Commit b8edbcfa authored by Smail Bachir's avatar Smail Bachir

Update README.md

parent de5b8855
......@@ -214,7 +214,7 @@ plt.show()
## DPD Computation
$$
{y_{dpd}}(n) = \displaystyle \sum_{k=0}^{K_a-1} \sum_{l=0}^{L_a-1} a_{k l} \, x(n-l) \cdot |x(n-l)|^{k} + \sum_{k=1}^{K_b} \sum_{l=0}^{L_b-1} \sum_{m=1}^{M_b} b_{k l m} \, x(n-l) \cdot |x(n-l-m)|^{k} + \sum_{k=1}^{K_c} \sum_{l=0}^{L_c-1} \sum_{m=1}^{M_c} c_{k l m} \, x(n-l) \cdot |x(n-l+m)|^{k}
{y_{dpd}}(n) = \\displaystyle \\sum_{k=0}^{K_a-1} \\sum_{l=0}^{L_a-1} a_{k l} \\, x(n-l) \\cdot |x(n-l)|^{k} + \\sum_{k=1}^{K_b} \\sum_{l=0}^{L_b-1} \\sum_{m=1}^{M_b} b_{k l m} \\, x(n-l) \\cdot |x(n-l-m)|^{k} + \\sum_{k=1}^{K_c} \\sum_{l=0}^{L_c-1} \\sum_{m=1}^{M_c} c_{k l m} \\, x(n-l) \\cdot |x(n-l+m)|^{k}
$$
$x(n)$ : dpd input (complex envelope) <br />
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment