- 19 Jan, 2022 3 commits
-
-
Kirill Smelkov authored
.commit is the only caller of ._wcsync. .commit is also the only place via which tests are intended to modify ZODB.
-
Kirill Smelkov authored
- .commit performs ZODB commit and synchronizes WCFS to database changes; - ._commit performs ZODB commit without WCFS synchronization. We will soon need ._commit to create initial revisions for ZBigFile while WCFS is not yet started.
-
Kirill Smelkov authored
If we do not setup logging explicitly, it will print only No handlers could be found for logger "wcfs" instead of emitting useful details in before e.g. RuntimeError: fuse_unmount /dev/shm/wcfs/<X>: failed: fusermount: failed to unmount /dev/shm/wcfs/<X>: Device or resource busy (more details logged) -> Fix it.
-
- 18 Jan, 2022 1 commit
-
-
Kirill Smelkov authored
The invalidation logic is generally right, but invalidateBlk -> ΔFtail.BlkRevAt was being called with ctx without transaction. As the result it was panicking as panic: transaction: no current transaction goroutine 41 [running]: lab.nexedi.com/kirr/neo/go/transaction.currentTxn({0x9696d8, 0xc0000d8080}) /home/kirr/src/neo/src/lab.nexedi.com/kirr/neo/go/transaction/transaction.go:59 +0x77 lab.nexedi.com/kirr/neo/go/transaction.Current(...) /home/kirr/src/neo/src/lab.nexedi.com/kirr/neo/go/transaction/api.go:206 lab.nexedi.com/kirr/neo/go/zodb.(*Connection).checkTxnCtx(...) /home/kirr/src/neo/src/lab.nexedi.com/kirr/neo/go/zodb/connection.go:374 lab.nexedi.com/kirr/neo/go/zodb.(*Connection).Get(0xc00010c640, {0x9696d8, 0xc0000d8080}, 0x4) /home/kirr/src/neo/src/lab.nexedi.com/kirr/neo/go/zodb/connection.go:331 +0x73 lab.nexedi.com/nexedi/wendelin.core/wcfs/internal/zdata.(*ΔFtail).BlkRevAt(0xc000077d40, {0x9696d8, 0xc0000d8080}, 0xc000064f60, 0x0, 0x3e5983329bbd100) /home/kirr/src/neo/src/lab.nexedi.com/nexedi/wendelin.core/wcfs/internal/zdata/δftail.go:1140 +0x39d main.(*BigFile).invalidateBlk.func1(0xc000164400, {0x9696d8, 0xc0000d8080}, 0xc0005a0000, 0x200000, 0x200000, {0xc0005a0000, 0x200000, 0x200000}) /home/kirr/src/neo/src/lab.nexedi.com/nexedi/wendelin.core/wcfs/wcfs.go:1089 +0xb8 main.(*BigFile).invalidateBlk(0xc000164400, {0x9696d8, 0xc0000d8080}, 0x0) /home/kirr/src/neo/src/lab.nexedi.com/nexedi/wendelin.core/wcfs/wcfs.go:1105 +0x3bb main.(*Root).handleδZ.func3({0x9696d8, 0xc0000d8080}) /home/kirr/src/neo/src/lab.nexedi.com/nexedi/wendelin.core/wcfs/wcfs.go:898 +0x34 lab.nexedi.com/kirr/go123/xsync.(*WorkGroup).Go.func1() /home/kirr/src/neo/src/lab.nexedi.com/kirr/go123/xsync/xsync.go:86 +0x68 created by lab.nexedi.com/kirr/go123/xsync.(*WorkGroup).Go /home/kirr/src/neo/src/lab.nexedi.com/kirr/go123/xsync/xsync.go:83 +0x92 on any new change to tracked file block whose previous history is not covered by ΔFtail/ΔBtail. Problem reported by @Francois.
-
- 26 Nov, 2021 1 commit
-
-
Kirill Smelkov authored
Fixes the following warning that started to appear: kirr@deca:~/src/wendelin/wendelin.core/t$ ./qemu-runlinux -g /home/kirr/src/linux/obj-qemu_debug/arch/x86/boot/bzImage /bin/bash qemu-system-x86_64: warning: 9p: Multiple devices detected in same VirtFS export, which might lead to file ID collisions and severe misbehaviours on guest! You should either use a separate export for each device shared from host or use virtfs option 'multidevs=remap'! See https://wiki.qemu.org/Documentation/9psetup for documentation of multidevs option.
-
- 23 Nov, 2021 4 commits
-
-
Kirill Smelkov authored
In 5c8340d2 we said: dbclose now uses defer almost everywhere - there are still few places in tests, where one test function is opening/closing test database multiple times - those were not (yet ?) converted. Let's convert those remaining places now, because when wendelin.core tests are run wrt plain ZODB4 (contrary to ZODB4-wc2), many tests fail at fileh_open time, e.g. @func def test_bigfile_filezodb_fileh_gc(): root1= dbopen() conn1= root1._p_jar db = conn1.db() defer(db.close) root1['zfile4'] = f1 = ZBigFile(blksize) transaction.commit() > fh1 = f1.fileh_open() bigfile/tests/test_filezodb.py:588: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ bigfile/file_zodb.py:603: in fileh_open fileh = _ZBigFileH(self, _use_wcfs) bigfile/file_zodb.py:664: in __init__ self.zfileh = zfile._v_file.fileh_open(use_wcfs) bigfile/_file_zodb.pyx:112: in wendelin.bigfile._file_zodb._ZBigFile.fileh_open pywconn = wczsync.pywconnOf(zconn) wcfs/client/_wczsync.pyx:56: in wendelin.wcfs.client._wczsync.pywconnOf wconn = wc.connect(zconn_at(zconn)) lib/zodb.py:163: in zconn_at "ZODB!1") _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ patch = 'conn:MVCC-via-loadBefore-only', details_link = 'ZODB!1' def _zassertHasNXDPatch(patch, details_link): if not _zhasNXDPatch(patch): raise AssertionError( "ZODB%s is not patched with required Nexedi patch %r\n\tSee %s for details" % > (zmajor, patch, details_link)) E AssertionError: ZODB4 is not patched with required Nexedi patch 'conn:MVCC-via-loadBefore-only' E See ZODB!1 for details and DB is left unclosed. This change should reduce, if not completely fix, the number of leaked /tmp/testdb_* directories for Wendelin.core.UnitTest-ZODB4(xfail) testsuite.
