Commit 594046e1 authored by Rich Prohaska's avatar Rich Prohaska Committed by Yoni Fogel

#3185 merge from the tokudb.3185 branch to main refs[t:3185]

git-svn-id: file:///svn/toku/tokudb@27723 c7de825b-a66e-492c-adef-691d508d4ae1
parent 1caa5ea3
......@@ -72,9 +72,9 @@ typedef struct __toku_engine_status {
u_int32_t num_waiters_now; /* How many are waiting on the ydb lock right now (including the current lock holder if any)? */
u_int32_t max_waiters; /* The maximum of num_waiters_now. */
u_int64_t total_sleep_time; /* Total time spent (since the system was booted) sleeping (by the indexer) to give foreground threads a chance to work. */
u_int64_t max_time_ydb_lock_held; /* Maximum time that the ydb lock was held. */
u_int64_t total_time_ydb_lock_held;/* Total time client threads held the ydb lock */
u_int64_t total_time_since_start; /* Total time since the lock was created. Use this as total_time_ydb_lock_held/total_time_since_start to get a ratio. */
u_int64_t max_time_ydb_lock_held; /* Maximum time that the ydb lock was held (tokutime_t). */
u_int64_t total_time_ydb_lock_held;/* Total time client threads held the ydb lock (really tokutime_t, convert to seconds with tokutime_to_seconds()) */
u_int64_t total_time_since_start; /* Total time since the lock was created (tokutime_t). Use this as total_time_ydb_lock_held/total_time_since_start to get a ratio. */
u_int32_t checkpoint_period; /* delay between automatic checkpoints */
u_int32_t checkpoint_footprint; /* state of checkpoint procedure */
char checkpoint_time_begin[26]; /* time of last checkpoint begin */
......@@ -275,6 +275,8 @@ typedef enum {
#define TOKUDB_MVCC_DICTIONARY_TOO_NEW -100010
#define TOKUDB_UPGRADE_FAILURE -100011
#define TOKUDB_TRY_AGAIN -100012
#define TOKUDB_NEEDS_REPAIR -100013
#define TOKUDB_FINGERPRINT_ERROR -100014
/* LOADER flags */
#define LOADER_USE_PUTS 1
typedef int (*generate_row_for_put_func)(DB *dest_db, DB *src_db, DBT *dest_key, DBT *dest_val, const DBT *src_key, const DBT *src_val);
......@@ -415,7 +417,8 @@ struct __toku_db {
int (*get_fragmentation)(DB*,TOKU_DB_FRAGMENTATION);
int (*set_indexer)(DB*, DB_INDEXER*);
void (*get_indexer)(DB*, DB_INDEXER**);
void* __toku_dummy0[16];
int (*verify_with_progress)(DB *, int (*progress_callback)(void *progress_extra, float progress), void *progress_extra, int verbose, int keep_going);
void* __toku_dummy0[15];
char __toku_dummy1[96];
void *api_internal; /* 32-bit offset=236 size=4, 64=bit offset=376 size=8 */
void* __toku_dummy2[5];
......
......@@ -72,9 +72,9 @@ typedef struct __toku_engine_status {
u_int32_t num_waiters_now; /* How many are waiting on the ydb lock right now (including the current lock holder if any)? */
u_int32_t max_waiters; /* The maximum of num_waiters_now. */
u_int64_t total_sleep_time; /* Total time spent (since the system was booted) sleeping (by the indexer) to give foreground threads a chance to work. */
u_int64_t max_time_ydb_lock_held; /* Maximum time that the ydb lock was held. */
u_int64_t total_time_ydb_lock_held;/* Total time client threads held the ydb lock */
u_int64_t total_time_since_start; /* Total time since the lock was created. Use this as total_time_ydb_lock_held/total_time_since_start to get a ratio. */
u_int64_t max_time_ydb_lock_held; /* Maximum time that the ydb lock was held (tokutime_t). */
u_int64_t total_time_ydb_lock_held;/* Total time client threads held the ydb lock (really tokutime_t, convert to seconds with tokutime_to_seconds()) */
u_int64_t total_time_since_start; /* Total time since the lock was created (tokutime_t). Use this as total_time_ydb_lock_held/total_time_since_start to get a ratio. */
u_int32_t checkpoint_period; /* delay between automatic checkpoints */
u_int32_t checkpoint_footprint; /* state of checkpoint procedure */
char checkpoint_time_begin[26]; /* time of last checkpoint begin */
......@@ -277,6 +277,8 @@ typedef enum {
#define TOKUDB_MVCC_DICTIONARY_TOO_NEW -100010
#define TOKUDB_UPGRADE_FAILURE -100011
#define TOKUDB_TRY_AGAIN -100012
#define TOKUDB_NEEDS_REPAIR -100013
#define TOKUDB_FINGERPRINT_ERROR -100014
/* LOADER flags */
#define LOADER_USE_PUTS 1
typedef int (*generate_row_for_put_func)(DB *dest_db, DB *src_db, DBT *dest_key, DBT *dest_val, const DBT *src_key, const DBT *src_val);
......@@ -425,7 +427,8 @@ struct __toku_db {
int (*get_fragmentation)(DB*,TOKU_DB_FRAGMENTATION);
int (*set_indexer)(DB*, DB_INDEXER*);
void (*get_indexer)(DB*, DB_INDEXER**);
void* __toku_dummy0[19];
int (*verify_with_progress)(DB *, int (*progress_callback)(void *progress_extra, float progress), void *progress_extra, int verbose, int keep_going);
void* __toku_dummy0[18];
char __toku_dummy1[96];
void *api_internal; /* 32-bit offset=248 size=4, 64=bit offset=400 size=8 */
void* __toku_dummy2[5];
......
