pma.c 15.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
/* An in-memory Packed Memory Array dictionary.
   The keys and values are arrays of bytes, but are not necessarily kept in scan order.
   Only the pointers are kept.
 */

#include "pma-internal.h"
#include "key.h"
#include "memory.h"
#include "myassert.h"
#include "../include/ydb-constants.h"
#include <stdio.h>
#include <errno.h>

/* Only needed for testing. */
#include <string.h>


int pma_n_entries (PMA pma) {
    return pma->n_pairs_present;
}

int pma_index_limit (PMA pma) {
    return pma->N;
}
int pmanode_valid (PMA pma, int i) {
    assert(0<=i); assert(i<pma_index_limit(pma));
    return pma->pairs[i].key!=0;
}
bytevec pmanode_key (PMA pma, int i) {
    assert(0<=i); assert(i<pma_index_limit(pma));
    return pma->pairs[i].key;
}
ITEMLEN pmanode_keylen (PMA pma, int i) {
    assert(0<=i); assert(i<pma_index_limit(pma));
    return pma->pairs[i].keylen;
}
bytevec pmanode_val (PMA pma, int i) {
    assert(0<=i); assert(i<pma_index_limit(pma));
    return pma->pairs[i].val;
}
ITEMLEN pmanode_vallen (PMA pma, int i) {
    assert(0<=i); assert(i<pma_index_limit(pma));
    return pma->pairs[i].vallen;
}

/* Could pick the same one every time if we wanted. */
int pma_random_pick(PMA pma, bytevec *key, ITEMLEN *keylen, bytevec *val, ITEMLEN *vallen) {
#if 1
    int i;
    /* For now a simple implementation where we simply start at the beginning and look. */
    for (i=0; i<pma_index_limit(pma); i++) {
	if (pma->pairs[i].key) {
	    *key = pmanode_key(pma,i);
	    *keylen = pmanode_keylen(pma,i);
	    *val = pmanode_val(pma,i);
	    *vallen = pmanode_vallen(pma,i);
	    return 0;
	}
    }
    return DB_NOTFOUND;
#else
    /* Maybe we should pick a random item to remove in order to reduce the unbalancing. */
    int i;
    int l = pma_index_limit(pma);
    int r = random()%l;
    /* For now a simple implementation where we simply start at the beginning and look. */
    for (i=0; i<l; i++) {
	int ir=(i+r)%l;
	if (pma->pairs[ir].key) {
	    *key = pmanode_key(pma,ir);
	    *keylen = pmanode_keylen(pma,ir);
	    *val = pmanode_val(pma,ir);
	    *vallen = pmanode_vallen(pma,ir);
	    return 0;
	}
    }
    return DB_NOTFOUND;

#endif
}

static int pma_count_finds=0;
static int pma_count_divides=0;
static int pma_count_scans=0;
void pma_show_stats (void) {
    printf("%d finds, %d divides, %d scans\n", pma_count_finds, pma_count_divides, pma_count_scans);
}

// Return the smallest index such that no lower index contains a larger key.
// This will be in the range 0 (inclusive) to  pma_index_limit(pma) (inclusive).
// Thus the returned index may not be a valid index into the array if it is == pma_index_limit(pma)
// For example: if the array is empty, that means we return 0.
// For example: if the array is full of small keys, that means we return pma_index_limit(pma), which is off the end of teh array.
// For example: if the array is full of large keys, then we return 0.
int pmainternal_find (PMA pma, DBT *k, DB *db) {
    int lo=0, hi=pma_index_limit(pma);
    /* lo and hi are the minimum and maximum values (inclusive) that we could possibly return. */
    pma_count_finds++;
    while (lo<hi) {
	int mid;
	// Scan forward looking for a non-null value.
	for (mid=(lo+hi)/2; mid<hi; mid++) {
	    if (pma->pairs[mid].key!=0) {
		// Found one.
		DBT k2;
		int cmp = pma->compare_fun(db, k, fill_dbt(&k2, pma->pairs[mid].key, pma->pairs[mid].keylen));
		if (cmp==0) return mid;
		else if (cmp<0) {
		    /* key is smaller than the midpoint, so look in the low half. */
		    hi = (lo+hi)/2; /* recalculate the midpoint, since mid is no necessarily the midpoint now. */ 
		    pma_count_divides++;
		    goto next_range;
		} else {
		    /* key is larger than the midpoint.  So look in the high half. */
		    lo = mid+1; /* The smallest value we could want to return is lo. */
		    pma_count_divides++;
		    goto next_range;
		}
		/* Not reached */
	    }
	    pma_count_scans++;
	}
	/* If we got here, all from mid to hi were null, so adjust hi to the midpoint. */
	/* If the whole array is null, we'll end up returning index 0, which is good. */
	hi = (lo+hi)/2;
	pma_count_divides++;
    next_range: ; /* We have adjusted lo and hi, so look again. */ 
    }
    assert(0<=lo);
    assert(lo==hi);
    assert(hi <= pma_index_limit(pma));
    /* If lo points at something, the something should not be smaller than key. */
    if (lo>0 && lo < pma_index_limit(pma) && pma->pairs[lo].key) {
	//printf("lo=%d\n", lo);
	DBT k2;
	assert(0 >= pma->compare_fun(db, k, fill_dbt(&k2, pma->pairs[lo].key, pma->pairs[lo].keylen)));
    }
    return lo;
}

//int min (int i, int j) { if (i<j) return i; else return j; }
//int max (int i, int j) { if (i<j) return j; else return i; }
//double lg (int n) { return log((double)n)/log(2.0); }

int pmainternal_printpairs (struct pair *pairs, int N) {
    int count=0;
    int i;
    printf("{");
    for (i=0; i<N; i++) {
	if (i!=0) printf(" ");
	if (pairs[i].key) {
	    printf("%s", (char*)pairs[i].key);
	    count++;
	}
	else printf("_");
    }
    printf("}");
    return count;
}

void print_pma (PMA pma) {
    int count;
    printf("N=%d n_present=%d ", pma_index_limit(pma), pma->n_pairs_present);
    count=pmainternal_printpairs(pma->pairs, pma_index_limit(pma));
    printf("\n");
    assert(count==pma->n_pairs_present);
}

/* Smooth the data, and return the location of the null. */
int distribute_data (struct pair *destpairs, int   dcount,
		     struct pair *sourcepairs, int scount) {
    assert(scount<=dcount);
    if (scount==0) {
	return -1;
    }
    if (scount==1) {
	*destpairs=*sourcepairs;
	if (destpairs->key==0) return 0;
	else return -1;
    } else {
	int r1 = distribute_data(destpairs, dcount/2,
				 sourcepairs, scount/2);
	int r2 = distribute_data(destpairs  +dcount/2, dcount-dcount/2,
				 sourcepairs+scount/2, scount-scount/2);
	assert(r1==-1 || r2==-1);
	if (r1!=-1)      return r1;
	else if (r2!=-1) return r2+dcount/2;
	else             return -1;
    }
}

/* spread the non-empty pairs around.  There are n of them.  Create an empty slot just before the IDXth
   element, and return that slot's index in the smoothed array. */
int pmainternal_smooth_region (struct pair *pairs, int n, int idx) {
    int i;
    int n_present=0;
    for (i=0; i<n; i++) {
	if (pairs[i].key) n_present++;
    }
    n_present++; // Save one for the blank guy.
    {
	struct pair *MALLOC_N(n_present,tmppairs);
	int n_saved=0;
	int r;
	for (i=0; i<n; i++) {
	    if (i==idx) {
		tmppairs[n_saved++].key = 0;
	    }
	    if (pairs[i].key) {
		tmppairs[n_saved++] = pairs[i];
	    }
	    pairs[i].key    = 0;
	    pairs[i].keylen = 0;
	    pairs[i].val    = 0;
	    pairs[i].vallen = 0;
	}
	if (idx==n) {
	    tmppairs[n_saved++].key = 0;
	}
	//printf(" temp="); printpairs(tmppairs, n_saved);
	assert(n_saved==n_present);
	/* Now the tricky part.  Distribute the data. */
	r=distribute_data (pairs, n,
			   tmppairs, n_saved);
	toku_free(tmppairs);
	return r;
    }
}

int lg (int n) {
    int result=0;
    int two_to_result = 1;
    while (two_to_result<n) {
	result++;
	two_to_result*=2;
    }
    return result;
}

void pmainternal_calculate_parameters (PMA pma)
/* Calculate densitystep and uplgN, given N. */
{
    int N = pma_index_limit(pma);
    int lgN = lg(N);
    int n_divisions=0;
    //printf("N=%d lgN=%d\n", N, lgN);
    while (N/2>=lgN) {
	n_divisions++;
	N/=2;
    }
    pma->uplgN=N;
    //printf("uplgN = %d n_divisions=%d\n", pma->uplgN, n_divisions);
    assert(n_divisions>0);
    pma->densitystep = 0.5/n_divisions;
}

int pmainternal_count_region (struct pair *pairs, int lo, int hi) {
    int n=0;
    while (lo<hi) {
	if (pairs[lo].key) n++;
	lo++;
    }
    return n;
}

int pma_create (PMA *pma, int (*compare_fun)(DB*,DBT*,DBT*)) {
    TAGMALLOC(PMA, result);
    int i;
    if (result==0) return -1;
    result->N = 4;
    result->n_pairs_present = 0;
    MALLOC_N((1+result->N),result->pairs);
    result->pairs[result->N].key = (void*)0xdeadbeef;
    //printf("pairs=%p (size=%d)\n", result->pairs,result->N*sizeof(*result->pairs));
    if (result->pairs==0) {
	toku_free(result);
	return -1;
    }
    for (i=0; i<result->N; i++) {
	result->pairs[i].key = 0;
	result->pairs[i].keylen = 0;
	result->pairs[i].val = 0;
	result->pairs[i].vallen = 0;
    }
    pmainternal_calculate_parameters(result);
    result->cursors_head = result->cursors_tail = 0;
    result->compare_fun = compare_fun;
    result->skey=0;
    result->sval = 0;
    *pma = result;
    assert((unsigned long)result->pairs[result->N].key==0xdeadbeefL);
    return 0;
}


int pma_cursor (PMA pma, PMA_CURSOR *cursp) {
    PMA_CURSOR MALLOC(curs);
    if (errno!=0) return errno;
    assert(curs!=0);
    curs->position=-1; /* undefined */
    if (pma->cursors_head) {
	pma->cursors_head->prev = curs;
    } else {
	pma->cursors_tail = curs;
    }
    curs->next = pma->cursors_head;
    curs->prev = 0;
    curs->pma = pma;
    curs->skey = 0;
    curs->sval=0;
    pma->cursors_head = curs;
    *cursp=curs;
    return 0;
}

int pma_cursor_set_position_last (PMA_CURSOR c) 
{
    PMA pma = c->pma;
    c->position=pma->N-1;
    while (c->pma->pairs[c->position].key==0) {
	if (c->position>0) c->position--;
	else return DB_NOTFOUND;
    }
    return 0;
}

int pma_cursor_set_position_first (PMA_CURSOR c) 
{
    PMA pma = c->pma;
    c->position=0;
    while (c->pma->pairs[c->position].key==0) {
	if (c->position+1<pma->N) c->position++;
	else return DB_NOTFOUND;
    }
    return 0;
}
    
int pma_cursor_set_position_next (PMA_CURSOR c)
{
    PMA pma = c->pma;
    int old_position=c->position;
    c->position++;
    while (c->position<pma->N) {
	if (c->pma->pairs[c->position].key!=0) return 0;
	c->position++;
    }
    c->position=old_position;
    return DB_NOTFOUND;
}

int pma_cget_current (PMA_CURSOR c, DBT *key, DBT *val) {
    PMA pma = c->pma;
    if (pma->pairs[c->position].key==0) return BRT_KEYEMPTY;
    ybt_set_value(key, pma->pairs[c->position].key, pma->pairs[c->position].keylen, &c->skey);
    ybt_set_value(val, pma->pairs[c->position].val, pma->pairs[c->position].vallen, &c->sval);
    return 0;
}


#if 0
int pma_cget_first (PMA_CURSOR c, YBT *key, YBT *val) {
    PMA pma=c->pma;
    c->position=0;
    if (pma->n_pairs_present==0) return DB_NOTFOUND;
    while (pma->pairs[c->position].key==0 && c->position<pma->N) {
	c->position++;
    }
    assert(c->position<pma->N && pma->pairs[c->position].key!=0);
    ybt_set_value(key, pma->pairs[c->position].key, pma->pairs[c->position].keylen, &c->skey);
    ybt_set_value(val, pma->pairs[c->position].val, pma->pairs[c->position].vallen, &c->sval);
    return 0;
}
#endif

int pma_cursor_free (PMA_CURSOR *cursp) {
    PMA_CURSOR curs=*cursp;
    PMA pma = curs->pma;
    if (curs->prev==0) {
	assert(pma->cursors_head==curs);
	pma->cursors_head = curs->next;
    } else {
	curs->prev->next  = curs->next;
    }
    if (curs->next==0) {
	assert(pma->cursors_tail==curs);
	pma->cursors_tail = curs->prev;
    } else {
	curs->next->prev  = curs->prev;
    }
    if (curs->skey) toku_free(curs->skey);
    if (curs->sval) toku_free(curs->sval);
    toku_free(curs);
    *cursp=0;
    return 0;
}

/* Make some space for a key to go at idx (the thing currently at idx should end up at to the right.) */
/* Return the new index.  (Making space may involve moving things around, including the hole at index.) */
int pmainternal_make_space_at (PMA pma, int idx) {
    /* Within a range LO to HI we have a limit of how much packing we will tolerate.
     * We allow the entire array to be 50% full.
     * We allow a region of size lgN to be full.
     * At sizes in between, we interpolate.
     */
    int size=pma->uplgN;
    int lo=idx;
    int hi=idx;
    double density=1.0;
    while (1) {
	/* set hi-lo equal size, make sure it is a supserset of (hi,lo).  */
	lo=idx-size/2;
	hi=idx+size/2;
	//printf("lo=%d hi=%d\n", lo, hi);
	if (lo<0) { hi-=lo; lo=0; }
	else if (hi>pma_index_limit(pma)) { lo-=(hi-pma_index_limit(pma)); hi=pma_index_limit(pma); }
	else { ; /* nothing */ }
	
	//printf("lo=%d hi=%d\n", lo, hi);
	assert(0<=lo); assert(lo<hi); assert(hi<=pma_index_limit(pma)); assert(hi-lo==size); // separate into separate assertions so that gcov doesn't see branches not taken.
	assert(density>0.499); assert(density<=1);
	if (density<0.5001) { assert(lo==0); assert(hi==pma_index_limit(pma)); }
	{
	    int count = (1+ /* Don't forget space for the new guy. */
			 pmainternal_count_region(pma->pairs, lo, hi));
	    if (count/(double)(hi-lo) <= density) break;
	    if (lo==0 && hi==pma_index_limit(pma)) {
		/* The array needs to be doubled in size. */
		int i;
		assert(size==pma_index_limit(pma));
		size*=2;
		//printf("realloc %p to %d\n", pma->pairs, size*sizeof(*pma->pairs));
		pma->pairs = toku_realloc(pma->pairs, (1+size)*sizeof(*pma->pairs));
		for (i=hi; i<size; i++) pma->pairs[i].key=0;
		pma->pairs[size].key = (void*)0xdeadbeefL;
		pma->N=size;
		pmainternal_calculate_parameters(pma);
		hi=size;
		//printf("doubled N\n");
		break;
	    }
	}
	density-=pma->densitystep;
	size*=2;
    }
    //printf("%s:%d Smoothing from %d to %d to density %f\n", __FILE__, __LINE__, lo, hi, density);
    {
	int new_index = pmainternal_smooth_region(pma->pairs+lo, hi-lo, idx-lo);
	return new_index+lo;
    }
}


enum pma_errors pma_lookup (PMA pma, DBT *k, DBT *v, DB *db) {
    DBT k2;
    int l = pmainternal_find(pma, k, db);
    assert(0<=l ); assert(l<=pma_index_limit(pma));
    if (l==pma_index_limit(pma)) return DB_NOTFOUND;
    if (pma->compare_fun(db, k, fill_dbt(&k2, pma->pairs[l].key,pma->pairs[l].keylen))==0) {
	return ybt_set_value(v, pma->pairs[l].val, pma->pairs[l].vallen, &pma->sval);
    } else {
	return DB_NOTFOUND;
    }
}

void maybe_free (const void *p) {
    if (p) toku_free((void*)p);
}

/* returns 0 if OK.
 * You must have freed all the cursors, otherwise returns nonzero and does nothing. */
int pma_free (PMA *pmap) {
    int i;
    PMA pma=*pmap;
    if (pma->cursors_head) return -1;
    for (i=0; i<pma_index_limit(pma); i++) {
	if (pma->pairs[i].key) {
	    maybe_free(pma->pairs[i].key);
	    maybe_free(pma->pairs[i].val);
	    pma->pairs[i].key=0;
	    pma->pairs[i].val=0;
	}
    }
    toku_free(pma->pairs);
    toku_free(pma);
    if (pma->skey) toku_free(pma->skey);
    if (pma->sval) toku_free(pma->sval);
    *pmap=0;
    return 0;
}

/* Copies keylen and datalen */ 
int pma_insert (PMA pma, DBT *k, DBT *v, DB* db) {
    int idx = pmainternal_find(pma, k, db);
    if (idx < pma_index_limit(pma) && pma->pairs[idx].key) {
	DBT k2;
	if (0==pma->compare_fun(db, k, fill_dbt(&k2, pma->pairs[idx].key, pma->pairs[idx].keylen))) {
	    return BRT_ALREADY_THERE; /* It is already here.  Return an error. */
	}
    }
    if (pma->pairs[idx].key) {
	idx = pmainternal_make_space_at (pma, idx); /* returns the new idx. */
    }
    assert(!pma->pairs[idx].key);
    pma->pairs[idx].key    = memdup(k->data, k->size);
    pma->pairs[idx].keylen = k->size;
    pma->pairs[idx].val    = memdup(v->data, v->size);
    pma->pairs[idx].vallen = v->size;
    pma->n_pairs_present++;
    return BRT_OK;
}    

int pma_delete (PMA pma, DBT *k, DB *db) {
    int l = pmainternal_find(pma, k, db);
    if (pma->pairs[l].key==0) {
	printf("%s:%d l=%d r=%d\n", __FILE__, __LINE__, l, DB_NOTFOUND);
	return DB_NOTFOUND;
    }
    assert(pma->pairs[l].val!=0);
    toku_free((void*)pma->pairs[l].key);
    toku_free((void*)pma->pairs[l].val);
    pma->pairs[l].key = 0;
    pma->pairs[l].val = 0;
    pma->pairs[l].keylen = 0;
    pma->pairs[l].vallen = 0;
    pma->n_pairs_present--;
    // Need to rebalance
//    smooth_after_delete(pma,l);
    return BRT_OK;
}

void pma_iterate (PMA pma, void(*f)(bytevec,ITEMLEN,bytevec,ITEMLEN, void*), void*v) {
    int i;
    for (i=0; i<pma_index_limit(pma); i++) {
	if (pma->pairs[i].key) {
	    f(pma->pairs[i].key, pma->pairs[i].keylen,
	      pma->pairs[i].val, pma->pairs[i].vallen,
	      v);
	}
    }
}