-
Kirill Smelkov authored
When WCFS-mmapped memory is accessed, it can get SIGBUS on IO error (and automatically on WCFS crash), and SIGSEGV when accessed client mapping is closed. tFile.assertBlk in wcfs_test.py already converts SIGSEGV into python exception when accessing on-wcfs file's block. However tMapping.assertBlk was not doing so, which, instead of providing proper details, leads to test crashes if something goes wrong. For example when wendelin.core tests are run wrt plain ZODB4 (contrary to ZODB4-wc2, see nexedi/ZODB!1 and nexedi/slapos@e256ed97), it first fails in pinner and then gets SIGSEGV on data access, because, to mimic SIGBUS on EIO, pinner shutdowns all mappings on its failure: https://lab.nexedi.com/nexedi/wendelin.core/blob/49f826b1/wcfs/client/wcfs.cpp#L477-501 https://nexedijs.erp5.net/#/test_result_module/20211118-7C45220A/25 -> Fix it by wrapping test block access with appropriate read_exfault variant. Before this patch: .../wendelin.core$ WENDELIN_CORE_TEST_DB='<zeo>' WENDELIN_CORE_VIRTMEM='r:wcfs+w:uvmm' python -m pytest -vsx wcfs/ -k test_wcfs_client ... wcfs/client/client_test.py::test_wcfs_client -------------------- live log call --------------------- INFO wcfs:__init__.py:293 starting for zeo://localhost:28866 ... I1122 19:17:14.376182 110032 wcfs.go:2384] start "/dev/shm/wcfs/ef87339c054c3e0e48d494fa584bb209518844b2" "zeo://localhost:28866" I1122 19:17:14.376291 110032 wcfs.go:2390] (built with go1.17.3) W1122 19:17:14.380882 110032 storage.go:152] zodb: FIXME: open zeo://localhost:28866: raw cache is not ready for invalidations -> NoCache forced INFO wcfs:__init__.py:334 started pid110032 @ /dev/shm/wcfs/ef87339c054c3e0e48d494fa584bb209518844b2 M: commit -> @at0 (03e452313dddbc00) M: commit -> @at1 (03e452313e0f3b99) M: f<0000000000000002> [2, 3] M: commit -> @at2 (03e452313e1adb55) M: f<0000000000000002> [2] M: commit -> @at3 (03e452313e3be500) M: f<0000000000000002> [3, 4] W1122 19:17:14.597654 110032 wcfs.go:2050] /@03e452313d343c88/bigfile: lookup "0000000000000002": bigfopen 0000000000000002 @03e452313d343c88: invalid argument: Get 0000000000000002: Get 03e452313d343c88:0000000000000002: zeo://localhost:28866: load 03e452313d343c88:0000000000000002: 0000000000000002: no such object E1122 19:17:14.597759 110032 wcfs.go:1220] /head/bigfile/0000000000000002: readblk #4: pin watchers: wlink1: f<0000000000000002>: pin #4 @03e452313d343c88: expect "ack"; got "nak: _remmapblk #4 @03e452313d343c88: open /dev/shm/wcfs/ef87339c054c3e0e48d494fa584bb209518844b2/@03e452313d343c88/bigfile/0000000000000002: Invalid argument" F1122 19:17:14.597803 110050 wcfs/client/wcfs.cpp:487] CRITICAL: pinner: pin f<0000000000000002> #4 @03e452313d343c88: _remmapblk #4 @03e452313d343c88: open /dev/shm/wcfs/ef87339c054c3e0e48d494fa584bb209518844b2/@03e452313d343c88/bigfile/0000000000000002: Invalid argument F1122 19:17:14.597835 110050 wcfs/client/wcfs.cpp:488] CRITICAL: wcfs server will likely kill us soon. CRITICAL: pinner: pin f<0000000000000002> #4 @03e452313d343c88: _remmapblk #4 @03e452313d343c88: open /dev/shm/wcfs/ef87339c054c3e0e48d494fa584bb209518844b2/@03e452313d343c88/bigfile/0000000000000002: Invalid argument CRITICAL: wcfs server will likely kill us soon. Segmentation fault: read @00007ff7b9534000 /home/kirr/src/wendelin/wendelin.core/wcfs/client/./../../bigfile/liblibvirtmem.so(dump_traceback+0x34)[0x7ff7d6b5c279] /home/kirr/src/wendelin/wendelin.core/wcfs/client/./../../bigfile/liblibvirtmem.so(+0x27b0)[0x7ff7d6b577b0] /lib/x86_64-linux-gnu/libpthread.so.0(+0x14140)[0x7ff7da078140] python(PyString_FromStringAndSize+0x228)[0x5627feb96b58] python(PyEval_EvalFrameEx+0x603e)[0x5627febb7a4e] python(PyEval_EvalCodeEx+0x57c)[0x5627febb03cc] ... python(PyObject_Call+0x43)[0x5627feb9d903] python(+0x18a7e1)[0x5627fec5d7e1] python(Py_Main+0x3ad)[0x5627fec4b8ed] /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xea)[0x7ff7d9d59d0a] python(_start+0x2a)[0x5627fec4b46a] Ошибка сегментирования (стек памяти сброшен на диск) After this patch: .../wendelin.core$ WENDELIN_CORE_TEST_DB='<zeo>' WENDELIN_CORE_VIRTMEM='r:wcfs+w:uvmm' python -m pytest -vsx wcfs/ -k test_wcfs_client ... wcfs/client/client_test.py::test_wcfs_client -------------------- live log call --------------------- INFO wcfs:__init__.py:293 starting for zeo://localhost:22854 ... I1122 18:17:22.486445 102541 wcfs.go:2384] start "/dev/shm/wcfs/c818c147676f8d6f3b408b02f727aca5e3229e98" "zeo://localhost:22854" I1122 18:17:22.486525 102541 wcfs.go:2390] (built with go1.17.3) W1122 18:17:22.489908 102541 storage.go:152] zodb: FIXME: open zeo://localhost:22854: raw cache is not ready for invalidations -> NoCache forced INFO wcfs:__init__.py:334 started pid102541 @ /dev/shm/wcfs/c818c147676f8d6f3b408b02f727aca5e3229e98 M: commit -> @at0 (03e451f560834477) M: commit -> @at1 (03e451f560a2aa77) M: f<0000000000000002> [2, 3] M: commit -> @at2 (03e451f560adafcc) M: f<0000000000000002> [2] M: commit -> @at3 (03e451f560d02111) M: f<0000000000000002> [3, 4] W1122 18:17:22.703710 102541 wcfs.go:2050] /@03e451f55fcc4c77/bigfile: lookup "0000000000000002": bigfopen 0000000000000002 @03e451f55fcc4c77: invalid argument: Get 0000000000000002: Get 03e451f55fcc4c77:0000000000000002: zeo://localhost:22854: load 03e451f55fcc4c77:0000000000000002: 0000000000000002: no such object E1122 18:17:22.703840 102541 wcfs.go:1220] /head/bigfile/0000000000000002: readblk #4: pin watchers: wlink1: f<0000000000000002>: pin #4 @03e451f55fcc4c77: expect "ack"; got "nak: _remmapblk #4 @03e451f55fcc4c77: open /dev/shm/wcfs/c818c147676f8d6f3b408b02f727aca5e3229e98/@03e451f55fcc4c77/bigfile/0000000000000002: Invalid argument" F1122 18:17:22.704380 102558 wcfs/client/wcfs.cpp:487] CRITICAL: pinner: pin f<0000000000000002> #4 @03e451f55fcc4c77: _remmapblk #4 @03e451f55fcc4c77: open /dev/shm/wcfs/c818c147676f8d6f3b408b02f727aca5e3229e98/@03e451f55fcc4c77/bigfile/0000000000000002: Invalid argument F1122 18:17:22.704639 102558 wcfs/client/wcfs.cpp:488] CRITICAL: wcfs server will likely kill us soon. CRITICAL: pinner: pin f<0000000000000002> #4 @03e451f55fcc4c77: _remmapblk #4 @03e451f55fcc4c77: open /dev/shm/wcfs/c818c147676f8d6f3b408b02f727aca5e3229e98/@03e451f55fcc4c77/bigfile/0000000000000002: Invalid argument CRITICAL: wcfs server will likely kill us soon. >>> Change history by file: f<0000000000000002>: 0 1 2 3 4 5 6 7 a b c d e f g h @at0 (03e451f560834477) @at1 (03e451f560a2aa77) 2 3 @at2 (03e451f560adafcc) 2 @at3 (03e451f560d02111) 3 4 INFO wcfs:__init__.py:400 unmount/stop wcfs pid102541 @ /dev/shm/wcfs/c818c147676f8d6f3b408b02f727aca5e3229e98 I1122 18:17:22.728452 102541 wcfs.go:2560] stop "/dev/shm/wcfs/c818c147676f8d6f3b408b02f727aca5e3229e98" "zeo://localhost:22854" FAILED ======================= FAILURES ======================= ___________________ test_wcfs_client ___________________ @func def test_wcfs_client(): t = tDB(); zf = t.zfile; at0=t.at0 defer(t.close) pinned = lambda fh: fhpinned(t, fh) at1 = t.commit(zf, {2:'c1', 3:'d1'}) at2 = t.commit(zf, {2:'c2'}) wconn = t.wc.connect(at1) defer(wconn.close) fh = wconn.open(zf._p_oid) defer(fh.close) # create mmap with 1 block beyond file size m1 = fh.mmap(2, 3) defer(m1.unmap) assert m1.blk_start == 2 assert m1.blk_stop == 5 assert len(m1.mem) == 3*zf.blksize tm1 = tMapping(t, m1) assert pinned(fh) == {} # verify initial data reads tm1.assertBlk(2, 'c1', {2:at1}) tm1.assertBlk(3, 'd1', {2:at1}) tm1.assertBlk(4, '', {2:at1}) # commit with growing file size -> verify data read as the same, #3 pinned. # (#4 is not yet pinned because it was not accessed) at3 = t.commit(zf, {3:'d3', 4:'e3'}) assert pinned(fh) == {2:at1} tm1.assertBlk(2, 'c1', {2:at1}) tm1.assertBlk(3, 'd1', {2:at1, 3:at1}) tm1.assertBlk(4, '', {2:at1, 3:at1}) # resync at1 -> at2: #2 must unpin to @head; #4 must stay as zero wconn.resync(at2) assert pinned(fh) == {3:at1} tm1.assertBlk(2, 'c2', { 3:at1}) tm1.assertBlk(3, 'd1', { 3:at1}) > tm1.assertBlk(4, '', { 3:at1, 4:at0}) # XXX at0->ø ? wcfs/client/client_test.py:158: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ wcfs/client/client_test.py:86: in assertBlk _ = read_exfault_withgil(blkview[0:1]) wcfs/internal/wcfs_test.pyx:90: in wendelin.wcfs.internal.wcfs_test.read_exfault_withgil return _read_exfault(mem, withgil=True) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ > raise SegmentationFault() E SegmentationFault wcfs/internal/wcfs_test.pyx:120: SegmentationFault ------------------ Captured log call ------------------- INFO wcfs:__init__.py:293 starting for zeo://localhost:22854 ... INFO wcfs:__init__.py:334 started pid102541 @ /dev/shm/wcfs/c818c147676f8d6f3b408b02f727aca5e3229e98 INFO wcfs:__init__.py:400 unmount/stop wcfs pid102541 @ /dev/shm/wcfs/c818c147676f8d6f3b408b02f727aca5e3229e98
-
Kirill Smelkov authored
Here wcfs.go should have exited due to either unmount request, _or_ SIGTERM.
-
Kirill Smelkov authored
If first unmount fails, e.g. due to "device or resource is busy", we are trying to unmount the filesystem the second time after force kill/FUSE-abort (see 5f684a49 "wcfs: Server.stop: Make sure to remove mount entry even if we had to use FUSE abort"). This way the caller of Server.stop should get an error only if that second unmount fails, not on unmount-1 error, which should be considered as internal to Server.stop implementation. If we don't hide that unmount-1 error and raise it to the caller, from outside it can confusingly look like "the server is successfully stopped, but nevertheless we are raised with an error".
-
- 16 Nov, 2021 3 commits
-
-
Kirill Smelkov authored
-
Kirill Smelkov authored
-
Kirill Smelkov authored
This way on plain ZODB4 the following non-wcfs tests will continue to pass test.py/fs-!wcfs test.py/zeo-!wcfs test.py/neo-!wcfs instead of failing as e.g. in here: https://nexedijs.erp5.net/#/test_result_module/20211116-123A66706 On plain ZODB4 WCFS-related functionality - which uses zconn_at - will continue to raise corresponding assertion in WCFS-related tests, as e.g. in https://nexedijs.erp5.net/#/test_result_module/20211116-123A66706/6
-
- 15 Nov, 2021 1 commit
-
-
Kirill Smelkov authored
Server.stop currently tries to unmount, and if that fails invokes FUSE abort and kills wcfs.go . However it does not call unmount the second time after such abort, and this way the filesystem remains mounted (in ENOTCONN state) and rmdir(mountpoint) fails. -> Fix it by calling unmount the second time if we had to abort FUSE connection. In that second try use lazy unmounting, because regular unmount can still fail with "Device or resource busy" since there could be still client file descriptors left pointing to the mounted filesystem. With lazy mode unmounting + followup rmdir, hopefully, always succeeds. Here is example test run where one test timed out, FUSE connection was aborted, but neither the filesystem was unmounted, nor mountpoint directory was deleted, which led to all followup tests failing in setup assert that testmountpoint does not exist: https://nexedijs.erp5.net/#/test_result_module/20211112-1ACEA62D/22 This patch should fix those followup failures + fix another leakage of WCFS mounts in real services.
-
- 12 Nov, 2021 4 commits
-
-
Kirill Smelkov authored
By default every WCFS run creates several files in /tmp/wcfs.*.log.* and without explicit cleanup those files are left hanging on testnodes. Over last ~6 months we accumulated ~ 300K such files. Don't allow those files to be leaked by instructing WCFS to log to stderr during test run. This should be also useful to see details in the test output.
-
Kirill Smelkov authored
With NEO we were creating test database on /tmp but we were not deleting it in the end. As the result many /tmp/neo_XXXXXX non-empty directories were being leaked. -> Fix it by creating testdb directory outselves and removing it at the end, similarly to FileStorage and ZEO. Fixes: 7fc4ec66 (tests: Allow to test with ZEO & NEO ZODB storages)
-
Kirill Smelkov authored
We run tests with different GOMAXPROCS because some WCFS bugs are only likely to trigger when there is only 1 or 2 main OS thread(s) in WCFS. However test.go does not exercise filesystem functionality - it runs unit tests for ZBlk decoding, ΔBtail and similar. At the same time test.go:* currently occupies ~ 50% of whole time to run full testsuite with the main consumer being ΔBtail random testing. -> Run test.go only once. This should save ~ 1000s for each run and lower whole time to run wendelin.core testsuite on testnode from ~60m -> to ~40 minutes.
-
Kirill Smelkov authored
Else every time test.py/wcfs is run several empty directories are left in /dev/shm/wcfs - each corresponding to WCFS server that was automatically spawned and stopped at the end of the test. Over time this can accumulate to some big number as e.g. ~20000 of such directories were left on the testnode during last 6 months.
-
- 09 Nov, 2021 2 commits
-
-
Kirill Smelkov authored
This are the early days of WCFS - we want full details which in default configuration might not be available to see if WCFS gets stuck for one reason or another. See added comments for details.
-
Kirill Smelkov authored
`python setup.py egg_info` stopped working after we added non-ASCII files, e.g. δbtail.go in 2ab4be93 (wcfs: xbtree: ΔBtail) and δftail.go in f980471f (wcfs: zdata: ΔFtail): (neo) (z-dev) (g.env) kirr@deca:~/src/neo/src/lab.nexedi.com/nexedi/wendelin.core$ python setup.py egg_info running egg_info writing requirements to wendelin.core.egg-info/requires.txt writing wendelin.core.egg-info/PKG-INFO writing top-level names to wendelin.core.egg-info/top_level.txt writing dependency_links to wendelin.core.egg-info/dependency_links.txt writing entry points to wendelin.core.egg-info/entry_points.txt package init file '__init__.py' not found (or not a regular file) /usr/lib/python2.7/distutils/filelist.py:64: UnicodeWarning: Unicode equal comparison failed to convert both arguments to Unicode - interpreting them as being unequal sortable_files.sort() Traceback (most recent call last): File "setup.py", line 416, in <module> """.splitlines()] File "/home/kirr/src/tools/go/pygolang/golang/pyx/build.py", line 118, in setup setuptools_dso.setup(**kw) File "/home/kirr/src/wendelin/venv/z-dev/lib/python2.7/site-packages/setuptools_dso/__init__.py", line 37, in setup _setup(**kws) File "/home/kirr/src/wendelin/venv/z-dev/lib/python2.7/site-packages/setuptools/__init__.py", line 162, in setup return distutils.core.setup(**attrs) File "/usr/lib/python2.7/distutils/core.py", line 151, in setup dist.run_commands() File "/usr/lib/python2.7/distutils/dist.py", line 953, in run_commands self.run_command(cmd) File "/usr/lib/python2.7/distutils/dist.py", line 972, in run_command cmd_obj.run() File "/home/kirr/src/wendelin/venv/z-dev/lib/python2.7/site-packages/setuptools/command/egg_info.py", line 296, in run self.find_sources() File "/home/kirr/src/wendelin/venv/z-dev/lib/python2.7/site-packages/setuptools/command/egg_info.py", line 303, in find_sources mm.run() File "/home/kirr/src/wendelin/venv/z-dev/lib/python2.7/site-packages/setuptools/command/egg_info.py", line 538, in run self.filelist.sort() File "/usr/lib/python2.7/distutils/filelist.py", line 64, in sort sortable_files.sort() UnicodeDecodeError: 'ascii' codec can't decode byte 0xce in position 0: ordinal not in range(128) This happens becuase by default setuptools collects filenames as str, not unicode, and our git_lsfiles - also registered into setuptools.file_finders entrypoint - collects filenames as unicode. Previously everything was working because there was no on-ASCII filenames, and so unicode vs str coercion worked automatically. But now, after there is filename like 'δbtail.go', it stopped to work and raises UnicodeDecodeError. -> Fix it by adjusting git_lsfiles to collect filenames as UTF-8 encoded strings instead of unicode.
-
- 08 Nov, 2021 4 commits
-
-
Kirill Smelkov authored
Fix last-minute error that crept in during kirr/wendelin.core@4af54da9 : (neo) (z-dev) (g.env) kirr@deca:~/src/neo/src/lab.nexedi.com/nexedi/wendelin.core/wcfs$ go test # lab.nexedi.com/nexedi/wendelin.core/wcfs ./wcfs.go:957:4: Errorf format %s has arg sk of wrong type *lab.nexedi.com/nexedi/wendelin.core/wcfs.FileSock Amends 4430de41.
-
Kirill Smelkov authored
Add two functions, that were developed during wendelin.core 2 α, to the package for completeness: - map_zero_into_ro complements map_zero_ro, but mmaps into user-provided buffer. - sync calls msync on the provided memory.
-
Kirill Smelkov authored
Remove outdated TODO because test_wcfs_watch_before_create passes this days. It was fixed after ΔFtail was taught about epochs and the fix was reflected in kirr/wendelin.core@63ae8326. Amends 10f7153a.
-
Kirill Smelkov authored
Fix how unpatched ZODB4 is reported to lack required patch: Before: Traceback (most recent call last): File "/home/kirr/src/wendelin/wendelin.core/lib/tests/test_zodb.py", line 251, in test_zconn_at assert zconn_at(conn1) == at0 File "/home/kirr/src/wendelin/wendelin.core/lib/zodb.py", line 162, in zconn_at assert 'conn:MVCC-via-loadBefore-only' in ZODB.nxd_patches, \ AttributeError: 'module' object has no attribute 'nxd_patches' After: Traceback (most recent call last): File "/home/kirr/src/wendelin/wendelin.core/lib/tests/test_zodb.py", line 251, in test_zconn_at assert zconn_at(conn1) == at0 File "/home/kirr/src/wendelin/wendelin.core/lib/zodb.py", line 163, in zconn_at "ZODB!1") File "/home/kirr/src/wendelin/wendelin.core/lib/zodb.py", line 191, in _zassertHasNXDPatch (zmajor, patch, details_link)) AssertionError: ZODB4 is not patched with required Nexedi patch 'conn:MVCC-via-loadBefore-only' See ZODB!1 for details Fixes 1f866c00 (lib/zodb: Teach zconn_at to work on ZODB4).
-
- 28 Oct, 2021 17 commits
-
-
Kirill Smelkov authored
It is not possible for WCFS to access data of in-RAM storage of another process. But without explicit explanation the error message is confusing - it was something like: NotImplementedError: don't know how to extract zurl from <ZODB.MappingStorage.MappingStorage object at 0x7f28f04cea10> which suggests it was just not implemented.
-
Kirill Smelkov authored
By using WCFS as mmap-overlay for base data(*). WCFS-mode is still opt-in with default remaining to use old full user-space virtual memory manager mode as initially introduced in 2015. Wendelin.core should be draftly usable in WCFS mode now. This patch is organized as follows: - file_zodb.cpp provides mmap-overlay operations for WCFS implemented via WCFS client library. - file_zodb.py is adjusted accordingly to use WCFS if requested. Low-level things specific to gluing to file_zodb.cpp are moved to _file_zodb.pyx. - the rest of the changes are drive-by by main ones. (*) see the following patches for what is mmap-overlay: - fae045cc (bigfile/virtmem: Introduce "mmap overlay" mode) - 23362204 (bigfile/py: Allow PyBigFile backend to expose "mmap overlay" functionality) Some preliminary history: 01916f09 X Draft demo that reading data through wcfs works fd58082a X Fix build on old GCC f622e751 X tests: Stop wcfs spawned during tests f118617b X tests: Don't try to stop wcfs that is already exited
-
Kirill Smelkov authored
Provide integration with virtmem, so that WCFS Mapping can be associated and managed under virtmem VMA. In other words provide support so that WCFS can be used as ZBigFile backend in "mmap overlay" mode (see fae045cc "bigfile/virtmem: Introduce "mmap overlay" mode" for description of mmap-overlay mode). We'll need this functionality for ZBigFile + WCFS client integration. Virtmem integration will be tested via running whole wendelin.core functional testsuite in wcfs-mode after the next patch. Quoting added description: ---- 8< ---- Integration with wendelin.core virtmem layer ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This client package can be used standalone, but additionally provides integration with wendelin.core userspace virtual memory manager: when a Mapping is created, it can be associated as serving base layer for a particular virtmem VMA via FileH.mmap(vma=...). In that case, since virtmem itself adds another layer of dirty pages over read-only base provided by Mapping(+) ┌──┐ ┌──┐ │RW│ │RW│ ← virtmem VMA dirty pages └──┘ └──┘ + VMA base = X@at view provided by Mapping: ___ /@revA/bigfile/X __ /@revB/bigfile/X _ /@revC/bigfile/X + ... ─── ───── ────────────────────────── ───── /head/bigfile/X the Mapping will interact with virtmem layer to coordinate updates to mapping virtual memory. How it works ~~~~~~~~~~~~ Wcfs client integrates with virtmem layer to support virtmem handle dirtying pages of read-only base-layer that wcfs client provides via isolated Mapping. For wcfs-backed bigfiles every virtmem VMA is interlinked with Mapping: VMA -> BigFileH -> ZBigFile -----> Z ↑↓ O Mapping -> FileH -> wcfs server --> DB When a page is write-accessed, virtmem mmaps in a page of RAM in place of accessed virtual memory, copies base-layer content provided by Mapping into there, and marks that page as read-write. Upon receiving pin message, the pinner consults virtmem, whether corresponding page was already dirtied in virtmem's BigFileH (call to __fileh_page_isdirty), and if it was, the pinner does not remmap Mapping part to wcfs/@revX/f and just leaves dirty page in its place, remembering pin information in fileh._pinned. Once dirty pages are no longer needed (either after discard/abort or writeout/commit), virtmem asks wcfs client to remmap corresponding regions of Mapping in its place again via calls to Mapping.remmap_blk for previously dirtied blocks. The scheme outlined above does not need to split Mapping upon dirtying an inner page. See bigfile_ops interface (wendelin/bigfile/file.h) that explains base-layer and overlaying from virtmem point of view. For wcfs this interface is provided by small wcfs client wrapper in bigfile/file_zodb.cpp. (+) see bigfile_ops interface (wendelin/bigfile/file.h) that gives virtmem point of view on layering. ---------------------------------------- Some preliminary history: kirr/wendelin.core@f330bd2f X wcfs/client: Overview += interaction with virtmem layer
-
Kirill Smelkov authored
For ZBigFile + WCFS client integration we'll need to open WCFS connections that observer database at the same state as current ZODB connection. Later that WCFS connection needs to adjust its on-WCFS view in accordance to how ZODB connection adjusts its one. Wczsync provides a function to do so: pywconnOf(zconn) will open WCFS connection and maintain it in sync with ZODB connection zconn. Some preliminary history: kirr/wendelin.core@8bf8f23b X bigfile/_file_zodb: Fix logic around ZSync usage kirr/wendelin.core@571cb737 fixup! X bigfile/_file_zodb: Fix logic around ZSync usage kirr/wendelin.core@a9a82d5a X bigfile/_file_zodb: Fix ZSync to close not only wconn, but also wconn.wc through which wconn was created kirr/wendelin.core@cf92937f X wcfs: Move wconn<->zconn sync functionality into wcfs.client._wczsync kirr/wendelin.core@7203d7ab X wcfs: Fix ZSync to close wconn on zdb.close, even if zconn stays alive
-
Kirill Smelkov authored
In 3bd82127 (lib/zodb: Add zconn_at draft (ZODB5 only)) we added zconn_at function to find out as of which state a ZODB connection is viewing the database. That was ZODB5-only however. Let's add support for ZODB4 now - by requiring ZODB4-wc2 - a version of ZODB4 with MVCC backported from ZODB5: ZODB!1 This makes wendelin.core to work on either ZODB5 or ZODB4-wc2, but not plain ZODB4. However as zconn_at will be used only for WCFS-integration, non-wcfs mode will continue to work on all ZODB5, ZODB4-wc2 and plain ZODB4. ZBigFile + WCFS client integration will use zconn_at to open WCFS connection that corresponds to ZODB connection. Preliminary history: kirr/wendelin.core@1c3b7750 X zconn_at for ZODB4
-
Kirill Smelkov authored
Add patch to ZODB.Connection to support callback on after database is closed. ZBigFile + WCFS client integration will use this callback to close WCFS connection when corresponding ZODB.DB is closed. Preliminary history: kirr/wendelin.core@a26d9659 X lib/zodb: Connection += onShutdownCallback
-
Kirill Smelkov authored
In 959ae2d0 (lib/zodb: Add patch to ZODB.Connection to support callback on connection DB view change) we added patch for ZODB.Connection to support callback when database view of the connection changes. At that time the patch was working for ZODB5 and ZODB4 was TODO. Let's add support for ZODB4 (both ZODB4 and ZODB4-wc2) now. As a reminder: ZBigFile + WCFS client integration will use this callback to keep WCFS connection in sync with ZODB connection. Preliminary history: kirr/wendelin.core@533a4cfa X onResyncCallback for ZODB4
-
Kirill Smelkov authored
This patch logically continues previous change `bigfile/virtmem: Introduce "mmap overlay" mode` and exposes mmap-overlay functionality to Python: if PyBigFile backend provides .blkmmapper PyCapsule the mmap-related methods will be extracted from it and passed on through to virtmem - see _bigfile.h for details. ZBigFile will use this to hook into using WCFS.
-
Kirill Smelkov authored
with the intention to later use WCFS through it. Before this patch virtmem had only one mode: a BigFile backend was providing loadblk and storeblk methods, and on every block access loadblk was called to load block data into allocated RAM page. However with WCFS virtmem won't be needed to do anything to load data - because loading from head/bigfile/f mmaped through OS will be handled by OS directly. Thus for wcfs, that leaves virtmem only to handle dirtying and writeout. -> Introduce "mmap overlay" mode into virtmem to handle WCFS-like BigFile backends - that can provide read-only base layer suitable for mmapping. This patch is organized as follows: - fileh_open is added flags argument to indicate which mode to use for opened fileh. BigFileH is added .mmap_overlay bitfield correspondingly. (virtmem.h) - struct bigfile_ops is extended with 3 optional methods that a BigFile backend might provide to support mmap-overlay mode: * mmap_setup_read, * remmap_blk_read, and * munmap (see file.h changes for documentation of this new interface) - if opened with MMAP_OVERLAY flag, virtmem is using those methods to organize VMA views backed by read-only base mmap layer and writeout for such VMAs (virtmem.c) - a test is added to exercise MMAP_OVERLAY virtmem mode (test_virtmem.c) - everything else, including bigfile.py, is switched to use DONT_MMAP_OVERLAY unconditionally for now. In internal comments inside virtmem new mode is interchangeable called "mmap overlay" and "wcfs", even though wcfs is not hooked to be used mmap-overlaying yet. Some preliminary history: kirr/wendelin.core@fb6932a2 X Split PAGE_LOADED -> PAGE_LOADED, PAGE_LOADED_FOR_WRITE kirr/wendelin.core@4a20a573 X Settled on what should happen after writeout for wcfs case kirr/wendelin.core@f084ff9b X Transition to all VMA under 1 fileh to be either all based on wcfs or all based on !wcfs
-
Kirill Smelkov authored
This patch follows-up on previous patch, that added server-side part of isolation protocol handling, and adds client package that takes care about WCFS isolation protocol details and provides to clients simple interface to isolated view of bigfile data on WCFS similar to regular files: given a particular revision of database @at, it provides synthetic read-only bigfile memory mappings with data corresponding to @at state, but using /head/bigfile/* most of the time to build and maintain the mappings. The patch is organized as follows: - wcfs.h and wcfs.cpp brings in usage documentation, internal overview and the main part of the implementation. - wcfs/client/client_test.py is tests. - The rest of the changes in wcfs/client/ are to support the implementation and tests. Quoting package documentation for the reference: ---- 8< ---- Package wcfs provides WCFS client. This client package takes care about WCFS isolation protocol details and provides to clients simple interface to isolated view of bigfile data on WCFS similar to regular files: given a particular revision of database @at, it provides synthetic read-only bigfile memory mappings with data corresponding to @at state, but using /head/bigfile/* most of the time to build and maintain the mappings. For its data a mapping to bigfile X mostly reuses kernel cache for /head/bigfile/X with amount of data not associated with kernel cache for /head/bigfile/X being proportional to δ(bigfile/X, at..head). In the usual case where many client workers simultaneously serve requests, their database views are a bit outdated, but close to head, which means that in practice the kernel cache for /head/bigfile/* is being used almost 100% of the time. A mapping for bigfile X@at is built from OS-level memory mappings of on-WCFS files as follows: ___ /@revA/bigfile/X __ /@revB/bigfile/X _ /@revC/bigfile/X + ... ─── ───── ────────────────────────── ───── /head/bigfile/X where @revR mmaps are being dynamically added/removed by this client package to maintain X@at data view according to WCFS isolation protocol(*). API overview - `WCFS` represents filesystem-level connection to wcfs server. - `Conn` represents logical connection that provides view of data on wcfs filesystem as of particular database state. - `FileH` represent isolated file view under Conn. - `Mapping` represents one memory mapping of FileH. A path from WCFS to Mapping is as follows: WCFS.connect(at) -> Conn Conn.open(foid) -> FileH FileH.mmap([blk_start +blk_len)) -> Mapping A connection can be resynced to another database view via Conn.resync(at'). Documentation for classes provides more thorough overview and API details. -------- (*) see wcfs.go documentation for WCFS isolation protocol overview and details. . Wcfs client organization ~~~~~~~~~~~~~~~~~~~~~~~~ Wcfs client provides to its users isolated bigfile views backed by data on WCFS filesystem. In the absence of Isolation property, wcfs client would reduce to just directly using OS-level file wcfs/head/f for a bigfile f. On the other hand there is a simple, but inefficient, way to support isolation: for @at database view of bigfile f - directly use OS-level file wcfs/@at/f. The latter works, but is very inefficient because OS-cache for f data is not shared in between two connections with @at1 and @at2 views. The cache is also lost when connection view of the database is resynced on transaction boundary. To support isolation efficiently, wcfs client uses wcfs/head/f most of the time, but injects wcfs/@revX/f parts into mappings to maintain f@at view driven by pin messages that wcfs server sends to client in accordance to WCFS isolation protocol(*). Wcfs server sends pin messages synchronously triggered by access to mmaped memory. That means that a client thread, that is accessing wcfs/head/f mmap, is completely blocked while wcfs server sends pins and waits to receive acks from all clients. In other words on-client handling of pins has to be done in separate thread, because wcfs server can also send pins to client that triggered the access. Wcfs client implements pins handling in so-called "pinner" thread(+). The pinner thread receives pin requests from wcfs server via watchlink handle opened through wcfs/head/watch. For every pin request the pinner finds corresponding Mappings and injects wcfs/@revX/f parts via Mapping._remmapblk appropriately. The same watchlink handle is used to send client-originated requests to wcfs server. The requests are sent to tell wcfs that client wants to observe a particular bigfile as of particular revision, or to stop watching it. Such requests originate from regular client threads - not pinner - via entry points like Conn.open, Conn.resync and FileH.close. Every FileH maintains fileh._pinned {} with currently pinned blk -> rev. This dict is updated by pinner driven by pin messages, and is used when new fileh Mapping is created (FileH.mmap). In wendelin.core a bigfile has semantic that it is infinite in size and reads as all zeros beyond region initialized with data. Memory-mapping of OS-level files can also go beyond file size, however accessing memory corresponding to file region after file.size triggers SIGBUS. To preserve wendelin.core semantic wcfs client mmaps-in zeros for Mapping regions after wcfs/head/f.size. For simplicity it is assumed that bigfiles only grow and never shrink. It is indeed currently so, but will have to be revisited if/when wendelin.core adds bigfile truncation. Wcfs client restats wcfs/head/f at every transaction boundary (Conn.resync) and remembers f.size in FileH._headfsize for use during one transaction(%). -------- (*) see wcfs.go documentation for WCFS isolation protocol overview and details. (+) currently, for simplicity, there is one pinner thread for each connection. In the future, for efficiency, it might be reworked to be one pinner thread that serves all connections simultaneously. (%) see _headWait comments on how this has to be reworked. Wcfs client locking organization Wcfs client needs to synchronize regular user threads vs each other and vs pinner. A major lock Conn.atMu protects updates to changes to Conn's view of the database. Whenever atMu.W is taken - Conn.at is changing (Conn.resync), and contrary whenever atMu.R is taken - Conn.at is stable (roughly speaking Conn.resync is not running). Similarly to wcfs.go(*) several locks that protect internal data structures are minor to Conn.atMu - they need to be taken only under atMu.R (to synchronize e.g. multiple fileh open running simultaneously), but do not need to be taken at all if atMu.W is taken. In data structures such locks are noted as follows sync::Mutex xMu; // atMu.W | atMu.R + xMu After atMu, Conn.filehMu protects registry of opened file handles (Conn._filehTab), and FileH.mmapMu protects registry of created Mappings (FileH.mmaps) and FileH.pinned. Several locks are RWMutex instead of just Mutex not only to allow more concurrency, but, in the first place for correctness: pinner thread being core element in handling WCFS isolation protocol, is effectively invoked synchronously from other threads via messages coming through wcfs server. For example Conn.resync sends watch request to wcfs server and waits for the answer. Wcfs server, in turn, might send corresponding pin messages to the pinner and _wait_ for the answer before answering to resync: - - - - - - | .···|·····. ----> = request pinner <------.