......@@ -72,9 +72,9 @@ typedef struct __toku_engine_status {
u_int32_t num_waiters_now; /* How many are waiting on the ydb lock right now (including the current lock holder if any)? */
u_int32_t max_waiters; /* The maximum of num_waiters_now. */
u_int64_t total_sleep_time; /* Total time spent (since the system was booted) sleeping (by the indexer) to give foreground threads a chance to work. */
u_int64_t max_time_ydb_lock_held; /* Maximum time that the ydb lock was held. */
u_int64_t total_time_ydb_lock_held;/* Total time client threads held the ydb lock */
u_int64_t total_time_since_start; /* Total time since the lock was created. Use this as total_time_ydb_lock_held/total_time_since_start to get a ratio. */
u_int64_t max_time_ydb_lock_held; /* Maximum time that the ydb lock was held (tokutime_t). */
u_int64_t total_time_ydb_lock_held;/* Total time client threads held the ydb lock (really tokutime_t, convert to seconds with tokutime_to_seconds()) */
u_int64_t total_time_since_start; /* Total time since the lock was created (tokutime_t). Use this as total_time_ydb_lock_held/total_time_since_start to get a ratio. */
u_int32_t checkpoint_period; /* delay between automatic checkpoints */
u_int32_t checkpoint_footprint; /* state of checkpoint procedure */
char checkpoint_time_begin[26]; /* time of last checkpoint begin */
......@@ -277,6 +277,8 @@ typedef enum {
#define TOKUDB_MVCC_DICTIONARY_TOO_NEW -100010
#define TOKUDB_UPGRADE_FAILURE -100011
#define TOKUDB_TRY_AGAIN -100012
#define TOKUDB_NEEDS_REPAIR -100013
#define TOKUDB_FINGERPRINT_ERROR -100014
/* LOADER flags */
#define LOADER_USE_PUTS 1
typedef int (*generate_row_for_put_func)(DB *dest_db, DB *src_db, DBT *dest_key, DBT *dest_val, const DBT *src_key, const DBT *src_val);
......@@ -427,7 +429,8 @@ struct __toku_db {
int (*get_fragmentation)(DB*,TOKU_DB_FRAGMENTATION);
int (*set_indexer)(DB*, DB_INDEXER*);
void (*get_indexer)(DB*, DB_INDEXER**);
void* __toku_dummy0[21];
int (*verify_with_progress)(DB *, int (*progress_callback)(void *progress_extra, float progress), void *progress_extra, int verbose, int keep_going);
void* __toku_dummy0[20];
char __toku_dummy1[96];
void *api_internal; /* 32-bit offset=256 size=4, 64=bit offset=416 size=8 */
void* __toku_dummy2[5];
......
......@@ -72,9 +72,9 @@ typedef struct __toku_engine_status {
u_int32_t num_waiters_now; /* How many are waiting on the ydb lock right now (including the current lock holder if any)? */
u_int32_t max_waiters; /* The maximum of num_waiters_now. */
u_int64_t total_sleep_time; /* Total time spent (since the system was booted) sleeping (by the indexer) to give foreground threads a chance to work. */
u_int64_t max_time_ydb_lock_held; /* Maximum time that the ydb lock was held. */
u_int64_t total_time_ydb_lock_held;/* Total time client threads held the ydb lock */
u_int64_t total_time_since_start; /* Total time since the lock was created. Use this as total_time_ydb_lock_held/total_time_since_start to get a ratio. */
u_int64_t max_time_ydb_lock_held; /* Maximum time that the ydb lock was held (tokutime_t). */
u_int64_t total_time_ydb_lock_held;/* Total time client threads held the ydb lock (really tokutime_t, convert to seconds with tokutime_to_seconds()) */
u_int64_t total_time_since_start; /* Total time since the lock was created (tokutime_t). Use this as total_time_ydb_lock_held/total_time_since_start to get a ratio. */
u_int32_t checkpoint_period; /* delay between automatic checkpoints */
u_int32_t checkpoint_footprint; /* state of checkpoint procedure */
char checkpoint_time_begin[26]; /* time of last checkpoint begin */
......@@ -277,6 +277,8 @@ typedef enum {
#define TOKUDB_MVCC_DICTIONARY_TOO_NEW -100010
#define TOKUDB_UPGRADE_FAILURE -100011
#define TOKUDB_TRY_AGAIN -100012
#define TOKUDB_NEEDS_REPAIR -100013
#define TOKUDB_FINGERPRINT_ERROR -100014
/* LOADER flags */
#define LOADER_USE_PUTS 1
typedef int (*generate_row_for_put_func)(DB *dest_db, DB *src_db, DBT *dest_key, DBT *dest_val, const DBT *src_key, const DBT *src_val);
......@@ -427,7 +429,8 @@ struct __toku_db {
int (*get_fragmentation)(DB*,TOKU_DB_FRAGMENTATION);
int (*set_indexer)(DB*, DB_INDEXER*);
void (*get_indexer)(DB*, DB_INDEXER**);
void* __toku_dummy0[24];
int (*verify_with_progress)(DB *, int (*progress_callback)(void *progress_extra, float progress), void *progress_extra, int verbose, int keep_going);
void* __toku_dummy0[23];
char __toku_dummy1[96];
void *api_internal; /* 32-bit offset=268 size=4, 64=bit offset=440 size=8 */
void* __toku_dummy2[5];
......
......@@ -72,9 +72,9 @@ typedef struct __toku_engine_status {
u_int32_t num_waiters_now; /* How many are waiting on the ydb lock right now (including the current lock holder if any)? */
u_int32_t max_waiters; /* The maximum of num_waiters_now. */
u_int64_t total_sleep_time; /* Total time spent (since the system was booted) sleeping (by the indexer) to give foreground threads a chance to work. */
u_int64_t max_time_ydb_lock_held; /* Maximum time that the ydb lock was held. */
u_int64_t total_time_ydb_lock_held;/* Total time client threads held the ydb lock */
u_int64_t total_time_since_start; /* Total time since the lock was created. Use this as total_time_ydb_lock_held/total_time_since_start to get a ratio. */
u_int64_t max_time_ydb_lock_held; /* Maximum time that the ydb lock was held (tokutime_t). */
u_int64_t total_time_ydb_lock_held;/* Total time client threads held the ydb lock (really tokutime_t, convert to seconds with tokutime_to_seconds()) */
u_int64_t total_time_since_start; /* Total time since the lock was created (tokutime_t). Use this as total_time_ydb_lock_held/total_time_since_start to get a ratio. */
u_int32_t checkpoint_period; /* delay between automatic checkpoints */
u_int32_t checkpoint_footprint; /* state of checkpoint procedure */
char checkpoint_time_begin[26]; /* time of last checkpoint begin */
......@@ -278,6 +278,8 @@ typedef enum {
#define TOKUDB_MVCC_DICTIONARY_TOO_NEW -100010
#define TOKUDB_UPGRADE_FAILURE -100011
#define TOKUDB_TRY_AGAIN -100012
#define TOKUDB_NEEDS_REPAIR -100013
#define TOKUDB_FINGERPRINT_ERROR -100014
/* LOADER flags */
#define LOADER_USE_PUTS 1
typedef int (*generate_row_for_put_func)(DB *dest_db, DB *src_db, DBT *dest_key, DBT *dest_val, const DBT *src_key, const DBT *src_val);
......@@ -430,7 +432,8 @@ struct __toku_db {
int (*get_fragmentation)(DB*,TOKU_DB_FRAGMENTATION);
int (*set_indexer)(DB*, DB_INDEXER*);
void (*get_indexer)(DB*, DB_INDEXER**);
void* __toku_dummy1[28];
int (*verify_with_progress)(DB *, int (*progress_callback)(void *progress_extra, float progress), void *progress_extra, int verbose, int keep_going);
void* __toku_dummy1[27];
char __toku_dummy2[80];
void *api_internal; /* 32-bit offset=276 size=4, 64=bit offset=464 size=8 */
void* __toku_dummy3[5];
......
......@@ -74,6 +74,8 @@ enum {
TOKUDB_MVCC_DICTIONARY_TOO_NEW = -100010,
TOKUDB_UPGRADE_FAILURE = -100011,
TOKUDB_TRY_AGAIN = -100012,
TOKUDB_NEEDS_REPAIR = -100013,
TOKUDB_FINGERPRINT_ERROR = -100014,
};
static void print_defines (void) {
......@@ -224,6 +226,8 @@ static void print_defines (void) {
dodefine(TOKUDB_MVCC_DICTIONARY_TOO_NEW);
dodefine(TOKUDB_UPGRADE_FAILURE);
dodefine(TOKUDB_TRY_AGAIN);
dodefine(TOKUDB_NEEDS_REPAIR);
dodefine(TOKUDB_FINGERPRINT_ERROR);
/* LOADER flags */
printf("/* LOADER flags */\n");
......@@ -677,6 +681,7 @@ int main (int argc __attribute__((__unused__)), char *const argv[] __attribute__
"int (*get_fragmentation)(DB*,TOKU_DB_FRAGMENTATION)",
"int (*set_indexer)(DB*, DB_INDEXER*)",
"void (*get_indexer)(DB*, DB_INDEXER**)",
"int (*verify_with_progress)(DB *, int (*progress_callback)(void *progress_extra, float progress), void *progress_extra, int verbose, int keep_going)",
NULL};
print_struct("db", 1, db_fields32, db_fields64, sizeof(db_fields32)/sizeof(db_fields32[0]), extra);
}
......
......@@ -72,9 +72,9 @@ typedef struct __toku_engine_status {
u_int32_t num_waiters_now; /* How many are waiting on the ydb lock right now (including the current lock holder if any)? */
u_int32_t max_waiters; /* The maximum of num_waiters_now. */
u_int64_t total_sleep_time; /* Total time spent (since the system was booted) sleeping (by the indexer) to give foreground threads a chance to work. */
u_int64_t max_time_ydb_lock_held; /* Maximum time that the ydb lock was held. */
u_int64_t total_time_ydb_lock_held;/* Total time client threads held the ydb lock */
u_int64_t total_time_since_start; /* Total time since the lock was created. Use this as total_time_ydb_lock_held/total_time_since_start to get a ratio. */
u_int64_t max_time_ydb_lock_held; /* Maximum time that the ydb lock was held (tokutime_t). */
u_int64_t total_time_ydb_lock_held;/* Total time client threads held the ydb lock (really tokutime_t, convert to seconds with tokutime_to_seconds()) */
u_int64_t total_time_since_start; /* Total time since the lock was created (tokutime_t). Use this as total_time_ydb_lock_held/total_time_since_start to get a ratio. */
u_int32_t checkpoint_period; /* delay between automatic checkpoints */
u_int32_t checkpoint_footprint; /* state of checkpoint procedure */
char checkpoint_time_begin[26]; /* time of last checkpoint begin */
......@@ -278,6 +278,8 @@ typedef enum {
#define TOKUDB_MVCC_DICTIONARY_TOO_NEW -100010
#define TOKUDB_UPGRADE_FAILURE -100011
#define TOKUDB_TRY_AGAIN -100012
#define TOKUDB_NEEDS_REPAIR -100013
#define TOKUDB_FINGERPRINT_ERROR -100014
/* LOADER flags */
#define LOADER_USE_PUTS 1
typedef int (*generate_row_for_put_func)(DB *dest_db, DB *src_db, DBT *dest_key, DBT *dest_val, const DBT *src_key, const DBT *src_val);
......@@ -399,6 +401,7 @@ struct __toku_db {
int (*get_fragmentation)(DB*,TOKU_DB_FRAGMENTATION);
int (*set_indexer)(DB*, DB_INDEXER*);
void (*get_indexer)(DB*, DB_INDEXER**);
int (*verify_with_progress)(DB *, int (*progress_callback)(void *progress_extra, float progress), void *progress_extra, int verbose, int keep_going);
void *api_internal;
int (*close) (DB*, u_int32_t);
int (*cursor) (DB *, DB_TXN *, DBC **, u_int32_t);
......
......@@ -72,9 +72,9 @@ typedef struct __toku_engine_status {
u_int32_t num_waiters_now; /* How many are waiting on the ydb lock right now (including the current lock holder if any)? */
u_int32_t max_waiters; /* The maximum of num_waiters_now. */
u_int64_t total_sleep_time; /* Total time spent (since the system was booted) sleeping (by the indexer) to give foreground threads a chance to work. */
u_int64_t max_time_ydb_lock_held; /* Maximum time that the ydb lock was held. */
u_int64_t total_time_ydb_lock_held;/* Total time client threads held the ydb lock */
u_int64_t total_time_since_start; /* Total time since the lock was created. Use this as total_time_ydb_lock_held/total_time_since_start to get a ratio. */
u_int64_t max_time_ydb_lock_held; /* Maximum time that the ydb lock was held (tokutime_t). */
u_int64_t total_time_ydb_lock_held;/* Total time client threads held the ydb lock (really tokutime_t, convert to seconds with tokutime_to_seconds()) */
u_int64_t total_time_since_start; /* Total time since the lock was created (tokutime_t). Use this as total_time_ydb_lock_held/total_time_since_start to get a ratio. */
u_int32_t checkpoint_period; /* delay between automatic checkpoints */
u_int32_t checkpoint_footprint; /* state of checkpoint procedure */
char checkpoint_time_begin[26]; /* time of last checkpoint begin */
......@@ -278,6 +278,8 @@ typedef enum {
#define TOKUDB_MVCC_DICTIONARY_TOO_NEW -100010
#define TOKUDB_UPGRADE_FAILURE -100011
#define TOKUDB_TRY_AGAIN -100012
#define TOKUDB_NEEDS_REPAIR -100013
#define TOKUDB_FINGERPRINT_ERROR -100014
/* LOADER flags */
#define LOADER_USE_PUTS 1
typedef int (*generate_row_for_put_func)(DB *dest_db, DB *src_db, DBT *dest_key, DBT *dest_val, const DBT *src_key, const DBT *src_val);
......@@ -399,6 +401,7 @@ struct __toku_db {
int (*get_fragmentation)(DB*,TOKU_DB_FRAGMENTATION);
int (*set_indexer)(DB*, DB_INDEXER*);
void (*get_indexer)(DB*, DB_INDEXER**);
int (*verify_with_progress)(DB *, int (*progress_callback)(void *progress_extra, float progress), void *progress_extra, int verbose, int keep_going);
void *api_internal;
int (*close) (DB*, u_int32_t);
int (*cursor) (DB *, DB_TXN *, DBC **, u_int32_t);
......
......@@ -357,7 +357,9 @@ void mempool_release(struct mempool *); // release anything that was not release
void toku_verify_all_in_mempool(BRTNODE node);
int toku_verify_brtnode (BRT brt, BLOCKNUM blocknum, int height, struct kv_pair *lesser_pivot, struct kv_pair *greatereq_pivot, int recurse)
int toku_verify_brtnode (BRT brt, BLOCKNUM blocknum, int height, struct kv_pair *lesser_pivot, struct kv_pair *greatereq_pivot,
int (*progress_callback)(void *extra, float progress), void *extra,
int recurse, int verbose, int keep_on_going)
__attribute__ ((warn_unused_result));
void toku_brtheader_free (struct brt_header *h);
......
This diff is collapsed.
......@@ -5346,7 +5346,7 @@ toku_dump_brtnode (FILE *file, BRT brt, BLOCKNUM blocknum, int depth, struct kv_
fprintf(file, "%s:%d pin %p\n", __FILE__, __LINE__, node_v);
node=node_v;
lazy_assert(node->fullhash==fullhash);
result=toku_verify_brtnode(brt, blocknum, -1, lorange, hirange, 0);
result=toku_verify_brtnode(brt, blocknum, -1, lorange, hirange, NULL, NULL, 0, 1, 0);
fprintf(file, "%*sNode=%p\n", depth, "", node);
if (node->height>0) {
fprintf(file, "%*sNode %"PRId64" nodesize=%u height=%d n_children=%d n_bytes_in_buffers=%u keyrange=%s %s\n",
......
......@@ -131,6 +131,7 @@ int toku_brt_create_cachetable(CACHETABLE *t, long cachesize, LSN initial_lsn, T
extern int toku_brt_debug_mode;
int toku_verify_brt (BRT brt) __attribute__ ((warn_unused_result));
int toku_verify_brt_with_progress (BRT brt, int (*progress_callback)(void *extra, float progress), void *extra, int verbose, int keep_going) __attribute__ ((warn_unused_result));
//int show_brt_blocknumbers(BRT);
......
/* -*- mode: C; c-basic-offset: 4 -*- */
#ident "Copyright (c) 2011 Tokutek Inc. All rights reserved."
// generate a tree with bad pivots and check that brt->verify finds them
#include "includes.h"
#include "test.h"
static BRTNODE
make_node(BRT brt, int height) {
BRTNODE node = NULL;
int r = toku_create_new_brtnode(brt, &node, height, 0);
assert(r == 0);
return node;
}
static void
append_leaf(BRTNODE leafnode, void *key, size_t keylen, void *val, size_t vallen) {
assert(leafnode->height == 0);
DBT thekey; toku_fill_dbt(&thekey, key, keylen);
DBT theval; toku_fill_dbt(&theval, val, vallen);
// get an index that we can use to create a new leaf entry
uint32_t idx = toku_omt_size(leafnode->u.l.buffer);
// apply an insert to the leaf node
BRT_MSG_S cmd = { BRT_INSERT, xids_get_root_xids(), .u.id = { &thekey, &theval } };
int r = brt_leaf_apply_cmd_once(leafnode, &cmd, idx, NULL, NULL);
assert(r == 0);
// dont forget to dirty the node
leafnode->dirty = 1;
}
static void
populate_leaf(BRTNODE leafnode, int seq, int n, int *minkey, int *maxkey) {
for (int i = 0; i < n; i++) {
int k = htonl(seq + i);
int v = seq + i;
append_leaf(leafnode, &k, sizeof k, &v, sizeof v);
}
*minkey = htonl(seq);
*maxkey = htonl(seq + n - 1);
}
static UU() void
insert_into_child_buffer(BRTNODE node, int childnum, int minkey, int maxkey) {
for (unsigned int val = htonl(minkey); val <= htonl(maxkey); val++) {
unsigned int key = htonl(val);
DBT thekey; toku_fill_dbt(&thekey, &key, sizeof key);
DBT theval; toku_fill_dbt(&theval, &val, sizeof val);
toku_brt_append_to_child_buffer(node, childnum, BRT_INSERT, xids_get_root_xids(), &thekey, &theval);
}
}
static BRTNODE
make_tree(BRT brt, int height, int fanout, int nperleaf, int *seq, int *minkey, int *maxkey) {
BRTNODE node;
if (height == 0) {
node = make_node(brt, 0);
populate_leaf(node, *seq, nperleaf, minkey, maxkey);
*seq += nperleaf;
} else {
node = make_node(brt, height);
int minkeys[fanout], maxkeys[fanout];
for (int childnum = 0; childnum < fanout; childnum++) {
BRTNODE child = make_tree(brt, height-1, fanout, nperleaf, seq, &minkeys[childnum], &maxkeys[childnum]);
if (childnum == 0)
toku_brt_nonleaf_append_child(node, child, NULL, 0);
else {
int k = minkeys[childnum]; // use the min key of the right subtree, which creates a broken tree
struct kv_pair *pivotkey = kv_pair_malloc(&k, sizeof k, NULL, 0);
toku_brt_nonleaf_append_child(node, child, pivotkey, sizeof k);
}
int r = toku_unpin_brtnode(brt, child);
assert(r == 0);
}
*minkey = minkeys[0];
*maxkey = maxkeys[0];
for (int i = 1; i < fanout; i++) {
if (memcmp(minkey, &minkeys[i], sizeof minkeys[i]) > 0)
*minkey = minkeys[i];
if (memcmp(maxkey, &maxkeys[i], sizeof maxkeys[i]) < 0)
*maxkey = maxkeys[i];
}
}
return node;
}
static UU() void
deleted_row(UU() DB *db, UU() DBT *key, UU() DBT *val) {
}
static void
test_make_tree(int height, int fanout, int nperleaf, int do_verify) {
int r;
// cleanup
char fname[]= __FILE__ ".brt";
r = unlink(fname);
assert(r == 0 || (r == -1 && errno == ENOENT));
// create a cachetable
CACHETABLE ct = NULL;
r = toku_brt_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER);
assert(r == 0);
// create the brt
TOKUTXN null_txn = NULL;
DB *null_db = NULL;
BRT brt = NULL;
r = toku_open_brt(fname, 1, &brt, 1024, ct, null_txn, toku_builtin_compare_fun, null_db);
assert(r == 0);
// make a tree
int seq = 0, minkey, maxkey;
BRTNODE newroot = make_tree(brt, height, fanout, nperleaf, &seq, &minkey, &maxkey);
// discard the old root block
u_int32_t fullhash = 0;
CACHEKEY *rootp;
rootp = toku_calculate_root_offset_pointer(brt, &fullhash);
// set the new root to point to the new tree
*rootp = newroot->thisnodename;
// unpin the new root
r = toku_unpin_brtnode(brt, newroot);
assert(r == 0);
if (do_verify) {
r = toku_verify_brt(brt);
assert(r != 0);
}
// flush to the file system
r = toku_close_brt(brt, 0);
assert(r == 0);
// shutdown the cachetable
r = toku_cachetable_close(&ct);
assert(r == 0);
}
static int
usage(void) {
return 1;
}
int
test_main (int argc , const char *argv[]) {
int height = 1;
int fanout = 2;
int nperleaf = 8;
int do_verify = 1;
for (int i = 1; i < argc; i++) {
const char *arg = argv[i];
if (strcmp(arg, "-v") == 0) {
verbose++;
continue;
}
if (strcmp(arg, "-q") == 0) {
verbose = 0;
continue;
}
if (strcmp(arg, "--height") == 0 && i+1 < argc) {
height = atoi(argv[++i]);
continue;
}
if (strcmp(arg, "--fanout") == 0 && i+1 < argc) {
fanout = atoi(argv[++i]);
continue;
}
if (strcmp(arg, "--nperleaf") == 0 && i+1 < argc) {
nperleaf = atoi(argv[++i]);
continue;
}
if (strcmp(arg, "--verify") == 0 && i+1 < argc) {
do_verify = atoi(argv[++i]);
continue;
}
return usage();
}
test_make_tree(height, fanout, nperleaf, do_verify);
return 0;
}
/* -*- mode: C; c-basic-offset: 4 -*- */
#ident "Copyright (c) 2011 Tokutek Inc. All rights reserved."
// generate a tree with a single leaf node containing duplicate keys
// check that brt verify finds them
#include "includes.h"
#include "test.h"
static BRTNODE
make_node(BRT brt, int height) {
BRTNODE node = NULL;
int r = toku_create_new_brtnode(brt, &node, height, 0);
assert(r == 0);
return node;
}
static void
append_leaf(BRTNODE leafnode, void *key, size_t keylen, void *val, size_t vallen) {
assert(leafnode->height == 0);
DBT thekey; toku_fill_dbt(&thekey, key, keylen);
DBT theval; toku_fill_dbt(&theval, val, vallen);
// get an index that we can use to create a new leaf entry
uint32_t idx = toku_omt_size(leafnode->u.l.buffer);
// apply an insert to the leaf node
BRT_MSG_S cmd = { BRT_INSERT, xids_get_root_xids(), .u.id = { &thekey, &theval } };
int r = brt_leaf_apply_cmd_once(leafnode, &cmd, idx, NULL, NULL);
assert(r == 0);
// dont forget to dirty the node
leafnode->dirty = 1;
}
static void
populate_leaf(BRTNODE leafnode, int k, int v) {
append_leaf(leafnode, &k, sizeof k, &v, sizeof v);
}
static void
test_dup_in_leaf(int do_verify) {
int r;
// cleanup
char fname[]= __FILE__ ".brt";
r = unlink(fname);
assert(r == 0 || (r == -1 && errno == ENOENT));
// create a cachetable
CACHETABLE ct = NULL;
r = toku_brt_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER);
assert(r == 0);
// create the brt
TOKUTXN null_txn = NULL;
DB *null_db = NULL;
BRT brt = NULL;
r = toku_open_brt(fname, 1, &brt, 1024, ct, null_txn, toku_builtin_compare_fun, null_db);
assert(r == 0);
// discard the old root block
u_int32_t fullhash = 0;
CACHEKEY *rootp;
rootp = toku_calculate_root_offset_pointer(brt, &fullhash);
BRTNODE newroot = make_node(brt, 0);
populate_leaf(newroot, htonl(2), 1);
populate_leaf(newroot, htonl(2), 2);
// set the new root to point to the new tree
*rootp = newroot->thisnodename;
// unpin the new root
r = toku_unpin_brtnode(brt, newroot);
assert(r == 0);
if (do_verify) {
r = toku_verify_brt(brt);
assert(r != 0);
}
// flush to the file system
r = toku_close_brt(brt, 0);
assert(r == 0);
// shutdown the cachetable
r = toku_cachetable_close(&ct);
assert(r == 0);
}
static int
usage(void) {
return 1;
}
int
test_main (int argc , const char *argv[]) {
int do_verify = 1;
for (int i = 1; i < argc; i++) {
const char *arg = argv[i];
if (strcmp(arg, "-v") == 0) {
verbose++;
continue;
}
if (strcmp(arg, "-q") == 0) {
verbose = 0;
continue;
}
if (strcmp(arg, "--verify") == 0 && i+1 < argc) {
do_verify = atoi(argv[++i]);
continue;
}
return usage();
}
test_dup_in_leaf(do_verify);
return 0;
}
/* -*- mode: C; c-basic-offset: 4 -*- */
#ident "Copyright (c) 2011 Tokutek Inc. All rights reserved."
// generate a tree with duplicate pivots and check that brt->verify finds them
#include "includes.h"
#include "test.h"
static BRTNODE
make_node(BRT brt, int height) {
BRTNODE node = NULL;
int r = toku_create_new_brtnode(brt, &node, height, 0);
assert(r == 0);
return node;
}
static void
append_leaf(BRTNODE leafnode, void *key, size_t keylen, void *val, size_t vallen) {
assert(leafnode->height == 0);
DBT thekey; toku_fill_dbt(&thekey, key, keylen);
DBT theval; toku_fill_dbt(&theval, val, vallen);
// get an index that we can use to create a new leaf entry
uint32_t idx = toku_omt_size(leafnode->u.l.buffer);
// apply an insert to the leaf node
BRT_MSG_S cmd = { BRT_INSERT, xids_get_root_xids(), .u.id = { &thekey, &theval } };
int r = brt_leaf_apply_cmd_once(leafnode, &cmd, idx, NULL, NULL);
assert(r == 0);
// dont forget to dirty the node
leafnode->dirty = 1;
}
static void
populate_leaf(BRTNODE leafnode, int seq, int n, int *minkey, int *maxkey) {
for (int i = 0; i < n; i++) {
int k = htonl(seq + i);
int v = seq + i;
append_leaf(leafnode, &k, sizeof k, &v, sizeof v);
}
*minkey = htonl(seq);
*maxkey = htonl(seq + n - 1);
}
static UU() void
insert_into_child_buffer(BRTNODE node, int childnum, int minkey, int maxkey) {
for (unsigned int val = htonl(minkey); val <= htonl(maxkey); val++) {
unsigned int key = htonl(val);
DBT thekey; toku_fill_dbt(&thekey, &key, sizeof key);
DBT theval; toku_fill_dbt(&theval, &val, sizeof val);
toku_brt_append_to_child_buffer(node, childnum, BRT_INSERT, xids_get_root_xids(), &thekey, &theval);
}
}
static BRTNODE
make_tree(BRT brt, int height, int fanout, int nperleaf, int *seq, int *minkey, int *maxkey) {
BRTNODE node;
if (height == 0) {
node = make_node(brt, 0);
populate_leaf(node, *seq, nperleaf, minkey, maxkey);
*seq += nperleaf;
} else {
node = make_node(brt, height);
int minkeys[fanout], maxkeys[fanout];
for (int childnum = 0; childnum < fanout; childnum++) {
BRTNODE child = make_tree(brt, height-1, fanout, nperleaf, seq, &minkeys[childnum], &maxkeys[childnum]);
if (childnum == 0)
toku_brt_nonleaf_append_child(node, child, NULL, 0);
else {
int k = maxkeys[0]; // use duplicate pivots, should result in a broken tree
struct kv_pair *pivotkey = kv_pair_malloc(&k, sizeof k, NULL, 0);
toku_brt_nonleaf_append_child(node, child, pivotkey, sizeof k);
}
int r = toku_unpin_brtnode(brt, child);
assert(r == 0);
}
*minkey = minkeys[0];
*maxkey = maxkeys[0];
for (int i = 1; i < fanout; i++) {
if (memcmp(minkey, &minkeys[i], sizeof minkeys[i]) > 0)
*minkey = minkeys[i];
if (memcmp(maxkey, &maxkeys[i], sizeof maxkeys[i]) < 0)
*maxkey = maxkeys[i];
}
}
return node;
}
static UU() void
deleted_row(UU() DB *db, UU() DBT *key, UU() DBT *val) {
}
static void
test_make_tree(int height, int fanout, int nperleaf, int do_verify) {
int r;
// cleanup
char fname[]= __FILE__ ".brt";
r = unlink(fname);
assert(r == 0 || (r == -1 && errno == ENOENT));
// create a cachetable
CACHETABLE ct = NULL;
r = toku_brt_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER);
assert(r == 0);
// create the brt
TOKUTXN null_txn = NULL;
DB *null_db = NULL;
BRT brt = NULL;
r = toku_open_brt(fname, 1, &brt, 1024, ct, null_txn, toku_builtin_compare_fun, null_db);
assert(r == 0);
// make a tree
int seq = 0, minkey, maxkey;
BRTNODE newroot = make_tree(brt, height, fanout, nperleaf, &seq, &minkey, &maxkey);
// discard the old root block
u_int32_t fullhash = 0;
CACHEKEY *rootp;
rootp = toku_calculate_root_offset_pointer(brt, &fullhash);
// set the new root to point to the new tree
*rootp = newroot->thisnodename;
// unpin the new root
r = toku_unpin_brtnode(brt, newroot);
assert(r == 0);
if (do_verify) {
r = toku_verify_brt(brt);
assert(r != 0);
}
// flush to the file system
r = toku_close_brt(brt, 0);
assert(r == 0);
// shutdown the cachetable
r = toku_cachetable_close(&ct);
assert(r == 0);
}
static int
usage(void) {
return 1;
}
int
test_main (int argc , const char *argv[]) {
int height = 1;
int fanout = 3;
int nperleaf = 8;
int do_verify = 1;
for (int i = 1; i < argc; i++) {
const char *arg = argv[i];
if (strcmp(arg, "-v") == 0) {
verbose++;
continue;
}
if (strcmp(arg, "-q") == 0) {
verbose = 0;
continue;
}
if (strcmp(arg, "--height") == 0 && i+1 < argc) {
height = atoi(argv[++i]);
continue;
}
if (strcmp(arg, "--fanout") == 0 && i+1 < argc) {
fanout = atoi(argv[++i]);
continue;
}
if (strcmp(arg, "--nperleaf") == 0 && i+1 < argc) {
nperleaf = atoi(argv[++i]);
continue;
}
if (strcmp(arg, "--verify") == 0 && i+1 < argc) {
do_verify = atoi(argv[++i]);
continue;
}
return usage();
}
test_make_tree(height, fanout, nperleaf, do_verify);
return 0;
}
/* -*- mode: C; c-basic-offset: 4 -*- */
#ident "Copyright (c) 2011 Tokutek Inc. All rights reserved."
// generate a tree with misrouted messages in the child buffers.
// check that brt verify finds them.
#include "includes.h"
#include "test.h"
static BRTNODE
make_node(BRT brt, int height) {
BRTNODE node = NULL;
int r = toku_create_new_brtnode(brt, &node, height, 0);
assert(r == 0);
return node;
}
static void
append_leaf(BRTNODE leafnode, void *key, size_t keylen, void *val, size_t vallen) {
assert(leafnode->height == 0);
DBT thekey; toku_fill_dbt(&thekey, key, keylen);
DBT theval; toku_fill_dbt(&theval, val, vallen);
// get an index that we can use to create a new leaf entry
uint32_t idx = toku_omt_size(leafnode->u.l.buffer);
// apply an insert to the leaf node
BRT_MSG_S cmd = { BRT_INSERT, xids_get_root_xids(), .u.id = { &thekey, &theval } };
int r = brt_leaf_apply_cmd_once(leafnode, &cmd, idx, NULL, NULL);
assert(r == 0);
// dont forget to dirty the node
leafnode->dirty = 1;
}
static void
populate_leaf(BRTNODE leafnode, int seq, int n, int *minkey, int *maxkey) {
for (int i = 0; i < n; i++) {
int k = htonl(seq + i);
int v = seq + i;
append_leaf(leafnode, &k, sizeof k, &v, sizeof v);
}
*minkey = htonl(seq);
*maxkey = htonl(seq + n - 1);
}
static void
insert_into_child_buffer(BRTNODE node, int childnum, int minkey, int maxkey) {
int k = htonl(maxkey);
maxkey = htonl(k+1);
for (unsigned int val = htonl(minkey); val <= htonl(maxkey); val++) {
unsigned int key = htonl(val);
DBT thekey; toku_fill_dbt(&thekey, &key, sizeof key);
DBT theval; toku_fill_dbt(&theval, &val, sizeof val);
toku_brt_append_to_child_buffer(node, childnum, BRT_INSERT, xids_get_root_xids(), &thekey, &theval);
}
}
static BRTNODE
make_tree(BRT brt, int height, int fanout, int nperleaf, int *seq, int *minkey, int *maxkey) {
BRTNODE node;
if (height == 0) {
node = make_node(brt, 0);
populate_leaf(node, *seq, nperleaf, minkey, maxkey);
*seq += nperleaf;
} else {
node = make_node(brt, height);
int minkeys[fanout], maxkeys[fanout];
for (int childnum = 0; childnum < fanout; childnum++) {
BRTNODE child = make_tree(brt, height-1, fanout, nperleaf, seq, &minkeys[childnum], &maxkeys[childnum]);
if (childnum == 0)
toku_brt_nonleaf_append_child(node, child, NULL, 0);
else {
int k = maxkeys[childnum-1]; // use the max of the left tree
struct kv_pair *pivotkey = kv_pair_malloc(&k, sizeof k, NULL, 0);
toku_brt_nonleaf_append_child(node, child, pivotkey, sizeof k);
}
int r = toku_unpin_brtnode(brt, child);
assert(r == 0);
insert_into_child_buffer(node, childnum, minkeys[childnum], maxkeys[childnum]);
}
*minkey = minkeys[0];
