Commit 7a4522ac authored by Sergey Petrunya's avatar Sergey Petrunya

Merge

parents 8a730afa 4275f6e4
......@@ -950,8 +950,7 @@ typedef long long my_ptrdiff_t;
#define MY_ALIGN(A,L) (((A) + (L) - 1) & ~((L) - 1))
#define ALIGN_SIZE(A) MY_ALIGN((A),sizeof(double))
/* Size to make adressable obj. */
#define ALIGN_PTR(A, t) ((t*) MY_ALIGN((A),sizeof(t)))
/* Offset of field f in structure t */
#define ALIGN_PTR(A, t) ((t*) MY_ALIGN((A), sizeof(double)))
#define OFFSET(t, f) ((size_t)(char *)&((t *)0)->f)
#define ADD_TO_PTR(ptr,size,type) (type) ((uchar*) (ptr)+size)
#define PTR_BYTE_DIFF(A,B) (my_ptrdiff_t) ((uchar*) (A) - (uchar*) (B))
......
......@@ -290,10 +290,6 @@ print "time for select_one_attribute ($count:$rows): " .
timestr(timediff($end_time, $loop_time),"all") . "\n";
###
### TODO...
###
;
####
......
......@@ -1916,10 +1916,10 @@ void Item_field::reset_field(Field *f)
}
bool Item_field::check_column_usage_processor(uchar *arg)
bool Item_field::enumerate_field_refs_processor(uchar *arg)
{
Field_enumerator *fe= (Field_enumerator*)arg;
fe->see_field(field);
fe->visit_field(field);
return FALSE;
}
......
......@@ -734,7 +734,7 @@ class Item {
/*
Bitmap of tables used by item
(note: if you need to check dependencies on individual columns, check out
check_column_usage_processor)
class Field_enumerator)
*/
virtual table_map used_tables() const { return (table_map) 0L; }
/*
......@@ -892,7 +892,7 @@ class Item {
virtual bool reset_query_id_processor(uchar *query_id_arg) { return 0; }
virtual bool is_expensive_processor(uchar *arg) { return 0; }
virtual bool register_field_in_read_map(uchar *arg) { return 0; }
virtual bool check_column_usage_processor(uchar *arg) { return 0; }
virtual bool enumerate_field_refs_processor(uchar *arg) { return 0; }
virtual bool mark_as_eliminated_processor(uchar *arg) { return 0; }
/*
Check if a partition function is allowed
......@@ -1018,14 +1018,29 @@ class Item {
};
/* Data for Item::check_column_usage_processor */
/*
Class to be used to enumerate all field references in an item tree.
Suggested usage:
class My_enumerator : public Field_enumerator
{
virtual void visit_field() { ... your actions ...}
}
My_enumerator enumerator;
item->walk(Item::enumerate_field_refs_processor, ...,(uchar*)&enumerator);
This is similar to Visitor pattern.
*/
class Field_enumerator
{
public:
virtual void see_field(Field *field)= 0;
virtual ~Field_enumerator() {}; /* Shut up compiler warning */
virtual void visit_field(Field *field)= 0;
virtual ~Field_enumerator() {}; /* purecov: inspected */
};
class sp_head;
......@@ -1491,7 +1506,7 @@ class Item_field :public Item_ident
bool find_item_in_field_list_processor(uchar *arg);
bool register_field_in_read_map(uchar *arg);
bool check_partition_func_processor(uchar *int_arg) {return FALSE;}
bool check_column_usage_processor(uchar *arg);
bool enumerate_field_refs_processor(uchar *arg);
void cleanup();
bool result_as_longlong()
{
......
......@@ -5168,33 +5168,7 @@ void Item_equal::merge(Item_equal *item)
void Item_equal::sort(Item_field_cmpfunc cmp, void *arg)
{
bool swap;
List_iterator<Item_field> it(fields);
do
{
Item_field *item1= it++;
Item_field **ref1= it.ref();
Item_field *item2;
swap= FALSE;
while ((item2= it++))
{
Item_field **ref2= it.ref();
if (cmp(item1, item2, arg) < 0)
{
Item_field *item= *ref1;
*ref1= *ref2;
*ref2= item;
swap= TRUE;
}
else
{
item1= item2;
ref1= ref2;
}
}
it.rewind();
} while (swap);
exchange_sort<Item_field>(&fields, cmp, arg);
}
......
......@@ -215,13 +215,13 @@ bool Item_subselect::fix_fields(THD *thd_param, Item **ref)
}
bool Item_subselect::check_column_usage_processor(uchar *arg)
bool Item_subselect::enumerate_field_refs_processor(uchar *arg)
{
List_iterator<Item> it(refers_to);
Item *item;
while ((item= it++))
{
if (item->walk(&Item::check_column_usage_processor,FALSE, arg))
if (item->walk(&Item::enumerate_field_refs_processor, FALSE, arg))
return TRUE;
}
return FALSE;
......
......@@ -135,7 +135,7 @@ class Item_subselect :public Item_result_field
enum_parsing_place place() { return parsing_place; }
bool walk(Item_processor processor, bool walk_subquery, uchar *arg);
bool mark_as_eliminated_processor(uchar *arg);
bool check_column_usage_processor(uchar *arg);
bool enumerate_field_refs_processor(uchar *arg);
/**
Get the SELECT_LEX structure associated with this Item.
......
This diff is collapsed.
......@@ -442,6 +442,43 @@ template <class T> class List_iterator_fast :public base_list_iterator
};
/*
Exchange sort algorithm for List<T>.
*/
template <class T>
inline void exchange_sort(List<T> *list_to_sort,
int (*sort_func)(T *a, T *b, void *arg), void *arg)
{
bool swap;
List_iterator<T> it(*list_to_sort);
do
{
T *item1= it++;
T **ref1= it.ref();
T *item2;
swap= FALSE;
while ((item2= it++))
{
T **ref2= it.ref();
if (sort_func(item1, item2, arg) < 0)
{
T *item= *ref1;
*ref1= *ref2;
*ref2= item;
swap= TRUE;
}
else
{
item1= item2;
ref1= ref2;
}
}
it.rewind();
} while (swap);
}
/*
A simple intrusive list which automaticly removes element from list
on delete (for THD element)
......
......@@ -2991,22 +2991,33 @@ typedef struct key_field_t {
elements that would correspond to "$LEFT_PART OR $RIGHT_PART".
The rules for combining elements are as follows:
(keyfieldA1 AND keyfieldA2 AND ...) OR (keyfieldB1 AND keyfieldB2 AND ...)=
AND_ij (keyfieldA_i OR keyfieldB_j)
= AND_ij (keyfieldA_i OR keyfieldB_j)
We discard all (keyfieldA_i OR keyfieldB_j) that refer to different
fields. For those referring to the same field, the logic is as follows:
t.keycol=
t.keycol=expr1 OR t.keycol=expr2 -> (since expr1 and expr2 are different
we can't produce a single equality,
so produce nothing)
t.keycol=expr1 OR t.keycol=expr1 -> t.keycol=expr1
t.keycol=expr1 OR t.keycol IS NULL -> t.keycol=expr1, and also set
KEY_OPTIMIZE_REF_OR_NULL flag
To be able to do 'ref_or_null' we merge a comparison of a column
and 'column IS NULL' to one test. This is useful for sub select queries
that are internally transformed to something like:.
The last one is for ref_or_null access. We have handling for this special
because it's needed for evaluating IN subqueries that are internally
transformed into
@code
SELECT * FROM t1 WHERE t1.key=outer_ref_field or t1.key IS NULL
EXISTS(SELECT * FROM t1 WHERE t1.key=outer_ref_field or t1.key IS NULL)
@endcode
See add_key_fields() for discussion of what is and_level.
KEY_FIELD::null_rejecting is processed as follows: @n
result has null_rejecting=true if it is set for both ORed references.
for example:
......@@ -3346,6 +3357,26 @@ add_key_equal_fields(KEY_FIELD **key_fields, uint and_level,
}
}
/*
In this and other functions, and_level is a number that is ever-growing
and is different for the contents of every AND or OR clause. For example,
when processing clause
(a AND b AND c) OR (x AND y)
we'll have
* KEY_FIELD elements for (a AND b AND c) are assigned and_level=1
* KEY_FIELD elements for (x AND y) are assigned and_level=2
* OR operation is performed, and whatever elements are left after it are
assigned and_level=3.
The primary reason for having and_level attribute is the OR operation which
uses and_level to mark KEY_FIELDs that should get into the result of the OR
operation
*/
static void
add_key_fields(JOIN *join, KEY_FIELD **key_fields, uint *and_level,
COND *cond, table_map usable_tables,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment