
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
        key_to_read=  key;
      }

    }
  }

  DBUG_EXECUTE("info", print_sel_tree(param, tree, &tree->ror_scans_map,
                                      "ROR scans"););
  if (key_to_read)
  {
    idx= key_to_read - tree->keys;
    if ((read_plan= new (param->mem_root) TRP_RANGE(*key_to_read, idx)))
    {
      read_plan->records= best_records;
      read_plan->is_ror= tree->ror_scans_map.is_set(idx);
      read_plan->read_cost= read_time;
3202 3203 3204 3205
      DBUG_PRINT("info",
                 ("Returning range plan for key %s, cost %g, records %lu",
                  param->table->key_info[param->real_keynr[idx]].name,
                  read_plan->read_cost, (ulong) read_plan->records));
3206 3207 3208 3209 3210 3211 3212 3213 3214
    }
  }
  else
    DBUG_PRINT("info", ("No 'range' table read plan found"));

  DBUG_RETURN(read_plan);
}


unknown's avatar
unknown committed
3215
QUICK_SELECT_I *TRP_INDEX_MERGE::make_quick(PARAM *param,
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
                                            bool retrieve_full_rows,
                                            MEM_ROOT *parent_alloc)
{
  QUICK_INDEX_MERGE_SELECT *quick_imerge;
  QUICK_RANGE_SELECT *quick;
  /* index_merge always retrieves full rows, ignore retrieve_full_rows */
  if (!(quick_imerge= new QUICK_INDEX_MERGE_SELECT(param->thd, param->table)))
    return NULL;

  quick_imerge->records= records;
  quick_imerge->read_time= read_cost;
unknown's avatar
unknown committed
3227 3228
  for (TRP_RANGE **range_scan= range_scans; range_scan != range_scans_end;
       range_scan++)
3229 3230
  {
    if (!(quick= (QUICK_RANGE_SELECT*)
unknown's avatar
unknown committed
3231
          ((*range_scan)->make_quick(param, FALSE, &quick_imerge->alloc)))||
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
        quick_imerge->push_quick_back(quick))
    {
      delete quick;
      delete quick_imerge;
      return NULL;
    }
  }
  return quick_imerge;
}

unknown's avatar
unknown committed
3242
QUICK_SELECT_I *TRP_ROR_INTERSECT::make_quick(PARAM *param,
3243 3244 3245 3246 3247 3248 3249
                                              bool retrieve_full_rows,
                                              MEM_ROOT *parent_alloc)
{
  QUICK_ROR_INTERSECT_SELECT *quick_intrsect;
  QUICK_RANGE_SELECT *quick;
  DBUG_ENTER("TRP_ROR_INTERSECT::make_quick");
  MEM_ROOT *alloc;
unknown's avatar
unknown committed
3250 3251

  if ((quick_intrsect=
3252
         new QUICK_ROR_INTERSECT_SELECT(param->thd, param->table,
unknown's avatar
unknown committed
3253
                                        retrieve_full_rows? (!is_covering):FALSE,
3254 3255
                                        parent_alloc)))
  {
unknown's avatar
unknown committed
3256
    DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
3257 3258 3259
                                             "creating ROR-intersect",
                                             first_scan, last_scan););
    alloc= parent_alloc? parent_alloc: &quick_intrsect->alloc;
unknown's avatar
unknown committed
3260
    for (; first_scan != last_scan;++first_scan)
3261 3262 3263 3264
    {
      if (!(quick= get_quick_select(param, (*first_scan)->idx,
                                    (*first_scan)->sel_arg, alloc)) ||
          quick_intrsect->push_quick_back(quick))
unknown's avatar
unknown committed
3265
      {
3266 3267
        delete quick_intrsect;
        DBUG_RETURN(NULL);
unknown's avatar
unknown committed
3268 3269
      }
    }
3270 3271 3272 3273
    if (cpk_scan)
    {
      if (!(quick= get_quick_select(param, cpk_scan->idx,
                                    cpk_scan->sel_arg, alloc)))
unknown's avatar
unknown committed
3274
      {
3275 3276
        delete quick_intrsect;
        DBUG_RETURN(NULL);
unknown's avatar
unknown committed
3277
      }
unknown's avatar
unknown committed
3278
      quick->file= NULL; 
3279
      quick_intrsect->cpk_quick= quick;
unknown's avatar
unknown committed
3280
    }
unknown's avatar
unknown committed
3281
    quick_intrsect->records= records;
3282
    quick_intrsect->read_time= read_cost;
unknown's avatar
unknown committed
3283
  }
3284 3285 3286
  DBUG_RETURN(quick_intrsect);
}

3287

unknown's avatar
unknown committed
3288
QUICK_SELECT_I *TRP_ROR_UNION::make_quick(PARAM *param,
3289 3290 3291 3292 3293 3294 3295
                                          bool retrieve_full_rows,
                                          MEM_ROOT *parent_alloc)
{
  QUICK_ROR_UNION_SELECT *quick_roru;
  TABLE_READ_PLAN **scan;
  QUICK_SELECT_I *quick;
  DBUG_ENTER("TRP_ROR_UNION::make_quick");
unknown's avatar
unknown committed
3296 3297
  /*
    It is impossible to construct a ROR-union that will not retrieve full
3298
    rows, ignore retrieve_full_rows parameter.
3299 3300 3301
  */
  if ((quick_roru= new QUICK_ROR_UNION_SELECT(param->thd, param->table)))
  {
unknown's avatar
unknown committed
3302
    for (scan= first_ror; scan != last_ror; scan++)
3303
    {
unknown's avatar
unknown committed
3304
      if (!(quick= (*scan)->make_quick(param, FALSE, &quick_roru->alloc)) ||
3305 3306 3307 3308 3309
          quick_roru->push_quick_back(quick))
        DBUG_RETURN(NULL);
    }
    quick_roru->records= records;
    quick_roru->read_time= read_cost;
unknown's avatar
unknown committed
3310
  }
3311
  DBUG_RETURN(quick_roru);
unknown's avatar
unknown committed
3312 3313
}

3314

unknown's avatar
unknown committed
3315
/*
unknown's avatar
unknown committed
3316
  Build a SEL_TREE for <> or NOT BETWEEN predicate
unknown's avatar
unknown committed
3317 3318 3319 3320 3321 3322
 
  SYNOPSIS
    get_ne_mm_tree()
      param       PARAM from SQL_SELECT::test_quick_select
      cond_func   item for the predicate
      field       field in the predicate
unknown's avatar
unknown committed
3323 3324
      lt_value    constant that field should be smaller
      gt_value    constant that field should be greaterr
unknown's avatar
unknown committed
3325 3326 3327
      cmp_type    compare type for the field

  RETURN 
unknown's avatar
unknown committed
3328 3329
    #  Pointer to tree built tree
    0  on error
unknown's avatar
unknown committed
3330 3331 3332
*/

static SEL_TREE *get_ne_mm_tree(PARAM *param, Item_func *cond_func, 
unknown's avatar
unknown committed
3333 3334
                                Field *field,
                                Item *lt_value, Item *gt_value,
unknown's avatar
unknown committed
3335 3336
                                Item_result cmp_type)
{
unknown's avatar
unknown committed
3337
  SEL_TREE *tree;
unknown's avatar
unknown committed
3338
  tree= get_mm_parts(param, cond_func, field, Item_func::LT_FUNC,
unknown's avatar
unknown committed
3339
                     lt_value, cmp_type);
unknown's avatar
unknown committed
3340 3341 3342 3343
  if (tree)
  {
    tree= tree_or(param, tree, get_mm_parts(param, cond_func, field,
					    Item_func::GT_FUNC,
unknown's avatar
unknown committed
3344
					    gt_value, cmp_type));
unknown's avatar
unknown committed
3345 3346 3347 3348 3349
  }
  return tree;
}
   

unknown's avatar
unknown committed
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
/*
  Build a SEL_TREE for a simple predicate
 
  SYNOPSIS
    get_func_mm_tree()
      param       PARAM from SQL_SELECT::test_quick_select
      cond_func   item for the predicate
      field       field in the predicate
      value       constant in the predicate
      cmp_type    compare type for the field
unknown's avatar
unknown committed
3360
      inv         TRUE <> NOT cond_func is considered
unknown's avatar
unknown committed
3361
                  (makes sense only when cond_func is BETWEEN or IN) 
unknown's avatar
unknown committed
3362 3363

  RETURN 
unknown's avatar
unknown committed
3364
    Pointer to the tree built tree
unknown's avatar
unknown committed
3365 3366
*/

3367 3368
static SEL_TREE *get_func_mm_tree(PARAM *param, Item_func *cond_func, 
                                  Field *field, Item *value,
unknown's avatar
unknown committed
3369
                                  Item_result cmp_type, bool inv)
3370 3371 3372 3373
{
  SEL_TREE *tree= 0;
  DBUG_ENTER("get_func_mm_tree");

unknown's avatar
unknown committed
3374
  switch (cond_func->functype()) {
unknown's avatar
unknown committed
3375

unknown's avatar
unknown committed
3376
  case Item_func::NE_FUNC:
unknown's avatar
unknown committed
3377
    tree= get_ne_mm_tree(param, cond_func, field, value, value, cmp_type);
unknown's avatar
unknown committed
3378
    break;
unknown's avatar
unknown committed
3379

unknown's avatar
unknown committed
3380
  case Item_func::BETWEEN:
unknown's avatar
unknown committed
3381 3382
    if (inv)
    {
unknown's avatar
unknown committed
3383 3384
      tree= get_ne_mm_tree(param, cond_func, field, cond_func->arguments()[1],
                           cond_func->arguments()[2], cmp_type);
unknown's avatar
unknown committed
3385 3386
    }
    else
3387
    {
unknown's avatar
unknown committed
3388 3389 3390 3391 3392 3393 3394 3395 3396
      tree= get_mm_parts(param, cond_func, field, Item_func::GE_FUNC,
		         cond_func->arguments()[1],cmp_type);
      if (tree)
      {
        tree= tree_and(param, tree, get_mm_parts(param, cond_func, field,
					         Item_func::LE_FUNC,
					         cond_func->arguments()[2],
                                                 cmp_type));
      }
3397
    }
unknown's avatar
unknown committed
3398
    break;
unknown's avatar
unknown committed
3399

unknown's avatar
unknown committed
3400
  case Item_func::IN_FUNC:
3401 3402
  {
    Item_func_in *func=(Item_func_in*) cond_func;
unknown's avatar
unknown committed
3403 3404

    if (inv)
3405
    {
unknown's avatar
unknown committed
3406
      tree= get_ne_mm_tree(param, cond_func, field,
unknown's avatar
unknown committed
3407 3408
                           func->arguments()[1], func->arguments()[1],
                           cmp_type);
unknown's avatar
unknown committed
3409
      if (tree)
3410
      {
unknown's avatar
unknown committed
3411 3412 3413 3414 3415
        Item **arg, **end;
        for (arg= func->arguments()+2, end= arg+func->argument_count()-2;
             arg < end ; arg++)
        {
          tree=  tree_and(param, tree, get_ne_mm_tree(param, cond_func, field, 
unknown's avatar
unknown committed
3416
                                                      *arg, *arg, cmp_type));
unknown's avatar
unknown committed
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
        }
      }
    }
    else
    {    
      tree= get_mm_parts(param, cond_func, field, Item_func::EQ_FUNC,
                         func->arguments()[1], cmp_type);
      if (tree)
      {
        Item **arg, **end;
        for (arg= func->arguments()+2, end= arg+func->argument_count()-2;
             arg < end ; arg++)
        {
          tree= tree_or(param, tree, get_mm_parts(param, cond_func, field, 
                                                  Item_func::EQ_FUNC,
                                                  *arg, cmp_type));
        }
3434 3435
      }
    }
unknown's avatar
unknown committed
3436
    break;
3437
  }
unknown's avatar
unknown committed
3438
  default: 
3439
  {
unknown's avatar
unknown committed
3440 3441 3442 3443 3444 3445 3446
    /* 
       Here the function for the following predicates are processed:
       <, <=, =, >=, >, LIKE, IS NULL, IS NOT NULL.
       If the predicate is of the form (value op field) it is handled
       as the equivalent predicate (field rev_op value), e.g.
       2 <= a is handled as a >= 2.
    */
3447 3448 3449
    Item_func::Functype func_type=
      (value != cond_func->arguments()[0]) ? cond_func->functype() :
        ((Item_bool_func2*) cond_func)->rev_functype();
3450
    tree= get_mm_parts(param, cond_func, field, func_type, value, cmp_type);
3451
  }
unknown's avatar
unknown committed
3452 3453
  }

3454
  DBUG_RETURN(tree);
3455

3456 3457
}

unknown's avatar
unknown committed
3458 3459 3460 3461 3462
	/* make a select tree of all keys in condition */

static SEL_TREE *get_mm_tree(PARAM *param,COND *cond)
{
  SEL_TREE *tree=0;
3463 3464
  SEL_TREE *ftree= 0;
  Item_field *field_item= 0;
unknown's avatar
unknown committed
3465
  bool inv= FALSE;
3466
  Item *value;
unknown's avatar
unknown committed
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
  DBUG_ENTER("get_mm_tree");

  if (cond->type() == Item::COND_ITEM)
  {
    List_iterator<Item> li(*((Item_cond*) cond)->argument_list());

    if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
    {
      tree=0;
      Item *item;
      while ((item=li++))
      {
	SEL_TREE *new_tree=get_mm_tree(param,item);
3480
	if (param->thd->is_fatal_error)
3481
	  DBUG_RETURN(0);	// out of memory
unknown's avatar
unknown committed
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
	tree=tree_and(param,tree,new_tree);
	if (tree && tree->type == SEL_TREE::IMPOSSIBLE)
	  break;
      }
    }
    else
    {						// COND OR
      tree=get_mm_tree(param,li++);
      if (tree)
      {
	Item *item;
	while ((item=li++))
	{
	  SEL_TREE *new_tree=get_mm_tree(param,item);
	  if (!new_tree)
3497
	    DBUG_RETURN(0);	// out of memory
unknown's avatar
unknown committed
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
	  tree=tree_or(param,tree,new_tree);
	  if (!tree || tree->type == SEL_TREE::ALWAYS)
	    break;
	}
      }
    }
    DBUG_RETURN(tree);
  }
  /* Here when simple cond */
  if (cond->const_item())
  {
    if (cond->val_int())
      DBUG_RETURN(new SEL_TREE(SEL_TREE::ALWAYS));
    DBUG_RETURN(new SEL_TREE(SEL_TREE::IMPOSSIBLE));
  }
3513

3514 3515 3516
  table_map ref_tables= 0;
  table_map param_comp= ~(param->prev_tables | param->read_tables |
		          param->current_table);
unknown's avatar
unknown committed
3517 3518
  if (cond->type() != Item::FUNC_ITEM)
  {						// Should be a field
3519
    ref_tables= cond->used_tables();
unknown's avatar
unknown committed
3520 3521
    if ((ref_tables & param->current_table) ||
	(ref_tables & ~(param->prev_tables | param->read_tables)))
unknown's avatar
unknown committed
3522 3523 3524
      DBUG_RETURN(0);
    DBUG_RETURN(new SEL_TREE(SEL_TREE::MAYBE));
  }
3525

unknown's avatar
unknown committed
3526
  Item_func *cond_func= (Item_func*) cond;
unknown's avatar
unknown committed
3527 3528
  if (cond_func->functype() == Item_func::NOT_FUNC)
  {
unknown's avatar
unknown committed
3529
    /* Optimize NOT BETWEEN and NOT IN */
unknown's avatar
unknown committed
3530 3531 3532 3533 3534 3535
    Item *arg= cond_func->arguments()[0];
    if (arg->type() == Item::FUNC_ITEM)
    {
      cond_func= (Item_func*) arg;
      if (cond_func->select_optimize() == Item_func::OPTIMIZE_NONE)
        DBUG_RETURN(0);
unknown's avatar
unknown committed
3536
      inv= TRUE;
unknown's avatar
unknown committed
3537 3538 3539
    }
    else
      DBUG_RETURN(0);
unknown's avatar
unknown committed
3540
  }
unknown's avatar
unknown committed
3541
  else if (cond_func->select_optimize() == Item_func::OPTIMIZE_NONE)
unknown's avatar
unknown committed
3542
    DBUG_RETURN(0);			       
unknown's avatar
unknown committed
3543

unknown's avatar
unknown committed
3544 3545
  param->cond= cond;

unknown's avatar
unknown committed
3546 3547 3548
  switch (cond_func->functype()) {
  case Item_func::BETWEEN:
    if (cond_func->arguments()[0]->type() != Item::FIELD_ITEM)
unknown's avatar
unknown committed
3549
      DBUG_RETURN(0);
unknown's avatar
unknown committed
3550 3551 3552 3553
    field_item= (Item_field*) (cond_func->arguments()[0]);
    value= NULL;
    break;
  case Item_func::IN_FUNC:
unknown's avatar
unknown committed
3554 3555
  {
    Item_func_in *func=(Item_func_in*) cond_func;
unknown's avatar
unknown committed
3556
    if (func->key_item()->type() != Item::FIELD_ITEM)
3557
      DBUG_RETURN(0);
unknown's avatar
unknown committed
3558 3559 3560
    field_item= (Item_field*) (func->key_item());
    value= NULL;
    break;
3561
  }
unknown's avatar
unknown committed
3562
  case Item_func::MULT_EQUAL_FUNC:
unknown's avatar
unknown committed
3563
  {
3564 3565
    Item_equal *item_equal= (Item_equal *) cond;    
    if (!(value= item_equal->get_const()))
unknown's avatar
unknown committed
3566 3567 3568 3569
      DBUG_RETURN(0);
    Item_equal_iterator it(*item_equal);
    ref_tables= value->used_tables();
    while ((field_item= it++))
unknown's avatar
unknown committed
3570
    {
unknown's avatar
unknown committed
3571 3572 3573
      Field *field= field_item->field;
      Item_result cmp_type= field->cmp_type();
      if (!((ref_tables | field->table->map) & param_comp))
unknown's avatar
unknown committed
3574
      {
3575
        tree= get_mm_parts(param, cond, field, Item_func::EQ_FUNC,
unknown's avatar
unknown committed
3576 3577
		           value,cmp_type);
        ftree= !ftree ? tree : tree_and(param, ftree, tree);
unknown's avatar
unknown committed
3578 3579
      }
    }
unknown's avatar
unknown committed
3580
    
3581
    DBUG_RETURN(ftree);
unknown's avatar
unknown committed
3582 3583
  }
  default:
unknown's avatar
unknown committed
3584
    if (cond_func->arguments()[0]->real_item()->type() == Item::FIELD_ITEM)
unknown's avatar
unknown committed
3585
    {
unknown's avatar
unknown committed
3586
      field_item= (Item_field*) (cond_func->arguments()[0]->real_item());
unknown's avatar
unknown committed
3587
      value= cond_func->arg_count > 1 ? cond_func->arguments()[1] : 0;
unknown's avatar
unknown committed
3588
    }
unknown's avatar
unknown committed
3589
    else if (cond_func->have_rev_func() &&
unknown's avatar
unknown committed
3590 3591
             cond_func->arguments()[1]->real_item()->type() ==
                                                            Item::FIELD_ITEM)
unknown's avatar
unknown committed
3592
    {
unknown's avatar
unknown committed
3593
      field_item= (Item_field*) (cond_func->arguments()[1]->real_item());
unknown's avatar
unknown committed
3594 3595 3596 3597
      value= cond_func->arguments()[0];
    }
    else
      DBUG_RETURN(0);
unknown's avatar
unknown committed
3598
  }
unknown's avatar
unknown committed
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613

  /* 
     If the where condition contains a predicate (ti.field op const),
     then not only SELL_TREE for this predicate is built, but
     the trees for the results of substitution of ti.field for
     each tj.field belonging to the same multiple equality as ti.field
     are built as well.
     E.g. for WHERE t1.a=t2.a AND t2.a > 10 
     a SEL_TREE for t2.a > 10 will be built for quick select from t2
     and   
     a SEL_TREE for t1.a > 10 will be built for quick select from t1.
  */
     
  for (uint i= 0; i < cond_func->arg_count; i++)
  {
unknown's avatar
unknown committed
3614
    Item *arg= cond_func->arguments()[i]->real_item();
unknown's avatar
unknown committed
3615 3616 3617 3618 3619 3620
    if (arg != field_item)
      ref_tables|= arg->used_tables();
  }
  Field *field= field_item->field;
  Item_result cmp_type= field->cmp_type();
  if (!((ref_tables | field->table->map) & param_comp))
unknown's avatar
unknown committed
3621
    ftree= get_func_mm_tree(param, cond_func, field, value, cmp_type, inv);
unknown's avatar
unknown committed
3622 3623 3624 3625 3626 3627
  Item_equal *item_equal= field_item->item_equal;
  if (item_equal)
  {
    Item_equal_iterator it(*item_equal);
    Item_field *item;
    while ((item= it++))
unknown's avatar
unknown committed
3628
    {
unknown's avatar
unknown committed
3629 3630 3631 3632
      Field *f= item->field;
      if (field->eq(f))
        continue;
      if (!((ref_tables | f->table->map) & param_comp))
unknown's avatar
unknown committed
3633
      {
unknown's avatar
unknown committed
3634
        tree= get_func_mm_tree(param, cond_func, f, value, cmp_type, inv);
unknown's avatar
unknown committed
3635
        ftree= !ftree ? tree : tree_and(param, ftree, tree);
unknown's avatar
unknown committed
3636 3637 3638
      }
    }
  }
unknown's avatar
unknown committed
3639
  DBUG_RETURN(ftree);
unknown's avatar
unknown committed
3640 3641 3642 3643
}


static SEL_TREE *
3644
get_mm_parts(PARAM *param, COND *cond_func, Field *field,
unknown's avatar
unknown committed
3645
	     Item_func::Functype type,
3646
	     Item *value, Item_result cmp_type)
unknown's avatar
unknown committed
3647 3648 3649 3650 3651
{
  DBUG_ENTER("get_mm_parts");
  if (field->table != param->table)
    DBUG_RETURN(0);

3652 3653
  KEY_PART *key_part = param->key_parts;
  KEY_PART *end = param->key_parts_end;
unknown's avatar
unknown committed
3654 3655 3656 3657
  SEL_TREE *tree=0;
  if (value &&
      value->used_tables() & ~(param->prev_tables | param->read_tables))
    DBUG_RETURN(0);
3658
  for (; key_part != end ; key_part++)
unknown's avatar
unknown committed
3659 3660 3661 3662
  {
    if (field->eq(key_part->field))
    {
      SEL_ARG *sel_arg=0;
3663
      if (!tree && !(tree=new SEL_TREE()))
3664
	DBUG_RETURN(0);				// OOM
unknown's avatar
unknown committed
3665 3666
      if (!value || !(value->used_tables() & ~param->read_tables))
      {
3667 3668
	sel_arg=get_mm_leaf(param,cond_func,
			    key_part->field,key_part,type,value);
unknown's avatar
unknown committed
3669 3670 3671 3672 3673 3674 3675 3676
	if (!sel_arg)
	  continue;
	if (sel_arg->type == SEL_ARG::IMPOSSIBLE)
	{
	  tree->type=SEL_TREE::IMPOSSIBLE;
	  DBUG_RETURN(tree);
	}
      }
3677 3678
      else
      {
3679
	// This key may be used later
unknown's avatar
unknown committed
3680
	if (!(sel_arg= new SEL_ARG(SEL_ARG::MAYBE_KEY)))
3681
	  DBUG_RETURN(0);			// OOM
3682
      }
unknown's avatar
unknown committed
3683 3684
      sel_arg->part=(uchar) key_part->part;
      tree->keys[key_part->key]=sel_add(tree->keys[key_part->key],sel_arg);
unknown's avatar
unknown committed
3685
      tree->keys_map.set_bit(key_part->key);
unknown's avatar
unknown committed
3686 3687
    }
  }
3688

unknown's avatar
unknown committed
3689 3690 3691 3692 3693
  DBUG_RETURN(tree);
}


static SEL_ARG *
3694
get_mm_leaf(PARAM *param, COND *conf_func, Field *field, KEY_PART *key_part,
unknown's avatar
unknown committed
3695 3696
	    Item_func::Functype type,Item *value)
{
3697
  uint maybe_null=(uint) field->real_maybe_null();
unknown's avatar
unknown committed
3698
  bool optimize_range;
3699 3700
  SEL_ARG *tree= 0;
  MEM_ROOT *alloc= param->mem_root;
3701
  char *str;
unknown's avatar
unknown committed
3702 3703
  DBUG_ENTER("get_mm_leaf");

3704 3705
  /*
    We need to restore the runtime mem_root of the thread in this
unknown's avatar
unknown committed
3706
    function because it evaluates the value of its argument, while
3707 3708 3709 3710 3711 3712
    the argument can be any, e.g. a subselect. The subselect
    items, in turn, assume that all the memory allocated during
    the evaluation has the same life span as the item itself.
    TODO: opt_range.cc should not reset thd->mem_root at all.
  */
  param->thd->mem_root= param->old_root;
3713 3714
  if (!value)					// IS NULL or IS NOT NULL
  {
3715
    if (field->table->maybe_null)		// Can't use a key on this
3716
      goto end;
3717
    if (!maybe_null)				// Not null field
3718 3719 3720 3721 3722 3723 3724
    {
      if (type == Item_func::ISNULL_FUNC)
        tree= &null_element;
      goto end;
    }
    if (!(tree= new (alloc) SEL_ARG(field,is_null_string,is_null_string)))
      goto end;                                 // out of memory
3725 3726 3727 3728 3729
    if (type == Item_func::ISNOTNULL_FUNC)
    {
      tree->min_flag=NEAR_MIN;		    /* IS NOT NULL ->  X > NULL */
      tree->max_flag=NO_MAX_RANGE;
    }
3730
    goto end;
3731 3732 3733
  }

  /*
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
    1. Usually we can't use an index if the column collation
       differ from the operation collation.