*maxkey = maxkeys[0];
for (int i = 1; i < fanout; i++) {
if (memcmp(minkey, &minkeys[i], sizeof minkeys[i]) > 0)
*minkey = minkeys[i];
if (memcmp(maxkey, &maxkeys[i], sizeof maxkeys[i]) < 0)
*maxkey = maxkeys[i];
}
}
return node;
}
static UU() void
deleted_row(UU() DB *db, UU() DBT *key, UU() DBT *val) {
}
static void
test_make_tree(int height, int fanout, int nperleaf, int do_verify) {
int r;
// cleanup
char fname[]= __FILE__ ".brt";
r = unlink(fname);
assert(r == 0 || (r == -1 && errno == ENOENT));
// create a cachetable
CACHETABLE ct = NULL;
r = toku_brt_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER);
assert(r == 0);
// create the brt
TOKUTXN null_txn = NULL;
DB *null_db = NULL;
BRT brt = NULL;
r = toku_open_brt(fname, 1, &brt, 1024, ct, null_txn, toku_builtin_compare_fun, null_db);
assert(r == 0);
// make a tree
int seq = 0, minkey, maxkey;
BRTNODE newroot = make_tree(brt, height, fanout, nperleaf, &seq, &minkey, &maxkey);
// discard the old root block
u_int32_t fullhash = 0;
CACHEKEY *rootp;
rootp = toku_calculate_root_offset_pointer(brt, &fullhash);
// set the new root to point to the new tree
*rootp = newroot->thisnodename;
// unpin the new root
r = toku_unpin_brtnode(brt, newroot);
assert(r == 0);
if (do_verify) {
r = toku_verify_brt(brt);
assert(r != 0);
}
// flush to the file system
r = toku_close_brt(brt, 0);
assert(r == 0);
// shutdown the cachetable
r = toku_cachetable_close(&ct);
assert(r == 0);
}
static int
usage(void) {
return 1;
}
int
test_main (int argc , const char *argv[]) {
int height = 1;
int fanout = 2;
int nperleaf = 8;
int do_verify = 1;
for (int i = 1; i < argc; i++) {
const char *arg = argv[i];
if (strcmp(arg, "-v") == 0) {
verbose++;
continue;
}
if (strcmp(arg, "-q") == 0) {
verbose = 0;
continue;
}
if (strcmp(arg, "--height") == 0 && i+1 < argc) {
height = atoi(argv[++i]);
continue;
}
if (strcmp(arg, "--fanout") == 0 && i+1 < argc) {
fanout = atoi(argv[++i]);
continue;
}
if (strcmp(arg, "--nperleaf") == 0 && i+1 < argc) {
nperleaf = atoi(argv[++i]);
continue;
}
if (strcmp(arg, "--verify") == 0 && i+1 < argc) {
do_verify = atoi(argv[++i]);
continue;
}
return usage();
}
test_make_tree(height, fanout, nperleaf, do_verify);
return 0;
}
/* -*- mode: C; c-basic-offset: 4 -*- */
#ident "Copyright (c) 2011 Tokutek Inc. All rights reserved."
// generate a tree with a single leaf node containing unsorted keys
// check that brt verify finds them
#include "includes.h"
#include "test.h"
static BRTNODE
make_node(BRT brt, int height) {
BRTNODE node = NULL;
int r = toku_create_new_brtnode(brt, &node, height, 0);
assert(r == 0);
return node;
}
static void
append_leaf(BRTNODE leafnode, void *key, size_t keylen, void *val, size_t vallen) {
assert(leafnode->height == 0);
DBT thekey; toku_fill_dbt(&thekey, key, keylen);
DBT theval; toku_fill_dbt(&theval, val, vallen);
// get an index that we can use to create a new leaf entry
uint32_t idx = toku_omt_size(leafnode->u.l.buffer);
// apply an insert to the leaf node
BRT_MSG_S cmd = { BRT_INSERT, xids_get_root_xids(), .u.id = { &thekey, &theval } };
int r = brt_leaf_apply_cmd_once(leafnode, &cmd, idx, NULL, NULL);
assert(r == 0);
// dont forget to dirty the node
leafnode->dirty = 1;
}
static void
populate_leaf(BRTNODE leafnode, int k, int v) {
append_leaf(leafnode, &k, sizeof k, &v, sizeof v);
}
static void
test_dup_in_leaf(int do_verify) {
int r;
// cleanup
char fname[]= __FILE__ ".brt";
r = unlink(fname);
assert(r == 0 || (r == -1 && errno == ENOENT));
// create a cachetable
CACHETABLE ct = NULL;
r = toku_brt_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER);
assert(r == 0);
// create the brt
TOKUTXN null_txn = NULL;
DB *null_db = NULL;
BRT brt = NULL;
r = toku_open_brt(fname, 1, &brt, 1024, ct, null_txn, toku_builtin_compare_fun, null_db);
assert(r == 0);
// discard the old root block
u_int32_t fullhash = 0;
CACHEKEY *rootp;
rootp = toku_calculate_root_offset_pointer(brt, &fullhash);
BRTNODE newroot = make_node(brt, 0);
populate_leaf(newroot, htonl(2), 1);
populate_leaf(newroot, htonl(1), 2);
// set the new root to point to the new tree
*rootp = newroot->thisnodename;
// unpin the new root
r = toku_unpin_brtnode(brt, newroot);
assert(r == 0);
if (do_verify) {
r = toku_verify_brt(brt);
assert(r != 0);
}
// flush to the file system
r = toku_close_brt(brt, 0);
assert(r == 0);
// shutdown the cachetable
r = toku_cachetable_close(&ct);
assert(r == 0);
}
static int
usage(void) {
return 1;
}
int
test_main (int argc , const char *argv[]) {
int do_verify = 1;
for (int i = 1; i < argc; i++) {
const char *arg = argv[i];
if (strcmp(arg, "-v") == 0) {
verbose++;
continue;
}
if (strcmp(arg, "-q") == 0) {
verbose = 0;
continue;
}
if (strcmp(arg, "--verify") == 0 && i+1 < argc) {
do_verify = atoi(argv[++i]);
continue;
}
return usage();
}
test_dup_in_leaf(do_verify);
return 0;
}
/* -*- mode: C; c-basic-offset: 4 -*- */
#ident "Copyright (c) 2011 Tokutek Inc. All rights reserved."