↓ <···· = response | | wcfs resync -------^↓ | `····|····· - - - - - - client process This creates the necessity to use RWMutex for locks that pinner and other parts of the code could be using at the same time in synchronous scenarios similar to the above. This locks are: - Conn.atMu - Conn.filehMu Note that FileH.mmapMu is regular - not RW - mutex, since nothing in wcfs client calls into wcfs server via watchlink with mmapMu held. The ordering of locks is: Conn.atMu > Conn.filehMu > FileH.mmapMu The pinner takes the following locks: - wconn.atMu.R - wconn.filehMu.R - fileh.mmapMu (to read .mmaps + write .pinned) (*) see "Wcfs locking organization" in wcfs.go Handling of fork When a process calls fork, OS copies its memory and creates child process with only 1 thread. That child inherits file descriptors and memory mappings from parent. To correctly continue using Conn, FileH and Mappings, the child must recreate pinner thread and reconnect to wcfs via reopened watchlink. The reason here is that without reconnection - by using watchlink file descriptor inherited from parent - the child would interfere into parent-wcfs exchange and neither parent nor child could continue normal protocol communication with WCFS. For simplicity, since fork is seldomly used for things besides followup exec, wcfs client currently takes straightforward approach by disabling mappings and detaching from WCFS server in the child right after fork. This ensures that there is no interference into parent-wcfs exchange should child decide not to exec and to continue running in the forked thread. Without this protection the interference might come even automatically via e.g. Python GC -> PyFileH.__del__ -> FileH.close -> message to WCFS. ---------------------------------------- Some preliminary history: kirr/wendelin.core@a8fa9178 X wcfs: move client tests into client/ kirr/wendelin.core@990afac1 X wcfs/client: Package overview (draft) kirr/wendelin.core@3f83469c X wcfs: client: Handle fork kirr/wendelin.core@0ed6b8b6 fixup! X wcfs: client: Handle fork kirr/wendelin.core@24378c46 X wcfs: client: Provide Conn.at()
-
Kirill Smelkov authored
Via custom isolation protocol that both server and clients must cooperatively follow. This is the core change that enables file cache to be practically shared while each client can still be provided with isolated view of the database. This patch brings only server changes, tests + the minimum client bits to support the tests. The client library, that will implement isolation protocol on client side, will come next. This patch is organized as follows: - wcfs.go brings in description of the protocol, overview of how server implements that protocol and the implementation itself. See also notes.txt - wcfs_test.py brings in tests for server implementation. tWCFS._abort_ontimeout had to be moved into nogil mode into wcfs_test.pyx to avoid deadlock on the GIL (see comments in wcfs_test.pyx for details). - files added in wcfs/client/ are needed to provide client-side implementation of WatchLink - the message exchange protocol over opened head/watch file - for tests. Client-side watchlink implementation lives in wcfs/client/wcfs_watchlink.{h,cpp}. The other additions in wcfs/client/ are to support that and to expose the WatchLink to Python. Client-side bits are done right in C++ because upcoming WCFS client library will be implemented in C++ to work in nogil mode in order to avoid deadlock on the GIL because client-side pinner thread might be woken-up synchronously by WCFS server at any moment, including when another client thread already holds the GIL and is paused by WCFS. Some preliminary history: kirr/wendelin.core@9b4a42a3 X invalidation design draftly settled kirr/wendelin.core@27d91d47 X δFtail settled kirr/wendelin.core@c27c1940 X mmap over under pagefault to this mmapping works kirr/wendelin.core@d36b171f X ptrace when client is under pagefault or syscall won't work kirr/wendelin.core@c1f5bb19 X notes on why lazy-invalidate approach was taken kirr/wendelin.core@4fbdd270 X Proof that that it is possible to change mmapping while under pagefault to it kirr/wendelin.core@33e0dfce X ΔTail draftly done kirr/wendelin.core@12628943 X make sure "bye" is always processed immediately - even if a handleWatch is currently blocked kirr/wendelin.core@af0a64cb X test for "bye" canceling blocked handlers kirr/wendelin.core@996dc6a8 X Fix race in test kirr/wendelin.core@43915fe9 X wcfs: Don't forbid simultaneous watch requests kirr/wendelin.core@941dc54b X wcfs: threading.Lock -> sync.Mutex kirr/wendelin.core@d75b2304 X wcfs: Move _abort_ontimeout to pyx/nogil kirr/wendelin.core@79234659 X Notes on why eagier invalidation was rejected kirr/wendelin.core@f05271b1 X Test that sysread(/head/watch) can be interrupted kirr/wendelin.core@5ba816da X restore test_wcfs_watch_robust after f05271b1. kirr/wendelin.core@4bd88564 X "Invalidation protocol" -> "Isolation protocol" kirr/wendelin.core@f7b54ca4 X avoid fmt::vsprintf (now compils again with latest pygolang@master) kirr/wendelin.core@0a8fcd9d X wcfs/client: Move EOF -> pygolang kirr/wendelin.core@153e02e6 X test_wcfs_watch_setup and test_wcfs_watch_setup_ahead work again kirr/wendelin.core@17f98edc X wcfs: client: os: Factor syserr -> string into _sysErrString kirr/wendelin.core@7b0c301c X wcfs: tests: Fix tFile.assertBlk not to segfault on a test failure kirr/wendelin.core@b74dda09 X Start switching Track from Track(key) to Track(keycov) kirr/wendelin.core@8b5d8523 X Move tracking of which blocks were accessed from wcfs to ΔFtail
-
Kirill Smelkov authored
Use ΔFtail.Track on every READ, and query accumulated ΔFtail upon receiving ZODB invalidation to query it about which blocks of which files have been changed. Then invalidate those blocks in OS file cache. See added documentation to wcfs.go and notes.txt for details. Now the filesystem is no longer stale: it provides view of data that is uptodate wrt changes on ZODB storage. Some preliminary history: kirr/wendelin.core@9b4a42a3 X invalidation design draftly settled kirr/wendelin.core@27d91d47 X δFtail settled kirr/wendelin.core@33e0dfce X ΔTail draftly done kirr/wendelin.core@822366a7 X keeping fd to root opened prevents the filesystem from being unmounted kirr/wendelin.core@89ad3a79 X Don't keep ZBigFile activated during whole current transaction kirr/wendelin.core@245511ac X Give pointer on from where to get nxd-fuse.ko kirr/wendelin.core@d1cd128c X Hit FUSE-related deadlock kirr/wendelin.core@d134ee44 X FUSE lookup deadlock should be hopefully fixed kirr/wendelin.core@0e60e9ff X wcfs: Don't noise ZWatcher trace logs with "select ..." kirr/wendelin.core@bf9a7405 X No longer rely on ZODB cache invariant for invalidations
-
Kirill Smelkov authored
FileSock is bidirectional channel associated with opened file. FileSock provides streaming write/read operations for filesystem server that are correspondingly matched with read/write operations on filesystem user side. WCFS will use FileSock to implement exchange over .wcfs/zhead and, later, head/watch files. Some preliminary history: b17aeb8c X Change FileSock to use xio.Pipe which is io.Pipe + support for IO cancellation
-
Kirill Smelkov authored
ΔFtail builds on ΔBtail and provides ZBigFile-level history that WCFS will use to compute which blocks of a ZBigFile need to be invalidated in OS file cache given raw ZODB changes on ZODB invalidation message. It also will be used by WCFS to implement isolation protocol, where on every FUSE READ request WCFS will query ΔFtail to find out revision of corresponding file block. Quoting ΔFtail documentation: ---- 8< ---- ΔFtail provides ZBigFile-level history tail. It translates ZODB object-level changes to information about which blocks of which ZBigFile were modified, and provides service to query that information. ΔFtail class documentation ~~~~~~~~~~~~~~~~~~~~~~~~~~ ΔFtail represents tail of revisional changes to files. It semantically consists of []δF ; rev ∈ (tail, head] where δF represents a change in files space δF: .rev↑ {} file -> {}blk | EPOCH Only files and blocks explicitly requested to be tracked are guaranteed to be present. In particular a block that was not explicitly requested to be tracked, even if it was changed in δZ, is not guaranteed to be present in δF. After file epoch (file creation, deletion, or any other change to file object) previous track requests for that file become forgotten and have no further effect. ΔFtail provides the following operations: .Track(file, blk, path, zblk) - add file and block reached via BTree path to tracked set. .Update(δZ) -> δF - update files δ tail given raw ZODB changes .ForgetPast(revCut) - forget changes ≤ revCut .SliceByRev(lo, hi) -> []δF - query for all files changes with rev ∈ (lo, hi] .SliceByFileRev(file, lo, hi) -> []δfile - query for changes of a file with rev ∈ (lo, hi] .BlkRevAt(file, #blk, at) -> blkrev - query for what is last revision that changed file[#blk] as of @at database state. where δfile represents a change to one file δfile: .rev↑ {}blk | EPOCH See also zodb.ΔTail and xbtree.ΔBtail Concurrency ΔFtail is safe to use in single-writer / multiple-readers mode. That is at any time there should be either only sole writer, or, potentially several simultaneous readers. The table below classifies operations: Writers: Update, ForgetPast Readers: Track + all queries (SliceByRev, SliceByFileRev, BlkRevAt) Note that, in particular, it is correct to run multiple Track and queries requests simultaneously. ΔFtail organization ~~~~~~~~~~~~~~~~~~~ ΔFtail leverages: - ΔBtail to track changes to ZBigFile.blktab BTree, and - ΔZtail to track changes to ZBlk objects and to ZBigFile object itself. then every query merges ΔBtail and ΔZtail data on the fly to provide ZBigFile-level result. Merging on the fly, contrary to computing and maintaining vδF data, is done to avoid complexity of recomputing vδF when tracking set changes. Most of ΔFtail complexity is, thus, located in ΔBtail, which implements BTree diff and handles complexity of recomputing vδB when set of tracked blocks changes after new track requests. Changes to ZBigFile object indicate epochs. Epochs could be: - file creation or deletion, - change of ZBigFile.blksize, - change of ZBigFile.blktab to point to another BTree. Epochs represent major changes to file history where file is assumed to change so dramatically, that practically it can be considered to be a "whole" change. In particular, WCFS, upon seeing a ZBigFile epoch, invalidates all data in corresponding OS-level cache for the file. The only historical data, that ΔFtail maintains by itself, is history of epochs. That history does not need to be recomputed when more blocks become tracked and is thus easy to maintain. It also can be maintained only in ΔFtail because ΔBtail and ΔZtail does not "know" anything about ZBigFile. Concurrency In order to allow multiple Track and queries requests to be served in parallel, ΔFtail bases its concurrency promise on ΔBtail guarantees + snapshot-style access for vδE and ztrackInBlk in queries: 1. Track calls ΔBtail.Track and quickly updates .byFile, .byRoot and _RootTrack indices under a lock. 2. BlkRevAt queries ΔBtail.GetAt and then combines retrieved information about zblk with vδE and δZ. 3. SliceByFileRev queries ΔBtail.SliceByRootRev and then merges retrieved vδT data with vδZ, vδE and ztrackInBlk. 4. In queries vδE is retrieved/built in snapshot style similarly to how vδT is built in ΔBtail. Note that vδE needs to be built only the first time, and does not need to be further rebuilt, so the logic in ΔFtail is simpler compared to ΔBtail. 5. for ztrackInBlk - that is used by SliceByFileRev query - an atomic snapshot is retrieved for objects of interest. This allows to hold δFtail.mu lock for relatively brief time without blocking other parallel Track/queries requests for long. Combined this organization allows non-overlapping queries/track-requests to run simultaneously. (This property is essential to WCFS because otherwise WCFS would not be able to serve several non-overlapping READ requests to one file in parallel.) See also "Concurrency" in ΔBtail organization for more details. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Some preliminary history: ef74aebc X ΔFtail: Keep reference to ZBigFile via Oid, not via *ZBigFile bf9a7405 X No longer rely on ZODB cache invariant for invalidations 46340069 X found by Random e7b598c6 X start of ΔFtail.SliceByFileRev rework to function via merging δB and δZ histories on the fly 59c83009 X ΔFtail.SliceByFileRoot tests started to work draftly after "on-the-fly" rework 210e9b07 X Fix ΔBtail.SliceByRootRev (lo,hi] handling bf3ace66 X ΔFtail: Rebuild vδE after first track 46624787 X ΔFtail: `go test -failfast -short -v -run Random -randseed=1626793016249041295` discovered problems 786dd336 X Size no longer tracks [0,∞) since we start tracking when zfile is non-empty 4f707117 X test that shows problem of SliceByRootRev where untracked blocks are not added uniformly into whole history c0b7e4c3 X ΔFtail.SliceByFileRev: Fix untracked entries to be present uniformly in result aac37c11 X zdata: Introduce T to start removing duplication in tests bf411aa9 X zdata: Deduplicate zfile loading b74dda09 X Start switching Track from Track(key) to Track(keycov) aa0288ce X Switch SliceByRootRev to vδTSnapForTracked 588a512a X zdata: Switch SliceByFileRev not to clone Zinblk 8b5d8523 X Move tracking of which blocks were accessed from wcfs to ΔFtail 30f5ddc7 ΔFtail += .Epoch in δf 22f5f096 X Rework ΔFtail so that BlkRevAt works with ZBigFile checkout from any at ∈ (tail, head] 0853cc9f X ΔFtail + tests 124688f9 X ΔFtail fixes d85bb82c ΔFtail concurrency
-
Kirill Smelkov authored
ΔBtail provides BTree-level history tail that WCFS - via ΔFtail - will use to compute which blocks of a ZBigFile need to be invalidated in OS file cache given raw ZODB changes on ZODB invalidation message. It also will be used by WCFS to implement isolation protocol, where on every FUSE READ request WCFS will query ΔBtail - again via ΔFtail - to find out revision of corresponding file block. Quoting ΔBtail documentation: ---- 8< ---- ΔBtail provides BTree-level history tail. It translates ZODB object-level changes to information about which keys of which BTree were modified, and provides service to query that information. ΔBtail class documentation ~~~~~~~~~~~~~~~~~~~~~~~~~~ ΔBtail represents tail of revisional changes to BTrees. It semantically consists of []δB ; rev ∈ (tail, head] where δB represents a change in BTrees space δB: .rev↑ {} root -> {}(key, δvalue) It covers only changes to keys from tracked subset of BTrees parts. In particular a key that was not explicitly requested to be tracked, even if it was changed in δZ, is not guaranteed to be present in δB. ΔBtail provides the following operations: .Track(path) - start tracking tree nodes and keys; root=path[0], keys=path[-1].(lo,hi] .Update(δZ) -> δB - update BTree δ tail given raw ZODB changes .ForgetPast(revCut) - forget changes ≤ revCut .SliceByRev(lo, hi) -> []δB - query for all trees changes with rev ∈ (lo, hi] .SliceByRootRev(root, lo, hi) -> []δT - query for changes of a tree with rev ∈ (lo, hi] .GetAt(root, key, at) -> (value, rev) - get root[key] @at assuming root[key] ∈ tracked where δT represents a change to one tree δT: .rev↑ {}(key, δvalue) An example for tracked set is a set of visited BTree paths. There is no requirement that tracked set belongs to only one single BTree. See also zodb.ΔTail and zdata.ΔFtail Concurrency ΔBtail is safe to use in single-writer / multiple-readers mode. That is at any time there should be either only sole writer, or, potentially several simultaneous readers. The table below classifies operations: Writers: Update, ForgetPast Readers: Track + all queries (SliceByRev, SliceByRootRev, GetAt) Note that, in particular, it is correct to run multiple Track and queries requests simultaneously. ΔBtail organization ~~~~~~~~~~~~~~~~~~~ ΔBtail keeps raw ZODB history in ΔZtail and uses BTree-diff algorithm(*) to turn δZ into BTree-level diff. For each tracked BTree a separate ΔTtail is maintained with tree-level history in ΔTtail.vδT . Because it is very computationally expensive(+) to find out for an object to which BTree it belongs, ΔBtail cannot provide full BTree-level history given just ΔZtail with δZ changes. Due to this ΔBtail requires help from users, which are expected to call ΔBtail.Track(treepath) to let ΔBtail know that such and such ZODB objects constitute a path from root of a tree to some of its leaf. After Track call the objects from the path and tree keys, that are covered by leaf node, become tracked: from now-on ΔBtail will detect and provide BTree-level changes caused by any change of tracked tree objects or tracked keys. This guarantee can be provided because ΔBtail now knows that such and such objects belong to a particular tree. To manage knowledge which tree part is tracked ΔBtail uses PPTreeSubSet. This data-structure represents so-called PP-connected set of tree nodes: simply speaking it builds on some leafs and then includes parent(leaf), parent(parent(leaf)), etc. In other words it's a "parent"-closure of the leafs. The property of being PP-connected means that starting from any node from such set, it is always possible to reach root node by traversing .parent links, and that every intermediate node went-through during traversal also belongs to the set. A new Track request potentially grows tracked keys coverage. Due to this, on a query, ΔBtail needs to recompute potentially whole vδT of the affected tree. This recomputation is managed by "vδTSnapForTracked*" and "_rebuild" functions and uses the same treediff algorithm, that Update is using, but modulo PPTreeSubSet corresponding to δ key coverage. Update also potentially needs to rebuild whole vδT history, not only append new δT, because a change to tracked tree nodes can result in growth of tracked key coverage. Queries are relatively straightforward code that work on vδT snapshot. The main complexity, besides BTree-diff algorithm, lies in recomputing vδT when set of tracked keys changes, and in handling that recomputation in such a way that multiple Track and queries requests could be all served in parallel. Concurrency In order to allow multiple Track and queries requests to be served in parallel ΔBtail employs special organization of vδT rebuild process where complexity of concurrency is reduced to math on merging updates to vδT and trackSet, and on key range lookup: 1. vδT is managed under read-copy-update (RCU) discipline: before making any vδT change the mutator atomically clones whole vδT and applies its change to the clone. This way a query, once it retrieves vδT snapshot, does not need to further synchronize with vδT mutators, and can rely on that retrieved vδT snapshot will remain immutable. 2. a Track request goes through 3 states: "new", "handle-in-progress" and "handled". At each state keys/nodes of the Track are maintained in: - ΔTtail.ktrackNew and .trackNew for "new", - ΔTtail.krebuildJobs for "handle-in-progress", and - ΔBtail.trackSet for "handled". trackSet keeps nodes, and implicitly keys, from all handled Track requests. For all keys, covered by trackSet, vδT is fully computed. a new Track(keycov, path) is remembered in ktrackNew and trackNew to be further processed when a query should need keys from keycov. vδT is not yet providing data for keycov keys. when a Track request starts to be processed, its keys and nodes are moved from ktrackNew/trackNew into krebuildJobs. vδT is not yet providing data for requested-to-be-tracked keys. all trackSet, trackNew/ktrackNew and krebuildJobs are completely disjoint: trackSet ^ trackNew = ø trackSet ^ krebuildJobs = ø trackNew ^ krebuildJobs = ø 3. when a query is served, it needs to retrieve vδT snapshot that takes related previous Track requests into account. Retrieving such snapshots is implemented in vδTSnapForTracked*() family of functions: there it checks ktrackNew/trackNew, and if those sets overlap with query's keys of interest, run vδT rebuild for keys queued in ktrackNew. the main part of that rebuild can be run without any locks, because it does not use nor modify any ΔBtail data, and for δ(vδT) it just computes a fresh full vδT build modulo retrieved ktrackNew. Only after that computation is complete, ΔBtail is locked again to quickly merge in δ(vδT) update back into vδT. This organization is based on the fact that vδT/(T₁∪T₂) = vδT/T₁ | vδT/T₂ ( i.e. vδT computed for tracked set being union of T₁ and T₂ is the same as merge of vδT computed for tracked set T₁ and vδT computed for tracked set T₂ ) and that trackSet | (δPP₁|δPP₂) = (trackSet|δPP₁) | (trackSet|δPP₂) ( i.e. tracking set updated for union of δPP₁ and δPP₂ is the same as union of tracking set updated with δPP₁ and tracking set updated with δPP₂ ) these merge properties allow to run computation for δ(vδT) and δ(trackSet) independently and with ΔBtail unlocked, which in turn enables running several Track/queries in parallel. 4. while vδT rebuild is being run, krebuildJobs keeps corresponding keycov entry to indicate in-progress rebuild. Should a query need vδT for keys from that job, it first waits for corresponding job(s) to complete. Explained rebuild organization allows non-overlapping queries/track-requests to run simultaneously. (This property is essential to WCFS because otherwise WCFS would not be able to serve several non-overlapping READ requests to one file in parallel.) -------- (*) implemented in treediff.go (+) full database scan ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Some preliminary history: 877e64a9 X wcfs: Fix tests to pass again c32055fc X wcfs/xbtree: ΔBtail tests += ø -> Tree; Tree -> ø 78f2f88b X wcfs/xbtree: Fix treediff(a, ø) 5324547c X wcfs/xbtree: root(a) must stay in trackSet even after treediff(a,ø) f65f775b X wcfs/xbtree: treediff(ø, b) c75b1c6f X wcfs/xbtree: Start killing holeIdx 0fa06cbd X kadj must be taken into account as kadj^δZ ef5e5183 X treediff ret += δtkeycov f30826a6 X another bug in δtkeyconv computation 0917380e X wcfs: assert that keycov only grow 502e05c2 X found why TestΔBTailAllStructs was not effective to find δtkeycov bugs 450ba707 X Fix rebuild with ø @at2 f60528c9 X ΔBtail.Clone had bug that it was aliasing klon and orig data 9d20f8e8 X treediff: Fix BUG while computing AB coverage ddb28043 X rebuild: Don't return nil for empty ΔPPTreeSubSet - that leads to SIGSEGV 324241eb X rebuild: tests: Don't reflect.DeepEqual in inner loop 8f6e2b1e X rebuild: tests: Don't access ZODB in XGetδKV 2c0b4793 X rebuild: tests: Don't access ZODB in xtrackKeys 8f0e37f2 X rebuild: tests: Precompute kadj10·kadj21 271d953d X rebuild: tests: Move ΔBtail.Clone test out of hot inner loop into separate test a87cc6de X rebuild: tests: Don't recompute trackSet(keys1R2) several times 01433e96 X rebuild: tests: Don't compute keyCover in trackSet 7371f9c5 X rebuild: tests: Inline _assertTrack 3e9164b3 X rebuild: tests: Don't exercise keys from keys2 that already became tracked after Track(keys1) + Update e9c4b619 X rebuild: tests: Random testing d0fe680a X δbtail += ForgetPast 210e9b07 X Fix ΔBtail.SliceByRootRev (lo,hi] handling 855ab4b8 X ΔBtail: Goodbye .KVAtTail 2f5582e6 X ΔBtail: Tweak tests to run faster in normal mode cf352737 X random testing found another failing test for rebuild... 7f7e34e0 X wcfs/xbtree: Fix update not to add duplicate extra point if rebuild - called by Update - already added it 6ad0052c X ΔBtail.Track: No need to return error aafcacdf X xbtree: GetAt test 784a6761 X xbtree: Fix KAdj definition after treediff was reworked this summer to base decisions on node keycoverage instead of particular node keys 0bb1c22e X xbtree: Verify that ForgetPast clones vδT on trim a8945cbf X Start reworking rebuild routines not to modify data inplace b74dda09 X Start switching Track from Track(key) to Track(keycov) dea85e87 X Switch GetAt to vδTSnapForTrackedKey aa0288ce X Switch SliceByRootRev to vδTSnapForTracked c4366b14 X xbtree: tests: Also verify state of ΔTtail.ktrackNew b98706ad X Track should be nop if keycov/path is already in krebuildJobs e141848a X test.go ↑ timeout 10m -> 20m 423f77be X wcfs: Goodby holeIdx 37c2e806 X wcfs: Teach treediff to compute not only δtrack (set of nodes), but also δ for track-key coverage 52c72dbb X ΔBtail.rebuild started to work draftly c9f13fc7 X Get rebuild tests to run in a sane time; Add proper random-based testing for rebuild c7f1e3c9 X xbtree: Factor testing infrastructure bits into xbtree/xbtreetest 7602c1f4 ΔBtail concurrency
-
Kirill Smelkov authored
This algorithm will be internally used by ΔBtail in the next patch. The algorithm would be simple, if we would need to diff two trees completely. However in ΔBtail only subpart of BTree nodes are tracked(*) and the diff has to work modulo that tracking set. No tests now because ΔBtail tests will cover treediff functionality as well. Some preliminary history: kirr/wendelin.core@78f2f88b X wcfs/xbtree: Fix treediff(a, ø) kirr/wendelin.core@5324547c X wcfs/xbtree: root(a) must stay in trackSet even after treediff(a,ø) kirr/wendelin.core@f65f775b X wcfs/xbtree: treediff(ø, b) kirr/wendelin.core@c75b1c6f X wcfs/xbtree: Start killing holeIdx kirr/wendelin.core@ef5e5183 X treediff ret += δtkeycov kirr/wendelin.core@9d20f8e8 X treediff: Fix BUG while computing AB coverage kirr/wendelin.core@ddb28043 X rebuild: Don't return nil for empty ΔPPTreeSubSet - that leads to SIGSEGV kirr/wendelin.core@f68398c9 X wcfs: Move treediff into its own file (*) because full BTree scan is needed to discover all of its nodes. Quoting treediff documentation: ---- 8< ---- treediff provides diff for BTrees Use δZConnectTracked + treediff to compute BTree-diff caused by δZ: δZConnectTracked(δZ, trackSet) -> δZTC, δtopsByRoot treediff(root, δtops, δZTC, trackSet, zconn{Old,New}) -> δT, δtrack, δtkeycov δZConnectTracked computes BTree-connected closure of δZ modulo tracked set and also returns δtopsByRoot to indicate which tree objects were changed and in which subtree parts. With that information one can call treediff for each changed root to compute BTree-diff and δ for trackSet itself. BTree diff algorithm diffT, diffB and δMerge constitute the diff algorithm implementation. diff(A,B) works on pair of A and B whole key ranges splitted into regions covered by tree nodes. The splitting represents current state of recursion into corresponding tree. If a node in particular key range is Bucket, that bucket contributes to δ- in case of A, and to δ+ in case of B. If a node in particular key range is Tree, the algorithm may want to expand that tree node into its children and to recourse into some of the children. There are two phases: - Phase 1 expands A top->down driven by δZTC, adds reached buckets to δ-, and queues key regions of those buckets to be processed on B. - Phase 2 starts processing from queued key regions, expands them on B and adds reached buckets to δ+. Then it iterates to reach consistency in between A and B because processing buckets on B side may increase δ key coverage, and so corresponding key ranges has to be again processed on A. Which in turn may increase δ key coverage again, and needs to be processed on B side, etc... The final δ is merge of δ- and δ+. diffT has more detailed explanation of phase 1 and phase 2 logic.
-
Kirill Smelkov authored
This data structures will be used in ΔBtail to maintain sef of tracked BTree nodes, and to represent δ to such set. Some preliminary history: 78f2f88b X wcfs/xbtree: Fix treediff(a, ø) 5324547c X wcfs/xbtree: root(a) must stay in trackSet even after treediff(a,ø) f65f775b X wcfs/xbtree: treediff(ø, b) 66bc41ce X Fix bug in PPTreeSubSet.Difference - it was always leaving root node alive ddb28043 X rebuild: Don't return nil for empty ΔPPTreeSubSet - that leads to SIGSEGV a87cc6de X rebuild: tests: Don't recompute trackSet(keys1R2) several times Quoting PPTreeSubSet and ΔPPTreeSubSet documentation: ---- 8< ---- PPTreeSubSet represents PP-connected subset of tree node objects. It is PP(xleafs) where PP(node) maps node to {node, node.parent, node.parent,parent, ...} up to top root from where the node is reached. The nodes in the set are represented by their Oid. Usually PPTreeSubSet is built as PP(some-leafs), but in general the starting nodes are arbitrary. PPTreeSubSet can also have many root nodes, thus not necessarily representing a subset of a single tree. Usual set operations are provided: Union, Difference and Intersection. Nodes can be added into the set via AddPath. Path is reverse operation - it returns path to tree node given its oid. Every node in the set comes with .parent pointer. ~~~~ ΔPPTreeSubSet represents a change to PPTreeSubSet. It can be applied via PPTreeSubSet.ApplyΔ . The result B of applying δ to A is: B = A.xDifference(δ.Del).xUnion(δ.Add) (*) (*) NOTE δ.Del and δ.Add might have their leafs starting from non-leaf nodes in A/B. This situation arises when δ represents a change in path to particular node, but that node itself does not change, for example: c* c / \ / 41* 42 41 | | | \ 22 43 46 43 | | | 44 22 44 Here nodes {c, 41} are changed, node 42 is unlinked, and node 46 is added. Nodes 43 and 44 stay unchanged. δ.Del = c-42-43 | c-41-22 δ.Add = c-41-43 | c-41-46-22 The second component with "-22" builds from leaf, but the first component with "-43" builds from non-leaf node. ΔnchildNonLeafs = {43: +1} Only complete result of applying all - xfixup(-1, ΔnchildNonLeafs) - δ.Del, - δ.Add, and - xfixup(+1, ΔnchildNonLeafs) produces correctly PP-connected set.
-