    2. However, we can reuse a case insensitive index for
       the binary searches:

       WHERE latin1_swedish_ci_column = 'a' COLLATE lati1_bin;

       WHERE latin1_swedish_ci_colimn = BINARY 'a '

3744 3745 3746 3747
  */
  if (field->result_type() == STRING_RESULT &&
      value->result_type() == STRING_RESULT &&
      key_part->image_type == Field::itRAW &&
3748 3749
      ((Field_str*)field)->charset() != conf_func->compare_collation() &&
      !(conf_func->compare_collation()->state & MY_CS_BINSORT))
3750
    goto end;
3751

unknown's avatar
unknown committed
3752 3753 3754
  optimize_range= field->optimize_range(param->real_keynr[key_part->key],
                                        key_part->part);

unknown's avatar
unknown committed
3755 3756 3757 3758
  if (type == Item_func::LIKE_FUNC)
  {
    bool like_error;
    char buff1[MAX_FIELD_WIDTH],*min_str,*max_str;
3759
    String tmp(buff1,sizeof(buff1),value->collation.collation),*res;
unknown's avatar
unknown committed
3760
    uint length,offset,min_length,max_length;
3761
    uint field_length= field->pack_length()+maybe_null;
unknown's avatar
unknown committed
3762

unknown's avatar
unknown committed
3763
    if (!optimize_range)
3764
      goto end;
unknown's avatar
unknown committed
3765
    if (!(res= value->val_str(&tmp)))
3766 3767 3768 3769
    {
      tree= &null_element;
      goto end;
    }
unknown's avatar
unknown committed
3770

3771 3772 3773 3774 3775
    /*
      TODO:
      Check if this was a function. This should have be optimized away
      in the sql_select.cc
    */
unknown's avatar
unknown committed
3776 3777 3778 3779 3780 3781
    if (res != &tmp)
    {
      tmp.copy(*res);				// Get own copy
      res= &tmp;
    }
    if (field->cmp_type() != STRING_RESULT)
3782
      goto end;                                 // Can only optimize strings
unknown's avatar
unknown committed
3783 3784

    offset=maybe_null;
unknown's avatar
unknown committed
3785 3786 3787
    length=key_part->store_length;

    if (length != key_part->length  + maybe_null)
unknown's avatar
unknown committed
3788
    {
unknown's avatar
unknown committed
3789 3790 3791
      /* key packed with length prefix */
      offset+= HA_KEY_BLOB_LENGTH;
      field_length= length - HA_KEY_BLOB_LENGTH;
unknown's avatar
unknown committed
3792 3793 3794
    }
    else
    {
unknown's avatar
unknown committed
3795 3796 3797 3798 3799 3800 3801 3802
      if (unlikely(length < field_length))
      {
	/*
	  This can only happen in a table created with UNIREG where one key
	  overlaps many fields
	*/
	length= field_length;
      }
unknown's avatar
unknown committed
3803
      else
unknown's avatar
unknown committed
3804
	field_length= length;
unknown's avatar
unknown committed
3805 3806
    }
    length+=offset;
3807 3808
    if (!(min_str= (char*) alloc_root(alloc, length*2)))
      goto end;
3809

unknown's avatar
unknown committed
3810 3811 3812
    max_str=min_str+length;
    if (maybe_null)
      max_str[0]= min_str[0]=0;
3813

3814
    field_length-= maybe_null;
3815
    like_error= my_like_range(field->charset(),
unknown's avatar
unknown committed
3816
			      res->ptr(), res->length(),
unknown's avatar
unknown committed
3817 3818
			      ((Item_func_like*)(param->cond))->escape,
			      wild_one, wild_many,
3819
			      field_length,
unknown's avatar
unknown committed
3820 3821
			      min_str+offset, max_str+offset,
			      &min_length, &max_length);
unknown's avatar
unknown committed
3822
    if (like_error)				// Can't optimize with LIKE
3823
      goto end;
unknown's avatar
unknown committed
3824

3825
    if (offset != maybe_null)			// BLOB or VARCHAR
unknown's avatar
unknown committed
3826 3827 3828 3829
    {
      int2store(min_str+maybe_null,min_length);
      int2store(max_str+maybe_null,max_length);
    }
3830 3831
    tree= new (alloc) SEL_ARG(field, min_str, max_str);
    goto end;
unknown's avatar
unknown committed
3832 3833
  }

unknown's avatar
unknown committed
3834
  if (!optimize_range &&
3835
      type != Item_func::EQ_FUNC &&
unknown's avatar
unknown committed
3836
      type != Item_func::EQUAL_FUNC)
3837
    goto end;                                   // Can't optimize this
unknown's avatar
unknown committed
3838

3839 3840 3841 3842
  /*
    We can't always use indexes when comparing a string index to a number
    cmp_type() is checked to allow compare of dates to numbers
  */
unknown's avatar
unknown committed
3843 3844 3845
  if (field->result_type() == STRING_RESULT &&
      value->result_type() != STRING_RESULT &&
      field->cmp_type() != value->result_type())
3846
    goto end;
unknown's avatar
unknown committed
3847

3848
  if (value->save_in_field_no_warnings(field, 1) < 0)
unknown's avatar
unknown committed
3849
  {
3850
    /* This happens when we try to insert a NULL field in a not null column */
3851 3852
    tree= &null_element;                        // cmp with NULL is never TRUE
    goto end;
unknown's avatar
unknown committed
3853
  }
3854
  str= (char*) alloc_root(alloc, key_part->store_length+1);
unknown's avatar
unknown committed
3855
  if (!str)
3856
    goto end;
unknown's avatar
unknown committed
3857
  if (maybe_null)
3858
    *str= (char) field->is_real_null();		// Set to 1 if null
3859
  field->get_key_image(str+maybe_null, key_part->length, key_part->image_type);
3860 3861
  if (!(tree= new (alloc) SEL_ARG(field, str, str)))
    goto end;                                   // out of memory
unknown's avatar
unknown committed
3862

unknown's avatar
unknown committed
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
  /*
    Check if we are comparing an UNSIGNED integer with a negative constant.
    In this case we know that:
    (a) (unsigned_int [< | <=] negative_constant) == FALSE
    (b) (unsigned_int [> | >=] negative_constant) == TRUE
    In case (a) the condition is false for all values, and in case (b) it
    is true for all values, so we can avoid unnecessary retrieval and condition
    testing, and we also get correct comparison of unsinged integers with
    negative integers (which otherwise fails because at query execution time
    negative integers are cast to unsigned if compared with unsigned).
   */
unknown's avatar
unknown committed
3874 3875
  if (field->result_type() == INT_RESULT &&
      value->result_type() == INT_RESULT &&
unknown's avatar
unknown committed
3876 3877 3878 3879 3880 3881 3882 3883
      ((Field_num*)field)->unsigned_flag && !((Item_int*)value)->unsigned_flag)
  {
    longlong item_val= value->val_int();
    if (item_val < 0)
    {
      if (type == Item_func::LT_FUNC || type == Item_func::LE_FUNC)
      {
        tree->type= SEL_ARG::IMPOSSIBLE;
3884
        goto end;
unknown's avatar
unknown committed
3885 3886
      }
      if (type == Item_func::GT_FUNC || type == Item_func::GE_FUNC)
3887 3888 3889 3890
      {
        tree= 0;
        goto end;
      }
unknown's avatar
unknown committed
3891 3892 3893
    }
  }

unknown's avatar
unknown committed
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
  switch (type) {
  case Item_func::LT_FUNC:
    if (field_is_equal_to_item(field,value))
      tree->max_flag=NEAR_MAX;
    /* fall through */
  case Item_func::LE_FUNC:
    if (!maybe_null)
      tree->min_flag=NO_MIN_RANGE;		/* From start */
    else
    {						// > NULL
      tree->min_value=is_null_string;
      tree->min_flag=NEAR_MIN;
    }
    break;
  case Item_func::GT_FUNC:
    if (field_is_equal_to_item(field,value))
      tree->min_flag=NEAR_MIN;
    /* fall through */
  case Item_func::GE_FUNC:
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
3915
  case Item_func::SP_EQUALS_FUNC:
unknown's avatar
unknown committed
3916 3917 3918
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_EQUAL;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
3919
  case Item_func::SP_DISJOINT_FUNC:
unknown's avatar
unknown committed
3920 3921 3922
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_DISJOINT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
3923
  case Item_func::SP_INTERSECTS_FUNC:
unknown's avatar
unknown committed
3924 3925 3926
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
3927
  case Item_func::SP_TOUCHES_FUNC:
unknown's avatar
unknown committed
3928 3929 3930
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
3931 3932

  case Item_func::SP_CROSSES_FUNC:
unknown's avatar
unknown committed
3933 3934 3935
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
3936
  case Item_func::SP_WITHIN_FUNC:
unknown's avatar
unknown committed
3937 3938 3939
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_WITHIN;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
3940 3941

  case Item_func::SP_CONTAINS_FUNC:
unknown's avatar
unknown committed
3942 3943 3944
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_CONTAIN;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
3945
  case Item_func::SP_OVERLAPS_FUNC:
unknown's avatar
unknown committed
3946 3947 3948
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
3949

unknown's avatar
unknown committed
3950 3951 3952
  default:
    break;
  }
3953 3954 3955

end:
  param->thd->mem_root= alloc;
unknown's avatar
unknown committed
3956 3957 3958 3959 3960 3961 3962 3963 3964
  DBUG_RETURN(tree);
}


/******************************************************************************
** Tree manipulation functions
** If tree is 0 it means that the condition can't be tested. It refers
** to a non existent table or to a field in current table with isn't a key.
** The different tree flags:
unknown's avatar
unknown committed
3965 3966
** IMPOSSIBLE:	 Condition is never TRUE
** ALWAYS:	 Condition is always TRUE
unknown's avatar
unknown committed
3967 3968 3969 3970 3971 3972
** MAYBE:	 Condition may exists when tables are read
** MAYBE_KEY:	 Condition refers to a key that may be used in join loop
** KEY_RANGE:	 Condition uses a key
******************************************************************************/

/*
3973 3974
  Add a new key test to a key when scanning through all keys
  This will never be called for same key parts.
unknown's avatar
unknown committed
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
*/

static SEL_ARG *
sel_add(SEL_ARG *key1,SEL_ARG *key2)
{
  SEL_ARG *root,**key_link;

  if (!key1)
    return key2;
  if (!key2)
    return key1;

  key_link= &root;
  while (key1 && key2)
  {
    if (key1->part < key2->part)
    {
      *key_link= key1;
      key_link= &key1->next_key_part;
      key1=key1->next_key_part;
    }
    else
    {
      *key_link= key2;
      key_link= &key2->next_key_part;
      key2=key2->next_key_part;
    }
  }
  *key_link=key1 ? key1 : key2;
  return root;
}

#define CLONE_KEY1_MAYBE 1
#define CLONE_KEY2_MAYBE 2
#define swap_clone_flag(A) ((A & 1) << 1) | ((A & 2) >> 1)


static SEL_TREE *
tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
{
  DBUG_ENTER("tree_and");
  if (!tree1)
    DBUG_RETURN(tree2);
  if (!tree2)
    DBUG_RETURN(tree1);
  if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree1);
  if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree2);
  if (tree1->type == SEL_TREE::MAYBE)
  {
    if (tree2->type == SEL_TREE::KEY)
      tree2->type=SEL_TREE::KEY_SMALLER;
    DBUG_RETURN(tree2);
  }
  if (tree2->type == SEL_TREE::MAYBE)
  {
    tree1->type=SEL_TREE::KEY_SMALLER;
    DBUG_RETURN(tree1);
  }

unknown's avatar
unknown committed
4036 4037
  key_map  result_keys;
  result_keys.clear_all();
unknown's avatar
unknown committed
4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
  /* Join the trees key per key */
  SEL_ARG **key1,**key2,**end;
  for (key1= tree1->keys,key2= tree2->keys,end=key1+param->keys ;
       key1 != end ; key1++,key2++)
  {
    uint flag=0;
    if (*key1 || *key2)
    {
      if (*key1 && !(*key1)->simple_key())
	flag|=CLONE_KEY1_MAYBE;
      if (*key2 && !(*key2)->simple_key())
	flag|=CLONE_KEY2_MAYBE;
      *key1=key_and(*key1,*key2,flag);
4051
      if (*key1 && (*key1)->type == SEL_ARG::IMPOSSIBLE)
unknown's avatar
unknown committed
4052 4053
      {
	tree1->type= SEL_TREE::IMPOSSIBLE;
unknown's avatar
unknown committed
4054
        DBUG_RETURN(tree1);
unknown's avatar
unknown committed
4055
      }
unknown's avatar
unknown committed
4056
      result_keys.set_bit(key1 - tree1->keys);
unknown's avatar
unknown committed
4057
#ifdef EXTRA_DEBUG
4058 4059
      if (*key1)
        (*key1)->test_use_count(*key1);
unknown's avatar
unknown committed
4060 4061 4062
#endif
    }
  }
unknown's avatar
unknown committed
4063 4064
  tree1->keys_map= result_keys;
  /* dispose index_merge if there is a "range" option */
unknown's avatar
unknown committed
4065
  if (!result_keys.is_clear_all())
unknown's avatar
unknown committed
4066 4067 4068 4069 4070 4071 4072
  {
    tree1->merges.empty();
    DBUG_RETURN(tree1);
  }

  /* ok, both trees are index_merge trees */
  imerge_list_and_list(&tree1->merges, &tree2->merges);
unknown's avatar
unknown committed
4073 4074 4075 4076
  DBUG_RETURN(tree1);
}


unknown's avatar
unknown committed
4077
/*
unknown's avatar
unknown committed
4078 4079
  Check if two SEL_TREES can be combined into one (i.e. a single key range
  read can be constructed for "cond_of_tree1 OR cond_of_tree2" ) without
4080
  using index_merge.
unknown's avatar
unknown committed
4081 4082 4083 4084
*/

bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2, PARAM* param)
{
unknown's avatar
unknown committed
4085
  key_map common_keys= tree1->keys_map;
unknown's avatar
unknown committed
4086
  DBUG_ENTER("sel_trees_can_be_ored");
4087
  common_keys.intersect(tree2->keys_map);
unknown's avatar
unknown committed
4088

unknown's avatar
unknown committed
4089
  if (common_keys.is_clear_all())
unknown's avatar
unknown committed
4090
    DBUG_RETURN(FALSE);
unknown's avatar
unknown committed
4091 4092

  /* trees have a common key, check if they refer to same key part */
unknown's avatar
unknown committed
4093
  SEL_ARG **key1,**key2;
unknown's avatar
unknown committed
4094
  for (uint key_no=0; key_no < param->keys; key_no++)
unknown's avatar
unknown committed
4095
  {
unknown's avatar
unknown committed
4096
    if (common_keys.is_set(key_no))
unknown's avatar
unknown committed
4097 4098 4099 4100 4101
    {
      key1= tree1->keys + key_no;
      key2= tree2->keys + key_no;
      if ((*key1)->part == (*key2)->part)
      {
unknown's avatar
unknown committed
4102
        DBUG_RETURN(TRUE);
unknown's avatar
unknown committed
4103 4104 4105
      }
    }
  }
unknown's avatar
unknown committed
4106
  DBUG_RETURN(FALSE);
unknown's avatar
unknown committed
4107
}
unknown's avatar
unknown committed
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123

static SEL_TREE *
tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
{
  DBUG_ENTER("tree_or");
  if (!tree1 || !tree2)
    DBUG_RETURN(0);
  if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree2);
  if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree1);
  if (tree1->type == SEL_TREE::MAYBE)
    DBUG_RETURN(tree1);				// Can't use this
  if (tree2->type == SEL_TREE::MAYBE)
    DBUG_RETURN(tree2);

unknown's avatar
unknown committed
4124
  SEL_TREE *result= 0;
unknown's avatar
unknown committed
4125 4126
  key_map  result_keys;
  result_keys.clear_all();
unknown's avatar
unknown committed
4127
  if (sel_trees_can_be_ored(tree1, tree2, param))
unknown's avatar
unknown committed
4128
  {
unknown's avatar
unknown committed
4129 4130 4131 4132
    /* Join the trees key per key */
    SEL_ARG **key1,**key2,**end;
    for (key1= tree1->keys,key2= tree2->keys,end= key1+param->keys ;
         key1 != end ; key1++,key2++)
unknown's avatar
unknown committed
4133
    {
unknown's avatar
unknown committed
4134 4135 4136 4137
      *key1=key_or(*key1,*key2);
      if (*key1)
      {
        result=tree1;				// Added to tree1
unknown's avatar
unknown committed
4138
        result_keys.set_bit(key1 - tree1->keys);
unknown's avatar
unknown committed
4139
#ifdef EXTRA_DEBUG
unknown's avatar
unknown committed
4140
        (*key1)->test_use_count(*key1);
unknown's avatar
unknown committed
4141
#endif
unknown's avatar
unknown committed
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
      }
    }
    if (result)
      result->keys_map= result_keys;
  }
  else
  {
    /* ok, two trees have KEY type but cannot be used without index merge */
    if (tree1->merges.is_empty() && tree2->merges.is_empty())
    {
      SEL_IMERGE *merge;
      /* both trees are "range" trees, produce new index merge structure */
      if (!(result= new SEL_TREE()) || !(merge= new SEL_IMERGE()) ||
          (result->merges.push_back(merge)) ||
          (merge->or_sel_tree(param, tree1)) ||
          (merge->or_sel_tree(param, tree2)))
        result= NULL;
      else
        result->type= tree1->type;
    }
    else if (!tree1->merges.is_empty() && !tree2->merges.is_empty())
    {
      if (imerge_list_or_list(param, &tree1->merges, &tree2->merges))
        result= new SEL_TREE(SEL_TREE::ALWAYS);
      else
        result= tree1;
    }
    else
    {
      /* one tree is index merge tree and another is range tree */
      if (tree1->merges.is_empty())
unknown's avatar
unknown committed
4173
        swap_variables(SEL_TREE*, tree1, tree2);
unknown's avatar
unknown committed
4174 4175 4176 4177 4178 4179

      /* add tree2 to tree1->merges, checking if it collapses to ALWAYS */
      if (imerge_list_or_tree(param, &tree1->merges, tree2))
        result= new SEL_TREE(SEL_TREE::ALWAYS);
      else
        result= tree1;
unknown's avatar
unknown committed
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
    }
  }
  DBUG_RETURN(result);
}


/* And key trees where key1->part < key2 -> part */

static SEL_ARG *
and_all_keys(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag)
{
  SEL_ARG *next;
  ulong use_count=key1->use_count;

  if (key1->elements != 1)
  {
    key2->use_count+=key1->elements-1;
    key2->increment_use_count((int) key1->elements-1);
  }
  if (key1->type == SEL_ARG::MAYBE_KEY)
  {
4201 4202
    key1->right= key1->left= &null_element;
    key1->next= key1->prev= 0;
unknown's avatar
unknown committed
4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
  }
  for (next=key1->first(); next ; next=next->next)
  {
    if (next->next_key_part)
    {
      SEL_ARG *tmp=key_and(next->next_key_part,key2,clone_flag);
      if (tmp && tmp->type == SEL_ARG::IMPOSSIBLE)
      {
	key1=key1->tree_delete(next);
	continue;
      }
      next->next_key_part=tmp;
      if (use_count)
	next->increment_use_count(use_count);
    }
    else
      next->next_key_part=key2;
  }
  if (!key1)
    return &null_element;			// Impossible ranges
  key1->use_count++;
  return key1;
}


static SEL_ARG *
key_and(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag)
{
  if (!key1)
    return key2;
  if (!key2)
    return key1;
  if (key1->part != key2->part)
  {
    if (key1->part > key2->part)
    {
4239
      swap_variables(SEL_ARG *, key1, key2);
unknown's avatar
unknown committed
4240 4241 4242 4243 4244
      clone_flag=swap_clone_flag(clone_flag);
    }
    // key1->part < key2->part
    key1->use_count--;
    if (key1->use_count > 0)
4245 4246
      if (!(key1= key1->clone_tree()))
	return 0;				// OOM
unknown's avatar
unknown committed
4247 4248 4249 4250
    return and_all_keys(key1,key2,clone_flag);
  }

  if (((clone_flag & CLONE_KEY2_MAYBE) &&
4251 4252
       !(clone_flag & CLONE_KEY1_MAYBE) &&
       key2->type != SEL_ARG::MAYBE_KEY) ||
unknown's avatar
unknown committed
4253 4254
      key1->type == SEL_ARG::MAYBE_KEY)
  {						// Put simple key in key2
4255
    swap_variables(SEL_ARG *, key1, key2);
unknown's avatar
unknown committed
4256 4257 4258
    clone_flag=swap_clone_flag(clone_flag);
  }

unknown's avatar
unknown committed
4259
  /* If one of the key is MAYBE_KEY then the found region may be smaller */
unknown's avatar
unknown committed
4260 4261 4262 4263 4264
  if (key2->type == SEL_ARG::MAYBE_KEY)
  {
    if (key1->use_count > 1)
    {
      key1->use_count--;
4265 4266
      if (!(key1=key1->clone_tree()))
	return 0;				// OOM
unknown's avatar
unknown committed
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
      key1->use_count++;
    }
    if (key1->type == SEL_ARG::MAYBE_KEY)
    {						// Both are maybe key
      key1->next_key_part=key_and(key1->next_key_part,key2->next_key_part,
				 clone_flag);
      if (key1->next_key_part &&
	  key1->next_key_part->type == SEL_ARG::IMPOSSIBLE)
	return key1;
    }
    else
    {
      key1->maybe_smaller();
      if (key2->next_key_part)
4281 4282
      {
	key1->use_count--;			// Incremented in and_all_keys
unknown's avatar
unknown committed
4283
	return and_all_keys(key1,key2,clone_flag);
4284
      }
unknown's avatar
unknown committed
4285 4286 4287 4288 4289
      key2->use_count--;			// Key2 doesn't have a tree
    }
    return key1;
  }

4290 4291 4292 4293 4294 4295 4296
  if ((key1->min_flag | key2->min_flag) & GEOM_FLAG)
  {
    key1->free_tree();
    key2->free_tree();
    return 0;					// Can't optimize this
  }

4297 4298 4299
  if ((key1->min_flag | key2->min_flag) & GEOM_FLAG)
  {
    key1->free_tree();
4300 4301 4302 4303
    key2->free_tree();
    return 0;					// Can't optimize this
  }

unknown's avatar
unknown committed
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
  key1->use_count--;
  key2->use_count--;
  SEL_ARG *e1=key1->first(), *e2=key2->first(), *new_tree=0;

  while (e1 && e2)
  {
    int cmp=e1->cmp_min_to_min(e2);
    if (cmp < 0)
    {
      if (get_range(&e1,&e2,key1))
	continue;
    }
    else if (get_range(&e2,&e1,key2))
      continue;
    SEL_ARG *next=key_and(e1->next_key_part,e2->next_key_part,clone_flag);
    e1->increment_use_count(1);
    e2->increment_use_count(1);
    if (!next || next->type != SEL_ARG::IMPOSSIBLE)
    {
      SEL_ARG *new_arg= e1->clone_and(e2);
4324 4325
      if (!new_arg)
	return &null_element;			// End of memory
unknown's avatar
unknown committed
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
      new_arg->next_key_part=next;
      if (!new_tree)
      {
	new_tree=new_arg;
      }
      else
	new_tree=new_tree->insert(new_arg);
    }
    if (e1->cmp_max_to_max(e2) < 0)
      e1=e1->next;				// e1 can't overlapp next e2
    else
      e2=e2->next;
  }
  key1->free_tree();
  key2->free_tree();
  if (!new_tree)
    return &null_element;			// Impossible range
  return new_tree;
}


static bool
get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1)
{
  (*e1)=root1->find_range(*e2);			// first e1->min < e2->min
  if ((*e1)->cmp_max_to_min(*e2) < 0)
  {
    if (!((*e1)=(*e1)->next))
      return 1;
    if ((*e1)->cmp_min_to_max(*e2) > 0)
    {
      (*e2)=(*e2)->next;
      return 1;
    }
  }
  return 0;
}


static SEL_ARG *
key_or(SEL_ARG *key1,SEL_ARG *key2)
{
  if (!key1)
  {
    if (key2)
    {
      key2->use_count--;
      key2->free_tree();
    }
    return 0;
  }
4377
  if (!key2)
unknown's avatar
unknown committed
4378 4379 4380 4381 4382 4383 4384 4385
  {
    key1->use_count--;
    key1->free_tree();
    return 0;
  }
  key1->use_count--;
  key2->use_count--;

4386 4387
  if (key1->part != key2->part || 
      (key1->min_flag | key2->min_flag) & GEOM_FLAG)
unknown's avatar
unknown committed
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
  {
    key1->free_tree();
    key2->free_tree();
    return 0;					// Can't optimize this
  }

  // If one of the key is MAYBE_KEY then the found region may be bigger
  if (key1->type == SEL_ARG::MAYBE_KEY)
  {
    key2->free_tree();
    key1->use_count++;
    return key1;
  }
  if (key2->type == SEL_ARG::MAYBE_KEY)
  {
    key1->free_tree();
    key2->use_count++;
    return key2;
  }

  if (key1->use_count > 0)
  {
    if (key2->use_count == 0 || key1->elements > key2->elements)
    {
4412
      swap_variables(SEL_ARG *,key1,key2);
unknown's avatar
unknown committed
4413
    }
4414
    if (key1->use_count > 0 || !(key1=key1->clone_tree()))
4415
      return 0;					// OOM
unknown's avatar
unknown committed
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
  }

  // Add tree at key2 to tree at key1
  bool key2_shared=key2->use_count != 0;
  key1->maybe_flag|=key2->maybe_flag;

  for (key2=key2->first(); key2; )
  {
    SEL_ARG *tmp=key1->find_range(key2);	// Find key1.min <= key2.min
    int cmp;

    if (!tmp)
    {
      tmp=key1->first();			// tmp.min > key2.min
      cmp= -1;
    }
    else if ((cmp=tmp->cmp_max_to_min(key2)) < 0)
    {						// Found tmp.max < key2.min
      SEL_ARG *next=tmp->next;
      if (cmp == -2 && eq_tree(tmp->next_key_part,key2->next_key_part))
      {
	// Join near ranges like tmp.max < 0 and key2.min >= 0
	SEL_ARG *key2_next=key2->next;
	if (key2_shared)
	{
unknown's avatar
unknown committed
4441
	  if (!(key2=new SEL_ARG(*key2)))
4442
	    return 0;		// out of memory
unknown's avatar
unknown committed
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
	  key2->increment_use_count(key1->use_count+1);
	  key2->next=key2_next;			// New copy of key2
	}
	key2->copy_min(tmp);
	if (!(key1=key1->tree_delete(tmp)))
	{					// Only one key in tree
	  key1=key2;
	  key1->make_root();
	  key2=key2_next;
	  break;
	}
      }
      if (!(tmp=next))				// tmp.min > key2.min
	break;					// Copy rest of key2
    }
    if (cmp < 0)
    {						// tmp.min > key2.min
      int tmp_cmp;
      if ((tmp_cmp=tmp->cmp_min_to_max(key2)) > 0) // if tmp.min > key2.max
      {
	if (tmp_cmp == 2 && eq_tree(tmp->next_key_part,key2->next_key_part))
	{					// ranges are connected
	  tmp->copy_min_to_min(key2);
	  key1->merge_flags(key2);
	  if (tmp->min_flag & NO_MIN_RANGE &&
	      tmp->max_flag & NO_MAX_RANGE)
	  {
	    if (key1->maybe_flag)
	      return new SEL_ARG(SEL_ARG::MAYBE_KEY);
	    return 0;
	  }
	  key2->increment_use_count(-1);	// Free not used tree
	  key2=key2->next;
	  continue;
	}
	else
	{
	  SEL_ARG *next=key2->next;		// Keys are not overlapping
	  if (key2_shared)
	  {
4483 4484
	    SEL_ARG *cpy= new SEL_ARG(*key2);	// Must make copy
	    if (!cpy)
4485
	      return 0;				// OOM
4486
	    key1=key1->insert(cpy);
unknown's avatar
unknown committed
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
	    key2->increment_use_count(key1->use_count+1);
	  }
	  else
	    key1=key1->insert(key2);		// Will destroy key2_root
	  key2=next;
	  continue;
	}
      }
    }

    // tmp.max >= key2.min && tmp.min <= key.max  (overlapping ranges)
    if (eq_tree(tmp->next_key_part,key2->next_key_part))
    {
      if (tmp->is_same(key2))
      {
	tmp->merge_flags(key2);			// Copy maybe flags
	key2->increment_use_count(-1);		// Free not used tree
      }
      else
      {
	SEL_ARG *last=tmp;
	while (last->next && last->next->cmp_min_to_max(key2) <= 0 &&
	       eq_tree(last->next->next_key_part,key2->next_key_part))
	{
	  SEL_ARG *save=last;
	  last=last->next;
	  key1=key1->tree_delete(save);
	}
unknown's avatar
unknown committed
4515
        last->copy_min(tmp);
unknown's avatar
unknown committed
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
	if (last->copy_min(key2) || last->copy_max(key2))
	{					// Full range
	  key1->free_tree();
	  for (; key2 ; key2=key2->next)
	    key2->increment_use_count(-1);	// Free not used tree
	  if (key1->maybe_flag)
	    return new SEL_ARG(SEL_ARG::MAYBE_KEY);
	  return 0;
	}
      }
      key2=key2->next;
      continue;
    }

    if (cmp >= 0 && tmp->cmp_min_to_min(key2) < 0)
    {						// tmp.min <= x < key2.min
      SEL_ARG *new_arg=tmp->clone_first(key2);
4533 4534
      if (!new_arg)
	return 0;				// OOM
unknown's avatar
unknown committed
4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
      if ((new_arg->next_key_part= key1->next_key_part))
	new_arg->increment_use_count(key1->use_count+1);
      tmp->copy_min_to_min(key2);
      key1=key1->insert(new_arg);
    }

    // tmp.min >= key2.min && tmp.min <= key2.max
    SEL_ARG key(*key2);				// Get copy we can modify
    for (;;)
    {
      if (tmp->cmp_min_to_min(&key) > 0)
      {						// key.min <= x < tmp.min
	SEL_ARG *new_arg=key.clone_first(tmp);
4548 4549
	if (!new_arg)
	  return 0;				// OOM
unknown's avatar
unknown committed
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
	if ((new_arg->next_key_part=key.next_key_part))
	  new_arg->increment_use_count(key1->use_count+1);
	key1=key1->insert(new_arg);
      }
      if ((cmp=tmp->cmp_max_to_max(&key)) <= 0)
      {						// tmp.min. <= x <= tmp.max
	tmp->maybe_flag|= key.maybe_flag;
	key.increment_use_count(key1->use_count+1);
	tmp->next_key_part=key_or(tmp->next_key_part,key.next_key_part);
	if (!cmp)				// Key2 is ready
	  break;
	key.copy_max_to_min(tmp);
	if (!(tmp=tmp->next))
	{
4564 4565 4566 4567
	  SEL_ARG *tmp2= new SEL_ARG(key);
	  if (!tmp2)
	    return 0;				// OOM
	  key1=key1->insert(tmp2);
unknown's avatar
unknown committed
4568 4569 4570 4571 4572
	  key2=key2->next;
	  goto end;
	}
	if (tmp->cmp_min_to_max(&key) > 0)
	{
4573 4574 4575 4576
	  SEL_ARG *tmp2= new SEL_ARG(key);
	  if (!tmp2)
	    return 0;				// OOM
	  key1=key1->insert(tmp2);
unknown's avatar
unknown committed
4577 4578 4579 4580 4581 4582
	  break;
	}
      }
      else
      {
	SEL_ARG *new_arg=tmp->clone_last(&key); // tmp.min <= x <= key.max
4583 4584
	if (!new_arg)
	  return 0;				// OOM
unknown's avatar
unknown committed
4585 4586
	tmp->copy_max_to_min(&key);
	tmp->increment_use_count(key1->use_count+1);
4587 4588
	/* Increment key count as it may be used for next loop */
	key.increment_use_count(1);
unknown's avatar
unknown committed
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
	new_arg->next_key_part=key_or(tmp->next_key_part,key.next_key_part);
	key1=key1->insert(new_arg);
	break;
      }
    }
    key2=key2->next;
  }

end:
  while (key2)
  {
    SEL_ARG *next=key2->next;
    if (key2_shared)
    {
4603 4604 4605
      SEL_ARG *tmp=new SEL_ARG(*key2);		// Must make copy
      if (!tmp)
	return 0;
unknown's avatar
unknown committed
4606
      key2->increment_use_count(key1->use_count+1);
4607
      key1=key1->insert(tmp);
unknown's avatar
unknown committed
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
    }
    else
      key1=key1->insert(key2);			// Will destroy key2_root
    key2=next;
  }
  key1->use_count++;
  return key1;
}


/* Compare if two trees are equal */

static bool eq_tree(SEL_ARG* a,SEL_ARG *b)
{
  if (a == b)
    return 1;
  if (!a || !b || !a->is_same(b))
    return 0;
  if (a->left != &null_element && b->left != &null_element)
  {
    if (!eq_tree(a->left,b->left))
      return 0;
  }
  else if (a->left != &null_element || b->left != &null_element)
    return 0;
  if (a->right != &null_element && b->right != &null_element)
  {
    if (!eq_tree(a->right,b->right))
      return 0;
  }
  else if (a->right != &null_element || b->right != &null_element)
    return 0;
  if (a->next_key_part != b->next_key_part)
  {						// Sub range
    if (!a->next_key_part != !b->next_key_part ||
	!eq_tree(a->next_key_part, b->next_key_part))
      return 0;
  }
  return 1;
}


SEL_ARG *
SEL_ARG::insert(SEL_ARG *key)
{
  SEL_ARG *element,**par,*last_element;
  LINT_INIT(par); LINT_INIT(last_element);
unknown's avatar
unknown committed
4655

unknown's avatar
unknown committed
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
  for (element= this; element != &null_element ; )
  {
    last_element=element;
    if (key->cmp_min_to_min(element) > 0)
    {
      par= &element->right; element= element->right;
    }
    else
    {
      par = &element->left; element= element->left;
    }
  }
  *par=key;
  key->parent=last_element;
	/* Link in list */
  if (par == &last_element->left)
  {
    key->next=last_element;
    if ((key->prev=last_element->prev))
      key->prev->next=key;
    last_element->prev=key;
  }
  else
  {
    if ((key->next=last_element->next))
      key->next->prev=key;
    key->prev=last_element;
    last_element->next=key;
  }
  key->left=key->right= &null_element;
  SEL_ARG *root=rb_insert(key);			// rebalance tree
  root->use_count=this->use_count;		// copy root info
  root->elements= this->elements+1;
  root->maybe_flag=this->maybe_flag;
  return root;
}


/*
** Find best key with min <= given key
** Because the call context this should never return 0 to get_range
*/

SEL_ARG *
SEL_ARG::find_range(SEL_ARG *key)
{
  SEL_ARG *element=this,*found=0;

  for (;;)
  {
    if (element == &null_element)
      return found;
    int cmp=element->cmp_min_to_min(key);
    if (cmp == 0)
      return element;
    if (cmp < 0)
    {
      found=element;
      element=element->right;
    }
    else
      element=element->left;
  }
}


/*
4723 4724 4725 4726 4727
  Remove a element from the tree

  SYNOPSIS
    tree_delete()
    key		Key that is to be deleted from tree (this)
unknown's avatar
unknown committed
4728

4729 4730 4731 4732 4733
  NOTE
    This also frees all sub trees that is used by the element

  RETURN
    root of new tree (with key deleted)
unknown's avatar
unknown committed
4734 4735 4736 4737 4738 4739 4740
*/

SEL_ARG *
SEL_ARG::tree_delete(SEL_ARG *key)
{
  enum leaf_color remove_color;
  SEL_ARG *root,*nod,**par,*fix_par;
4741 4742 4743 4744
  DBUG_ENTER("tree_delete");

  root=this;
  this->parent= 0;
unknown's avatar
unknown committed
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790

  /* Unlink from list */
  if (key->prev)
    key->prev->next=key->next;
  if (key->next)
    key->next->prev=key->prev;
  key->increment_use_count(-1);
  if (!key->parent)
    par= &root;
  else
    par=key->parent_ptr();

  if (key->left == &null_element)
  {
    *par=nod=key->right;
    fix_par=key->parent;
    if (nod != &null_element)
      nod->parent=fix_par;
    remove_color= key->color;
  }
  else if (key->right == &null_element)
  {
    *par= nod=key->left;
    nod->parent=fix_par=key->parent;
    remove_color= key->color;
  }
  else
  {
    SEL_ARG *tmp=key->next;			// next bigger key (exist!)
    nod= *tmp->parent_ptr()= tmp->right;	// unlink tmp from tree
    fix_par=tmp->parent;
    if (nod != &null_element)
      nod->parent=fix_par;
    remove_color= tmp->color;

    tmp->parent=key->parent;			// Move node in place of key
    (tmp->left=key->left)->parent=tmp;
    if ((tmp->right=key->right) != &null_element)
      tmp->right->parent=tmp;
    tmp->color=key->color;
    *par=tmp;
    if (fix_par == key)				// key->right == key->next
      fix_par=tmp;				// new parent of nod
  }

  if (root == &null_element)
4791
    DBUG_RETURN(0);				// Maybe root later
unknown's avatar
unknown committed
4792 4793 4794 4795 4796 4797 4798
  if (remove_color == BLACK)
    root=rb_delete_fixup(root,nod,fix_par);
  test_rb_tree(root,root->parent);

  root->use_count=this->use_count;		// Fix root counters
  root->elements=this->elements-1;
  root->maybe_flag=this->maybe_flag;
4799
  DBUG_RETURN(root);
unknown's avatar
unknown committed
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
}


	/* Functions to fix up the tree after insert and delete */

static void left_rotate(SEL_ARG **root,SEL_ARG *leaf)
{
  SEL_ARG *y=leaf->right;
  leaf->right=y->left;
  if (y->left != &null_element)
    y->left->parent=leaf;
  if (!(y->parent=leaf->parent))
    *root=y;
  else
    *leaf->parent_ptr()=y;
  y->left=leaf;
  leaf->parent=y;
}

static void right_rotate(SEL_ARG **root,SEL_ARG *leaf)
{
  SEL_ARG *y=leaf->left;
  leaf->left=y->right;
  if (y->right != &null_element)
    y->right->parent=leaf;
  if (!(y->parent=leaf->parent))
    *root=y;
  else
    *leaf->parent_ptr()=y;
  y->right=leaf;
  leaf->parent=y;
}


SEL_ARG *
SEL_ARG::rb_insert(SEL_ARG *leaf)
{
  SEL_ARG *y,*par,*par2,*root;
  root= this; root->parent= 0;

  leaf->color=RED;
  while (leaf != root && (par= leaf->parent)->color == RED)
  {					// This can't be root or 1 level under
    if (par == (par2= leaf->parent->parent)->left)
    {
      y= par2->right;
      if (y->color == RED)
      {
	par->color=BLACK;
	y->color=BLACK;
	leaf=par2;
	leaf->color=RED;		/* And the loop continues */
      }
      else
      {
	if (leaf == par->right)
	{
	  left_rotate(&root,leaf->parent);
	  par=leaf;			/* leaf is now parent to old leaf */
	}
	par->color=BLACK;
	par2->color=RED;
	right_rotate(&root,par2);
	break;
      }
    }
    else
    {
      y= par2->left;
      if (y->color == RED)
      {
	par->color=BLACK;
	y->color=BLACK;
	leaf=par2;
	leaf->color=RED;		/* And the loop continues */
      }
      else
      {
	if (leaf == par->left)
	{
	  right_rotate(&root,par);
	  par=leaf;
	}
	par->color=BLACK;
	par2->color=RED;
	left_rotate(&root,par2);
	break;
      }
    }
  }
  root->color=BLACK;
  test_rb_tree(root,root->parent);
  return root;
}


SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key,SEL_ARG *par)
{
  SEL_ARG *x,*w;
  root->parent=0;

  x= key;
  while (x != root && x->color == SEL_ARG::BLACK)
  {
    if (x == par->left)
    {
      w=par->right;
      if (w->color == SEL_ARG::RED)
      {
	w->color=SEL_ARG::BLACK;
	par->color=SEL_ARG::RED;
	left_rotate(&root,par);
	w=par->right;
      }
      if (w->left->color == SEL_ARG::BLACK && w->right->color == SEL_ARG::BLACK)
      {
	w->color=SEL_ARG::RED;
	x=par;
      }
      else
      {
	if (w->right->color == SEL_ARG::BLACK)
	{
	  w->left->color=SEL_ARG::BLACK;
	  w->color=SEL_ARG::RED;
	  right_rotate(&root,w);
	  w=par->right;
	}
	w->color=par->color;
	par->color=SEL_ARG::BLACK;
	w->right->color=SEL_ARG::BLACK;
	left_rotate(&root,par);
	x=root;
	break;
      }
    }
    else
    {
      w=par->left;
      if (w->color == SEL_ARG::RED)
      {
	w->color=SEL_ARG::BLACK;
	par->color=SEL_ARG::RED;
	right_rotate(&root,par);
	w=par->left;
      }
      if (w->right->color == SEL_ARG::BLACK && w->left->color == SEL_ARG::BLACK)
      {
	w->color=SEL_ARG::RED;
	x=par;
      }
      else
      {
	if (w->left->color == SEL_ARG::BLACK)
	{
	  w->right->color=SEL_ARG::BLACK;
	  w->color=SEL_ARG::RED;
	  left_rotate(&root,w);
	  w=par->left;
	}
	w->color=par->color;
	par->color=SEL_ARG::BLACK;
	w->left->color=SEL_ARG::BLACK;
	right_rotate(&root,par);
	x=root;
	break;
      }
    }
    par=x->parent;
  }
  x->color=SEL_ARG::BLACK;
  return root;
}


4975
	/* Test that the properties for a red-black tree hold */
unknown's avatar
unknown committed
4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031

#ifdef EXTRA_DEBUG
int test_rb_tree(SEL_ARG *element,SEL_ARG *parent)
{
  int count_l,count_r;

  if (element == &null_element)
    return 0;					// Found end of tree
  if (element->parent != parent)
  {
    sql_print_error("Wrong tree: Parent doesn't point at parent");
    return -1;
  }
  if (element->color == SEL_ARG::RED &&
      (element->left->color == SEL_ARG::RED ||
       element->right->color == SEL_ARG::RED))
  {
    sql_print_error("Wrong tree: Found two red in a row");
    return -1;
  }
  if (element->left == element->right && element->left != &null_element)
  {						// Dummy test
    sql_print_error("Wrong tree: Found right == left");
    return -1;
  }
  count_l=test_rb_tree(element->left,element);
  count_r=test_rb_tree(element->right,element);
  if (count_l >= 0 && count_r >= 0)
  {
    if (count_l == count_r)
      return count_l+(element->color == SEL_ARG::BLACK);
    sql_print_error("Wrong tree: Incorrect black-count: %d - %d",
	    count_l,count_r);
  }
  return -1;					// Error, no more warnings
}

static ulong count_key_part_usage(SEL_ARG *root, SEL_ARG *key)
{
  ulong count= 0;
  for (root=root->first(); root ; root=root->next)
  {
    if (root->next_key_part)
    {
      if (root->next_key_part == key)
	count++;
      if (root->next_key_part->part < key->part)
	count+=count_key_part_usage(root->next_key_part,key);
    }
  }
  return count;
}


void SEL_ARG::test_use_count(SEL_ARG *root)
{
5032
  uint e_count=0;
unknown's avatar
unknown committed
5033 5034
  if (this == root && use_count != 1)
  {
unknown's avatar
unknown committed
5035
    sql_print_information("Use_count: Wrong count %lu for root",use_count);
unknown's avatar
unknown committed
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
    return;
  }
  if (this->type != SEL_ARG::KEY_RANGE)
    return;
  for (SEL_ARG *pos=first(); pos ; pos=pos->next)
  {
    e_count++;
    if (pos->next_key_part)
    {
      ulong count=count_key_part_usage(root,pos->next_key_part);
      if (count > pos->next_key_part->use_count)
      {
unknown's avatar
unknown committed
5048
	sql_print_information("Use_count: Wrong count for key at 0x%lx, %lu should be %lu",
unknown's avatar
unknown committed
5049 5050 5051 5052 5053 5054 5055
			pos,pos->next_key_part->use_count,count);
	return;
      }
      pos->next_key_part->test_use_count(root);
    }
  }
  if (e_count != elements)
unknown's avatar
unknown committed
5056
    sql_print_warning("Wrong use count: %u (should be %u) for tree at 0x%lx",
5057
		    e_count, elements, (gptr) this);
unknown's avatar
unknown committed
5058 5059 5060 5061 5062
}

#endif


5063 5064 5065 5066 5067 5068 5069 5070 5071 5072
/*
  Calculate estimate of number records that will be retrieved by a range
  scan on given index using given SEL_ARG intervals tree.
  SYNOPSIS
    check_quick_select
      param  Parameter from test_quick_select
      idx    Number of index to use in PARAM::key SEL_TREE::key
      tree   Transformed selection condition, tree->key[idx] holds intervals
             tree to be used for scanning.
  NOTES
unknown's avatar
unknown committed
5073
    param->is_ror_scan is set to reflect if the key scan is a ROR (see
5074
    is_key_scan_ror function for more info)
unknown's avatar
unknown committed
5075
    param->table->quick_*, param->range_count (and maybe others) are
5076
    updated with data of given key scan, see check_quick_keys for details.
unknown's avatar
unknown committed
5077 5078

  RETURN
5079
    Estimate # of records to be retrieved.
unknown's avatar
unknown committed
5080
    HA_POS_ERROR if estimate calculation failed due to table handler problems.
unknown's avatar
unknown committed
5081

5082
*/
unknown's avatar
unknown committed
5083 5084 5085 5086 5087

static ha_rows
check_quick_select(PARAM *param,uint idx,SEL_ARG *tree)
{
  ha_rows records;
5088 5089
  bool    cpk_scan;
  uint key;
unknown's avatar
unknown committed
5090
  DBUG_ENTER("check_quick_select");
unknown's avatar
unknown committed
5091

unknown's avatar
unknown committed
5092
  param->is_ror_scan= FALSE;
unknown's avatar
unknown committed
5093

unknown's avatar
unknown committed
5094 5095
  if (!tree)
    DBUG_RETURN(HA_POS_ERROR);			// Can't use it
unknown's avatar
unknown committed
5096 5097
  param->max_key_part=0;
  param->range_count=0;
5098 5099
  key= param->real_keynr[idx];

unknown's avatar
unknown committed
5100 5101 5102 5103
  if (tree->type == SEL_ARG::IMPOSSIBLE)
    DBUG_RETURN(0L);				// Impossible select. return
  if (tree->type != SEL_ARG::KEY_RANGE || tree->part != 0)
    DBUG_RETURN(HA_POS_ERROR);				// Don't use tree
5104 5105 5106 5107 5108

  enum ha_key_alg key_alg= param->table->key_info[key].algorithm;
  if ((key_alg != HA_KEY_ALG_BTREE) && (key_alg!= HA_KEY_ALG_UNDEF))
  {
    /* Records are not ordered by rowid for other types of indexes. */
unknown's avatar
unknown committed
5109
    cpk_scan= FALSE;
5110 5111 5112 5113 5114 5115 5116
  }
  else
  {
    /*
      Clustered PK scan is a special case, check_quick_keys doesn't recognize
      CPK scans as ROR scans (while actually any CPK scan is a ROR scan).
    */
5117 5118
    cpk_scan= ((param->table->s->primary_key == param->real_keynr[idx]) &&
               param->table->file->primary_key_is_clustered());
unknown's avatar
unknown committed
5119
    param->is_ror_scan= !cpk_scan;
5120 5121
  }

unknown's avatar
unknown committed
5122 5123
  records=check_quick_keys(param,idx,tree,param->min_key,0,param->max_key,0);
  if (records != HA_POS_ERROR)
unknown's avatar
unknown committed
5124
  {
5125
    param->table->quick_keys.set_bit(key);
unknown's avatar
unknown committed
5126 5127
    param->table->quick_rows[key]=records;
    param->table->quick_key_parts[key]=param->max_key_part+1;
unknown's avatar
unknown committed
5128

5129
    if (cpk_scan)
unknown's avatar
unknown committed
5130
      param->is_ror_scan= TRUE;
unknown's avatar
unknown committed
5131
  }
5132
  DBUG_PRINT("exit", ("Records: %lu", (ulong) records));
unknown's avatar
unknown committed
5133 5134 5135 5136
  DBUG_RETURN(records);
}


5137
/*
unknown's avatar
unknown committed
5138 5139
  Recursively calculate estimate of # rows that will be retrieved by
  key scan on key idx.
5140 5141
  SYNOPSIS
    check_quick_keys()
5142
      param         Parameter from test_quick select function.
unknown's avatar
unknown committed
5143
      idx           Number of key to use in PARAM::keys in list of used keys
5144 5145 5146
                    (param->real_keynr[idx] holds the key number in table)
      key_tree      SEL_ARG tree being examined.
      min_key       Buffer with partial min key value tuple
unknown's avatar
unknown committed
5147
      min_key_flag
5148
      max_key       Buffer with partial max key value tuple
5149 5150
      max_key_flag

5151
  NOTES
unknown's avatar
unknown committed
5152 5153
    The function does the recursive descent on the tree via SEL_ARG::left,
    SEL_ARG::right, and SEL_ARG::next_key_part edges. The #rows estimates
5154 5155
    are calculated using records_in_range calls at the leaf nodes and then
    summed.
5156

5157 5158
    param->min_key and param->max_key are used to hold prefixes of key value
    tuples.
5159 5160

    The side effects are:
unknown's avatar
unknown committed
5161

5162 5163
    param->max_key_part is updated to hold the maximum number of key parts used
      in scan minus 1.
unknown's avatar
unknown committed
5164 5165

    param->range_count is incremented if the function finds a range that
5166
      wasn't counted by the caller.
unknown's avatar
unknown committed
5167

5168 5169 5170
    param->is_ror_scan is cleared if the function detects that the key scan is
      not a Rowid-Ordered Retrieval scan ( see comments for is_key_scan_ror
      function for description of which key scans are ROR scans)
5171 5172
*/

unknown's avatar
unknown committed
5173 5174 5175 5176 5177
static ha_rows
check_quick_keys(PARAM *param,uint idx,SEL_ARG *key_tree,
		 char *min_key,uint min_key_flag, char *max_key,
		 uint max_key_flag)
{
unknown's avatar
unknown committed
5178 5179 5180
  ha_rows records=0, tmp;
  uint tmp_min_flag, tmp_max_flag, keynr, min_key_length, max_key_length;
  char *tmp_min_key, *tmp_max_key;
unknown's avatar
unknown committed
5181 5182 5183 5184

  param->max_key_part=max(param->max_key_part,key_tree->part);
  if (key_tree->left != &null_element)
  {
5185 5186 5187 5188 5189 5190
    /*
      There are at least two intervals for current key part, i.e. condition
      was converted to something like
        (keyXpartY less/equals c1) OR (keyXpartY more/equals c2).
      This is not a ROR scan if the key is not Clustered Primary Key.
    */
unknown's avatar
unknown committed
5191
    param->is_ror_scan= FALSE;
unknown's avatar
unknown committed
5192 5193 5194 5195 5196 5197
    records=check_quick_keys(param,idx,key_tree->left,min_key,min_key_flag,
			     max_key,max_key_flag);
    if (records == HA_POS_ERROR)			// Impossible
      return records;
  }

unknown's avatar
unknown committed
5198 5199
  tmp_min_key= min_key;
  tmp_max_key= max_key;
unknown's avatar
unknown committed
5200
  key_tree->store(param->key[idx][key_tree->part].store_length,
unknown's avatar
unknown committed
5201
		  &tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag);
unknown's avatar
unknown committed
5202 5203
  min_key_length= (uint) (tmp_min_key- param->min_key);
  max_key_length= (uint) (tmp_max_key- param->max_key);
unknown's avatar
unknown committed
5204

5205 5206
  if (param->is_ror_scan)
  {
unknown's avatar
unknown committed
5207
    /*
5208
      If the index doesn't cover entire key, mark the scan as non-ROR scan.
5209
      Actually we're cutting off some ROR scans here.
5210 5211 5212
    */
    uint16 fieldnr= param->table->key_info[param->real_keynr[idx]].
                    key_part[key_tree->part].fieldnr - 1;
unknown's avatar
unknown committed
5213
    if (param->table->field[fieldnr]->key_length() !=
5214
        param->key[idx][key_tree->part].length)
unknown's avatar
unknown committed
5215
      param->is_ror_scan= FALSE;
5216 5217
  }

unknown's avatar
unknown committed
5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
  if (key_tree->next_key_part &&
      key_tree->next_key_part->part == key_tree->part+1 &&
      key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
  {						// const key as prefix
    if (min_key_length == max_key_length &&
	!memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) &&
	!key_tree->min_flag && !key_tree->max_flag)
    {
      tmp=check_quick_keys(param,idx,key_tree->next_key_part,
			   tmp_min_key, min_key_flag | key_tree->min_flag,
			   tmp_max_key, max_key_flag | key_tree->max_flag);
      goto end;					// Ugly, but efficient
    }
5231
    else
5232 5233
    {
      /* The interval for current key part is not c1 <= keyXpartY <= c1 */
unknown's avatar
unknown committed
5234
      param->is_ror_scan= FALSE;
5235
    }
5236

unknown's avatar
unknown committed
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
    tmp_min_flag=key_tree->min_flag;
    tmp_max_flag=key_tree->max_flag;
    if (!tmp_min_flag)
      key_tree->next_key_part->store_min_key(param->key[idx], &tmp_min_key,
					     &tmp_min_flag);
    if (!tmp_max_flag)
      key_tree->next_key_part->store_max_key(param->key[idx], &tmp_max_key,
					     &tmp_max_flag);
    min_key_length= (uint) (tmp_min_key- param->min_key);
    max_key_length= (uint) (tmp_max_key- param->max_key);
  }
  else
  {
    tmp_min_flag=min_key_flag | key_tree->min_flag;
    tmp_max_flag=max_key_flag | key_tree->max_flag;
  }

  keynr=param->real_keynr[idx];
unknown's avatar
unknown committed
5255
  param->range_count++;
unknown's avatar
unknown committed
5256 5257
  if (!tmp_min_flag && ! tmp_max_flag &&
      (uint) key_tree->part+1 == param->table->key_info[keynr].key_parts &&
5258 5259
      (param->table->key_info[keynr].flags & (HA_NOSAME | HA_END_SPACE_KEY)) ==
      HA_NOSAME &&
unknown's avatar
unknown committed
5260 5261 5262 5263
      min_key_length == max_key_length &&
      !memcmp(param->min_key,param->max_key,min_key_length))
    tmp=1;					// Max one record
  else
unknown's avatar
unknown committed
5264
  {
5265 5266
    if (param->is_ror_scan)
    {
5267 5268 5269 5270 5271 5272 5273 5274 5275
      /*
        If we get here, the condition on the key was converted to form
        "(keyXpart1 = c1) AND ... AND (keyXpart{key_tree->part - 1} = cN) AND
          somecond(keyXpart{key_tree->part})"
        Check if
          somecond is "keyXpart{key_tree->part} = const" and
          uncovered "tail" of KeyX parts is either empty or is identical to
          first members of clustered primary key.
      */
5276 5277
      if (!(min_key_length == max_key_length &&
            !memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) &&
unknown's avatar
unknown committed
5278
            !key_tree->min_flag && !key_tree->max_flag &&
5279
            is_key_scan_ror(param, keynr, key_tree->part + 1)))
unknown's avatar
unknown committed
5280
        param->is_ror_scan= FALSE;
5281 5282
    }

unknown's avatar
unknown committed
5283
    if (tmp_min_flag & GEOM_FLAG)
unknown's avatar
unknown committed
5284
    {
unknown's avatar
unknown committed
5285 5286 5287 5288 5289 5290 5291 5292
      key_range min_range;
      min_range.key=    (byte*) param->min_key;
      min_range.length= min_key_length;
      /* In this case tmp_min_flag contains the handler-read-function */
      min_range.flag=   (ha_rkey_function) (tmp_min_flag ^ GEOM_FLAG);

      tmp= param->table->file->records_in_range(keynr, &min_range,
                                                (key_range*) 0);
unknown's avatar
unknown committed
5293 5294 5295
    }
    else
    {
unknown's avatar
unknown committed
5296 5297 5298 5299 5300 5301
      key_range min_range, max_range;

      min_range.key=    (byte*) param->min_key;
      min_range.length= min_key_length;
      min_range.flag=   (tmp_min_flag & NEAR_MIN ? HA_READ_AFTER_KEY :
                         HA_READ_KEY_EXACT);
unknown's avatar
unknown committed
5302
      max_range.key=    (byte*) param->max_key;
unknown's avatar
unknown committed
5303 5304 5305 5306 5307 5308 5309 5310
      max_range.length= max_key_length;
      max_range.flag=   (tmp_max_flag & NEAR_MAX ?
                         HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY);
      tmp=param->table->file->records_in_range(keynr,
                                               (min_key_length ? &min_range :
                                                (key_range*) 0),
                                               (max_key_length ? &max_range :
                                                (key_range*) 0));
unknown's avatar
unknown committed
5311 5312
    }
  }
unknown's avatar
unknown committed
5313 5314 5315 5316 5317 5318
 end:
  if (tmp == HA_POS_ERROR)			// Impossible range
    return tmp;
  records+=tmp;
  if (key_tree->right != &null_element)
  {
5319 5320 5321 5322 5323 5324
    /*
      There are at least two intervals for current key part, i.e. condition
      was converted to something like
        (keyXpartY less/equals c1) OR (keyXpartY more/equals c2).
      This is not a ROR scan if the key is not Clustered Primary Key.
    */
unknown's avatar
unknown committed
5325
    param->is_ror_scan= FALSE;
unknown's avatar
unknown committed
5326 5327 5328 5329 5330 5331 5332 5333 5334
    tmp=check_quick_keys(param,idx,key_tree->right,min_key,min_key_flag,
			 max_key,max_key_flag);
    if (tmp == HA_POS_ERROR)
      return tmp;
    records+=tmp;
  }
  return records;
}

5335

5336
/*
unknown's avatar
unknown committed
5337
  Check if key scan on given index with equality conditions on first n key
5338 5339 5340 5341
  parts is a ROR scan.

  SYNOPSIS
    is_key_scan_ror()
unknown's avatar
unknown committed
5342
      param  Parameter from test_quick_select
5343 5344 5345 5346
      keynr  Number of key in the table. The key must not be a clustered
             primary key.
      nparts Number of first key parts for which equality conditions
             are present.
unknown's avatar
unknown committed
5347

5348 5349 5350
  NOTES
    ROR (Rowid Ordered Retrieval) key scan is a key scan that produces
    ordered sequence of rowids (ha_xxx::cmp_ref is the comparison function)
unknown's avatar
unknown committed
5351

5352 5353 5354
    An index scan is a ROR scan if it is done using a condition in form

        "key1_1=c_1 AND ... AND key1_n=c_n"  (1)
unknown's avatar
unknown committed
5355

5356 5357
    where the index is defined on (key1_1, ..., key1_N [,a_1, ..., a_n])

unknown's avatar
unknown committed
5358
    and the table has a clustered Primary Key
5359

unknown's avatar
unknown committed
5360
    PRIMARY KEY(a_1, ..., a_n, b1, ..., b_k) with first key parts being
5361
    identical to uncovered parts ot the key being scanned (2)
unknown's avatar
unknown committed
5362 5363

    Scans on HASH indexes are not ROR scans,
5364 5365 5366 5367 5368 5369
    any range scan on clustered primary key is ROR scan  (3)

    Check (1) is made in check_quick_keys()
    Check (3) is made check_quick_select()
    Check (2) is made by this function.

unknown's avatar
unknown committed
5370
  RETURN
unknown's avatar
unknown committed
5371 5372
    TRUE  If the scan is ROR-scan
    FALSE otherwise
5373
*/
5374

5375 5376 5377 5378
static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts)
{
  KEY *table_key= param->table->key_info + keynr;
  KEY_PART_INFO *key_part= table_key->key_part + nparts;
5379 5380 5381
  KEY_PART_INFO *key_part_end= (table_key->key_part +
                                table_key->key_parts);
  uint pk_number;
unknown's avatar
unknown committed
5382

5383
  if (key_part == key_part_end)
unknown's avatar
unknown committed
5384
    return TRUE;
5385
  pk_number= param->table->s->primary_key;
5386
  if (!param->table->file->primary_key_is_clustered() || pk_number == MAX_KEY)
unknown's avatar
unknown committed
5387
    return FALSE;
5388 5389

  KEY_PART_INFO *pk_part= param->table->key_info[pk_number].key_part;
unknown's avatar
unknown committed
5390
  KEY_PART_INFO *pk_part_end= pk_part +
5391
                              param->table->key_info[pk_number].key_parts;
unknown's avatar
unknown committed
5392 5393
  for (;(key_part!=key_part_end) && (pk_part != pk_part_end);
       ++key_part, ++pk_part)
5394
  {
unknown's avatar
unknown committed
5395
    if ((key_part->field != pk_part->field) ||
5396
        (key_part->length != pk_part->length))
unknown's avatar
unknown committed
5397
      return FALSE;
unknown's avatar
unknown committed
5398
  }
5399
  return (key_part == key_part_end);
unknown's avatar
unknown committed
5400 5401 5402
}


5403 5404
/*
  Create a QUICK_RANGE_SELECT from given key and SEL_ARG tree for that key.
unknown's avatar
unknown committed
5405

5406 5407
  SYNOPSIS
    get_quick_select()
unknown's avatar
unknown committed
5408
      param
5409
      idx          Index of used key in param->key.
unknown's avatar
unknown committed
5410 5411
      key_tree     SEL_ARG tree for the used key
      parent_alloc If not NULL, use it to allocate memory for
5412
                   quick select data. Otherwise use quick->alloc.
5413
  NOTES
5414
    The caller must call QUICK_SELECT::init for returned quick select
5415

5416
    CAUTION! This function may change thd->mem_root to a MEM_ROOT which will be
5417
    deallocated when the returned quick select is deleted.
5418 5419 5420 5421

  RETURN
    NULL on error
    otherwise created quick select
5422
*/
5423

unknown's avatar
unknown committed
5424 5425 5426
QUICK_RANGE_SELECT *
get_quick_select(PARAM *param,uint idx,SEL_ARG *key_tree,
                 MEM_ROOT *parent_alloc)
unknown's avatar
unknown committed
5427
{
unknown's avatar
unknown committed
5428
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
5429
  DBUG_ENTER("get_quick_select");
unknown's avatar
unknown committed
5430 5431 5432 5433 5434 5435 5436 5437 5438

  if (param->table->key_info[param->real_keynr[idx]].flags & HA_SPATIAL)
    quick=new QUICK_RANGE_SELECT_GEOM(param->thd, param->table,
                                      param->real_keynr[idx],
                                      test(parent_alloc),
                                      parent_alloc);
  else
    quick=new QUICK_RANGE_SELECT(param->thd, param->table,
                                 param->real_keynr[idx],
unknown's avatar
unknown committed
5439
                                 test(parent_alloc));
unknown's avatar
unknown committed
5440

unknown's avatar
unknown committed
5441
  if (quick)
unknown's avatar
unknown committed
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
  {
    if (quick->error ||
	get_quick_keys(param,quick,param->key[idx],key_tree,param->min_key,0,
		       param->max_key,0))
    {
      delete quick;
      quick=0;
    }
    else
    {
      quick->key_parts=(KEY_PART*)
unknown's avatar
unknown committed
5453 5454 5455 5456
        memdup_root(parent_alloc? parent_alloc : &quick->alloc,
                    (char*) param->key[idx],
                    sizeof(KEY_PART)*
                    param->table->key_info[param->real_keynr[idx]].key_parts);
unknown's avatar
unknown committed
5457
    }
unknown's avatar
unknown committed
5458
  }
unknown's avatar
unknown committed
5459 5460 5461 5462 5463 5464 5465
  DBUG_RETURN(quick);
}


/*
** Fix this to get all possible sub_ranges
*/
unknown's avatar
unknown committed
5466 5467
bool
get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
unknown's avatar
unknown committed
5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
	       SEL_ARG *key_tree,char *min_key,uint min_key_flag,
	       char *max_key, uint max_key_flag)
{
  QUICK_RANGE *range;
  uint flag;

  if (key_tree->left != &null_element)
  {
    if (get_quick_keys(param,quick,key,key_tree->left,
		       min_key,min_key_flag, max_key, max_key_flag))
      return 1;
  }
  char *tmp_min_key=min_key,*tmp_max_key=max_key;
unknown's avatar
unknown committed
5481
  key_tree->store(key[key_tree->part].store_length,
unknown's avatar
unknown committed
5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
		  &tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag);

  if (key_tree->next_key_part &&
      key_tree->next_key_part->part == key_tree->part+1 &&
      key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
  {						  // const key as prefix
    if (!((tmp_min_key - min_key) != (tmp_max_key - max_key) ||
	  memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) ||
	  key_tree->min_flag || key_tree->max_flag))
    {
      if (get_quick_keys(param,quick,key,key_tree->next_key_part,
			 tmp_min_key, min_key_flag | key_tree->min_flag,
			 tmp_max_key, max_key_flag | key_tree->max_flag))
	return 1;
      goto end;					// Ugly, but efficient
    }
    {
      uint tmp_min_flag=key_tree->min_flag,tmp_max_flag=key_tree->max_flag;
      if (!tmp_min_flag)
	key_tree->next_key_part->store_min_key(key, &tmp_min_key,
					       &tmp_min_flag);
      if (!tmp_max_flag)
	key_tree->next_key_part->store_max_key(key, &tmp_max_key,
					       &tmp_max_flag);
      flag=tmp_min_flag | tmp_max_flag;
    }
  }
  else
unknown's avatar
unknown committed
5510 5511 5512 5513
  {
    flag = (key_tree->min_flag & GEOM_FLAG) ?
      key_tree->min_flag : key_tree->min_flag | key_tree->max_flag;
  }
unknown's avatar
unknown committed
5514

5515 5516 5517 5518 5519
  /*
    Ensure that some part of min_key and max_key are used.  If not,
    regard this as no lower/upper range
  */
  if ((flag & GEOM_FLAG) == 0)
unknown's avatar
unknown committed
5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
  {
    if (tmp_min_key != param->min_key)
      flag&= ~NO_MIN_RANGE;
    else
      flag|= NO_MIN_RANGE;
    if (tmp_max_key != param->max_key)
      flag&= ~NO_MAX_RANGE;
    else
      flag|= NO_MAX_RANGE;
  }
unknown's avatar
unknown committed
5530 5531 5532 5533 5534 5535 5536 5537
  if (flag == 0)
  {
    uint length= (uint) (tmp_min_key - param->min_key);
    if (length == (uint) (tmp_max_key - param->max_key) &&
	!memcmp(param->min_key,param->max_key,length))
    {
      KEY *table_key=quick->head->key_info+quick->index;
      flag=EQ_RANGE;
5538 5539
      if ((table_key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME &&
	  key->part == table_key->key_parts-1)
5540 5541 5542 5543 5544 5545 5546 5547 5548
      {
	if (!(table_key->flags & HA_NULL_PART_KEY) ||
	    !null_part_in_key(key,
			      param->min_key,
			      (uint) (tmp_min_key - param->min_key)))
	  flag|= UNIQUE_RANGE;
	else
	  flag|= NULL_RANGE;
      }
unknown's avatar
unknown committed
5549 5550 5551 5552
    }
  }

  /* Get range for retrieving rows in QUICK_SELECT::get_next */
5553
  if (!(range= new QUICK_RANGE((const char *) param->min_key,
5554
			       (uint) (tmp_min_key - param->min_key),
5555
			       (const char *) param->max_key,
5556 5557
			       (uint) (tmp_max_key - param->max_key),
			       flag)))
5558 5559
    return 1;			// out of memory

unknown's avatar
unknown committed
5560 5561
  set_if_bigger(quick->max_used_key_length,range->min_length);
  set_if_bigger(quick->max_used_key_length,range->max_length);
unknown's avatar
unknown committed
5562
  set_if_bigger(quick->used_key_parts, (uint) key_tree->part+1);
5563 5564 5565
  if (insert_dynamic(&quick->ranges, (gptr)&range))
    return 1;

unknown's avatar
unknown committed
5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
 end:
  if (key_tree->right != &null_element)
    return get_quick_keys(param,quick,key,key_tree->right,
			  min_key,min_key_flag,
			  max_key,max_key_flag);
  return 0;
}

/*
  Return 1 if there is only one range and this uses the whole primary key
*/

unknown's avatar
unknown committed
5578
bool QUICK_RANGE_SELECT::unique_key_range()
unknown's avatar
unknown committed
5579 5580 5581
{
  if (ranges.elements == 1)
  {
5582 5583
    QUICK_RANGE *tmp= *((QUICK_RANGE**)ranges.buffer);
    if ((tmp->flag & (EQ_RANGE | NULL_RANGE)) == EQ_RANGE)
unknown's avatar
unknown committed
5584 5585
    {
      KEY *key=head->key_info+index;
5586
      return ((key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME &&
unknown's avatar
unknown committed
5587 5588 5589 5590 5591 5592
	      key->key_length == tmp->min_length);
    }
  }
  return 0;
}

5593

unknown's avatar
unknown committed
5594
/* Returns TRUE if any part of the key is NULL */
5595 5596 5597

static bool null_part_in_key(KEY_PART *key_part, const char *key, uint length)
{
unknown's avatar
unknown committed
5598
  for (const char *end=key+length ;
5599
       key < end;
unknown's avatar
unknown committed
5600
       key+= key_part++->store_length)
5601
  {
unknown's avatar
unknown committed
5602 5603
    if (key_part->null_bit && *key)
      return 1;
5604 5605 5606 5607
  }
  return 0;
}

unknown's avatar
unknown committed
5608

5609 5610
bool QUICK_SELECT_I::check_if_keys_used(List<Item> *fields)
{
unknown's avatar
unknown committed
5611
  return check_if_key_used(head, index, *fields);
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649
}

bool QUICK_INDEX_MERGE_SELECT::check_if_keys_used(List<Item> *fields)
{
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
    if (check_if_key_used(head, quick->index, *fields))
      return 1;
  }
  return 0;
}

bool QUICK_ROR_INTERSECT_SELECT::check_if_keys_used(List<Item> *fields)
{
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
    if (check_if_key_used(head, quick->index, *fields))
      return 1;
  }
  return 0;
}

bool QUICK_ROR_UNION_SELECT::check_if_keys_used(List<Item> *fields)
{
  QUICK_SELECT_I *quick;
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  while ((quick= it++))
  {
    if (quick->check_if_keys_used(fields))
      return 1;
  }
  return 0;
}

unknown's avatar
unknown committed
5650

unknown's avatar
unknown committed
5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667
/*
  Create quick select from ref/ref_or_null scan.
  SYNOPSIS
    get_quick_select_for_ref()
      thd      Thread handle
      table    Table to access
      ref      ref[_or_null] scan parameters
      records  Estimate of number of records (needed only to construct 
               quick select)
  NOTES
    This allocates things in a new memory root, as this may be called many
    times during a query.
  
  RETURN 
    Quick select that retrieves the same rows as passed ref scan
    NULL on error.
*/
unknown's avatar
unknown committed
5668

unknown's avatar
unknown committed
5669
QUICK_RANGE_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table,
unknown's avatar
unknown committed
5670
                                             TABLE_REF *ref, ha_rows records)
unknown's avatar
unknown committed
5671
{
5672 5673
  MEM_ROOT *old_root= thd->mem_root;
  /* The following call may change thd->mem_root */
unknown's avatar
unknown committed
5674
  QUICK_RANGE_SELECT *quick= new QUICK_RANGE_SELECT(thd, table, ref->key, 0);
unknown's avatar
unknown committed
5675 5676
  KEY *key_info = &table->key_info[ref->key];
  KEY_PART *key_part;
unknown's avatar
unknown committed
5677
  QUICK_RANGE *range;
unknown's avatar
unknown committed
5678 5679 5680
  uint part;

  if (!quick)
5681
    return 0;			/* no ranges found */
unknown's avatar
unknown committed
5682
  if (quick->init())
unknown's avatar
unknown committed
5683 5684
  {
    delete quick;
unknown's avatar
unknown committed
5685
    goto err;
unknown's avatar
unknown committed
5686
  }
unknown's avatar
unknown committed
5687
  quick->records= records;
5688

unknown's avatar
unknown committed
5689
  if (cp_buffer_from_ref(thd,ref) && thd->is_fatal_error ||
unknown's avatar
unknown committed
5690 5691
      !(range= new QUICK_RANGE()))
    goto err;                                   // out of memory
5692

unknown's avatar
unknown committed
5693 5694 5695
  range->min_key=range->max_key=(char*) ref->key_buff;
  range->min_length=range->max_length=ref->key_length;
  range->flag= ((ref->key_length == key_info->key_length &&
5696 5697
		 (key_info->flags & (HA_NOSAME | HA_END_SPACE_KEY)) ==
		 HA_NOSAME) ? EQ_RANGE : 0);
unknown's avatar
unknown committed
5698 5699

  if (!(quick->key_parts=key_part=(KEY_PART *)
5700
	alloc_root(&quick->alloc,sizeof(KEY_PART)*ref->key_parts)))
unknown's avatar
unknown committed
5701 5702 5703 5704 5705 5706
    goto err;

  for (part=0 ; part < ref->key_parts ;part++,key_part++)
  {
    key_part->part=part;
    key_part->field=        key_info->key_part[part].field;
unknown's avatar
unknown committed
5707 5708
    key_part->length=  	    key_info->key_part[part].length;
    key_part->store_length= key_info->key_part[part].store_length;
unknown's avatar
unknown committed
5709 5710
    key_part->null_bit=     key_info->key_part[part].null_bit;
  }
unknown's avatar
unknown committed
5711
  if (insert_dynamic(&quick->ranges,(gptr)&range))
5712 5713
    goto err;

unknown's avatar
unknown committed
5714
  /*
5715 5716 5717 5718 5719
     Add a NULL range if REF_OR_NULL optimization is used.
     For example:
       if we have "WHERE A=2 OR A IS NULL" we created the (A=2) range above
       and have ref->null_ref_key set. Will create a new NULL range here.
  */
5720 5721 5722 5723 5724
  if (ref->null_ref_key)
  {
    QUICK_RANGE *null_range;

    *ref->null_ref_key= 1;		// Set null byte then create a range
unknown's avatar
unknown committed
5725 5726
    if (!(null_range= new QUICK_RANGE((char*)ref->key_buff, ref->key_length,
				      (char*)ref->key_buff, ref->key_length,
5727 5728 5729
				      EQ_RANGE)))
      goto err;
    *ref->null_ref_key= 0;		// Clear null byte
unknown's avatar
unknown committed
5730
    if (insert_dynamic(&quick->ranges,(gptr)&null_range))
5731 5732 5733
      goto err;
  }

5734
  thd->mem_root= old_root;
5735
  return quick;
unknown's avatar
unknown committed
5736 5737

err:
5738
  thd->mem_root= old_root;
unknown's avatar
unknown committed
5739 5740 5741 5742
  delete quick;
  return 0;
}

unknown's avatar
unknown committed
5743 5744

/*
unknown's avatar
unknown committed
5745 5746 5747 5748 5749 5750
  Perform key scans for all used indexes (except CPK), get rowids and merge 
  them into an ordered non-recurrent sequence of rowids.
  
  The merge/duplicate removal is performed using Unique class. We put all
  rowids into Unique, get the sorted sequence and destroy the Unique.
  
unknown's avatar
unknown committed
5751
  If table has a clustered primary key that covers all rows (TRUE for bdb
5752
     and innodb currently) and one of the index_merge scans is a scan on PK,
unknown's avatar
unknown committed
5753
  then
unknown's avatar
unknown committed
5754 5755
    rows that will be retrieved by PK scan are not put into Unique and 
    primary key scan is not performed here, it is performed later separately.
unknown's avatar
unknown committed
5756

5757 5758 5759
  RETURN
    0     OK
    other error
unknown's avatar
unknown committed
5760
*/
5761

unknown's avatar
unknown committed
5762
int QUICK_INDEX_MERGE_SELECT::read_keys_and_merge()
unknown's avatar
unknown committed
5763
{
unknown's avatar
unknown committed
5764 5765
  List_iterator_fast<QUICK_RANGE_SELECT> cur_quick_it(quick_selects);
  QUICK_RANGE_SELECT* cur_quick;
5766
  int result;
unknown's avatar
unknown committed
5767
  Unique *unique;
5768
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::prepare_unique");
unknown's avatar
unknown committed
5769

5770
  /* We're going to just read rowids. */
5771 5772
  if (head->file->extra(HA_EXTRA_KEYREAD))
    DBUG_RETURN(1);
5773

unknown's avatar
unknown committed
5774 5775
  /*
    Make innodb retrieve all PK member fields, so
5776
     * ha_innobase::position (which uses them) call works.
5777
     * We can filter out rows that will be retrieved by clustered PK.
5778
    (This also creates a deficiency - it is possible that we will retrieve
5779
     parts of key that are not used by current query at all.)
5780
  */
5781 5782
  if (head->file->extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY))
    DBUG_RETURN(1);
5783

unknown's avatar
unknown committed
5784 5785
  cur_quick_it.rewind();
  cur_quick= cur_quick_it++;
5786
  DBUG_ASSERT(cur_quick != 0);
unknown's avatar
unknown committed
5787 5788 5789 5790 5791
  
  /*
    We reuse the same instance of handler so we need to call both init and 
    reset here.
  */
unknown's avatar
unknown committed
5792
  if (cur_quick->init() || cur_quick->reset())
unknown's avatar
unknown committed
5793
    DBUG_RETURN(1);
5794

5795
  unique= new Unique(refpos_order_cmp, (void *)head->file,
5796
                     head->file->ref_length,
5797
                     thd->variables.sortbuff_size);
5798 5799
  if (!unique)
    DBUG_RETURN(1);
unknown's avatar
unknown committed
5800
  for (;;)
5801
  {
unknown's avatar
unknown committed
5802
    while ((result= cur_quick->get_next()) == HA_ERR_END_OF_FILE)
5803
    {
unknown's avatar
unknown committed
5804 5805 5806
      cur_quick->range_end();
      cur_quick= cur_quick_it++;
      if (!cur_quick)
unknown's avatar
unknown committed
5807
        break;
5808

unknown's avatar
unknown committed
5809 5810
      if (cur_quick->file->inited != handler::NONE) 
        cur_quick->file->ha_index_end();
unknown's avatar
unknown committed
5811
      if (cur_quick->init() || cur_quick->reset())
5812
        DBUG_RETURN(1);
unknown's avatar
unknown committed
5813 5814 5815
    }

    if (result)
unknown's avatar
unknown committed
5816
    {
5817
      if (result != HA_ERR_END_OF_FILE)
unknown's avatar
unknown committed
5818 5819
      {
        cur_quick->range_end();
5820
        DBUG_RETURN(result);
unknown's avatar
unknown committed
5821
      }
5822
      break;
unknown's avatar
unknown committed
5823
    }
unknown's avatar
unknown committed
5824

5825 5826
    if (thd->killed)
      DBUG_RETURN(1);
unknown's avatar
unknown committed
5827

5828
    /* skip row if it will be retrieved by clustered PK scan */
5829 5830
    if (pk_quick_select && pk_quick_select->row_in_ranges())
      continue;
5831

unknown's avatar
unknown committed
5832 5833
    cur_quick->file->position(cur_quick->record);
    result= unique->unique_add((char*)cur_quick->file->ref);
5834
    if (result)
5835 5836
      DBUG_RETURN(1);

unknown's avatar
unknown committed
5837
  }
unknown's avatar
unknown committed
5838

5839 5840
  /* ok, all row ids are in Unique */
  result= unique->get(head);
unknown's avatar
unknown committed
5841
  delete unique;
unknown's avatar
unknown committed
5842
  doing_pk_scan= FALSE;
unknown's avatar
unknown committed
5843 5844
  /* start table scan */
  init_read_record(&read_record, thd, head, (SQL_SELECT*) 0, 1, 1);
5845 5846
  /* index_merge currently doesn't support "using index" at all */
  head->file->extra(HA_EXTRA_NO_KEYREAD);
5847

5848 5849 5850
  DBUG_RETURN(result);
}

5851

5852 5853 5854
/*
  Get next row for index_merge.
  NOTES
5855 5856 5857 5858
    The rows are read from
      1. rowids stored in Unique.
      2. QUICK_RANGE_SELECT with clustered primary key (if any).
    The sets of rows retrieved in 1) and 2) are guaranteed to be disjoint.
5859
*/
5860

5861 5862
int QUICK_INDEX_MERGE_SELECT::get_next()
{
5863
  int result;
5864
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::get_next");
unknown's avatar
unknown committed
5865

5866 5867 5868 5869 5870 5871 5872 5873 5874
  if (doing_pk_scan)
    DBUG_RETURN(pk_quick_select->get_next());

  result= read_record.read_record(&read_record);

  if (result == -1)
  {
    result= HA_ERR_END_OF_FILE;
    end_read_record(&read_record);
5875
    /* All rows from Unique have been retrieved, do a clustered PK scan */
unknown's avatar
unknown committed
5876
    if (pk_quick_select)
5877
    {
unknown's avatar
unknown committed
5878
      doing_pk_scan= TRUE;
unknown's avatar
unknown committed
5879
      if ((result= pk_quick_select->init()) || (result= pk_quick_select->reset()))
5880 5881 5882 5883 5884 5885
        DBUG_RETURN(result);
      DBUG_RETURN(pk_quick_select->get_next());
    }
  }

  DBUG_RETURN(result);
unknown's avatar
unknown committed
5886 5887
}

5888 5889

/*
unknown's avatar
unknown committed
5890
  Retrieve next record.
5891
  SYNOPSIS
unknown's avatar
unknown committed
5892 5893
     QUICK_ROR_INTERSECT_SELECT::get_next()

5894
  NOTES
5895 5896
    Invariant on enter/exit: all intersected selects have retrieved all index
    records with rowid <= some_rowid_val and no intersected select has
5897 5898 5899 5900
    retrieved any index records with rowid > some_rowid_val.
    We start fresh and loop until we have retrieved the same rowid in each of
    the key scans or we got an error.

unknown's avatar
unknown committed
5901
    If a Clustered PK scan is present, it is used only to check if row
5902 5903 5904 5905 5906
    satisfies its condition (and never used for row retrieval).

  RETURN
   0     - Ok
   other - Error code if any error occurred.
5907 5908 5909 5910 5911 5912 5913 5914 5915
*/

int QUICK_ROR_INTERSECT_SELECT::get_next()
{
  List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
  QUICK_RANGE_SELECT* quick;
  int error, cmp;
  uint last_rowid_count=0;
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::get_next");
unknown's avatar
unknown committed
5916

5917 5918 5919 5920 5921 5922 5923 5924 5925 5926
  /* Get a rowid for first quick and save it as a 'candidate' */
  quick= quick_it++;
  if (cpk_quick)
  {
    do {
      error= quick->get_next();
    }while (!error && !cpk_quick->row_in_ranges());
  }
  else
    error= quick->get_next();
unknown's avatar
unknown committed
5927

5928 5929 5930 5931 5932 5933
  if (error)
    DBUG_RETURN(error);

  quick->file->position(quick->record);
  memcpy(last_rowid, quick->file->ref, head->file->ref_length);
  last_rowid_count= 1;
unknown's avatar
unknown committed
5934

5935 5936 5937 5938 5939 5940 5941
  while (last_rowid_count < quick_selects.elements)
  {
    if (!(quick= quick_it++))
    {
      quick_it.rewind();
      quick= quick_it++;
    }
unknown's avatar
unknown committed
5942

5943 5944 5945 5946
    do {
      if ((error= quick->get_next()))
        DBUG_RETURN(error);
      quick->file->position(quick->record);
unknown's avatar
unknown committed
5947
      cmp= head->file->cmp_ref(quick->file->ref, last_rowid);
5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
    } while (cmp < 0);

    /* Ok, current select 'caught up' and returned ref >= cur_ref */
    if (cmp > 0)
    {
      /* Found a row with ref > cur_ref. Make it a new 'candidate' */
      if (cpk_quick)
      {
        while (!cpk_quick->row_in_ranges())
        {
          if ((error= quick->get_next()))
            DBUG_RETURN(error);
        }
      }
      memcpy(last_rowid, quick->file->ref, head->file->ref_length);
unknown's avatar
unknown committed
5963
      last_rowid_count= 1;
5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978
    }
    else
    {
      /* current 'candidate' row confirmed by this select */
      last_rowid_count++;
    }
  }

  /* We get here iff we got the same row ref in all scans. */
  if (need_to_fetch_row)
    error= head->file->rnd_pos(head->record[0], last_rowid);
  DBUG_RETURN(error);
}


unknown's avatar
unknown committed
5979 5980
/*
  Retrieve next record.
5981 5982
  SYNOPSIS
    QUICK_ROR_UNION_SELECT::get_next()
unknown's avatar
unknown committed
5983

5984
  NOTES
unknown's avatar
unknown committed
5985 5986
    Enter/exit invariant:
    For each quick select in the queue a {key,rowid} tuple has been
5987
    retrieved but the corresponding row hasn't been passed to output.
5988

unknown's avatar
unknown committed
5989
  RETURN
5990 5991
   0     - Ok
   other - Error code if any error occurred.
5992 5993 5994 5995 5996 5997 5998 5999
*/

int QUICK_ROR_UNION_SELECT::get_next()
{
  int error, dup_row;
  QUICK_SELECT_I *quick;
  byte *tmp;
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::get_next");
unknown's avatar
unknown committed
6000

6001 6002 6003 6004
  do
  {
    if (!queue.elements)
      DBUG_RETURN(HA_ERR_END_OF_FILE);
6005
    /* Ok, we have a queue with >= 1 scans */
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021

    quick= (QUICK_SELECT_I*)queue_top(&queue);
    memcpy(cur_rowid, quick->last_rowid, rowid_length);

    /* put into queue rowid from the same stream as top element */
    if ((error= quick->get_next()))
    {
      if (error != HA_ERR_END_OF_FILE)
        DBUG_RETURN(error);
      queue_remove(&queue, 0);
    }
    else
    {
      quick->save_last_pos();
      queue_replaced(&queue);
    }
unknown's avatar
unknown committed
6022

6023 6024 6025
    if (!have_prev_rowid)
    {
      /* No rows have been returned yet */
unknown's avatar
unknown committed
6026 6027
      dup_row= FALSE;
      have_prev_rowid= TRUE;
6028 6029 6030 6031
    }
    else
      dup_row= !head->file->cmp_ref(cur_rowid, prev_rowid);
  }while (dup_row);
unknown's avatar
unknown committed
6032

6033 6034 6035 6036 6037 6038 6039 6040
  tmp= cur_rowid;
  cur_rowid= prev_rowid;
  prev_rowid= tmp;

  error= head->file->rnd_pos(quick->record, prev_rowid);
  DBUG_RETURN(error);
}

unknown's avatar
unknown committed
6041
int QUICK_RANGE_SELECT::reset()
unknown's avatar
unknown committed
6042 6043 6044
{
  uint  mrange_bufsiz;
  byte  *mrange_buff;
unknown's avatar
unknown committed
6045 6046 6047 6048
  DBUG_ENTER("QUICK_RANGE_SELECT::reset");
  next=0;
  range= NULL;
  cur_range= (QUICK_RANGE**) ranges.buffer;
unknown's avatar
unknown committed
6049 6050

  if (file->inited == handler::NONE && (error= file->ha_index_init(index)))
unknown's avatar
unknown committed
6051
    DBUG_RETURN(error);
unknown's avatar
unknown committed
6052
 
unknown's avatar
unknown committed
6053 6054 6055 6056 6057 6058 6059
  /* Do not allocate the buffers twice. */
  if (multi_range_length)
  {
    DBUG_ASSERT(multi_range_length == min(multi_range_count, ranges.elements));
    DBUG_RETURN(0);
  }

unknown's avatar
unknown committed
6060 6061
  /* Allocate the ranges array. */
  DBUG_ASSERT(ranges.elements);
unknown's avatar
unknown committed
6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077
  multi_range_length= min(multi_range_count, ranges.elements);
  DBUG_ASSERT(multi_range_length > 0);
  while (multi_range_length && ! (multi_range= (KEY_MULTI_RANGE*)
                                  my_malloc(multi_range_length *
                                            sizeof(KEY_MULTI_RANGE),
                                            MYF(MY_WME))))
  {
    /* Try to shrink the buffers until it is 0. */
    multi_range_length/= 2;
  }
  if (! multi_range)
  {
    multi_range_length= 0;
    DBUG_RETURN(HA_ERR_OUT_OF_MEM);
  }

unknown's avatar
unknown committed
6078
  /* Allocate the handler buffer if necessary.  */
unknown's avatar
unknown committed
6079 6080 6081
  if (file->table_flags() & HA_NEED_READ_RANGE_BUFFER)
  {
    mrange_bufsiz= min(multi_range_bufsiz,
unknown's avatar
merge  
unknown committed
6082
                       (QUICK_SELECT_I::records + 1)* head->s->reclength);
unknown's avatar
unknown committed
6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123

    while (mrange_bufsiz &&
           ! my_multi_malloc(MYF(MY_WME),
                             &multi_range_buff, sizeof(*multi_range_buff),
                             &mrange_buff, mrange_bufsiz,
                             NullS))
    {
      /* Try to shrink the buffers until both are 0. */
      mrange_bufsiz/= 2;
    }
    if (! multi_range_buff)
    {
      my_free((char*) multi_range, MYF(0));
      multi_range= NULL;
      multi_range_length= 0;
      DBUG_RETURN(HA_ERR_OUT_OF_MEM);
    }

    /* Initialize the handler buffer. */
    multi_range_buff->buffer= mrange_buff;
    multi_range_buff->buffer_end= mrange_buff + mrange_bufsiz;
    multi_range_buff->end_of_used_area= mrange_buff;
  }
  DBUG_RETURN(0);
}


/*
  Get next possible record using quick-struct.

  SYNOPSIS
    QUICK_RANGE_SELECT::get_next()

  NOTES
    Record is read into table->record[0]

  RETURN
    0			Found row
    HA_ERR_END_OF_FILE	No (more) rows in range
    #			Error code
*/
unknown's avatar
unknown committed
6124

unknown's avatar
unknown committed
6125
int QUICK_RANGE_SELECT::get_next()
unknown's avatar
unknown committed
6126
{
unknown's avatar
unknown committed
6127 6128 6129 6130
  int             result;
  KEY_MULTI_RANGE *mrange;
  key_range       *start_key;
  key_range       *end_key;
unknown's avatar
unknown committed
6131
  DBUG_ENTER("QUICK_RANGE_SELECT::get_next");
unknown's avatar
unknown committed
6132 6133 6134
  DBUG_ASSERT(multi_range_length && multi_range &&
              (cur_range >= (QUICK_RANGE**) ranges.buffer) &&
              (cur_range <= (QUICK_RANGE**) ranges.buffer + ranges.elements));
unknown's avatar
unknown committed
6135 6136 6137

  for (;;)
  {
unknown's avatar
unknown committed
6138
    if (in_range)
unknown's avatar
unknown committed
6139
    {
unknown's avatar
unknown committed
6140 6141
      /* We did already start to read this key. */
      result= file->read_multi_range_next(&mrange);
unknown's avatar
unknown committed
6142
      if (result != HA_ERR_END_OF_FILE)
unknown's avatar
unknown committed
6143 6144
      {
        in_range= ! result;
6145
	DBUG_RETURN(result);
unknown's avatar
unknown committed
6146
      }
unknown's avatar
unknown committed
6147
    }
unknown's avatar
unknown committed
6148

unknown's avatar
unknown committed
6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178
    uint count= min(multi_range_length, ranges.elements -
                    (cur_range - (QUICK_RANGE**) ranges.buffer));
    if (count == 0)
    {
      /* Ranges have already been used up before. None is left for read. */
      in_range= FALSE;
      DBUG_RETURN(HA_ERR_END_OF_FILE);
    }
    KEY_MULTI_RANGE *mrange_slot, *mrange_end;
    for (mrange_slot= multi_range, mrange_end= mrange_slot+count;
         mrange_slot < mrange_end;
         mrange_slot++)
    {
      start_key= &mrange_slot->start_key;
      end_key= &mrange_slot->end_key;
      range= *(cur_range++);

      start_key->key=    (const byte*) range->min_key;
      start_key->length= range->min_length;
      start_key->flag=   ((range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
                          (range->flag & EQ_RANGE) ?
                          HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
      end_key->key=      (const byte*) range->max_key;
      end_key->length=   range->max_length;
      /*
        We use HA_READ_AFTER_KEY here because if we are reading on a key
        prefix. We want to find all keys with this prefix.
      */
      end_key->flag=     (range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
                          HA_READ_AFTER_KEY);
unknown's avatar
unknown committed
6179

unknown's avatar
unknown committed
6180 6181
      mrange_slot->range_flag= range->flag;
    }
unknown's avatar
unknown committed
6182

unknown's avatar
unknown committed
6183 6184
    result= file->read_multi_range_first(&mrange, multi_range, count,
                                         sorted, multi_range_buff);
unknown's avatar
unknown committed
6185
    if (result != HA_ERR_END_OF_FILE)
unknown's avatar
unknown committed
6186 6187
    {
      in_range= ! result;
unknown's avatar
unknown committed
6188
      DBUG_RETURN(result);
unknown's avatar
unknown committed
6189 6190
    }
    in_range= FALSE; /* No matching rows; go to next set of ranges. */
unknown's avatar
unknown committed
6191 6192 6193
  }
}

6194

6195 6196 6197 6198 6199 6200
/*
  Get the next record with a different prefix.

  SYNOPSIS
    QUICK_RANGE_SELECT::get_next_prefix()
    prefix_length  length of cur_prefix
6201
    cur_prefix     prefix of a key to be searched for
6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233

  DESCRIPTION
    Each subsequent call to the method retrieves the first record that has a
    prefix with length prefix_length different from cur_prefix, such that the
    record with the new prefix is within the ranges described by
    this->ranges. The record found is stored into the buffer pointed by
    this->record.
    The method is useful for GROUP-BY queries with range conditions to
    discover the prefix of the next group that satisfies the range conditions.

  TODO
    This method is a modified copy of QUICK_RANGE_SELECT::get_next(), so both
    methods should be unified into a more general one to reduce code
    duplication.

  RETURN
    0                  on success
    HA_ERR_END_OF_FILE if returned all keys
    other              if some error occurred
*/

int QUICK_RANGE_SELECT::get_next_prefix(uint prefix_length, byte *cur_prefix)
{
  DBUG_ENTER("QUICK_RANGE_SELECT::get_next_prefix");

  for (;;)
  {
    int result;
    key_range start_key, end_key;
    if (range)
    {
      /* Read the next record in the same range with prefix after cur_prefix. */
6234
      DBUG_ASSERT(cur_prefix != 0);
6235 6236 6237 6238 6239 6240
      result= file->index_read(record, cur_prefix, prefix_length,
                               HA_READ_AFTER_KEY);
      if (result || (file->compare_key(file->end_range) <= 0))
        DBUG_RETURN(result);
    }

unknown's avatar
unknown committed
6241 6242 6243 6244 6245 6246 6247 6248
    uint count= ranges.elements - (cur_range - (QUICK_RANGE**) ranges.buffer);
    if (count == 0)
    {
      /* Ranges have already been used up before. None is left for read. */
      range= 0;
      DBUG_RETURN(HA_ERR_END_OF_FILE);
    }
    range= *(cur_range++);
6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277

    start_key.key=    (const byte*) range->min_key;
    start_key.length= min(range->min_length, prefix_length);
    start_key.flag=   ((range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
		       (range->flag & EQ_RANGE) ?
		       HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
    end_key.key=      (const byte*) range->max_key;
    end_key.length=   min(range->max_length, prefix_length);
    /*
      We use READ_AFTER_KEY here because if we are reading on a key
      prefix we want to find all keys with this prefix
    */
    end_key.flag=     (range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
		       HA_READ_AFTER_KEY);

    result= file->read_range_first(range->min_length ? &start_key : 0,
				   range->max_length ? &end_key : 0,
                                   test(range->flag & EQ_RANGE),
				   sorted);
    if (range->flag == (UNIQUE_RANGE | EQ_RANGE))
      range=0;				// Stop searching

    if (result != HA_ERR_END_OF_FILE)
      DBUG_RETURN(result);
    range=0;				// No matching rows; go to next range
  }
}


unknown's avatar
unknown committed
6278
/* Get next for geometrical indexes */
unknown's avatar
unknown committed
6279

unknown's avatar
unknown committed
6280
int QUICK_RANGE_SELECT_GEOM::get_next()
unknown's avatar
unknown committed
6281
{
unknown's avatar
unknown committed
6282
  DBUG_ENTER("QUICK_RANGE_SELECT_GEOM::get_next");
unknown's avatar
unknown committed
6283

unknown's avatar
unknown committed
6284
  for (;;)
unknown's avatar
unknown committed
6285
  {
unknown's avatar
unknown committed
6286 6287
    int result;
    if (range)
unknown's avatar
unknown committed
6288
    {
unknown's avatar
unknown committed
6289 6290 6291 6292 6293
      // Already read through key
      result= file->index_next_same(record, (byte*) range->min_key,
				    range->min_length);
      if (result != HA_ERR_END_OF_FILE)
	DBUG_RETURN(result);
unknown's avatar
unknown committed
6294
    }
unknown's avatar
unknown committed
6295

unknown's avatar
unknown committed
6296 6297 6298 6299 6300 6301 6302 6303
    uint count= ranges.elements - (cur_range - (QUICK_RANGE**) ranges.buffer);
    if (count == 0)
    {
      /* Ranges have already been used up before. None is left for read. */
      range= 0;
      DBUG_RETURN(HA_ERR_END_OF_FILE);
    }
    range= *(cur_range++);
unknown's avatar
unknown committed
6304 6305 6306 6307 6308 6309 6310 6311

    result= file->index_read(record,
			     (byte*) range->min_key,
			     range->min_length,
			     (ha_rkey_function)(range->flag ^ GEOM_FLAG));
    if (result != HA_ERR_KEY_NOT_FOUND)
      DBUG_RETURN(result);
    range=0;				// Not found, to next range
unknown's avatar
unknown committed
6312 6313 6314
  }
}

unknown's avatar
unknown committed
6315

6316 6317 6318 6319
/*
  Check if current row will be retrieved by this QUICK_RANGE_SELECT

  NOTES
unknown's avatar
unknown committed
6320 6321
    It is assumed that currently a scan is being done on another index
    which reads all necessary parts of the index that is scanned by this
6322
    quick select.
unknown's avatar
unknown committed
6323
    The implementation does a binary search on sorted array of disjoint
6324 6325
    ranges, without taking size of range into account.

unknown's avatar
unknown committed
6326
    This function is used to filter out clustered PK scan rows in
6327 6328
    index_merge quick select.

6329
  RETURN
unknown's avatar
unknown committed
6330 6331
    TRUE  if current row will be retrieved by this quick select
    FALSE if not
6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
*/

bool QUICK_RANGE_SELECT::row_in_ranges()
{
  QUICK_RANGE *range;
  uint min= 0;
  uint max= ranges.elements - 1;
  uint mid= (max + min)/2;

  while (min != max)
unknown's avatar
unknown committed
6342
  {
6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355
    if (cmp_next(*(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid)))
    {
      /* current row value > mid->max */
      min= mid + 1;
    }
    else
      max= mid;
    mid= (min + max) / 2;
  }
  range= *(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid);
  return (!cmp_next(range) && !cmp_prev(range));
}

6356
/*
6357 6358 6359 6360 6361 6362 6363
  This is a hack: we inherit from QUICK_SELECT so that we can use the
  get_next() interface, but we have to hold a pointer to the original
  QUICK_SELECT because its data are used all over the place.  What
  should be done is to factor out the data that is needed into a base
  class (QUICK_SELECT), and then have two subclasses (_ASC and _DESC)
  which handle the ranges and implement the get_next() function.  But
  for now, this seems to work right at least.
6364
 */
unknown's avatar
unknown committed
6365

unknown's avatar
unknown committed
6366
QUICK_SELECT_DESC::QUICK_SELECT_DESC(QUICK_RANGE_SELECT *q,
unknown's avatar
unknown committed
6367 6368
                                     uint used_key_parts)
 : QUICK_RANGE_SELECT(*q), rev_it(rev_ranges)
6369
{
unknown's avatar
unknown committed
6370
  QUICK_RANGE *r;
unknown's avatar
unknown committed
6371

6372 6373
  QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer;
  QUICK_RANGE **last_range= pr + ranges.elements;
unknown's avatar
unknown committed
6374 6375
  for (; pr!=last_range; pr++)
    rev_ranges.push_front(*pr);
unknown's avatar
unknown committed
6376

unknown's avatar
unknown committed
6377
  /* Remove EQ_RANGE flag for keys that are not using the full key */
unknown's avatar
unknown committed
6378
  for (r = rev_it++; r; r = rev_it++)
unknown's avatar
unknown committed
6379 6380 6381 6382 6383 6384 6385 6386
  {
    if ((r->flag & EQ_RANGE) &&
	head->key_info[index].key_length != r->max_length)
      r->flag&= ~EQ_RANGE;
  }
  rev_it.rewind();
  q->dont_free=1;				// Don't free shared mem
  delete q;
6387 6388
}

unknown's avatar
unknown committed
6389

6390 6391 6392 6393 6394 6395
int QUICK_SELECT_DESC::get_next()
{
  DBUG_ENTER("QUICK_SELECT_DESC::get_next");

  /* The max key is handled as follows:
   *   - if there is NO_MAX_RANGE, start at the end and move backwards
unknown's avatar
unknown committed
6396 6397
   *   - if it is an EQ_RANGE, which means that max key covers the entire
   *     key, go directly to the key and read through it (sorting backwards is
6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409
   *     same as sorting forwards)
   *   - if it is NEAR_MAX, go to the key or next, step back once, and
   *     move backwards
   *   - otherwise (not NEAR_MAX == include the key), go after the key,
   *     step back once, and move backwards
   */

  for (;;)
  {
    int result;
    if (range)
    {						// Already read through key
unknown's avatar
unknown committed
6410 6411 6412
      result = ((range->flag & EQ_RANGE)
		? file->index_next_same(record, (byte*) range->min_key,
					range->min_length) :
6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427
		file->index_prev(record));
      if (!result)
      {
	if (cmp_prev(*rev_it.ref()) == 0)
	  DBUG_RETURN(0);
      }
      else if (result != HA_ERR_END_OF_FILE)
	DBUG_RETURN(result);
    }

    if (!(range=rev_it++))
      DBUG_RETURN(HA_ERR_END_OF_FILE);		// All ranges used

    if (range->flag & NO_MAX_RANGE)		// Read last record
    {
6428 6429 6430
      int local_error;
      if ((local_error=file->index_last(record)))
	DBUG_RETURN(local_error);		// Empty table
6431 6432 6433 6434 6435 6436
      if (cmp_prev(range) == 0)
	DBUG_RETURN(0);
      range=0;			// No matching records; go to next range
      continue;
    }

unknown's avatar
unknown committed
6437
    if (range->flag & EQ_RANGE)
6438 6439 6440 6441 6442 6443
    {
      result = file->index_read(record, (byte*) range->max_key,
				range->max_length, HA_READ_KEY_EXACT);
    }
    else
    {
6444 6445 6446 6447 6448
      DBUG_ASSERT(range->flag & NEAR_MAX || range_reads_after_key(range));
      result=file->index_read(record, (byte*) range->max_key,
			      range->max_length,
			      ((range->flag & NEAR_MAX) ?
			       HA_READ_BEFORE_KEY : HA_READ_PREFIX_LAST_OR_PREV));
6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466
    }
    if (result)
    {
      if (result != HA_ERR_KEY_NOT_FOUND)
	DBUG_RETURN(result);
      range=0;					// Not found, to next range
      continue;
    }
    if (cmp_prev(range) == 0)
    {
      if (range->flag == (UNIQUE_RANGE | EQ_RANGE))
	range = 0;				// Stop searching
      DBUG_RETURN(0);				// Found key is in range
    }
    range = 0;					// To next range
  }
}

6467

unknown's avatar
unknown committed
6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508
/*
  Compare if found key is over max-value
  Returns 0 if key <= range->max_key
*/

int QUICK_RANGE_SELECT::cmp_next(QUICK_RANGE *range_arg)
{
  if (range_arg->flag & NO_MAX_RANGE)
    return 0;                                   /* key can't be to large */

  KEY_PART *key_part=key_parts;
  uint store_length;

  for (char *key=range_arg->max_key, *end=key+range_arg->max_length;
       key < end;
       key+= store_length, key_part++)
  {
    int cmp;
    store_length= key_part->store_length;
    if (key_part->null_bit)
    {
      if (*key)
      {
        if (!key_part->field->is_null())
          return 1;
        continue;
      }
      else if (key_part->field->is_null())
        return 0;
      key++;					// Skip null byte
      store_length--;
    }
    if ((cmp=key_part->field->key_cmp((byte*) key, key_part->length)) < 0)
      return 0;
    if (cmp > 0)
      return 1;
  }
  return (range_arg->flag & NEAR_MAX) ? 1 : 0;          // Exact match
}


6509
/*
6510 6511 6512
  Returns 0 if found key is inside range (found key >= range->min_key).
*/

6513
int QUICK_RANGE_SELECT::cmp_prev(QUICK_RANGE *range_arg)
6514
{
unknown's avatar
unknown committed
6515
  int cmp;
6516
  if (range_arg->flag & NO_MIN_RANGE)
unknown's avatar
unknown committed
6517
    return 0;					/* key can't be to small */
6518

unknown's avatar
unknown committed
6519 6520
  cmp= key_cmp(key_part_info, (byte*) range_arg->min_key,
               range_arg->min_length);
unknown's avatar
unknown committed
6521 6522 6523
  if (cmp > 0 || cmp == 0 && !(range_arg->flag & NEAR_MIN))
    return 0;
  return 1;                                     // outside of range
6524 6525
}

6526

6527
/*
unknown's avatar
unknown committed
6528
 * TRUE if this range will require using HA_READ_AFTER_KEY
unknown's avatar
unknown committed
6529
   See comment in get_next() about this
6530
 */
unknown's avatar
unknown committed
6531

6532
bool QUICK_SELECT_DESC::range_reads_after_key(QUICK_RANGE *range_arg)
6533
{
unknown's avatar
unknown committed
6534
  return ((range_arg->flag & (NO_MAX_RANGE | NEAR_MAX)) ||
6535
	  !(range_arg->flag & EQ_RANGE) ||
unknown's avatar
unknown committed
6536
	  head->key_info[index].key_length != range_arg->max_length) ? 1 : 0;
6537 6538
}

6539

unknown's avatar
unknown committed
6540
/* TRUE if we are reading over a key that may have a NULL value */
unknown's avatar
unknown committed
6541

unknown's avatar
unknown committed
6542
#ifdef NOT_USED
6543
bool QUICK_SELECT_DESC::test_if_null_range(QUICK_RANGE *range_arg,
unknown's avatar
unknown committed
6544 6545
					   uint used_key_parts)
{
unknown's avatar
unknown committed
6546
  uint offset, end;
unknown's avatar
unknown committed
6547 6548 6549
  KEY_PART *key_part = key_parts,
           *key_part_end= key_part+used_key_parts;

6550
  for (offset= 0,  end = min(range_arg->min_length, range_arg->max_length) ;
unknown's avatar
unknown committed
6551
       offset < end && key_part != key_part_end ;
unknown's avatar
unknown committed
6552
       offset+= key_part++->store_length)
unknown's avatar
unknown committed
6553
  {
6554 6555
    if (!memcmp((char*) range_arg->min_key+offset,
		(char*) range_arg->max_key+offset,
unknown's avatar
unknown committed
6556
		key_part->store_length))
unknown's avatar
unknown committed
6557
      continue;
unknown's avatar
unknown committed
6558 6559

    if (key_part->null_bit && range_arg->min_key[offset])
unknown's avatar
unknown committed
6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
      return 1;				// min_key is null and max_key isn't
    // Range doesn't cover NULL. This is ok if there is no more null parts
    break;
  }
  /*
    If the next min_range is > NULL, then we can use this, even if
    it's a NULL key
    Example:  SELECT * FROM t1 WHERE a = 2 AND b >0 ORDER BY a DESC,b DESC;

  */
  if (key_part != key_part_end && key_part->null_bit)
  {
6572
    if (offset >= range_arg->min_length || range_arg->min_key[offset])
unknown's avatar
unknown committed
6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584
      return 1;					// Could be null
    key_part++;
  }
  /*
    If any of the key parts used in the ORDER BY could be NULL, we can't
    use the key to sort the data.
  */
  for (; key_part != key_part_end ; key_part++)
    if (key_part->null_bit)
      return 1;					// Covers null part
  return 0;
}
unknown's avatar
unknown committed
6585
#endif
unknown's avatar
unknown committed
6586 6587


6588 6589 6590 6591 6592 6593 6594 6595 6596
void QUICK_RANGE_SELECT::add_info_string(String *str)
{
  KEY *key_info= head->key_info + index;
  str->append(key_info->name);
}

void QUICK_INDEX_MERGE_SELECT::add_info_string(String *str)
{
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
6597
  bool first= TRUE;
6598 6599 6600 6601 6602 6603 6604
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  str->append("sort_union(");
  while ((quick= it++))
  {
    if (!first)
      str->append(',');
    else
unknown's avatar
unknown committed
6605
      first= FALSE;
6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617
    quick->add_info_string(str);
  }
  if (pk_quick_select)
  {
    str->append(',');
    pk_quick_select->add_info_string(str);
  }
  str->append(')');
}

void QUICK_ROR_INTERSECT_SELECT::add_info_string(String *str)
{
unknown's avatar
unknown committed
6618
  bool first= TRUE;
6619 6620 6621 6622 6623 6624 6625 6626
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  str->append("intersect(");
  while ((quick= it++))
  {
    KEY *key_info= head->key_info + quick->index;
    if (!first)
      str->append(',');
unknown's avatar
unknown committed
6627
    else
unknown's avatar
unknown committed
6628
      first= FALSE;
6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641
    str->append(key_info->name);
  }
  if (cpk_quick)
  {
    KEY *key_info= head->key_info + cpk_quick->index;
    str->append(',');
    str->append(key_info->name);
  }
  str->append(')');
}

void QUICK_ROR_UNION_SELECT::add_info_string(String *str)
{
unknown's avatar
unknown committed
6642
  bool first= TRUE;
6643 6644 6645 6646 6647 6648 6649 6650
  QUICK_SELECT_I *quick;
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  str->append("union(");
  while ((quick= it++))
  {
    if (!first)
      str->append(',');
    else
unknown's avatar
unknown committed
6651
      first= FALSE;
6652 6653 6654 6655 6656 6657
    quick->add_info_string(str);
  }
  str->append(')');
}


unknown's avatar
unknown committed
6658
void QUICK_RANGE_SELECT::add_keys_and_lengths(String *key_names,
6659
                                              String *used_lengths)
6660 6661 6662 6663 6664 6665 6666 6667 6668
{
  char buf[64];
  uint length;
  KEY *key_info= head->key_info + index;
  key_names->append(key_info->name);
  length= longlong2str(max_used_key_length, buf, 10) - buf;
  used_lengths->append(buf, length);
}

6669 6670
void QUICK_INDEX_MERGE_SELECT::add_keys_and_lengths(String *key_names,
                                                    String *used_lengths)
6671 6672 6673
{
  char buf[64];
  uint length;
unknown's avatar
unknown committed
6674
  bool first= TRUE;
6675
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
6676

6677 6678 6679
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
6680
    if (first)
unknown's avatar
unknown committed
6681
      first= FALSE;
6682 6683
    else
    {
6684 6685
      key_names->append(',');
      used_lengths->append(',');
6686
    }
unknown's avatar
unknown committed
6687

6688 6689
    KEY *key_info= head->key_info + quick->index;
    key_names->append(key_info->name);
6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703
    length= longlong2str(quick->max_used_key_length, buf, 10) - buf;
    used_lengths->append(buf, length);
  }
  if (pk_quick_select)
  {
    KEY *key_info= head->key_info + pk_quick_select->index;
    key_names->append(',');
    key_names->append(key_info->name);
    length= longlong2str(pk_quick_select->max_used_key_length, buf, 10) - buf;
    used_lengths->append(',');
    used_lengths->append(buf, length);
  }
}

6704 6705
void QUICK_ROR_INTERSECT_SELECT::add_keys_and_lengths(String *key_names,
                                                      String *used_lengths)
6706 6707 6708
{
  char buf[64];
  uint length;
unknown's avatar
unknown committed
6709
  bool first= TRUE;
6710 6711 6712 6713 6714 6715
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
    KEY *key_info= head->key_info + quick->index;
    if (first)
unknown's avatar
unknown committed
6716
      first= FALSE;
6717
    else
6718 6719
    {
      key_names->append(',');
6720
      used_lengths->append(',');
6721 6722
    }
    key_names->append(key_info->name);
6723 6724 6725
    length= longlong2str(quick->max_used_key_length, buf, 10) - buf;
    used_lengths->append(buf, length);
  }
unknown's avatar
unknown committed
6726

6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737
  if (cpk_quick)
  {
    KEY *key_info= head->key_info + cpk_quick->index;
    key_names->append(',');
    key_names->append(key_info->name);
    length= longlong2str(cpk_quick->max_used_key_length, buf, 10) - buf;
    used_lengths->append(',');
    used_lengths->append(buf, length);
  }
}

6738 6739
void QUICK_ROR_UNION_SELECT::add_keys_and_lengths(String *key_names,
                                                  String *used_lengths)
6740
{
unknown's avatar
unknown committed
6741
  bool first= TRUE;
6742 6743 6744 6745 6746
  QUICK_SELECT_I *quick;
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  while ((quick= it++))
  {
    if (first)
unknown's avatar
unknown committed
6747
      first= FALSE;
6748
    else
unknown's avatar
unknown committed
6749
    {
6750 6751 6752
      used_lengths->append(',');
      key_names->append(',');
    }
6753
    quick->add_keys_and_lengths(key_names, used_lengths);
6754 6755 6756
  }
}

6757 6758 6759 6760 6761 6762 6763 6764 6765

/*******************************************************************************
* Implementation of QUICK_GROUP_MIN_MAX_SELECT
*******************************************************************************/

static inline uint get_field_keypart(KEY *index, Field *field);
static inline SEL_ARG * get_index_range_tree(uint index, SEL_TREE* range_tree,
                                             PARAM *param, uint *param_idx);
static bool
6766
get_constant_key_infix(KEY *index_info, SEL_ARG *index_range_tree,
6767
                       KEY_PART_INFO *first_non_group_part,
6768 6769 6770 6771
                       KEY_PART_INFO *min_max_arg_part,
                       KEY_PART_INFO *last_part, THD *thd,
                       byte *key_infix, uint *key_infix_len,
                       KEY_PART_INFO **first_non_infix_part);
6772
static bool
6773 6774
check_group_min_max_predicates(COND *cond, Item_field *min_max_arg_item,
                               Field::imagetype image_type);
6775

6776 6777 6778 6779 6780 6781
static void
cost_group_min_max(TABLE* table, KEY *index_info, uint used_key_parts,
                   uint group_key_parts, SEL_TREE *range_tree,
                   SEL_ARG *index_tree, ha_rows quick_prefix_records,
                   bool have_min, bool have_max,
                   double *read_cost, ha_rows *records);
6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807

/*
  Test if this access method is applicable to a GROUP query with MIN/MAX
  functions, and if so, construct a new TRP object.

  SYNOPSIS
    get_best_group_min_max()
    param    Parameter from test_quick_select
    sel_tree Range tree generated by get_mm_tree

  DESCRIPTION
    Test whether a query can be computed via a QUICK_GROUP_MIN_MAX_SELECT.
    Queries computable via a QUICK_GROUP_MIN_MAX_SELECT must satisfy the
    following conditions:
    A) Table T has at least one compound index I of the form:
       I = <A_1, ...,A_k, [B_1,..., B_m], C, [D_1,...,D_n]>
    B) Query conditions:
    B0. Q is over a single table T.
    B1. The attributes referenced by Q are a subset of the attributes of I.
    B2. All attributes QA in Q can be divided into 3 overlapping groups:
        - SA = {S_1, ..., S_l, [C]} - from the SELECT clause, where C is
          referenced by any number of MIN and/or MAX functions if present.
        - WA = {W_1, ..., W_p} - from the WHERE clause
        - GA = <G_1, ..., G_k> - from the GROUP BY clause (if any)
             = SA              - if Q is a DISTINCT query (based on the
                                 equivalence of DISTINCT and GROUP queries.
unknown's avatar
unknown committed
6808 6809
        - NGA = QA - (GA union C) = {NG_1, ..., NG_m} - the ones not in
          GROUP BY and not referenced by MIN/MAX functions.
6810
        with the following properties specified below.
6811 6812
    B3. If Q has a GROUP BY WITH ROLLUP clause the access method is not 
        applicable.
6813 6814 6815 6816 6817 6818 6819 6820 6821 6822

    SA1. There is at most one attribute in SA referenced by any number of
         MIN and/or MAX functions which, which if present, is denoted as C.
    SA2. The position of the C attribute in the index is after the last A_k.
    SA3. The attribute C can be referenced in the WHERE clause only in
         predicates of the forms:
         - (C {< | <= | > | >= | =} const)
         - (const {< | <= | > | >= | =} C)
         - (C between const_i and const_j)
         - C IS NULL
6823 6824
         - C IS NOT NULL
         - C != const
6825 6826 6827
    SA4. If Q has a GROUP BY clause, there are no other aggregate functions
         except MIN and MAX. For queries with DISTINCT, aggregate functions
         are allowed.
6828
    SA5. The select list in DISTINCT queries should not contain expressions.
6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857
    GA1. If Q has a GROUP BY clause, then GA is a prefix of I. That is, if
         G_i = A_j => i = j.
    GA2. If Q has a DISTINCT clause, then there is a permutation of SA that
         forms a prefix of I. This permutation is used as the GROUP clause
         when the DISTINCT query is converted to a GROUP query.
    GA3. The attributes in GA may participate in arbitrary predicates, divided
         into two groups:
         - RNG(G_1,...,G_q ; where q <= k) is a range condition over the
           attributes of a prefix of GA
         - PA(G_i1,...G_iq) is an arbitrary predicate over an arbitrary subset
           of GA. Since P is applied to only GROUP attributes it filters some
           groups, and thus can be applied after the grouping.
    GA4. There are no expressions among G_i, just direct column references.
    NGA1.If in the index I there is a gap between the last GROUP attribute G_k,
         and the MIN/MAX attribute C, then NGA must consist of exactly the index
         attributes that constitute the gap. As a result there is a permutation
         of NGA that coincides with the gap in the index <B_1, ..., B_m>.
    NGA2.If BA <> {}, then the WHERE clause must contain a conjunction EQ of
         equality conditions for all NG_i of the form (NG_i = const) or
         (const = NG_i), such that each NG_i is referenced in exactly one
         conjunct. Informally, the predicates provide constants to fill the
         gap in the index.
    WA1. There are no other attributes in the WHERE clause except the ones
         referenced in predicates RNG, PA, PC, EQ defined above. Therefore
         WA is subset of (GA union NGA union C) for GA,NGA,C that pass the above
         tests. By transitivity then it also follows that each WA_i participates
         in the index I (if this was already tested for GA, NGA and C).

    C) Overall query form:
6858 6859 6860 6861
       SELECT EXPR([A_1,...,A_k], [B_1,...,B_m], [MIN(C)], [MAX(C)])
         FROM T
        WHERE [RNG(A_1,...,A_p ; where p <= k)]
         [AND EQ(B_1,...,B_m)]
6862 6863
         [AND PC(C)]
         [AND PA(A_i1,...,A_iq)]
6864 6865 6866 6867
       GROUP BY A_1,...,A_k
       [HAVING PH(A_1, ..., B_1,..., C)]
    where EXPR(...) is an arbitrary expression over some or all SELECT fields,
    or:
6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896
       SELECT DISTINCT A_i1,...,A_ik
         FROM T
        WHERE [RNG(A_1,...,A_p ; where p <= k)]
         [AND PA(A_i1,...,A_iq)];

  NOTES
    If the current query satisfies the conditions above, and if
    (mem_root! = NULL), then the function constructs and returns a new TRP
    object, that is later used to construct a new QUICK_GROUP_MIN_MAX_SELECT.
    If (mem_root == NULL), then the function only tests whether the current
    query satisfies the conditions above, and, if so, sets
    is_applicable = TRUE.

    Queries with DISTINCT for which index access can be used are transformed
    into equivalent group-by queries of the form:

    SELECT A_1,...,A_k FROM T
     WHERE [RNG(A_1,...,A_p ; where p <= k)]
      [AND PA(A_i1,...,A_iq)]
    GROUP BY A_1,...,A_k;

    The group-by list is a permutation of the select attributes, according
    to their order in the index.

  TODO
  - What happens if the query groups by the MIN/MAX field, and there is no
    other field as in: "select min(a) from t1 group by a" ?
  - We assume that the general correctness of the GROUP-BY query was checked
    before this point. Is this correct, or do we have to check it completely?
6897 6898
  - Lift the limitation in condition (B3), that is, make this access method 
    applicable to ROLLUP queries.
6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937

  RETURN
    If mem_root != NULL
    - valid TRP_GROUP_MIN_MAX object if this QUICK class can be used for
      the query
    -  NULL o/w.
    If mem_root == NULL
    - NULL
*/

static TRP_GROUP_MIN_MAX *
get_best_group_min_max(PARAM *param, SEL_TREE *tree)
{
  THD *thd= param->thd;
  JOIN *join= thd->lex->select_lex.join;
  TABLE *table= param->table;
  bool have_min= FALSE;              /* TRUE if there is a MIN function. */
  bool have_max= FALSE;              /* TRUE if there is a MAX function. */
  Item_field *min_max_arg_item= NULL;/* The argument of all MIN/MAX functions.*/
  KEY_PART_INFO *min_max_arg_part= NULL; /* The corresponding keypart. */
  uint group_prefix_len= 0; /* Length (in bytes) of the key prefix. */
  KEY *index_info= NULL;    /* The index chosen for data access. */
  uint index= 0;            /* The id of the chosen index. */
  uint group_key_parts= 0;  /* Number of index key parts in the group prefix. */
  uint used_key_parts= 0;   /* Number of index key parts used for access. */
  byte key_infix[MAX_KEY_LENGTH]; /* Constants from equality predicates.*/
  uint key_infix_len= 0;          /* Length of key_infix. */
  TRP_GROUP_MIN_MAX *read_plan= NULL; /* The eventually constructed TRP. */
  uint key_part_nr;
  ORDER *tmp_group;
  Item *item;
  Item_field *item_field;
  DBUG_ENTER("get_best_group_min_max");

  /* Perform few 'cheap' tests whether this access method is applicable. */
  if (!join || (thd->lex->sql_command != SQLCOM_SELECT))
    DBUG_RETURN(NULL);        /* This is not a select statement. */
  if ((join->tables != 1) ||  /* The query must reference one table. */
      ((!join->group_list) && /* Neither GROUP BY nor a DISTINCT query. */
6938 6939
       (!join->select_distinct)) ||
      (thd->lex->select_lex.olap == ROLLUP_TYPE)) /* Check (B3) for ROLLUP */
6940
    DBUG_RETURN(NULL);
6941
  if (table->s->keys == 0)        /* There are no indexes to use. */
6942 6943 6944
    DBUG_RETURN(NULL);

  /* Analyze the query in more detail. */
6945
  List_iterator<Item> select_items_it(join->fields_list);
6946

6947 6948 6949 6950
  /* Check (SA1,SA4) and store the only MIN/MAX argument - the C attribute.*/
  if(join->make_sum_func_list(join->all_fields, join->fields_list, 1))
    DBUG_RETURN(NULL);
  if (join->sum_funcs[0])
6951
  {
6952 6953 6954
    Item_sum *min_max_item;
    Item_sum **func_ptr= join->sum_funcs;
    while ((min_max_item= *(func_ptr++)))
6955
    {
6956 6957 6958 6959 6960
      if (min_max_item->sum_func() == Item_sum::MIN_FUNC)
        have_min= TRUE;
      else if (min_max_item->sum_func() == Item_sum::MAX_FUNC)
        have_max= TRUE;
      else
6961 6962
        DBUG_RETURN(NULL);

6963 6964
      Item *expr= min_max_item->args[0];    /* The argument of MIN/MAX. */
      if (expr->type() == Item::FIELD_ITEM) /* Is it an attribute? */
6965
      {
6966 6967 6968 6969
        if (! min_max_arg_item)
          min_max_arg_item= (Item_field*) expr;
        else if (! min_max_arg_item->eq(expr, 1))
          DBUG_RETURN(NULL);
6970
      }
6971 6972
      else
        DBUG_RETURN(NULL);
6973
    }
6974
  }
6975

6976 6977 6978 6979
  /* Check (SA5). */
  if (join->select_distinct)
  {
    while ((item= select_items_it++))
6980
    {
6981 6982
      if (item->type() != Item::FIELD_ITEM)
        DBUG_RETURN(NULL);
6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998
    }
  }

  /* Check (GA4) - that there are no expressions among the group attributes. */
  for (tmp_group= join->group_list; tmp_group; tmp_group= tmp_group->next)
  {
    if ((*tmp_group->item)->type() != Item::FIELD_ITEM)
      DBUG_RETURN(NULL);
  }

  /*
    Check that table has at least one compound index such that the conditions
    (GA1,GA2) are all TRUE. If there is more than one such index, select the
    first one. Here we set the variables: group_prefix_len and index_info.
  */
  KEY *cur_index_info= table->key_info;
6999
  KEY *cur_index_info_end= cur_index_info + table->s->keys;
7000
  KEY_PART_INFO *cur_part= NULL;
7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019
  KEY_PART_INFO *end_part; /* Last part for loops. */
  /* Last index part. */
  KEY_PART_INFO *last_part= NULL;
  KEY_PART_INFO *first_non_group_part= NULL;
  KEY_PART_INFO *first_non_infix_part= NULL;
  uint key_infix_parts= 0;
  uint cur_group_key_parts= 0;
  uint cur_group_prefix_len= 0;
  /* Cost-related variables for the best index so far. */
  double best_read_cost= DBL_MAX;
  ha_rows best_records= 0;
  SEL_ARG *best_index_tree= NULL;
  ha_rows best_quick_prefix_records= 0;
  uint best_param_idx= 0;
  double cur_read_cost= DBL_MAX;
  ha_rows cur_records;
  SEL_ARG *cur_index_tree= NULL;
  ha_rows cur_quick_prefix_records= 0;
  uint cur_param_idx;
unknown's avatar
unknown committed
7020
  key_map cur_used_key_parts;
7021 7022 7023 7024 7025 7026 7027

  for (uint cur_index= 0 ; cur_index_info != cur_index_info_end ;
       cur_index_info++, cur_index++)
  {
    /* Check (B1) - if current index is covering. */
    if (!table->used_keys.is_set(cur_index))
      goto next_index;
7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049

    /*
      Check (GA1) for GROUP BY queries.
    */
    if (join->group_list)
    {
      cur_part= cur_index_info->key_part;
      end_part= cur_part + cur_index_info->key_parts;
      /* Iterate in parallel over the GROUP list and the index parts. */
      for (tmp_group= join->group_list; tmp_group && (cur_part != end_part);
           tmp_group= tmp_group->next, cur_part++)
      {
        /*
          TODO:
          tmp_group::item is an array of Item, is it OK to consider only the
          first Item? If so, then why? What is the array for?
        */
        /* Above we already checked that all group items are fields. */
        DBUG_ASSERT((*tmp_group->item)->type() == Item::FIELD_ITEM);
        Item_field *group_field= (Item_field *) (*tmp_group->item);
        if (group_field->field->eq(cur_part->field))
        {
7050 7051
          cur_group_prefix_len+= cur_part->store_length;
          ++cur_group_key_parts;
7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066
        }
        else
          goto next_index;
      }
    }
    /*
      Check (GA2) if this is a DISTINCT query.
      If GA2, then Store a new ORDER object in group_fields_array at the
      position of the key part of item_field->field. Thus we get the ORDER
      objects for each field ordered as the corresponding key parts.
      Later group_fields_array of ORDER objects is used to convert the query
      to a GROUP query.
    */
    else if (join->select_distinct)
    {
7067
      select_items_it.rewind();
unknown's avatar
unknown committed
7068
      cur_used_key_parts.clear_all();
7069
      while ((item= select_items_it++))
7070
      {
7071
        item_field= (Item_field*) item; /* (SA5) already checked above. */
7072 7073
        /* Find the order of the key part in the index. */
        key_part_nr= get_field_keypart(cur_index_info, item_field->field);
unknown's avatar
unknown committed
7074 7075 7076 7077 7078 7079
        /*
          Check if this attribute was already present in the select list.
          If it was present, then its corresponding key part was alredy used.
        */
        if (cur_used_key_parts.is_set(key_part_nr))
          continue;
7080
        if (key_part_nr < 1 || key_part_nr > join->fields_list.elements)
7081 7082
          goto next_index;
        cur_part= cur_index_info->key_part + key_part_nr - 1;
7083
        cur_group_prefix_len+= cur_part->store_length;
unknown's avatar
unknown committed
7084 7085
        cur_used_key_parts.set_bit(key_part_nr);
        ++cur_group_key_parts;
7086 7087 7088 7089 7090 7091 7092 7093 7094
      }
    }
    else
      DBUG_ASSERT(FALSE);

    /* Check (SA2). */
    if (min_max_arg_item)
    {
      key_part_nr= get_field_keypart(cur_index_info, min_max_arg_item->field);
7095
      if (key_part_nr <= cur_group_key_parts)
7096 7097 7098 7099 7100 7101 7102 7103
        goto next_index;
      min_max_arg_part= cur_index_info->key_part + key_part_nr - 1;
    }

    /*
      Check (NGA1, NGA2) and extract a sequence of constants to be used as part
      of all search keys.
    */
7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125

    /*
      If there is MIN/MAX, each keypart between the last group part and the
      MIN/MAX part must participate in one equality with constants, and all
      keyparts after the MIN/MAX part must not be referenced in the query.

      If there is no MIN/MAX, the keyparts after the last group part can be
      referenced only in equalities with constants, and the referenced keyparts
      must form a sequence without any gaps that starts immediately after the
      last group keypart.
    */
    last_part= cur_index_info->key_part + cur_index_info->key_parts;
    first_non_group_part= (cur_group_key_parts < cur_index_info->key_parts) ?
                          cur_index_info->key_part + cur_group_key_parts :
                          NULL;
    first_non_infix_part= min_max_arg_part ?
                          (min_max_arg_part < last_part) ?
                             min_max_arg_part + 1 :
                             NULL :
                           NULL;
    if (first_non_group_part &&
        (!min_max_arg_part || (min_max_arg_part - first_non_group_part > 0)))
7126
    {
7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143
      if (tree)
      {
        uint dummy;
        SEL_ARG *index_range_tree= get_index_range_tree(cur_index, tree, param,
                                                        &dummy);
        if (!get_constant_key_infix(cur_index_info, index_range_tree,
                                    first_non_group_part, min_max_arg_part,
                                    last_part, thd, key_infix, &key_infix_len,
                                    &first_non_infix_part))
          goto next_index;
      }
      else if (min_max_arg_part &&
               (min_max_arg_part - first_non_group_part > 0))
        /*
          There is a gap but no range tree, thus no predicates at all for the
          non-group keyparts.
        */
7144 7145 7146
        goto next_index;
    }

7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159
    /*
      Test (WA1) partially - that no other keypart after the last infix part is
      referenced in the query.
    */
    if (first_non_infix_part)
    {
      for (cur_part= first_non_infix_part; cur_part != last_part; cur_part++)
      {
        if (cur_part->field->query_id == thd->query_id)
          goto next_index;
      }
    }

7160
    /* If we got to this point, cur_index_info passes the test. */
7161 7162 7163
    key_infix_parts= key_infix_len ?
                     (first_non_infix_part - first_non_group_part) : 0;
    used_key_parts= cur_group_key_parts + key_infix_parts;
7164

7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178
    /* Compute the cost of using this index. */
    if (tree)
    {
      /* Find the SEL_ARG sub-tree that corresponds to the chosen index. */
      cur_index_tree= get_index_range_tree(cur_index, tree, param,
                                           &cur_param_idx);
      /* Check if this range tree can be used for prefix retrieval. */
      cur_quick_prefix_records= check_quick_select(param, cur_param_idx,
                                                    cur_index_tree);
    }
    cost_group_min_max(table, cur_index_info, used_key_parts,
                       cur_group_key_parts, tree, cur_index_tree,
                       cur_quick_prefix_records, have_min, have_max,
                       &cur_read_cost, &cur_records);
unknown's avatar
unknown committed
7179 7180 7181 7182 7183 7184
    /*
      If cur_read_cost is lower than best_read_cost use cur_index.
      Do not compare doubles directly because they may have different
      representations (64 vs. 80 bits).
    */
    if (cur_read_cost < best_read_cost - (DBL_EPSILON * cur_read_cost))
7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195
    {
      index_info= cur_index_info;
      index= cur_index;
      best_read_cost= cur_read_cost;
      best_records= cur_records;
      best_index_tree= cur_index_tree;
      best_quick_prefix_records= cur_quick_prefix_records;
      best_param_idx= cur_param_idx;
      group_key_parts= cur_group_key_parts;
      group_prefix_len= cur_group_prefix_len;
    }
7196 7197

  next_index:
7198 7199
    cur_group_key_parts= 0;
    cur_group_prefix_len= 0;
7200 7201 7202 7203
  }
  if (!index_info) /* No usable index found. */
    DBUG_RETURN(NULL);

7204 7205 7206
  /* Check (SA3) for the where clause. */
  if (join->conds && min_max_arg_item &&
      !check_group_min_max_predicates(join->conds, min_max_arg_item,
7207 7208
                                      (index_info->flags & HA_SPATIAL) ?
                                      Field::itMBR : Field::itRAW))
7209 7210 7211 7212
    DBUG_RETURN(NULL);

  /* The query passes all tests, so construct a new TRP object. */
  read_plan= new (param->mem_root)
7213 7214 7215 7216
                 TRP_GROUP_MIN_MAX(have_min, have_max, min_max_arg_part,
                                   group_prefix_len, used_key_parts,
                                   group_key_parts, index_info, index,
                                   key_infix_len,
7217
                                   (key_infix_len > 0) ? key_infix : NULL,
7218
                                   tree, best_index_tree, best_param_idx,
7219
                                   best_quick_prefix_records);
7220 7221 7222 7223 7224
  if (read_plan)
  {
    if (tree && read_plan->quick_prefix_records == 0)
      DBUG_RETURN(NULL);

7225 7226 7227
    read_plan->read_cost= best_read_cost;
    read_plan->records=   best_records;

7228 7229 7230 7231 7232 7233 7234 7235 7236 7237
    DBUG_PRINT("info",
               ("Returning group min/max plan: cost: %g, records: %lu",
                read_plan->read_cost, (ulong) read_plan->records));
  }

  DBUG_RETURN(read_plan);
}


/*
7238 7239
  Check that the MIN/MAX attribute participates only in range predicates
  with constants.
7240 7241 7242 7243 7244 7245

  SYNOPSIS
    check_group_min_max_predicates()
    cond              tree (or subtree) describing all or part of the WHERE
                      clause being analyzed
    min_max_arg_item  the field referenced by the MIN/MAX function(s)
7246
    min_max_arg_part  the keypart of the MIN/MAX argument if any
7247 7248 7249

  DESCRIPTION
    The function walks recursively over the cond tree representing a WHERE
7250
    clause, and checks condition (SA3) - if a field is referenced by a MIN/MAX
7251 7252
    aggregate function, it is referenced only by one of the following
    predicates: {=, !=, <, <=, >, >=, between, is null, is not null}.
7253 7254 7255 7256 7257 7258 7259

  RETURN
    TRUE  if cond passes the test
    FALSE o/w
*/

static bool
7260 7261
check_group_min_max_predicates(COND *cond, Item_field *min_max_arg_item,
                               Field::imagetype image_type)
7262 7263
{
  DBUG_ENTER("check_group_min_max_predicates");
7264
  DBUG_ASSERT(cond && min_max_arg_item);
7265 7266 7267 7268 7269 7270 7271 7272 7273

  Item::Type cond_type= cond->type();
  if (cond_type == Item::COND_ITEM) /* 'AND' or 'OR' */
  {
    DBUG_PRINT("info", ("Analyzing: %s", ((Item_func*) cond)->func_name()));
    List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
    Item *and_or_arg;
    while ((and_or_arg= li++))
    {
7274 7275
      if(!check_group_min_max_predicates(and_or_arg, min_max_arg_item,
                                         image_type))
7276 7277 7278 7279 7280
        DBUG_RETURN(FALSE);
    }
    DBUG_RETURN(TRUE);
  }

7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293
  /*
    TODO:
    This is a very crude fix to handle sub-selects in the WHERE clause
    (Item_subselect objects). With the test below we rule out from the
    optimization all queries with subselects in the WHERE clause. What has to
    be done, is that here we should analyze whether the subselect references
    the MIN/MAX argument field, and disallow the optimization only if this is
    so.
  */
  if (cond_type == Item::SUBSELECT_ITEM)
    DBUG_RETURN(FALSE);
  
  /* We presume that at this point there are no other Items than functions. */
7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306
  DBUG_ASSERT(cond_type == Item::FUNC_ITEM);

  /* Test if cond references only group-by or non-group fields. */
  Item_func *pred= (Item_func*) cond;
  Item **arguments= pred->arguments();
  Item *cur_arg;
  DBUG_PRINT("info", ("Analyzing: %s", pred->func_name()));
  for (uint arg_idx= 0; arg_idx < pred->argument_count (); arg_idx++)
  {
    cur_arg= arguments[arg_idx];
    DBUG_PRINT("info", ("cur_arg: %s", cur_arg->full_name()));
    if (cur_arg->type() == Item::FIELD_ITEM)
    {
7307
      if (min_max_arg_item->eq(cur_arg, 1)) 
7308 7309 7310
      {
       /*
         If pred references the MIN/MAX argument, check whether pred is a range
7311
         condition that compares the MIN/MAX argument with a constant.
7312 7313
       */
        Item_func::Functype pred_type= pred->functype();
7314 7315 7316 7317 7318 7319 7320 7321 7322 7323
        if (pred_type != Item_func::EQUAL_FUNC     &&
            pred_type != Item_func::LT_FUNC        &&
            pred_type != Item_func::LE_FUNC        &&
            pred_type != Item_func::GT_FUNC        &&
            pred_type != Item_func::GE_FUNC        &&
            pred_type != Item_func::BETWEEN        &&
            pred_type != Item_func::ISNULL_FUNC    &&
            pred_type != Item_func::ISNOTNULL_FUNC &&
            pred_type != Item_func::EQ_FUNC        &&
            pred_type != Item_func::NE_FUNC)
7324 7325 7326 7327
          DBUG_RETURN(FALSE);

        /* Check that pred compares min_max_arg_item with a constant. */
        Item *args[3];
7328
        bzero(args, 3 * sizeof(Item*));
7329 7330 7331 7332
        bool inv;
        /* Test if this is a comparison of a field and a constant. */
        if (!simple_pred(pred, args, &inv))
          DBUG_RETURN(FALSE);
7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351

        /* Check for compatible string comparisons - similar to get_mm_leaf. */
        if (args[0] && args[1] && !args[2] && // this is a binary function
            min_max_arg_item->result_type() == STRING_RESULT &&
            /*
              Don't use an index when comparing strings of different collations.
            */
            ((args[1]->result_type() == STRING_RESULT &&
              image_type == Field::itRAW &&
              ((Field_str*) min_max_arg_item->field)->charset() !=
              pred->compare_collation())
             ||
             /*
               We can't always use indexes when comparing a string index to a
               number.
             */
             (args[1]->result_type() != STRING_RESULT &&
              min_max_arg_item->field->cmp_type() != args[1]->result_type())))
          DBUG_RETURN(FALSE);
7352 7353 7354 7355
      }
    }
    else if (cur_arg->type() == Item::FUNC_ITEM)
    {
7356 7357
      if(!check_group_min_max_predicates(cur_arg, min_max_arg_item,
                                         image_type))
7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376
        DBUG_RETURN(FALSE);
    }
    else if (cur_arg->const_item())
    {
      DBUG_RETURN(TRUE);
    }
    else
      DBUG_RETURN(FALSE);
  }

  DBUG_RETURN(TRUE);
}


/*
  Extract a sequence of constants from a conjunction of equality predicates.

  SYNOPSIS
    get_constant_key_infix()
7377 7378 7379 7380 7381 7382 7383 7384 7385
    index_info             [in]  Descriptor of the chosen index.
    index_range_tree       [in]  Range tree for the chosen index
    first_non_group_part   [in]  First index part after group attribute parts
    min_max_arg_part       [in]  The keypart of the MIN/MAX argument if any
    last_part              [in]  Last keypart of the index
    thd                    [in]  Current thread
    key_infix              [out] Infix of constants to be used for index lookup
    key_infix_len          [out] Lenghth of the infix
    first_non_infix_part   [out] The first keypart after the infix (if any)
7386 7387 7388
    
  DESCRIPTION
    Test conditions (NGA1, NGA2) from get_best_group_min_max(). Namely,
unknown's avatar
unknown committed
7389 7390
    for each keypart field NGF_i not in GROUP-BY, check that there is a
    constant equality predicate among conds with the form (NGF_i = const_ci) or
7391 7392
    (const_ci = NGF_i).
    Thus all the NGF_i attributes must fill the 'gap' between the last group-by
7393 7394 7395 7396 7397 7398
    attribute and the MIN/MAX attribute in the index (if present). If these
    conditions hold, copy each constant from its corresponding predicate into
    key_infix, in the order its NG_i attribute appears in the index, and update
    key_infix_len with the total length of the key parts in key_infix.

  RETURN
7399
    TRUE  if the index passes the test
7400 7401 7402 7403
    FALSE o/w
*/

static bool
7404
get_constant_key_infix(KEY *index_info, SEL_ARG *index_range_tree,
7405
                       KEY_PART_INFO *first_non_group_part,
7406 7407 7408 7409
                       KEY_PART_INFO *min_max_arg_part,
                       KEY_PART_INFO *last_part, THD *thd,
                       byte *key_infix, uint *key_infix_len,
                       KEY_PART_INFO **first_non_infix_part)
7410 7411 7412
{
  SEL_ARG       *cur_range;
  KEY_PART_INFO *cur_part;
7413 7414
  /* End part for the first loop below. */
  KEY_PART_INFO *end_part= min_max_arg_part ? min_max_arg_part : last_part;
7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431

  *key_infix_len= 0;
  byte *key_ptr= key_infix;
  for (cur_part= first_non_group_part; cur_part != end_part; cur_part++)
  {
    /*
      Find the range tree for the current keypart. We assume that
      index_range_tree points to the leftmost keypart in the index.
    */
    for (cur_range= index_range_tree; cur_range;
         cur_range= cur_range->next_key_part)
    {
      if (cur_range->field->eq(cur_part->field))
        break;
    }
    if (!cur_range)
    {
7432 7433 7434 7435 7436 7437 7438
      if (min_max_arg_part)
        return FALSE; /* The current keypart has no range predicates at all. */
      else
      {
        *first_non_infix_part= cur_part;
        return TRUE;
      }
7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462
    }

    /* Check that the current range tree is a single point interval. */
    if (cur_range->prev || cur_range->next)
      return FALSE; /* This is not the only range predicate for the field. */
    if ((cur_range->min_flag & NO_MIN_RANGE) ||
        (cur_range->max_flag & NO_MAX_RANGE) ||
        (cur_range->min_flag & NEAR_MIN) || (cur_range->max_flag & NEAR_MAX))
      return FALSE;

    uint field_length= cur_part->store_length;
    if ((cur_range->maybe_null &&
         cur_range->min_value[0] && cur_range->max_value[0])
        ||
        (memcmp(cur_range->min_value, cur_range->max_value, field_length) == 0))
    { /* cur_range specifies 'IS NULL' or an equality condition. */
      memcpy(key_ptr, cur_range->min_value, field_length);
      key_ptr+= field_length;
      *key_infix_len+= field_length;
    }
    else
      return FALSE;
  }

7463 7464 7465
  if (!min_max_arg_part && (cur_part == last_part))
    *first_non_infix_part= last_part;

7466 7467 7468 7469
  return TRUE;
}


7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489
/*
  Find the key part referenced by a field.

  SYNOPSIS
    get_field_keypart()
    index  descriptor of an index
    field  field that possibly references some key part in index

  NOTES
    The return value can be used to get a KEY_PART_INFO pointer by
    part= index->key_part + get_field_keypart(...) - 1;

  RETURN
    Positive number which is the consecutive number of the key part, or
    0 if field does not reference any index field.
*/

static inline uint
get_field_keypart(KEY *index, Field *field)
{
7490
  KEY_PART_INFO *part, *end;
7491

7492
  for (part= index->key_part, end= part + index->key_parts; part < end; part++)
7493 7494
  {
    if (field->eq(part->field))
unknown's avatar
unknown committed
7495
      return part - index->key_part + 1;
7496
  }
7497
  return 0;
7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538
}


/*
  Find the SEL_ARG sub-tree that corresponds to the chosen index.

  SYNOPSIS
    get_index_range_tree()
    index     [in]  The ID of the index being looked for
    range_tree[in]  Tree of ranges being searched
    param     [in]  PARAM from SQL_SELECT::test_quick_select
    param_idx [out] Index in the array PARAM::key that corresponds to 'index'

  DESCRIPTION

    A SEL_TREE contains range trees for all usable indexes. This procedure
    finds the SEL_ARG sub-tree for 'index'. The members of a SEL_TREE are
    ordered in the same way as the members of PARAM::key, thus we first find
    the corresponding index in the array PARAM::key. This index is returned
    through the variable param_idx, to be used later as argument of
    check_quick_select().

  RETURN
    Pointer to the SEL_ARG subtree that corresponds to index.
*/

SEL_ARG * get_index_range_tree(uint index, SEL_TREE* range_tree, PARAM *param,
                               uint *param_idx)
{
  uint idx= 0; /* Index nr in param->key_parts */
  while (idx < param->keys)
  {
    if (index == param->real_keynr[idx])
      break;
    idx++;
  }
  *param_idx= idx;
  return(range_tree->keys[idx]);
}


7539
/*
7540
  Compute the cost of a quick_group_min_max_select for a particular index.
7541 7542

  SYNOPSIS
7543 7544 7545 7546 7547 7548 7549
    cost_group_min_max()
    table                [in] The table being accessed
    index_info           [in] The index used to access the table
    used_key_parts       [in] Number of key parts used to access the index
    group_key_parts      [in] Number of index key parts in the group prefix
    range_tree           [in] Tree of ranges for all indexes
    index_tree           [in] The range tree for the current index
unknown's avatar
unknown committed
7550 7551
    quick_prefix_records [in] Number of records retrieved by the internally
			      used quick range select if any
7552 7553 7554 7555
    have_min             [in] True if there is a MIN function
    have_max             [in] True if there is a MAX function
    read_cost           [out] The cost to retrieve rows via this quick select
    records             [out] The number of rows retrieved
7556 7557

  DESCRIPTION
unknown's avatar
unknown committed
7558 7559
    This method computes the access cost of a TRP_GROUP_MIN_MAX instance and
    the number of rows returned. It updates this->read_cost and this->records.
7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598

  NOTES
    The cost computation distinguishes several cases:
    1) No equality predicates over non-group attributes (thus no key_infix).
       If groups are bigger than blocks on the average, then we assume that it
       is very unlikely that block ends are aligned with group ends, thus even
       if we look for both MIN and MAX keys, all pairs of neighbor MIN/MAX
       keys, except for the first MIN and the last MAX keys, will be in the
       same block.  If groups are smaller than blocks, then we are going to
       read all blocks.
    2) There are equality predicates over non-group attributes.
       In this case the group prefix is extended by additional constants, and
       as a result the min/max values are inside sub-groups of the original
       groups. The number of blocks that will be read depends on whether the
       ends of these sub-groups will be contained in the same or in different
       blocks. We compute the probability for the two ends of a subgroup to be
       in two different blocks as the ratio of:
       - the number of positions of the left-end of a subgroup inside a group,
         such that the right end of the subgroup is past the end of the buffer
         containing the left-end, and
       - the total number of possible positions for the left-end of the
         subgroup, which is the number of keys in the containing group.
       We assume it is very unlikely that two ends of subsequent subgroups are
       in the same block.
    3) The are range predicates over the group attributes.
       Then some groups may be filtered by the range predicates. We use the
       selectivity of the range predicates to decide how many groups will be
       filtered.

  TODO
     - Take into account the optional range predicates over the MIN/MAX
       argument.
     - Check if we have a PK index and we use all cols - then each key is a
       group, and it will be better to use an index scan.

  RETURN
    None
*/

7599 7600 7601 7602 7603
void cost_group_min_max(TABLE* table, KEY *index_info, uint used_key_parts,
                        uint group_key_parts, SEL_TREE *range_tree,
                        SEL_ARG *index_tree, ha_rows quick_prefix_records,
                        bool have_min, bool have_max,
                        double *read_cost, ha_rows *records)
7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615
{
  uint table_records;
  uint num_groups;
  uint num_blocks;
  uint keys_per_block;
  uint keys_per_group;
  uint keys_per_subgroup; /* Average number of keys in sub-groups */
                          /* formed by a key infix. */
  double p_overlap; /* Probability that a sub-group overlaps two blocks. */
  double quick_prefix_selectivity;
  double io_cost;
  double cpu_cost= 0; /* TODO: CPU cost of index_read calls? */
unknown's avatar
unknown committed
7616
  DBUG_ENTER("cost_group_min_max");
unknown's avatar
unknown committed
7617

7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635
  table_records= table->file->records;
  keys_per_block= (table->file->block_size / 2 /
                   (index_info->key_length + table->file->ref_length)
                        + 1);
  num_blocks= (table_records / keys_per_block) + 1;

  /* Compute the number of keys in a group. */
  keys_per_group= index_info->rec_per_key[group_key_parts - 1];
  if (keys_per_group == 0) /* If there is no statistics try to guess */
    /* each group contains 10% of all records */
    keys_per_group= (table_records / 10) + 1;
  num_groups= (table_records / keys_per_group) + 1;

  /* Apply the selectivity of the quick select for group prefixes. */
  if (range_tree && (quick_prefix_records != HA_POS_ERROR))
  {
    quick_prefix_selectivity= (double) quick_prefix_records /
                              (double) table_records;
unknown's avatar
unknown committed
7636
    num_groups= (uint) rint(num_groups * quick_prefix_selectivity);
7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667
  }

  if (used_key_parts > group_key_parts)
  { /*
      Compute the probability that two ends of a subgroup are inside
      different blocks.
    */
    keys_per_subgroup= index_info->rec_per_key[used_key_parts - 1];
    if (keys_per_subgroup >= keys_per_block) /* If a subgroup is bigger than */
      p_overlap= 1.0;       /* a block, it will overlap at least two blocks. */
    else
    {
      double blocks_per_group= (double) num_blocks / (double) num_groups;
      p_overlap= (blocks_per_group * (keys_per_subgroup - 1)) / keys_per_group;
      p_overlap= min(p_overlap, 1.0);
    }
    io_cost= (double) min(num_groups * (1 + p_overlap), num_blocks);
  }
  else
    io_cost= (keys_per_group > keys_per_block) ?
             (have_min && have_max) ? (double) (num_groups + 1) :
                                      (double) num_groups :
             (double) num_blocks;

  /*
    TODO: If there is no WHERE clause and no other expressions, there should be
    no CPU cost. We leave it here to make this cost comparable to that of index
    scan as computed in SQL_SELECT::test_quick_select().
  */
  cpu_cost= (double) num_groups / TIME_FOR_COMPARE;

7668
  *read_cost= io_cost + cpu_cost;
7669
  *records= num_groups;
7670 7671

  DBUG_PRINT("info",
7672 7673
             ("table rows=%u, keys/block=%u, keys/group=%u, result rows=%u, blocks=%u",
              table_records, keys_per_block, keys_per_group, *records,
7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706
              num_blocks));
  DBUG_VOID_RETURN;
}


/*
  Construct a new quick select object for queries with group by with min/max.

  SYNOPSIS
    TRP_GROUP_MIN_MAX::make_quick()
    param              Parameter from test_quick_select
    retrieve_full_rows ignored
    parent_alloc       Memory pool to use, if any.

  NOTES
    Make_quick ignores the retrieve_full_rows parameter because
    QUICK_GROUP_MIN_MAX_SELECT always performs 'index only' scans.
    The other parameter are ignored as well because all necessary
    data to create the QUICK object is computed at this TRP creation
    time.

  RETURN
    New QUICK_GROUP_MIN_MAX_SELECT object if successfully created,
    NULL o/w.
*/

QUICK_SELECT_I *
TRP_GROUP_MIN_MAX::make_quick(PARAM *param, bool retrieve_full_rows,
                              MEM_ROOT *parent_alloc)
{
  QUICK_GROUP_MIN_MAX_SELECT *quick;
  DBUG_ENTER("TRP_GROUP_MIN_MAX::make_quick");

7707 7708 7709 7710 7711
  quick= new QUICK_GROUP_MIN_MAX_SELECT(param->table,
                                        param->thd->lex->select_lex.join,
                                        have_min, have_max, min_max_arg_part,
                                        group_prefix_len, used_key_parts,
                                        index_info, index, read_cost, records,
unknown's avatar
unknown committed
7712 7713
                                        key_infix_len, key_infix,
                                        parent_alloc);
7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729
  if (!quick)
    DBUG_RETURN(NULL);

  if (quick->init())
  {
    delete quick;
    DBUG_RETURN(NULL);
  }

  if (range_tree)
  {
    DBUG_ASSERT(quick_prefix_records > 0);
    if (quick_prefix_records == HA_POS_ERROR)
      quick->quick_prefix_select= NULL; /* Can't construct a quick select. */
    else
      /* Make a QUICK_RANGE_SELECT to be used for group prefix retrieval. */
7730 7731
      quick->quick_prefix_select= get_quick_select(param, param_idx,
                                                   index_tree,
7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753
                                                   &quick->alloc);

    /*
      Extract the SEL_ARG subtree that contains only ranges for the MIN/MAX
      attribute, and create an array of QUICK_RANGES to be used by the
      new quick select.
    */
    if (min_max_arg_part)
    {
      SEL_ARG *min_max_range= index_tree;
      while (min_max_range) /* Find the tree for the MIN/MAX key part. */
      {
        if (min_max_range->field->eq(min_max_arg_part->field))
          break;
        min_max_range= min_max_range->next_key_part;
      }
      /* Scroll to the leftmost interval for the MIN/MAX argument. */
      while (min_max_range && min_max_range->prev)
        min_max_range= min_max_range->prev;
      /* Create an array of QUICK_RANGEs for the MIN/MAX argument. */
      while (min_max_range)
      {
7754
        if (quick->add_range(min_max_range))
7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796
        {
          delete quick;
          quick= NULL;
          DBUG_RETURN(NULL);
        }
        min_max_range= min_max_range->next;
      }
    }
  }
  else
    quick->quick_prefix_select= NULL;

  quick->update_key_stat();

  DBUG_RETURN(quick);
}


/*
  Construct new quick select for group queries with min/max.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::QUICK_GROUP_MIN_MAX_SELECT()
    table             The table being accessed
    join              Descriptor of the current query
    have_min          TRUE if the query selects a MIN function
    have_max          TRUE if the query selects a MAX function
    min_max_arg_part  The only argument field of all MIN/MAX functions
    group_prefix_len  Length of all key parts in the group prefix
    prefix_key_parts  All key parts in the group prefix
    index_info        The index chosen for data access
    use_index         The id of index_info
    read_cost         Cost of this access method
    records           Number of records returned
    key_infix_len     Length of the key infix appended to the group prefix
    key_infix         Infix of constants from equality predicates
    parent_alloc      Memory pool for this and quick_prefix_select data

  RETURN
    None
*/

unknown's avatar
unknown committed
7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809
QUICK_GROUP_MIN_MAX_SELECT::
QUICK_GROUP_MIN_MAX_SELECT(TABLE *table, JOIN *join_arg, bool have_min_arg,
                           bool have_max_arg,
                           KEY_PART_INFO *min_max_arg_part_arg,
                           uint group_prefix_len_arg,
                           uint used_key_parts_arg, KEY *index_info_arg,
                           uint use_index, double read_cost_arg,
                           ha_rows records_arg, uint key_infix_len_arg,
                           byte *key_infix_arg, MEM_ROOT *parent_alloc)
  :join(join_arg), index_info(index_info_arg),
   group_prefix_len(group_prefix_len_arg), have_min(have_min_arg),
   have_max(have_max_arg), seen_first_key(FALSE),
   min_max_arg_part(min_max_arg_part_arg), key_infix(key_infix_arg),
7810 7811
   key_infix_len(key_infix_len_arg), min_functions_it(NULL),
   max_functions_it(NULL)
7812 7813 7814 7815 7816 7817
{
  head=       table;
  file=       head->file;
  index=      use_index;
  record=     head->record[0];
  tmp_record= head->record[1];
7818 7819 7820
  read_time= read_cost_arg;
  records= records_arg;
  used_key_parts= used_key_parts_arg;
7821 7822 7823
  real_prefix_len= group_prefix_len + key_infix_len;
  group_prefix= NULL;
  min_max_arg_len= min_max_arg_part ? min_max_arg_part->store_length : 0;
unknown's avatar
unknown committed
7824 7825 7826 7827 7828 7829

  /*
    We can't have parent_alloc set as the init function can't handle this case
    yet.
  */
  DBUG_ASSERT(!parent_alloc);
7830 7831 7832
  if (!parent_alloc)
  {
    init_sql_alloc(&alloc, join->thd->variables.range_alloc_block_size, 0);
unknown's avatar
unknown committed
7833
    join->thd->mem_root= &alloc;
7834 7835
  }
  else
7836
    bzero(&alloc, sizeof(MEM_ROOT));            // ensure that it's not used
7837 7838 7839 7840 7841 7842 7843 7844 7845
}


/*
  Do post-constructor initialization.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::init()
  
7846 7847 7848 7849 7850 7851
  DESCRIPTION
    The method performs initialization that cannot be done in the constructor
    such as memory allocations that may fail. It allocates memory for the
    group prefix and inifix buffers, and for the lists of MIN/MAX item to be
    updated during execution.

7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889
  RETURN
    0      OK
    other  Error code
*/

int QUICK_GROUP_MIN_MAX_SELECT::init()
{
  if (group_prefix) /* Already initialized. */
    return 0;

  if (!(last_prefix= (byte*) alloc_root(&alloc, group_prefix_len)))
      return 1;
  /*
    We may use group_prefix to store keys with all select fields, so allocate
    enough space for it.
  */
  if (!(group_prefix= (byte*) alloc_root(&alloc,
                                         real_prefix_len + min_max_arg_len)))
    return 1;

  if (key_infix_len > 0)
  {
    /*
      The memory location pointed to by key_infix will be deleted soon, so
      allocate a new buffer and copy the key_infix into it.
    */
    byte *tmp_key_infix= (byte*) alloc_root(&alloc, key_infix_len);
    if (!tmp_key_infix)
      return 1;
    memcpy(tmp_key_infix, this->key_infix, key_infix_len);
    this->key_infix= tmp_key_infix;
  }

  if (min_max_arg_part)
  {
    if(my_init_dynamic_array(&min_max_ranges, sizeof(QUICK_RANGE*), 16, 16))
      return 1;

7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903
    if (have_min)
    {
      if(!(min_functions= new List<Item_sum>))
        return 1;
    }
    else
      min_functions= NULL;
    if (have_max)
    {
      if(!(max_functions= new List<Item_sum>))
        return 1;
    }
    else
      max_functions= NULL;
7904

7905 7906 7907
    Item_sum *min_max_item;
    Item_sum **func_ptr= join->sum_funcs;
    while ((min_max_item= *(func_ptr++)))
7908
    {
7909 7910 7911 7912
      if (have_min && (min_max_item->sum_func() == Item_sum::MIN_FUNC))
        min_functions->push_back(min_max_item);
      else if (have_max && (min_max_item->sum_func() == Item_sum::MAX_FUNC))
        max_functions->push_back(min_max_item);
7913 7914
    }

7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925
    if (have_min)
    {
      if (!(min_functions_it= new List_iterator<Item_sum>(*min_functions)))
        return 1;
    }

    if (have_max)
    {
      if (!(max_functions_it= new List_iterator<Item_sum>(*max_functions)))
        return 1;
    }
7926
  }
unknown's avatar
unknown committed
7927 7928
  else
    min_max_ranges.elements= 0;
7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941

  return 0;
}


QUICK_GROUP_MIN_MAX_SELECT::~QUICK_GROUP_MIN_MAX_SELECT()
{
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::~QUICK_GROUP_MIN_MAX_SELECT");
  if (file->inited != handler::NONE) 
    file->ha_index_end();
  if (min_max_arg_part)
    delete_dynamic(&min_max_ranges);
  free_root(&alloc,MYF(0));
7942 7943
  delete min_functions_it;
  delete max_functions_it;
7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962
  delete quick_prefix_select;
  DBUG_VOID_RETURN; 
}


/*
  Eventually create and add a new quick range object.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::add_range()
    sel_range  Range object from which a 

  NOTES
    Construct a new QUICK_RANGE object from a SEL_ARG object, and
    add it to the array min_max_ranges. If sel_arg is an infinite
    range, e.g. (x < 5 or x > 4), then skip it and do not construct
    a quick range.

  RETURN
7963 7964
    FALSE on success
    TRUE  otherwise
7965 7966 7967 7968 7969 7970 7971 7972 7973
*/

bool QUICK_GROUP_MIN_MAX_SELECT::add_range(SEL_ARG *sel_range)
{
  QUICK_RANGE *range;
  uint range_flag= sel_range->min_flag | sel_range->max_flag;

  /* Skip (-inf,+inf) ranges, e.g. (x < 5 or x > 4). */
  if((range_flag & NO_MIN_RANGE) && (range_flag & NO_MAX_RANGE))
7974
    return FALSE;
7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989

  if (!(sel_range->min_flag & NO_MIN_RANGE) &&
      !(sel_range->max_flag & NO_MAX_RANGE))
  {
    if (sel_range->maybe_null &&
        sel_range->min_value[0] && sel_range->max_value[0])
      range_flag|= NULL_RANGE; /* IS NULL condition */
    else if (memcmp(sel_range->min_value, sel_range->max_value,
                    min_max_arg_len) == 0)
      range_flag|= EQ_RANGE;  /* equality condition */
  }
  range= new QUICK_RANGE(sel_range->min_value, min_max_arg_len,
                         sel_range->max_value, min_max_arg_len,
                         range_flag);
  if (!range)
7990
    return TRUE;
7991
  if (insert_dynamic(&min_max_ranges, (gptr)&range))
7992 7993
    return TRUE;
  return FALSE;
7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022
}


/*
  Determine the total number and length of the keys that will be used for
  index lookup.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::update_key_stat()

  DESCRIPTION
    The total length of the keys used for index lookup depends on whether
    there are any predicates referencing the min/max argument, and/or if
    the min/max argument field can be NULL.
    This function does an optimistic analysis whether the search key might
    be extended by a constant for the min/max keypart. It is 'optimistic'
    because during actual execution it may happen that a particular range
    is skipped, and then a shorter key will be used. However this is data
    dependent and can't be easily estimated here.

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::update_key_stat()
{
  max_used_key_length= real_prefix_len;
  if (min_max_ranges.elements > 0)
  {
8023
    QUICK_RANGE *cur_range;
8024 8025 8026 8027 8028 8029 8030
    if (have_min)
    { /* Check if the right-most range has a lower boundary. */
      get_dynamic(&min_max_ranges, (gptr)&cur_range,
                  min_max_ranges.elements - 1);
      if (!(cur_range->flag & NO_MIN_RANGE))
      {
        max_used_key_length+= min_max_arg_len;
8031
        used_key_parts++;
8032 8033 8034 8035 8036 8037 8038 8039 8040
        return;
      }
    }
    if (have_max)
    { /* Check if the left-most range has an upper boundary. */
      get_dynamic(&min_max_ranges, (gptr)&cur_range, 0);
      if (!(cur_range->flag & NO_MAX_RANGE))
      {
        max_used_key_length+= min_max_arg_len;
8041
        used_key_parts++;
8042 8043 8044 8045
        return;
      }
    }
  }
8046 8047
  else if (have_min && min_max_arg_part &&
           min_max_arg_part->field->real_maybe_null())
8048
  {
8049 8050 8051 8052 8053 8054 8055 8056
    /*
      If a MIN/MAX argument value is NULL, we can quickly determine
      that we're in the beginning of the next group, because NULLs
      are always < any other value. This allows us to quickly
      determine the end of the current group and jump to the next
      group (see next_min()) and thus effectively increases the
      usable key length.
    */
8057
    max_used_key_length+= min_max_arg_len;
8058
    used_key_parts++;
8059 8060 8061 8062 8063 8064 8065 8066 8067 8068
  }
}


/*
  Initialize a quick group min/max select for key retrieval.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::reset()

8069 8070 8071 8072
  DESCRIPTION
    Initialize the index chosen for access and find and store the prefix
    of the last group. The method is expensive since it performs disk access.

8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085
  RETURN
    0      OK
    other  Error code
*/

int QUICK_GROUP_MIN_MAX_SELECT::reset(void)
{
  int result;
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::reset");

  file->extra(HA_EXTRA_KEYREAD); /* We need only the key attributes */
  result= file->ha_index_init(index);
  result= file->index_last(record);
unknown's avatar
unknown committed
8086 8087
  if (result == HA_ERR_END_OF_FILE)
    DBUG_RETURN(0);
8088 8089
  if (result)
    DBUG_RETURN(result);
unknown's avatar
unknown committed
8090 8091
  if (quick_prefix_select && quick_prefix_select->reset())
    DBUG_RETURN(1);
8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130
  /* Save the prefix of the last group. */
  key_copy(last_prefix, record, index_info, group_prefix_len);

  DBUG_RETURN(0);
}



/* 
  Get the next key containing the MIN and/or MAX key for the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::get_next()

  DESCRIPTION
    The method finds the next subsequent group of records that satisfies the
    query conditions and finds the keys that contain the MIN/MAX values for
    the key part referenced by the MIN/MAX function(s). Once a group and its
    MIN/MAX values are found, store these values in the Item_sum objects for
    the MIN/MAX functions. The rest of the values in the result row are stored
    in the Item_field::result_field of each select field. If the query does
    not contain MIN and/or MAX functions, then the function only finds the
    group prefix, which is a query answer itself.

  NOTES
    If both MIN and MAX are computed, then we use the fact that if there is
    no MIN key, there can't be a MAX key as well, so we can skip looking
    for a MAX key in this case.

  RETURN
    0                  on success
    HA_ERR_END_OF_FILE if returned all keys
    other              if some error occurred
*/

int QUICK_GROUP_MIN_MAX_SELECT::get_next()
{
  int min_res= 0;
  int max_res= 0;
unknown's avatar
unknown committed
8131 8132 8133 8134 8135 8136 8137
#ifdef HPUX11
  /*
    volatile is required by a bug in the HP compiler due to which the
    last test of result fails.
  */
  volatile int result;
#else
8138
  int result;
unknown's avatar
unknown committed
8139
#endif
8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179
  int is_last_prefix;

  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::get_next");

  /*
    Loop until a group is found that satisfies all query conditions or the last
    group is reached.
  */
  do
  {
    result= next_prefix();
    /*
      Check if this is the last group prefix. Notice that at this point
      this->record contains the current prefix in record format.
    */
    is_last_prefix= key_cmp(index_info->key_part, last_prefix,
                            group_prefix_len);
    DBUG_ASSERT(is_last_prefix <= 0);
    if (result == HA_ERR_KEY_NOT_FOUND)
      continue;
    else if (result)
      break;

    if (have_min)
    {
      min_res= next_min();
      if (min_res == 0)
        update_min_result();
    }
    /* If there is no MIN in the group, there is no MAX either. */
    if ((have_max && !have_min) ||
        (have_max && have_min && (min_res == 0)))
    {
      max_res= next_max();
      if (max_res == 0)
        update_max_result();
      /* If a MIN was found, a MAX must have been found as well. */
      DBUG_ASSERT((have_max && !have_min) ||
                  (have_max && have_min && (max_res == 0)));
    }
8180 8181 8182 8183 8184 8185 8186 8187 8188
    /*
      If this is a just a GROUP BY or DISTINCT without MIN or MAX and there
      are equality predicates for the key parts after the group, find the
      first sub-group with the extended prefix.
    */
    if (!have_min && !have_max && key_infix_len > 0)
      result= file->index_read(record, group_prefix, real_prefix_len,
                               HA_READ_KEY_EXACT);

8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214
    result= have_min ? min_res : have_max ? max_res : result;
  }
  while (result == HA_ERR_KEY_NOT_FOUND && is_last_prefix != 0);

  if (result == 0)
    /*
      Partially mimic the behavior of end_select_send. Copy the
      field data from Item_field::field into Item_field::result_field
      of each non-aggregated field (the group fields, and optionally
      other fields in non-ANSI SQL mode).
    */
    copy_fields(&join->tmp_table_param);
  else if (result == HA_ERR_KEY_NOT_FOUND)
    result= HA_ERR_END_OF_FILE;

  DBUG_RETURN(result);
}


/*
  Retrieve the minimal key in the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_min()

  DESCRIPTION
8215 8216
    Find the minimal key within this group such that the key satisfies the query
    conditions and NULL semantics. The found key is loaded into this->record.
8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242

  IMPLEMENTATION
    Depending on the values of min_max_ranges.elements, key_infix_len, and
    whether there is a  NULL in the MIN field, this function may directly
    return without any data access. In this case we use the key loaded into
    this->record by the call to this->next_prefix() just before this call.

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if no MIN key was found that fulfills all conditions.
    other                if some error occurred
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_min()
{
  int result= 0;
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_min");

  /* Find the MIN key using the eventually extended group prefix. */
  if (min_max_ranges.elements > 0)
  {
    if ((result= next_min_in_range()))
      DBUG_RETURN(result);
  }
  else
  {
unknown's avatar
unknown committed
8243
    /* Apply the constant equality conditions to the non-group select fields */
8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276
    if (key_infix_len > 0)
    {
      if ((result= file->index_read(record, group_prefix, real_prefix_len,
                                    HA_READ_KEY_EXACT)))
        DBUG_RETURN(result);
    }

    /*
      If the min/max argument field is NULL, skip subsequent rows in the same
      group with NULL in it. Notice that:
      - if the first row in a group doesn't have a NULL in the field, no row
      in the same group has (because NULL < any other value),
      - min_max_arg_part->field->ptr points to some place in 'record'.
    */
    if (min_max_arg_part && min_max_arg_part->field->is_null())
    {
      /* Find the first subsequent record without NULL in the MIN/MAX field. */
      key_copy(tmp_record, record, index_info, 0);
      result= file->index_read(record, tmp_record,
                               real_prefix_len + min_max_arg_len,
                               HA_READ_AFTER_KEY);
      /*
        Check if the new record belongs to the current group by comparing its
        prefix with the group's prefix. If it is from the next group, then the
        whole group has NULLs in the MIN/MAX field, so use the first record in
        the group as a result.
        TODO:
        It is possible to reuse this new record as the result candidate for the
        next call to next_min(), and to save one lookup in the next call. For
        this add a new member 'this->next_group_prefix'.
      */
      if (!result)
      {
unknown's avatar
unknown committed
8277
        if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
8278
          key_restore(record, tmp_record, index_info, 0);
unknown's avatar
unknown committed
8279 8280
      }
      else if (result == HA_ERR_KEY_NOT_FOUND) 
8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299
        result= 0; /* There is a result in any case. */
    }
  }

  /*
    If the MIN attribute is non-nullable, this->record already contains the
    MIN key in the group, so just return.
  */
  DBUG_RETURN(result);
}


/* 
  Retrieve the maximal key in the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_max()

  DESCRIPTION
8300
    Lookup the maximal key of the group, and store it into this->record.
8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if no MAX key was found that fulfills all conditions.
    other                if some error occurred
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_max()
{
  int result;

  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_max");

  /* Get the last key in the (possibly extended) group. */
  if (min_max_ranges.elements > 0)
    result= next_max_in_range();
  else
    result= file->index_read(record, group_prefix, real_prefix_len,
                             HA_READ_PREFIX_LAST);
  DBUG_RETURN(result);
}


/*
  Determine the prefix of the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_prefix()

  DESCRIPTION
    Determine the prefix of the next group that satisfies the query conditions.
    If there is a range condition referencing the group attributes, use a
    QUICK_RANGE_SELECT object to retrieve the *first* key that satisfies the
    condition. If there is a key infix of constants, append this infix
    immediately after the group attributes. The possibly extended prefix is
    stored in this->group_prefix. The first key of the found group is stored in
    this->record, on which relies this->next_min().

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if there is no key with the formed prefix
    HA_ERR_END_OF_FILE   if there are no more keys
    other                if some error occurred
*/
int QUICK_GROUP_MIN_MAX_SELECT::next_prefix()
{
  int result;
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_prefix");

  if (quick_prefix_select)
  {
    byte *cur_prefix= seen_first_key ? group_prefix : NULL;
    if ((result= quick_prefix_select->get_next_prefix(group_prefix_len,
                                                      cur_prefix)))
      DBUG_RETURN(result);
    seen_first_key= TRUE;
  }
  else
  {
    if (!seen_first_key)
    {
      result= file->index_first(record);
      if (result)
        DBUG_RETURN(result);
      seen_first_key= TRUE;
    }
    else
    {
      /* Load the first key in this group into record. */
      result= file->index_read(record, group_prefix, group_prefix_len,
                               HA_READ_AFTER_KEY);
      if (result)
        DBUG_RETURN(result);
    }
  }

  /* Save the prefix of this group for subsequent calls. */
  key_copy(group_prefix, record, index_info, group_prefix_len);
  /* Append key_infix to group_prefix. */
  if (key_infix_len > 0)
    memcpy(group_prefix + group_prefix_len,
           key_infix, key_infix_len);

  DBUG_RETURN(0);
}


/*
  Find the minimal key in a group that satisfies some range conditions for the
  min/max argument field.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_min_in_range()

  DESCRIPTION
    Given the sequence of ranges min_max_ranges, find the minimal key that is
    in the left-most possible range. If there is no such key, then the current
    group does not have a MIN key that satisfies the WHERE clause. If a key is
    found, its value is stored in this->record.

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if there is no key with the given prefix in any of
                         the ranges
    other                if some error
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_min_in_range()
{
  ha_rkey_function find_flag;
  uint search_prefix_len;
  QUICK_RANGE *cur_range;
  bool found_null= FALSE;
  int result= HA_ERR_KEY_NOT_FOUND;

  DBUG_ASSERT(min_max_ranges.elements > 0);

  for (uint range_idx= 0; range_idx < min_max_ranges.elements; range_idx++)
  { /* Search from the left-most range to the right. */
    get_dynamic(&min_max_ranges, (gptr)&cur_range, range_idx);

    /*
      If the current value for the min/max argument is bigger than the right
      boundary of cur_range, there is no need to check this range.
    */
    if (range_idx != 0 && !(cur_range->flag & NO_MAX_RANGE) &&
8427
        (key_cmp(min_max_arg_part, (const byte*) cur_range->max_key,
8428
                 min_max_arg_len) == 1))
8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452
      continue;

    if (cur_range->flag & NO_MIN_RANGE)
    {
      find_flag= HA_READ_KEY_EXACT;
      search_prefix_len= real_prefix_len;
    }
    else
    {
      /* Extend the search key with the lower boundary for this range. */
      memcpy(group_prefix + real_prefix_len, cur_range->min_key,
             cur_range->min_length);
      search_prefix_len= real_prefix_len + min_max_arg_len;
      find_flag= (cur_range->flag & (EQ_RANGE | NULL_RANGE)) ?
                 HA_READ_KEY_EXACT : (cur_range->flag & NEAR_MIN) ?
                 HA_READ_AFTER_KEY : HA_READ_KEY_OR_NEXT;
    }

    result= file->index_read(record, group_prefix, search_prefix_len,
                             find_flag);
    if ((result == HA_ERR_KEY_NOT_FOUND) &&
        (cur_range->flag & (EQ_RANGE | NULL_RANGE)))
        continue; /* Check the next range. */
    else if (result)
8453 8454 8455 8456 8457 8458
    {
      /*
        In all other cases (HA_ERR_*, HA_READ_KEY_EXACT with NO_MIN_RANGE,
        HA_READ_AFTER_KEY, HA_READ_KEY_OR_NEXT) if the lookup failed for this
        range, it can't succeed for any other subsequent range.
      */
8459
      break;
8460
    }
8461 8462 8463 8464 8465 8466

    /* A key was found. */
    if (cur_range->flag & EQ_RANGE)
      break; /* No need to perform the checks below for equal keys. */

    if (cur_range->flag & NULL_RANGE)
8467 8468 8469 8470 8471 8472
    {
      /*
        Remember this key, and continue looking for a non-NULL key that
        satisfies some other condition.
      */
      memcpy(tmp_record, record, head->s->rec_buff_length);
8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512
      found_null= TRUE;
      continue;
    }

    /* Check if record belongs to the current group. */
    if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
    {
      result = HA_ERR_KEY_NOT_FOUND;
      continue;
    }

    /* If there is an upper limit, check if the found key is in the range. */
    if ( !(cur_range->flag & NO_MAX_RANGE) )
    {
      /* Compose the MAX key for the range. */
      byte *max_key= (byte*) my_alloca(real_prefix_len + min_max_arg_len);
      memcpy(max_key, group_prefix, real_prefix_len);
      memcpy(max_key + real_prefix_len, cur_range->max_key,
             cur_range->max_length);
      /* Compare the found key with max_key. */
      int cmp_res= key_cmp(index_info->key_part, max_key,
                           real_prefix_len + min_max_arg_len);
      if (!((cur_range->flag & NEAR_MAX) && (cmp_res == -1) ||
            (cmp_res <= 0)))
      {
        result = HA_ERR_KEY_NOT_FOUND;
        continue;
      }
    }
    /* If we got to this point, the current key qualifies as MIN. */
    DBUG_ASSERT(result == 0);
    break;
  }
  /*
    If there was a key with NULL in the MIN/MAX field, and there was no other
    key without NULL from the same group that satisfies some other condition,
    then use the key with the NULL.
  */
  if (found_null && result)
  {
8513
    memcpy(record, tmp_record, head->s->rec_buff_length);
8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558
    result= 0;
  }
  return result;
}


/*
  Find the maximal key in a group that satisfies some range conditions for the
  min/max argument field.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_max_in_range()

  DESCRIPTION
    Given the sequence of ranges min_max_ranges, find the maximal key that is
    in the right-most possible range. If there is no such key, then the current
    group does not have a MAX key that satisfies the WHERE clause. If a key is
    found, its value is stored in this->record.

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if there is no key with the given prefix in any of
                         the ranges
    other                if some error
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_max_in_range()
{
  ha_rkey_function find_flag;
  uint search_prefix_len;
  QUICK_RANGE *cur_range;
  int result;

  DBUG_ASSERT(min_max_ranges.elements > 0);

  for (uint range_idx= min_max_ranges.elements; range_idx > 0; range_idx--)
  { /* Search from the right-most range to the left. */
    get_dynamic(&min_max_ranges, (gptr)&cur_range, range_idx - 1);

    /*
      If the current value for the min/max argument is smaller than the left
      boundary of cur_range, there is no need to check this range.
    */
    if (range_idx != min_max_ranges.elements &&
        !(cur_range->flag & NO_MIN_RANGE) &&
8559
        (key_cmp(min_max_arg_part, (const byte*) cur_range->min_key,
8560
                 min_max_arg_len) == -1))
8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688
      continue;

    if (cur_range->flag & NO_MAX_RANGE)
    {
      find_flag= HA_READ_PREFIX_LAST;
      search_prefix_len= real_prefix_len;
    }
    else
    {
      /* Extend the search key with the upper boundary for this range. */
      memcpy(group_prefix + real_prefix_len, cur_range->max_key,
             cur_range->max_length);
      search_prefix_len= real_prefix_len + min_max_arg_len;
      find_flag= (cur_range->flag & EQ_RANGE) ?
                 HA_READ_KEY_EXACT : (cur_range->flag & NEAR_MAX) ?
                 HA_READ_BEFORE_KEY : HA_READ_PREFIX_LAST_OR_PREV;
    }

    result= file->index_read(record, group_prefix, search_prefix_len,
                             find_flag);

    if ((result == HA_ERR_KEY_NOT_FOUND) && (cur_range->flag & EQ_RANGE))
      continue; /* Check the next range. */
    else if (result)
      /*
        In no key was found with this upper bound, there certainly are no keys
        in the ranges to the left.
      */
      return result;

    /* A key was found. */
    if (cur_range->flag & EQ_RANGE)
      return result; /* No need to perform the checks below for equal keys. */

    /* Check if record belongs to the current group. */
    if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
    {
      result = HA_ERR_KEY_NOT_FOUND;
      continue;
    }

    /* If there is a lower limit, check if the found key is in the range. */
    if ( !(cur_range->flag & NO_MIN_RANGE) )
    {
      /* Compose the MIN key for the range. */
      byte *min_key= (byte*) my_alloca(real_prefix_len + min_max_arg_len);
      memcpy(min_key, group_prefix, real_prefix_len);
      memcpy(min_key + real_prefix_len, cur_range->min_key,
             cur_range->min_length);
      /* Compare the found key with min_key. */
      int cmp_res= key_cmp(index_info->key_part, min_key,
                           real_prefix_len + min_max_arg_len);
      if (!((cur_range->flag & NEAR_MIN) && (cmp_res == 1) ||
            (cmp_res >= 0)))
        continue;
    }
    /* If we got to this point, the current key qualifies as MAX. */
    return result;
  }
  return HA_ERR_KEY_NOT_FOUND;
}


/*
  Update all MIN function results with the newly found value.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::update_min_result()

  DESCRIPTION
    The method iterates through all MIN functions and updates the result value
    of each function by calling Item_sum::reset(), which in turn picks the new
    result value from this->head->record[0], previously updated by
    next_min(). The updated value is stored in a member variable of each of the
    Item_sum objects, depending on the value type.

  IMPLEMENTATION
    The update must be done separately for MIN and MAX, immediately after
    next_min() was called and before next_max() is called, because both MIN and
    MAX take their result value from the same buffer this->head->record[0]
    (i.e.  this->record).

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::update_min_result()
{
  Item_sum *min_func;

  min_functions_it->rewind();
  while ((min_func= (*min_functions_it)++))
    min_func->reset();
}


/*
  Update all MAX function results with the newly found value.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::update_max_result()

  DESCRIPTION
    The method iterates through all MAX functions and updates the result value
    of each function by calling Item_sum::reset(), which in turn picks the new
    result value from this->head->record[0], previously updated by
    next_max(). The updated value is stored in a member variable of each of the
    Item_sum objects, depending on the value type.

  IMPLEMENTATION
    The update must be done separately for MIN and MAX, immediately after
    next_max() was called, because both MIN and MAX take their result value
    from the same buffer this->head->record[0] (i.e.  this->record).

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::update_max_result()
{
  Item_sum *max_func;

  max_functions_it->rewind();
  while ((max_func= (*max_functions_it)++))
    max_func->reset();
}


8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703
/*
  Append comma-separated list of keys this quick select uses to key_names;
  append comma-separated list of corresponding used lengths to used_lengths.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::add_keys_and_lengths()
    key_names    [out] Names of used indexes
    used_lengths [out] Corresponding lengths of the index names

  DESCRIPTION
    This method is used by select_describe to extract the names of the
    indexes used by a quick select.

*/

8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714
void QUICK_GROUP_MIN_MAX_SELECT::add_keys_and_lengths(String *key_names,
                                                      String *used_lengths)
{
  char buf[64];
  uint length;
  key_names->append(index_info->name);
  length= longlong2str(max_used_key_length, buf, 10) - buf;
  used_lengths->append(buf, length);
}


8715
#ifndef DBUG_OFF
8716

8717 8718 8719 8720 8721 8722 8723 8724 8725
static void print_sel_tree(PARAM *param, SEL_TREE *tree, key_map *tree_map,
                           const char *msg)
{
  SEL_ARG **key,**end;
  int idx;
  char buff[1024];
  DBUG_ENTER("print_sel_tree");
  if (! _db_on_)
    DBUG_VOID_RETURN;
8726

8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742
  String tmp(buff,sizeof(buff),&my_charset_bin);
  tmp.length(0);
  for (idx= 0,key=tree->keys, end=key+param->keys ;
       key != end ;
       key++,idx++)
  {
    if (tree_map->is_set(idx))
    {
      uint keynr= param->real_keynr[idx];
      if (tmp.length())
        tmp.append(',');
      tmp.append(param->table->key_info[keynr].name);
    }
  }
  if (!tmp.length())
    tmp.append("(empty)");
8743

8744
  DBUG_PRINT("info", ("SEL_TREE %p (%s) scans:%s", tree, msg, tmp.ptr()));
8745

8746 8747
  DBUG_VOID_RETURN;
}
8748

8749 8750 8751 8752

static void print_ror_scans_arr(TABLE *table, const char *msg,
                                struct st_ror_scan_info **start,
                                struct st_ror_scan_info **end)
8753
{
8754 8755 8756 8757 8758 8759 8760
  DBUG_ENTER("print_ror_scans");
  if (! _db_on_)
    DBUG_VOID_RETURN;

  char buff[1024];
  String tmp(buff,sizeof(buff),&my_charset_bin);
  tmp.length(0);
unknown's avatar
unknown committed
8761
  for (;start != end; start++)
8762
  {
8763 8764 8765
    if (tmp.length())
      tmp.append(',');
    tmp.append(table->key_info[(*start)->keynr].name);
8766
  }
8767 8768 8769 8770
  if (!tmp.length())
    tmp.append("(empty)");
  DBUG_PRINT("info", ("ROR key scans (%s): %s", msg, tmp.ptr()));
  DBUG_VOID_RETURN;
8771 8772 8773
}


unknown's avatar
unknown committed
8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784
/*****************************************************************************
** Print a quick range for debugging
** TODO:
** This should be changed to use a String to store each row instead
** of locking the DEBUG stream !
*****************************************************************************/

static void
print_key(KEY_PART *key_part,const char *key,uint used_length)
{
  char buff[1024];
unknown's avatar
unknown committed
8785
  const char *key_end= key+used_length;
unknown's avatar
unknown committed
8786
  String tmp(buff,sizeof(buff),&my_charset_bin);
unknown's avatar
unknown committed
8787
  uint store_length;
unknown's avatar
unknown committed
8788

unknown's avatar
unknown committed
8789
  for (; key < key_end; key+=store_length, key_part++)
unknown's avatar
unknown committed
8790
  {
unknown's avatar
unknown committed
8791 8792 8793
    Field *field=      key_part->field;
    store_length= key_part->store_length;

unknown's avatar
unknown committed
8794 8795
    if (field->real_maybe_null())
    {
unknown's avatar
unknown committed
8796
      if (*key)
unknown's avatar
unknown committed
8797 8798 8799 8800
      {
	fwrite("NULL",sizeof(char),4,DBUG_FILE);
	continue;
      }
unknown's avatar
unknown committed
8801 8802
      key++;					// Skip null byte
      store_length--;
unknown's avatar
unknown committed
8803
    }
8804
    field->set_key_image((char*) key, key_part->length);
unknown's avatar
unknown committed
8805 8806 8807 8808
    if (field->type() == MYSQL_TYPE_BIT)
      (void) field->val_int_as_str(&tmp, 1);
    else
      field->val_str(&tmp);
unknown's avatar
unknown committed
8809
    fwrite(tmp.ptr(),sizeof(char),tmp.length(),DBUG_FILE);
unknown's avatar
unknown committed
8810 8811
    if (key+store_length < key_end)
      fputc('/',DBUG_FILE);
unknown's avatar
unknown committed
8812 8813 8814
  }
}

unknown's avatar
unknown committed
8815

8816
static void print_quick(QUICK_SELECT_I *quick, const key_map *needed_reg)
unknown's avatar
unknown committed
8817
{
8818
  char buf[MAX_KEY/8+1];
8819
  DBUG_ENTER("print_quick");
unknown's avatar
unknown committed
8820 8821
  if (! _db_on_ || !quick)
    DBUG_VOID_RETURN;
8822
  DBUG_LOCK_FILE;
unknown's avatar
unknown committed
8823

unknown's avatar
unknown committed
8824
  quick->dbug_dump(0, TRUE);
8825
  fprintf(DBUG_FILE,"other_keys: 0x%s:\n", needed_reg->print(buf));
unknown's avatar
unknown committed
8826

8827
  DBUG_UNLOCK_FILE;
unknown's avatar
unknown committed
8828 8829 8830
  DBUG_VOID_RETURN;
}

unknown's avatar
unknown committed
8831

8832
static void print_rowid(byte* val, int len)
unknown's avatar
unknown committed
8833
{
8834
  byte *pb;
unknown's avatar
unknown committed
8835
  DBUG_LOCK_FILE;
8836 8837 8838 8839 8840 8841 8842 8843 8844 8845
  fputc('\"', DBUG_FILE);
  for (pb= val; pb!= val + len; ++pb)
    fprintf(DBUG_FILE, "%c", *pb);
  fprintf(DBUG_FILE, "\", hex: ");

  for (pb= val; pb!= val + len; ++pb)
    fprintf(DBUG_FILE, "%x ", *pb);
  fputc('\n', DBUG_FILE);
  DBUG_UNLOCK_FILE;
}
8846

8847 8848 8849 8850
void QUICK_RANGE_SELECT::dbug_dump(int indent, bool verbose)
{
  fprintf(DBUG_FILE, "%*squick range select, key %s, length: %d\n",
	  indent, "", head->key_info[index].name, max_used_key_length);
unknown's avatar
unknown committed
8851

8852
  if (verbose)
unknown's avatar
unknown committed
8853
  {
8854 8855
    QUICK_RANGE *range;
    QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer;
unknown's avatar
unknown committed
8856
    QUICK_RANGE **last_range= pr + ranges.elements;
8857
    for (; pr!=last_range; ++pr)
unknown's avatar
unknown committed
8858
    {
8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869
      fprintf(DBUG_FILE, "%*s", indent + 2, "");
      range= *pr;
      if (!(range->flag & NO_MIN_RANGE))
      {
        print_key(key_parts,range->min_key,range->min_length);
        if (range->flag & NEAR_MIN)
	  fputs(" < ",DBUG_FILE);
        else
	  fputs(" <= ",DBUG_FILE);
      }
      fputs("X",DBUG_FILE);
unknown's avatar
unknown committed
8870

8871 8872 8873 8874 8875 8876 8877 8878 8879
      if (!(range->flag & NO_MAX_RANGE))
      {
        if (range->flag & NEAR_MAX)
	  fputs(" < ",DBUG_FILE);
        else
	  fputs(" <= ",DBUG_FILE);
        print_key(key_parts,range->max_key,range->max_length);
      }
      fputs("\n",DBUG_FILE);
unknown's avatar
unknown committed
8880 8881
    }
  }
8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893
}

void QUICK_INDEX_MERGE_SELECT::dbug_dump(int indent, bool verbose)
{
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  QUICK_RANGE_SELECT *quick;
  fprintf(DBUG_FILE, "%*squick index_merge select\n", indent, "");
  fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
  while ((quick= it++))
    quick->dbug_dump(indent+2, verbose);
  if (pk_quick_select)
  {
unknown's avatar
unknown committed
8894
    fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, "");
8895 8896 8897 8898 8899 8900 8901 8902 8903
    pk_quick_select->dbug_dump(indent+2, verbose);
  }
  fprintf(DBUG_FILE, "%*s}\n", indent, "");
}

void QUICK_ROR_INTERSECT_SELECT::dbug_dump(int indent, bool verbose)
{
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
8904
  fprintf(DBUG_FILE, "%*squick ROR-intersect select, %scovering\n",
8905 8906 8907
          indent, "", need_to_fetch_row? "":"non-");
  fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
  while ((quick= it++))
unknown's avatar
unknown committed
8908
    quick->dbug_dump(indent+2, verbose);
8909 8910
  if (cpk_quick)
  {
unknown's avatar
unknown committed
8911
    fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, "");
8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925
    cpk_quick->dbug_dump(indent+2, verbose);
  }
  fprintf(DBUG_FILE, "%*s}\n", indent, "");
}

void QUICK_ROR_UNION_SELECT::dbug_dump(int indent, bool verbose)
{
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  QUICK_SELECT_I *quick;
  fprintf(DBUG_FILE, "%*squick ROR-union select\n", indent, "");
  fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
  while ((quick= it++))
    quick->dbug_dump(indent+2, verbose);
  fprintf(DBUG_FILE, "%*s}\n", indent, "");
unknown's avatar
unknown committed
8926 8927
}

8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971

/*
  Print quick select information to DBUG_FILE.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::dbug_dump()
    indent  Indentation offset
    verbose If TRUE show more detailed output.

  DESCRIPTION
    Print the contents of this quick select to DBUG_FILE. The method also
    calls dbug_dump() for the used quick select if any.

  IMPLEMENTATION
    Caller is responsible for locking DBUG_FILE before this call and unlocking
    it afterwards.

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::dbug_dump(int indent, bool verbose)
{
  fprintf(DBUG_FILE,
          "%*squick_group_min_max_select: index %s (%d), length: %d\n",
	  indent, "", index_info->name, index, max_used_key_length);
  if (key_infix_len > 0)
  {
    fprintf(DBUG_FILE, "%*susing key_infix with length %d:\n",
            indent, "", key_infix_len);
  }
  if (quick_prefix_select)
  {
    fprintf(DBUG_FILE, "%*susing quick_range_select:\n", indent, "");
    quick_prefix_select->dbug_dump(indent + 2, verbose);
  }
  if (min_max_ranges.elements > 0)
  {
    fprintf(DBUG_FILE, "%*susing %d quick_ranges for MIN/MAX:\n",
            indent, "", min_max_ranges.elements);
  }
}


unknown's avatar
unknown committed
8972
#endif /* NOT_USED */
unknown's avatar
unknown committed
8973 8974

/*****************************************************************************
8975
** Instantiate templates
unknown's avatar
unknown committed
8976 8977
*****************************************************************************/

8978
#ifdef HAVE_EXPLICIT_TEMPLATE_INSTANTIATION
unknown's avatar
unknown committed
8979 8980 8981
template class List<QUICK_RANGE>;
template class List_iterator<QUICK_RANGE>;
#endif