// generate a tree with unsorted pivots and check that brt->verify finds them
#include "includes.h"
#include "test.h"
static BRTNODE
make_node(BRT brt, int height) {
BRTNODE node = NULL;
int r = toku_create_new_brtnode(brt, &node, height, 0);
assert(r == 0);
return node;
}
static void
append_leaf(BRTNODE leafnode, void *key, size_t keylen, void *val, size_t vallen) {
assert(leafnode->height == 0);
DBT thekey; toku_fill_dbt(&thekey, key, keylen);
DBT theval; toku_fill_dbt(&theval, val, vallen);
// get an index that we can use to create a new leaf entry
uint32_t idx = toku_omt_size(leafnode->u.l.buffer);
// apply an insert to the leaf node
BRT_MSG_S cmd = { BRT_INSERT, xids_get_root_xids(), .u.id = { &thekey, &theval } };
int r = brt_leaf_apply_cmd_once(leafnode, &cmd, idx, NULL, NULL);
assert(r == 0);
// dont forget to dirty the node
leafnode->dirty = 1;
}
static void
populate_leaf(BRTNODE leafnode, int seq, int n, int *minkey, int *maxkey) {
for (int i = 0; i < n; i++) {
int k = htonl(seq + i);
int v = seq + i;
append_leaf(leafnode, &k, sizeof k, &v, sizeof v);
}
*minkey = htonl(seq);
*maxkey = htonl(seq + n - 1);
}
static UU() void
insert_into_child_buffer(BRTNODE node, int childnum, int minkey, int maxkey) {
for (unsigned int val = htonl(minkey); val <= htonl(maxkey); val++) {
unsigned int key = htonl(val);
DBT thekey; toku_fill_dbt(&thekey, &key, sizeof key);
DBT theval; toku_fill_dbt(&theval, &val, sizeof val);
toku_brt_append_to_child_buffer(node, childnum, BRT_INSERT, xids_get_root_xids(), &thekey, &theval);
}
}
static BRTNODE
make_tree(BRT brt, int height, int fanout, int nperleaf, int *seq, int *minkey, int *maxkey) {
BRTNODE node;
if (height == 0) {
node = make_node(brt, 0);
populate_leaf(node, *seq, nperleaf, minkey, maxkey);
*seq += nperleaf;
} else {
node = make_node(brt, height);
int minkeys[fanout], maxkeys[fanout];
for (int childnum = 0; childnum < fanout; childnum++) {
BRTNODE child = make_tree(brt, height-1, fanout, nperleaf, seq, &minkeys[childnum], &maxkeys[childnum]);
if (childnum == 0)
toku_brt_nonleaf_append_child(node, child, NULL, 0);
else {
int k = minkeys[fanout - childnum - 1]; // use unsorted pivots
struct kv_pair *pivotkey = kv_pair_malloc(&k, sizeof k, NULL, 0);
toku_brt_nonleaf_append_child(node, child, pivotkey, sizeof k);
}
int r = toku_unpin_brtnode(brt, child);
assert(r == 0);
}
*minkey = minkeys[0];
*maxkey = maxkeys[0];
for (int i = 1; i < fanout; i++) {
if (memcmp(minkey, &minkeys[i], sizeof minkeys[i]) > 0)
*minkey = minkeys[i];
if (memcmp(maxkey, &maxkeys[i], sizeof maxkeys[i]) < 0)
*maxkey = maxkeys[i];
}
}
return node;
}
static UU() void
deleted_row(UU() DB *db, UU() DBT *key, UU() DBT *val) {
}
static void
test_make_tree(int height, int fanout, int nperleaf, int do_verify) {
int r;
// cleanup
char fname[]= __FILE__ ".brt";
r = unlink(fname);
assert(r == 0 || (r == -1 && errno == ENOENT));
// create a cachetable
CACHETABLE ct = NULL;
r = toku_brt_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER);
assert(r == 0);
// create the brt
TOKUTXN null_txn = NULL;
DB *null_db = NULL;
BRT brt = NULL;
r = toku_open_brt(fname, 1, &brt, 1024, ct, null_txn, toku_builtin_compare_fun, null_db);
assert(r == 0);
// make a tree
int seq = 0, minkey, maxkey;
BRTNODE newroot = make_tree(brt, height, fanout, nperleaf, &seq, &minkey, &maxkey);
// discard the old root block
u_int32_t fullhash = 0;
CACHEKEY *rootp;
rootp = toku_calculate_root_offset_pointer(brt, &fullhash);
// set the new root to point to the new tree
*rootp = newroot->thisnodename;
// unpin the new root
r = toku_unpin_brtnode(brt, newroot);
assert(r == 0);
if (do_verify) {
r = toku_verify_brt(brt);
assert(r != 0);
}
// flush to the file system
r = toku_close_brt(brt, 0);
assert(r == 0);
// shutdown the cachetable
r = toku_cachetable_close(&ct);
assert(r == 0);
}
static int
usage(void) {
return 1;
}
int
test_main (int argc , const char *argv[]) {
int height = 1;
int fanout = 3;
int nperleaf = 8;
int do_verify = 1;
for (int i = 1; i < argc; i++) {
const char *arg = argv[i];
if (strcmp(arg, "-v") == 0) {
verbose++;
continue;
}
if (strcmp(arg, "-q") == 0) {
verbose = 0;
continue;
}
if (strcmp(arg, "--height") == 0 && i+1 < argc) {
height = atoi(argv[++i]);
continue;
}
if (strcmp(arg, "--fanout") == 0 && i+1 < argc) {
fanout = atoi(argv[++i]);
continue;
}
if (strcmp(arg, "--nperleaf") == 0 && i+1 < argc) {
nperleaf = atoi(argv[++i]);
continue;
}
if (strcmp(arg, "--verify") == 0 && i+1 < argc) {
do_verify = atoi(argv[++i]);
continue;
}
return usage();
}
test_make_tree(height, fanout, nperleaf, do_verify);
return 0;
}
......@@ -5805,6 +5805,31 @@ locked_db_get_indexer(DB *db, DB_INDEXER **indexer_ptr) {
toku_ydb_lock(); *indexer_ptr = toku_db_get_indexer(db); toku_ydb_unlock();
}
struct ydb_verify_context {
int (*progress_callback)(void *extra, float progress);
void *progress_extra;
};
static int
ydb_verify_progress_callback(void *extra, float progress) {
struct ydb_verify_context *context = (struct ydb_verify_context *) extra;
toku_ydb_unlock_and_yield(1000);
int r = 0;
if (context->progress_callback)
r = context->progress_callback(context->progress_extra, progress);
toku_ydb_lock();
return r;
}
static int
locked_db_verify_with_progress(DB *db, int (*progress_callback)(void *extra, float progress), void *progress_extra, int verbose, int keep_going) {
struct ydb_verify_context context = { progress_callback, progress_extra };
toku_ydb_lock();
int r = toku_verify_brt_with_progress(db->i->brt, ydb_verify_progress_callback, &context, verbose, keep_going);
toku_ydb_unlock();
return r;
}
static int
toku_db_create(DB ** db, DB_ENV * env, u_int32_t flags) {
int r;
......@@ -5851,6 +5876,7 @@ toku_db_create(DB ** db, DB_ENV * env, u_int32_t flags) {
SDB(get_fragmentation);
SDB(set_indexer);
SDB(get_indexer);
SDB(verify_with_progress);
#undef SDB
result->dbt_pos_infty = toku_db_dbt_pos_infty;
result->dbt_neg_infty = toku_db_dbt_neg_infty;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment