e1000_hw.c 184 KB
Newer Older
1 2 3
/*******************************************************************************

  
4
  Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
5
  
Scott Feldman's avatar
Scott Feldman committed
6 7 8 9
  This program is free software; you can redistribute it and/or modify it 
  under the terms of the GNU General Public License as published by the Free 
  Software Foundation; either version 2 of the License, or (at your option) 
  any later version.
10
  
Scott Feldman's avatar
Scott Feldman committed
11 12 13 14
  This program is distributed in the hope that it will be useful, but WITHOUT 
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
  more details.
15
  
Scott Feldman's avatar
Scott Feldman committed
16 17 18
  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc., 59 
  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19
  
Scott Feldman's avatar
Scott Feldman committed
20 21
  The full GNU General Public License is included in this distribution in the
  file called LICENSE.
22
  
Scott Feldman's avatar
Scott Feldman committed
23 24 25
  Contact Information:
  Linux NICS <linux.nics@intel.com>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 27 28 29 30 31 32 33 34

*******************************************************************************/

/* e1000_hw.c
 * Shared functions for accessing and configuring the MAC
 */

#include "e1000_hw.h"

35 36
static int32_t e1000_set_phy_type(struct e1000_hw *hw);
static void e1000_phy_init_script(struct e1000_hw *hw);
37
static int32_t e1000_setup_copper_link(struct e1000_hw *hw);
38 39
static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
40 41 42 43
static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw);
static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw);
static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
44 45
static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
                                     uint16_t count);
46 47
static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw);
static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw);
48 49 50 51 52 53
static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset,
                                      uint16_t words, uint16_t *data);
static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw,
                                            uint16_t offset, uint16_t words,
                                            uint16_t *data);
static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
54 55
static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
56 57
static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data,
                                    uint16_t count);
58 59 60 61
static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
                                      uint16_t phy_data);
static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr,
                                     uint16_t *phy_data);
62 63 64
static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count);
static int32_t e1000_acquire_eeprom(struct e1000_hw *hw);
static void e1000_release_eeprom(struct e1000_hw *hw);
Jeb J. Cramer's avatar
Jeb J. Cramer committed
65
static void e1000_standby_eeprom(struct e1000_hw *hw);
Scott Feldman's avatar
Scott Feldman committed
66
static int32_t e1000_id_led_init(struct e1000_hw * hw);
67
static int32_t e1000_set_vco_speed(struct e1000_hw *hw);
68
static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
69

70 71 72 73 74 75 76 77 78 79 80
/* IGP cable length table */
static const
uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
    { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
      5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
      25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
      40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
      60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
      90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
      100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
      110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99


/******************************************************************************
 * Set the phy type member in the hw struct.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_set_phy_type(struct e1000_hw *hw)
{
    DEBUGFUNC("e1000_set_phy_type");

    switch(hw->phy_id) {
    case M88E1000_E_PHY_ID:
    case M88E1000_I_PHY_ID:
    case M88E1011_I_PHY_ID:
        hw->phy_type = e1000_phy_m88;
        break;
    case IGP01E1000_I_PHY_ID:
100 101 102 103 104 105 106 107
        if(hw->mac_type == e1000_82541 ||
           hw->mac_type == e1000_82541_rev_2 ||
           hw->mac_type == e1000_82547 ||
           hw->mac_type == e1000_82547_rev_2) {
            hw->phy_type = e1000_phy_igp;
            break;
        }
        /* Fall Through */
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    default:
        /* Should never have loaded on this device */
        hw->phy_type = e1000_phy_undefined;
        return -E1000_ERR_PHY_TYPE;
    }

    return E1000_SUCCESS;
}

/******************************************************************************
 * IGP phy init script - initializes the GbE PHY
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
e1000_phy_init_script(struct e1000_hw *hw)
{
    DEBUGFUNC("e1000_phy_init_script");

    if(hw->phy_init_script) {
128
        msec_delay(20);
129 130 131 132 133

        e1000_write_phy_reg(hw,0x0000,0x0140);

        msec_delay(5);

134 135 136 137
        if(hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547) {
            e1000_write_phy_reg(hw, 0x1F95, 0x0001);

            e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
138

139
            e1000_write_phy_reg(hw, 0x1F79, 0x0018);
140

141
            e1000_write_phy_reg(hw, 0x1F30, 0x1600);
142

143
            e1000_write_phy_reg(hw, 0x1F31, 0x0014);
144

145
            e1000_write_phy_reg(hw, 0x1F32, 0x161C);
146

147
            e1000_write_phy_reg(hw, 0x1F94, 0x0003);
148

149
            e1000_write_phy_reg(hw, 0x1F96, 0x003F);
150

151 152 153 154
            e1000_write_phy_reg(hw, 0x2010, 0x0008);
        } else {
            e1000_write_phy_reg(hw, 0x1F73, 0x0099);
        }
155

156
        e1000_write_phy_reg(hw, 0x0000, 0x3300);
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

        if(hw->mac_type == e1000_82547) {
            uint16_t fused, fine, coarse;

            /* Move to analog registers page */
            e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);

            if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
                e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);

                fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
                coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;

                if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
                    coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
                    fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
                } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
                    fine -= IGP01E1000_ANALOG_FUSE_FINE_10;

176 177
                fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
                        (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
178 179 180
                        (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);

                e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
181
                e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
182 183 184
                                    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
            }
        }
185 186 187
    }
}

Scott Feldman's avatar
Scott Feldman committed
188 189
/******************************************************************************
 * Set the mac type member in the hw struct.
190
 *
Scott Feldman's avatar
Scott Feldman committed
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_set_mac_type(struct e1000_hw *hw)
{
    DEBUGFUNC("e1000_set_mac_type");

    switch (hw->device_id) {
    case E1000_DEV_ID_82542:
        switch (hw->revision_id) {
        case E1000_82542_2_0_REV_ID:
            hw->mac_type = e1000_82542_rev2_0;
            break;
        case E1000_82542_2_1_REV_ID:
            hw->mac_type = e1000_82542_rev2_1;
            break;
        default:
            /* Invalid 82542 revision ID */
            return -E1000_ERR_MAC_TYPE;
        }
        break;
    case E1000_DEV_ID_82543GC_FIBER:
    case E1000_DEV_ID_82543GC_COPPER:
        hw->mac_type = e1000_82543;
        break;
    case E1000_DEV_ID_82544EI_COPPER:
    case E1000_DEV_ID_82544EI_FIBER:
    case E1000_DEV_ID_82544GC_COPPER:
    case E1000_DEV_ID_82544GC_LOM:
        hw->mac_type = e1000_82544;
        break;
    case E1000_DEV_ID_82540EM:
    case E1000_DEV_ID_82540EM_LOM:
Jeb J. Cramer's avatar
Jeb J. Cramer committed
224 225 226
    case E1000_DEV_ID_82540EP:
    case E1000_DEV_ID_82540EP_LOM:
    case E1000_DEV_ID_82540EP_LP:
Scott Feldman's avatar
Scott Feldman committed
227 228 229 230 231 232
        hw->mac_type = e1000_82540;
        break;
    case E1000_DEV_ID_82545EM_COPPER:
    case E1000_DEV_ID_82545EM_FIBER:
        hw->mac_type = e1000_82545;
        break;
233 234 235 236 237
    case E1000_DEV_ID_82545GM_COPPER:
    case E1000_DEV_ID_82545GM_FIBER:
    case E1000_DEV_ID_82545GM_SERDES:
        hw->mac_type = e1000_82545_rev_3;
        break;
Scott Feldman's avatar
Scott Feldman committed
238 239
    case E1000_DEV_ID_82546EB_COPPER:
    case E1000_DEV_ID_82546EB_FIBER:
240
    case E1000_DEV_ID_82546EB_QUAD_COPPER:
Scott Feldman's avatar
Scott Feldman committed
241 242
        hw->mac_type = e1000_82546;
        break;
243 244 245 246 247
    case E1000_DEV_ID_82546GB_COPPER:
    case E1000_DEV_ID_82546GB_FIBER:
    case E1000_DEV_ID_82546GB_SERDES:
        hw->mac_type = e1000_82546_rev_3;
        break;
248
    case E1000_DEV_ID_82541EI:
249
    case E1000_DEV_ID_82541EI_MOBILE:
250 251
        hw->mac_type = e1000_82541;
        break;
252 253 254 255 256
    case E1000_DEV_ID_82541ER:
    case E1000_DEV_ID_82541GI:
    case E1000_DEV_ID_82541GI_MOBILE:
        hw->mac_type = e1000_82541_rev_2;
        break;
257 258 259
    case E1000_DEV_ID_82547EI:
        hw->mac_type = e1000_82547;
        break;
260 261 262
    case E1000_DEV_ID_82547GI:
        hw->mac_type = e1000_82547_rev_2;
        break;
Scott Feldman's avatar
Scott Feldman committed
263 264 265 266
    default:
        /* Should never have loaded on this device */
        return -E1000_ERR_MAC_TYPE;
    }
267

268 269 270 271 272 273 274 275 276 277 278
    switch(hw->mac_type) {
    case e1000_82541:
    case e1000_82547:
    case e1000_82541_rev_2:
    case e1000_82547_rev_2:
        hw->asf_firmware_present = TRUE;
        break;
    default:
        break;
    }

Scott Feldman's avatar
Scott Feldman committed
279 280
    return E1000_SUCCESS;
}
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

/*****************************************************************************
 * Set media type and TBI compatibility.
 *
 * hw - Struct containing variables accessed by shared code
 * **************************************************************************/
void
e1000_set_media_type(struct e1000_hw *hw)
{
    uint32_t status;

    DEBUGFUNC("e1000_set_media_type");

    if(hw->mac_type != e1000_82543) {
        /* tbi_compatibility is only valid on 82543 */
        hw->tbi_compatibility_en = FALSE;
    }

    switch (hw->device_id) {
    case E1000_DEV_ID_82545GM_SERDES:
    case E1000_DEV_ID_82546GB_SERDES:
        hw->media_type = e1000_media_type_internal_serdes;
        break;
    default:
        if(hw->mac_type >= e1000_82543) {
            status = E1000_READ_REG(hw, STATUS);
            if(status & E1000_STATUS_TBIMODE) {
                hw->media_type = e1000_media_type_fiber;
                /* tbi_compatibility not valid on fiber */
                hw->tbi_compatibility_en = FALSE;
            } else {
                hw->media_type = e1000_media_type_copper;
            }
        } else {
            /* This is an 82542 (fiber only) */
            hw->media_type = e1000_media_type_fiber;
        }
    }
}

321 322 323 324 325
/******************************************************************************
 * Reset the transmit and receive units; mask and clear all interrupts.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
326
int32_t
327 328 329 330 331 332
e1000_reset_hw(struct e1000_hw *hw)
{
    uint32_t ctrl;
    uint32_t ctrl_ext;
    uint32_t icr;
    uint32_t manc;
333
    uint32_t led_ctrl;
334 335

    DEBUGFUNC("e1000_reset_hw");
336

337 338
    /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
    if(hw->mac_type == e1000_82542_rev2_0) {
339 340
        DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
        e1000_pci_clear_mwi(hw);
341 342 343 344 345 346 347 348 349 350 351 352
    }

    /* Clear interrupt mask to stop board from generating interrupts */
    DEBUGOUT("Masking off all interrupts\n");
    E1000_WRITE_REG(hw, IMC, 0xffffffff);

    /* Disable the Transmit and Receive units.  Then delay to allow
     * any pending transactions to complete before we hit the MAC with
     * the global reset.
     */
    E1000_WRITE_REG(hw, RCTL, 0);
    E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
353
    E1000_WRITE_FLUSH(hw);
354 355 356 357 358 359

    /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
    hw->tbi_compatibility_on = FALSE;

    /* Delay to allow any outstanding PCI transactions to complete before
     * resetting the device
Jeb J. Cramer's avatar
Jeb J. Cramer committed
360
     */
361 362 363
    msec_delay(10);

    ctrl = E1000_READ_REG(hw, CTRL);
364

365 366 367
    /* Must reset the PHY before resetting the MAC */
    if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
        E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
368
        msec_delay(5);
369 370
    }

371 372 373 374 375 376 377
    /* Issue a global reset to the MAC.  This will reset the chip's
     * transmit, receive, DMA, and link units.  It will not effect
     * the current PCI configuration.  The global reset bit is self-
     * clearing, and should clear within a microsecond.
     */
    DEBUGOUT("Issuing a global reset to MAC\n");

Scott Feldman's avatar
Scott Feldman committed
378 379 380 381 382 383
    switch(hw->mac_type) {
        case e1000_82544:
        case e1000_82540:
        case e1000_82545:
        case e1000_82546:
        case e1000_82541:
384
        case e1000_82541_rev_2:
Scott Feldman's avatar
Scott Feldman committed
385 386 387 388
            /* These controllers can't ack the 64-bit write when issuing the
             * reset, so use IO-mapping as a workaround to issue the reset */
            E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
            break;
389 390 391 392 393
        case e1000_82545_rev_3:
        case e1000_82546_rev_3:
            /* Reset is performed on a shadow of the control register */
            E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
            break;
Scott Feldman's avatar
Scott Feldman committed
394 395 396 397
        default:
            E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
            break;
    }
398

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    /* After MAC reset, force reload of EEPROM to restore power-on settings to
     * device.  Later controllers reload the EEPROM automatically, so just wait
     * for reload to complete.
     */
    switch(hw->mac_type) {
        case e1000_82542_rev2_0:
        case e1000_82542_rev2_1:
        case e1000_82543:
        case e1000_82544:
            /* Wait for reset to complete */
            udelay(10);
            ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
            ctrl_ext |= E1000_CTRL_EXT_EE_RST;
            E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
            E1000_WRITE_FLUSH(hw);
            /* Wait for EEPROM reload */
            msec_delay(2);
            break;
        case e1000_82541:
        case e1000_82541_rev_2:
        case e1000_82547:
        case e1000_82547_rev_2:
            /* Wait for EEPROM reload */
            msec_delay(20);
            break;
        default:
            /* Wait for EEPROM reload (it happens automatically) */
            msec_delay(5);
            break;
    }

    /* Disable HW ARPs on ASF enabled adapters */
    if(hw->mac_type >= e1000_82540) {
432 433 434 435
        manc = E1000_READ_REG(hw, MANC);
        manc &= ~(E1000_MANC_ARP_EN);
        E1000_WRITE_REG(hw, MANC, manc);
    }
436 437 438 439 440 441 442

    if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
        e1000_phy_init_script(hw);

        /* Configure activity LED after PHY reset */
        led_ctrl = E1000_READ_REG(hw, LEDCTL);
        led_ctrl &= IGP_ACTIVITY_LED_MASK;
443
        led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
444 445 446
        E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
    }

447 448 449 450 451 452 453 454 455 456
    /* Clear interrupt mask to stop board from generating interrupts */
    DEBUGOUT("Masking off all interrupts\n");
    E1000_WRITE_REG(hw, IMC, 0xffffffff);

    /* Clear any pending interrupt events. */
    icr = E1000_READ_REG(hw, ICR);

    /* If MWI was previously enabled, reenable it. */
    if(hw->mac_type == e1000_82542_rev2_0) {
        if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
457
            e1000_pci_set_mwi(hw);
458
    }
459 460

    return E1000_SUCCESS;
461 462 463 464 465 466
}

/******************************************************************************
 * Performs basic configuration of the adapter.
 *
 * hw - Struct containing variables accessed by shared code
Jeb J. Cramer's avatar
Jeb J. Cramer committed
467 468
 *
 * Assumes that the controller has previously been reset and is in a
469 470 471 472 473 474 475 476
 * post-reset uninitialized state. Initializes the receive address registers,
 * multicast table, and VLAN filter table. Calls routines to setup link
 * configuration and flow control settings. Clears all on-chip counters. Leaves
 * the transmit and receive units disabled and uninitialized.
 *****************************************************************************/
int32_t
e1000_init_hw(struct e1000_hw *hw)
{
477
    uint32_t ctrl;
478 479
    uint32_t i;
    int32_t ret_val;
Scott Feldman's avatar
Scott Feldman committed
480 481 482 483
    uint16_t pcix_cmd_word;
    uint16_t pcix_stat_hi_word;
    uint16_t cmd_mmrbc;
    uint16_t stat_mmrbc;
484 485
    DEBUGFUNC("e1000_init_hw");

Scott Feldman's avatar
Scott Feldman committed
486
    /* Initialize Identification LED */
487 488
    ret_val = e1000_id_led_init(hw);
    if(ret_val) {
Scott Feldman's avatar
Scott Feldman committed
489 490
        DEBUGOUT("Error Initializing Identification LED\n");
        return ret_val;
Scott Feldman's avatar
Scott Feldman committed
491
    }
Jeb J. Cramer's avatar
Jeb J. Cramer committed
492

493 494
    /* Set the media type and TBI compatibility */
    e1000_set_media_type(hw);
495 496 497 498 499 500 501 502 503

    /* Disabling VLAN filtering. */
    DEBUGOUT("Initializing the IEEE VLAN\n");
    E1000_WRITE_REG(hw, VET, 0);

    e1000_clear_vfta(hw);

    /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
    if(hw->mac_type == e1000_82542_rev2_0) {
504 505
        DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
        e1000_pci_clear_mwi(hw);
506
        E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
507
        E1000_WRITE_FLUSH(hw);
508 509 510 511 512 513 514 515 516 517 518
        msec_delay(5);
    }

    /* Setup the receive address. This involves initializing all of the Receive
     * Address Registers (RARs 0 - 15).
     */
    e1000_init_rx_addrs(hw);

    /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
    if(hw->mac_type == e1000_82542_rev2_0) {
        E1000_WRITE_REG(hw, RCTL, 0);
519
        E1000_WRITE_FLUSH(hw);
520 521
        msec_delay(1);
        if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
522
            e1000_pci_set_mwi(hw);
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
    }

    /* Zero out the Multicast HASH table */
    DEBUGOUT("Zeroing the MTA\n");
    for(i = 0; i < E1000_MC_TBL_SIZE; i++)
        E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);

    /* Set the PCI priority bit correctly in the CTRL register.  This
     * determines if the adapter gives priority to receives, or if it
     * gives equal priority to transmits and receives.
     */
    if(hw->dma_fairness) {
        ctrl = E1000_READ_REG(hw, CTRL);
        E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
    }

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
    switch(hw->mac_type) {
    case e1000_82545_rev_3:
    case e1000_82546_rev_3:
        break;
    default:
        /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
        if(hw->bus_type == e1000_bus_type_pcix) {
            e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
            e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
                &pcix_stat_hi_word);
            cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
                PCIX_COMMAND_MMRBC_SHIFT;
            stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
                PCIX_STATUS_HI_MMRBC_SHIFT;
            if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
                stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
            if(cmd_mmrbc > stat_mmrbc) {
                pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
                pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
                e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
                    &pcix_cmd_word);
            }
Scott Feldman's avatar
Scott Feldman committed
561
        }
562
        break;
Scott Feldman's avatar
Scott Feldman committed
563 564
    }

565 566 567
    /* Call a subroutine to configure the link and setup flow control. */
    ret_val = e1000_setup_link(hw);

Scott Feldman's avatar
Scott Feldman committed
568 569 570 571 572 573 574
    /* Set the transmit descriptor write-back policy */
    if(hw->mac_type > e1000_82544) {
        ctrl = E1000_READ_REG(hw, TXDCTL);
        ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
        E1000_WRITE_REG(hw, TXDCTL, ctrl);
    }

575 576 577 578 579 580 581 582 583 584
    /* Clear all of the statistics registers (clear on read).  It is
     * important that we do this after we have tried to establish link
     * because the symbol error count will increment wildly if there
     * is no link.
     */
    e1000_clear_hw_cntrs(hw);

    return ret_val;
}

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
/******************************************************************************
 * Adjust SERDES output amplitude based on EEPROM setting.
 *
 * hw - Struct containing variables accessed by shared code.
 *****************************************************************************/
static int32_t
e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
{
    uint16_t eeprom_data;
    int32_t  ret_val;

    DEBUGFUNC("e1000_adjust_serdes_amplitude");

    if(hw->media_type != e1000_media_type_internal_serdes)
        return E1000_SUCCESS;

    switch(hw->mac_type) {
    case e1000_82545_rev_3:
    case e1000_82546_rev_3:
        break;
    default:
        return E1000_SUCCESS;
    }

609 610
    ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
    if (ret_val) {
611 612 613 614 615 616
        return ret_val;
    }

    if(eeprom_data != EEPROM_RESERVED_WORD) {
        /* Adjust SERDES output amplitude only. */
        eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; 
617 618
        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
        if(ret_val)
619 620 621 622 623 624
            return ret_val;
    }

    return E1000_SUCCESS;
}

625 626
/******************************************************************************
 * Configures flow control and link settings.
Jeb J. Cramer's avatar
Jeb J. Cramer committed
627
 *
628
 * hw - Struct containing variables accessed by shared code
Jeb J. Cramer's avatar
Jeb J. Cramer committed
629
 *
630 631 632
 * Determines which flow control settings to use. Calls the apropriate media-
 * specific link configuration function. Configures the flow control settings.
 * Assuming the adapter has a valid link partner, a valid link should be
Jeb J. Cramer's avatar
Jeb J. Cramer committed
633
 * established. Assumes the hardware has previously been reset and the
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
 * transmitter and receiver are not enabled.
 *****************************************************************************/
int32_t
e1000_setup_link(struct e1000_hw *hw)
{
    uint32_t ctrl_ext;
    int32_t ret_val;
    uint16_t eeprom_data;

    DEBUGFUNC("e1000_setup_link");

    /* Read and store word 0x0F of the EEPROM. This word contains bits
     * that determine the hardware's default PAUSE (flow control) mode,
     * a bit that determines whether the HW defaults to enabling or
     * disabling auto-negotiation, and the direction of the
     * SW defined pins. If there is no SW over-ride of the flow
     * control setting, then the variable hw->fc will
     * be initialized based on a value in the EEPROM.
     */
653
    if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data) < 0) {
654 655 656 657 658 659 660
        DEBUGOUT("EEPROM Read Error\n");
        return -E1000_ERR_EEPROM;
    }

    if(hw->fc == e1000_fc_default) {
        if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
            hw->fc = e1000_fc_none;
Jeb J. Cramer's avatar
Jeb J. Cramer committed
661
        else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
                EEPROM_WORD0F_ASM_DIR)
            hw->fc = e1000_fc_tx_pause;
        else
            hw->fc = e1000_fc_full;
    }

    /* We want to save off the original Flow Control configuration just
     * in case we get disconnected and then reconnected into a different
     * hub or switch with different Flow Control capabilities.
     */
    if(hw->mac_type == e1000_82542_rev2_0)
        hw->fc &= (~e1000_fc_tx_pause);

    if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
        hw->fc &= (~e1000_fc_rx_pause);

    hw->original_fc = hw->fc;

    DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);

    /* Take the 4 bits from EEPROM word 0x0F that determine the initial
     * polarity value for the SW controlled pins, and setup the
     * Extended Device Control reg with that info.
     * This is needed because one of the SW controlled pins is used for
     * signal detection.  So this should be done before e1000_setup_pcs_link()
     * or e1000_phy_setup() is called.
     */
    if(hw->mac_type == e1000_82543) {
Jeb J. Cramer's avatar
Jeb J. Cramer committed
690
        ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
691 692 693 694 695
                    SWDPIO__EXT_SHIFT);
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
    }

    /* Call the necessary subroutine to configure the link. */
696 697 698
    ret_val = (hw->media_type == e1000_media_type_copper) ?
              e1000_setup_copper_link(hw) :
              e1000_setup_fiber_serdes_link(hw);
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715

    /* Initialize the flow control address, type, and PAUSE timer
     * registers to their default values.  This is done even if flow
     * control is disabled, because it does not hurt anything to
     * initialize these registers.
     */
    DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");

    E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
    E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
    E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
    E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);

    /* Set the flow control receive threshold registers.  Normally,
     * these registers will be set to a default threshold that may be
     * adjusted later by the driver's runtime code.  However, if the
     * ability to transmit pause frames in not enabled, then these
Jeb J. Cramer's avatar
Jeb J. Cramer committed
716
     * registers will be set to 0.
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
     */
    if(!(hw->fc & e1000_fc_tx_pause)) {
        E1000_WRITE_REG(hw, FCRTL, 0);
        E1000_WRITE_REG(hw, FCRTH, 0);
    } else {
        /* We need to set up the Receive Threshold high and low water marks
         * as well as (optionally) enabling the transmission of XON frames.
         */
        if(hw->fc_send_xon) {
            E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
        } else {
            E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
        }
    }
    return ret_val;
}

/******************************************************************************
737
 * Sets up link for a fiber based or serdes based adapter
738 739 740 741 742 743 744
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Manipulates Physical Coding Sublayer functions in order to configure
 * link. Assumes the hardware has been previously reset and the transmitter
 * and receiver are not enabled.
 *****************************************************************************/
Jeb J. Cramer's avatar
Jeb J. Cramer committed
745
static int32_t
746
e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
747 748 749 750 751
{
    uint32_t ctrl;
    uint32_t status;
    uint32_t txcw = 0;
    uint32_t i;
752
    uint32_t signal = 0;
753 754
    int32_t ret_val;

755
    DEBUGFUNC("e1000_setup_fiber_serdes_link");
756

757
    /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
Jeb J. Cramer's avatar
Jeb J. Cramer committed
758
     * set when the optics detect a signal. On older adapters, it will be
759 760 761
     * cleared when there is a signal.  This applies to fiber media only.
     * If we're on serdes media, adjust the output amplitude to value set in
     * the EEPROM.
762 763
     */
    ctrl = E1000_READ_REG(hw, CTRL);
764 765 766
    if(hw->media_type == e1000_media_type_fiber)
        signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;

767 768
    ret_val = e1000_adjust_serdes_amplitude(hw);
    if(ret_val)
769
        return ret_val;
Jeb J. Cramer's avatar
Jeb J. Cramer committed
770

771 772
    /* Take the link out of reset */
    ctrl &= ~(E1000_CTRL_LRST);
Jeb J. Cramer's avatar
Jeb J. Cramer committed
773

774
    /* Adjust VCO speed to improve BER performance */
775 776
    ret_val = e1000_set_vco_speed(hw);
    if(ret_val)
777 778
        return ret_val;

779 780 781 782 783 784
    e1000_config_collision_dist(hw);

    /* Check for a software override of the flow control settings, and setup
     * the device accordingly.  If auto-negotiation is enabled, then software
     * will have to set the "PAUSE" bits to the correct value in the Tranmsit
     * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
Jeb J. Cramer's avatar
Jeb J. Cramer committed
785
     * auto-negotiation is disabled, then software will have to manually
786 787 788 789
     * configure the two flow control enable bits in the CTRL register.
     *
     * The possible values of the "fc" parameter are:
     *      0:  Flow control is completely disabled
Jeb J. Cramer's avatar
Jeb J. Cramer committed
790
     *      1:  Rx flow control is enabled (we can receive pause frames, but
791 792 793 794 795 796 797 798 799 800 801
     *          not send pause frames).
     *      2:  Tx flow control is enabled (we can send pause frames but we do
     *          not support receiving pause frames).
     *      3:  Both Rx and TX flow control (symmetric) are enabled.
     */
    switch (hw->fc) {
    case e1000_fc_none:
        /* Flow control is completely disabled by a software over-ride. */
        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
        break;
    case e1000_fc_rx_pause:
Jeb J. Cramer's avatar
Jeb J. Cramer committed
802 803
        /* RX Flow control is enabled and TX Flow control is disabled by a
         * software over-ride. Since there really isn't a way to advertise
804 805 806 807 808 809 810
         * that we are capable of RX Pause ONLY, we will advertise that we
         * support both symmetric and asymmetric RX PAUSE. Later, we will
         *  disable the adapter's ability to send PAUSE frames.
         */
        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
        break;
    case e1000_fc_tx_pause:
Jeb J. Cramer's avatar
Jeb J. Cramer committed
811
        /* TX Flow control is enabled, and RX Flow control is disabled, by a
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
         * software over-ride.
         */
        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
        break;
    case e1000_fc_full:
        /* Flow control (both RX and TX) is enabled by a software over-ride. */
        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
        break;
    default:
        DEBUGOUT("Flow control param set incorrectly\n");
        return -E1000_ERR_CONFIG;
        break;
    }

    /* Since auto-negotiation is enabled, take the link out of reset (the link
     * will be in reset, because we previously reset the chip). This will
     * restart auto-negotiation.  If auto-neogtiation is successful then the
     * link-up status bit will be set and the flow control enable bits (RFCE
     * and TFCE) will be set according to their negotiated value.
     */
    DEBUGOUT("Auto-negotiation enabled\n");

    E1000_WRITE_REG(hw, TXCW, txcw);
    E1000_WRITE_REG(hw, CTRL, ctrl);
836
    E1000_WRITE_FLUSH(hw);
837 838 839 840 841

    hw->txcw = txcw;
    msec_delay(1);

    /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
Jeb J. Cramer's avatar
Jeb J. Cramer committed
842 843
     * indication in the Device Status Register.  Time-out if a link isn't
     * seen in 500 milliseconds seconds (Auto-negotiation should complete in
844
     * less than 500 milliseconds even if the other end is doing it in SW).
845
     * For internal serdes, we just assume a signal is present, then poll.
846
     */
847 848
    if(hw->media_type == e1000_media_type_internal_serdes ||
       (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
849 850 851 852 853 854 855 856 857
        DEBUGOUT("Looking for Link\n");
        for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
            msec_delay(10);
            status = E1000_READ_REG(hw, STATUS);
            if(status & E1000_STATUS_LU) break;
        }
        if(i == (LINK_UP_TIMEOUT / 10)) {
            DEBUGOUT("Never got a valid link from auto-neg!!!\n");
            hw->autoneg_failed = 1;
858 859 860 861 862
            /* AutoNeg failed to achieve a link, so we'll call
             * e1000_check_for_link. This routine will force the link up if
             * we detect a signal. This will allow us to communicate with
             * non-autonegotiating link partners.
             */
863 864
            ret_val = e1000_check_for_link(hw);
            if(ret_val) {
865 866
                DEBUGOUT("Error while checking for link\n");
                return ret_val;
867
            }
868
            hw->autoneg_failed = 0;
869 870 871 872 873 874 875
        } else {
            hw->autoneg_failed = 0;
            DEBUGOUT("Valid Link Found\n");
        }
    } else {
        DEBUGOUT("No Signal Detected\n");
    }
876
    return E1000_SUCCESS;
877 878 879 880 881 882 883
}

/******************************************************************************
* Detects which PHY is present and the speed and duplex
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
884
static int32_t
885 886
e1000_setup_copper_link(struct e1000_hw *hw)
{
Scott Feldman's avatar
Scott Feldman committed
887 888
    uint32_t ctrl;
    uint32_t led_ctrl;
889 890 891 892 893 894 895 896 897 898 899 900 901
    int32_t ret_val;
    uint16_t i;
    uint16_t phy_data;

    DEBUGFUNC("e1000_setup_copper_link");

    ctrl = E1000_READ_REG(hw, CTRL);
    /* With 82543, we need to force speed and duplex on the MAC equal to what
     * the PHY speed and duplex configuration is. In addition, we need to
     * perform a hardware reset on the PHY to take it out of reset.
     */
    if(hw->mac_type > e1000_82543) {
        ctrl |= E1000_CTRL_SLU;
Scott Feldman's avatar
Scott Feldman committed
902
        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
903 904 905 906 907 908 909 910
        E1000_WRITE_REG(hw, CTRL, ctrl);
    } else {
        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
        E1000_WRITE_REG(hw, CTRL, ctrl);
        e1000_phy_hw_reset(hw);
    }

    /* Make sure we have a valid PHY */
911 912
    ret_val = e1000_detect_gig_phy(hw);
    if(ret_val) {
913 914 915 916 917
        DEBUGOUT("Error, did not detect valid phy.\n");
        return ret_val;
    }
    DEBUGOUT1("Phy ID = %x \n", hw->phy_id);

918 919 920 921 922
    /* Set PHY to class A mode (if necessary) */
    ret_val = e1000_set_phy_mode(hw);
    if(ret_val)
        return ret_val;

923 924 925 926 927 928
    if(hw->mac_type == e1000_82545_rev_3) {
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
        phy_data |= 0x00000008;
        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
    }

929 930 931 932
    if(hw->mac_type <= e1000_82543 ||
       hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
       hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
        hw->phy_reset_disable = FALSE;
933

934 935
    if(!hw->phy_reset_disable) {
        if (hw->phy_type == e1000_phy_igp) {
936

937 938
            ret_val = e1000_phy_reset(hw);
            if(ret_val) {
939 940 941
                DEBUGOUT("Error Resetting the PHY\n");
                return ret_val;
            }
942

943 944
            /* Wait 10ms for MAC to configure PHY from eeprom settings */
            msec_delay(15);
945

946 947 948 949 950
            /* Configure activity LED after PHY reset */
            led_ctrl = E1000_READ_REG(hw, LEDCTL);
            led_ctrl &= IGP_ACTIVITY_LED_MASK;
            led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
            E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
951

952
            /* disable lplu d3 during driver init */
953 954
            ret_val = e1000_set_d3_lplu_state(hw, FALSE);
            if(ret_val) {
955 956
                DEBUGOUT("Error Disabling LPLU D3\n");
                return ret_val;
957
            }
958 959

            /* Configure mdi-mdix settings */
960 961 962
            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL,
                                         &phy_data);
            if(ret_val)
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
                return ret_val;

            if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
                hw->dsp_config_state = e1000_dsp_config_disabled;
                /* Force MDI for IGP B-0 PHY */
                phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX |
                              IGP01E1000_PSCR_FORCE_MDI_MDIX);
                hw->mdix = 1;

            } else {
                hw->dsp_config_state = e1000_dsp_config_enabled;
                phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;

                switch (hw->mdix) {
                case 1:
                    phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
                    break;
                case 2:
                    phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
                    break;
                case 0:
                default:
                    phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
                    break;
                }
988
            }
989 990 991
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL,
                                          phy_data);
            if(ret_val)
992
                return ret_val;
993

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
            /* set auto-master slave resolution settings */
            if(hw->autoneg) {
                e1000_ms_type phy_ms_setting = hw->master_slave;

                if(hw->ffe_config_state == e1000_ffe_config_active)
                    hw->ffe_config_state = e1000_ffe_config_enabled;

                if(hw->dsp_config_state == e1000_dsp_config_activated)
                    hw->dsp_config_state = e1000_dsp_config_enabled;

                /* when autonegotiation advertisment is only 1000Mbps then we
                 * should disable SmartSpeed and enable Auto MasterSlave
                 * resolution as hardware default. */
                if(hw->autoneg_advertised == ADVERTISE_1000_FULL) {
                    /* Disable SmartSpeed */
1009 1010 1011
                    ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
                                                 &phy_data);
                    if(ret_val)
1012 1013
                        return ret_val;
                    phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1014 1015 1016 1017
                    ret_val = e1000_write_phy_reg(hw,
                                                  IGP01E1000_PHY_PORT_CONFIG,
                                                  phy_data);
                    if(ret_val)
1018 1019
                        return ret_val;
                    /* Set auto Master/Slave resolution process */
1020 1021
                    ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
                    if(ret_val)
1022 1023
                        return ret_val;
                    phy_data &= ~CR_1000T_MS_ENABLE;
1024 1025
                    ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
                    if(ret_val)
1026 1027
                        return ret_val;
                }
1028

1029 1030
                ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
                if(ret_val)
1031
                    return ret_val;
1032

1033 1034 1035 1036 1037 1038
                /* load defaults for future use */
                hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
                                            ((phy_data & CR_1000T_MS_VALUE) ?
                                             e1000_ms_force_master :
                                             e1000_ms_force_slave) :
                                             e1000_ms_auto;
1039

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
                switch (phy_ms_setting) {
                case e1000_ms_force_master:
                    phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
                    break;
                case e1000_ms_force_slave:
                    phy_data |= CR_1000T_MS_ENABLE;
                    phy_data &= ~(CR_1000T_MS_VALUE);
                    break;
                case e1000_ms_auto:
                    phy_data &= ~CR_1000T_MS_ENABLE;
                default:
                    break;
                }
1053 1054
                ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
                if(ret_val)
1055 1056 1057 1058
                    return ret_val;
            }
        } else {
            /* Enable CRS on TX. This must be set for half-duplex operation. */
1059 1060 1061
            ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
                                         &phy_data);
            if(ret_val)
1062
                return ret_val;
1063

1064
            phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1065

1066 1067 1068 1069 1070 1071 1072 1073
            /* Options:
             *   MDI/MDI-X = 0 (default)
             *   0 - Auto for all speeds
             *   1 - MDI mode
             *   2 - MDI-X mode
             *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
             */
            phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1074

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
            switch (hw->mdix) {
            case 1:
                phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
                break;
            case 2:
                phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
                break;
            case 3:
                phy_data |= M88E1000_PSCR_AUTO_X_1000T;
                break;
            case 0:
            default:
                phy_data |= M88E1000_PSCR_AUTO_X_MODE;
                break;
            }
1090

1091 1092 1093 1094 1095 1096 1097 1098 1099
            /* Options:
             *   disable_polarity_correction = 0 (default)
             *       Automatic Correction for Reversed Cable Polarity
             *   0 - Disabled
             *   1 - Enabled
             */
            phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
            if(hw->disable_polarity_correction == 1)
                phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1100 1101 1102
            ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
                                          phy_data);
            if(ret_val)
1103
                return ret_val;
1104

1105 1106 1107
            /* Force TX_CLK in the Extended PHY Specific Control Register
             * to 25MHz clock.
             */
1108 1109 1110
            ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
                                         &phy_data);
            if(ret_val)
1111
                return ret_val;
1112

1113 1114 1115 1116 1117 1118 1119 1120
            phy_data |= M88E1000_EPSCR_TX_CLK_25;

            if (hw->phy_revision < M88E1011_I_REV_4) {
                /* Configure Master and Slave downshift values */
                phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
                              M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
                phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
                             M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1121 1122 1123
                ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
                                              phy_data);
                if(ret_val)
1124
                    return ret_val;
1125
            }
1126

1127
            /* SW Reset the PHY so all changes take effect */
1128 1129
            ret_val = e1000_phy_reset(hw);
            if(ret_val) {
1130 1131 1132
                DEBUGOUT("Error Resetting the PHY\n");
                return ret_val;
            }
1133
        }
1134

1135 1136 1137 1138 1139 1140 1141
        /* Options:
         *   autoneg = 1 (default)
         *      PHY will advertise value(s) parsed from
         *      autoneg_advertised and fc
         *   autoneg = 0
         *      PHY will be set to 10H, 10F, 100H, or 100F
         *      depending on value parsed from forced_speed_duplex.
1142 1143
         */

1144 1145 1146 1147 1148
        /* Is autoneg enabled?  This is enabled by default or by software
         * override.  If so, call e1000_phy_setup_autoneg routine to parse the
         * autoneg_advertised and fc options. If autoneg is NOT enabled, then
         * the user should have provided a speed/duplex override.  If so, then
         * call e1000_phy_force_speed_duplex to parse and set this up.
1149
         */
1150 1151 1152 1153 1154
        if(hw->autoneg) {
            /* Perform some bounds checking on the hw->autoneg_advertised
             * parameter.  If this variable is zero, then set it to the default.
             */
            hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1155

1156 1157 1158 1159 1160
            /* If autoneg_advertised is zero, we assume it was not defaulted
             * by the calling code so we set to advertise full capability.
             */
            if(hw->autoneg_advertised == 0)
                hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1161

1162
            DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1163 1164
            ret_val = e1000_phy_setup_autoneg(hw);
            if(ret_val) {
1165 1166 1167 1168
                DEBUGOUT("Error Setting up Auto-Negotiation\n");
                return ret_val;
            }
            DEBUGOUT("Restarting Auto-Neg\n");
1169

1170 1171 1172
            /* Restart auto-negotiation by setting the Auto Neg Enable bit and
             * the Auto Neg Restart bit in the PHY control register.
             */
1173 1174
            ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
            if(ret_val)
1175 1176 1177
                return ret_val;

            phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1178 1179
            ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
            if(ret_val)
1180 1181 1182 1183 1184 1185
                return ret_val;

            /* Does the user want to wait for Auto-Neg to complete here, or
             * check at a later time (for example, callback routine).
             */
            if(hw->wait_autoneg_complete) {
1186 1187
                ret_val = e1000_wait_autoneg(hw);
                if(ret_val) {
1188 1189 1190 1191 1192 1193 1194
                    DEBUGOUT("Error while waiting for autoneg to complete\n");
                    return ret_val;
                }
            }
            hw->get_link_status = TRUE;
        } else {
            DEBUGOUT("Forcing speed and duplex\n");
1195 1196
            ret_val = e1000_phy_force_speed_duplex(hw);
            if(ret_val) {
1197
                DEBUGOUT("Error Forcing Speed and Duplex\n");
1198 1199 1200
                return ret_val;
            }
        }
1201
    } /* !hw->phy_reset_disable */
1202 1203 1204 1205 1206

    /* Check link status. Wait up to 100 microseconds for link to become
     * valid.
     */
    for(i = 0; i < 10; i++) {
1207 1208
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
        if(ret_val)
1209
            return ret_val;
1210 1211
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
        if(ret_val)
1212 1213
            return ret_val;

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
        if(phy_data & MII_SR_LINK_STATUS) {
            /* We have link, so we need to finish the config process:
             *   1) Set up the MAC to the current PHY speed/duplex
             *      if we are on 82543.  If we
             *      are on newer silicon, we only need to configure
             *      collision distance in the Transmit Control Register.
             *   2) Set up flow control on the MAC to that established with
             *      the link partner.
             */
            if(hw->mac_type >= e1000_82544) {
                e1000_config_collision_dist(hw);
            } else {
1226 1227
                ret_val = e1000_config_mac_to_phy(hw);
                if(ret_val) {
1228 1229
                    DEBUGOUT("Error configuring MAC to PHY settings\n");
                    return ret_val;
1230
                }
1231
            }
1232 1233
            ret_val = e1000_config_fc_after_link_up(hw);
            if(ret_val) {
1234 1235 1236 1237
                DEBUGOUT("Error Configuring Flow Control\n");
                return ret_val;
            }
            DEBUGOUT("Valid link established!!!\n");
1238 1239

            if(hw->phy_type == e1000_phy_igp) {
1240 1241
                ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
                if(ret_val) {
1242 1243 1244 1245 1246 1247
                    DEBUGOUT("Error Configuring DSP after link up\n");
                    return ret_val;
                }
            }
            DEBUGOUT("Valid link established!!!\n");
            return E1000_SUCCESS;
1248
        }
Scott Feldman's avatar
Scott Feldman committed
1249
        udelay(10);
1250 1251 1252
    }

    DEBUGOUT("Unable to establish link!!!\n");
1253
    return E1000_SUCCESS;
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
}

/******************************************************************************
* Configures PHY autoneg and flow control advertisement settings
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
int32_t
e1000_phy_setup_autoneg(struct e1000_hw *hw)
{
1264
    int32_t ret_val;
1265 1266 1267 1268 1269 1270
    uint16_t mii_autoneg_adv_reg;
    uint16_t mii_1000t_ctrl_reg;

    DEBUGFUNC("e1000_phy_setup_autoneg");

    /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1271 1272
    ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
    if(ret_val)
1273
        return ret_val;
1274 1275

    /* Read the MII 1000Base-T Control Register (Address 9). */
1276 1277
    ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
    if(ret_val)
1278
        return ret_val;
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

    /* Need to parse both autoneg_advertised and fc and set up
     * the appropriate PHY registers.  First we will parse for
     * autoneg_advertised software override.  Since we can advertise
     * a plethora of combinations, we need to check each bit
     * individually.
     */

    /* First we clear all the 10/100 mb speed bits in the Auto-Neg
     * Advertisement Register (Address 4) and the 1000 mb speed bits in
     * the  1000Base-T Control Register (Address 9).
     */
    mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
    mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;

    DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);

    /* Do we want to advertise 10 Mb Half Duplex? */
    if(hw->autoneg_advertised & ADVERTISE_10_HALF) {
        DEBUGOUT("Advertise 10mb Half duplex\n");
        mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
    }

    /* Do we want to advertise 10 Mb Full Duplex? */
    if(hw->autoneg_advertised & ADVERTISE_10_FULL) {
        DEBUGOUT("Advertise 10mb Full duplex\n");
        mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
    }

    /* Do we want to advertise 100 Mb Half Duplex? */
    if(hw->autoneg_advertised & ADVERTISE_100_HALF) {
        DEBUGOUT("Advertise 100mb Half duplex\n");
        mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
    }

    /* Do we want to advertise 100 Mb Full Duplex? */
    if(hw->autoneg_advertised & ADVERTISE_100_FULL) {
        DEBUGOUT("Advertise 100mb Full duplex\n");
        mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
    }

    /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
    if(hw->autoneg_advertised & ADVERTISE_1000_HALF) {
        DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
    }

    /* Do we want to advertise 1000 Mb Full Duplex? */
    if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
        DEBUGOUT("Advertise 1000mb Full duplex\n");
        mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
    }

    /* Check for a software override of the flow control settings, and
     * setup the PHY advertisement registers accordingly.  If
     * auto-negotiation is enabled, then software will have to set the
     * "PAUSE" bits to the correct value in the Auto-Negotiation
     * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
     *
     * The possible values of the "fc" parameter are:
     *      0:  Flow control is completely disabled
     *      1:  Rx flow control is enabled (we can receive pause frames
     *          but not send pause frames).
     *      2:  Tx flow control is enabled (we can send pause frames
     *          but we do not support receiving pause frames).
     *      3:  Both Rx and TX flow control (symmetric) are enabled.
     *  other:  No software override.  The flow control configuration
     *          in the EEPROM is used.
     */
    switch (hw->fc) {
    case e1000_fc_none: /* 0 */
        /* Flow control (RX & TX) is completely disabled by a
         * software over-ride.
         */
        mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
        break;
    case e1000_fc_rx_pause: /* 1 */
        /* RX Flow control is enabled, and TX Flow control is
         * disabled, by a software over-ride.
         */
        /* Since there really isn't a way to advertise that we are
         * capable of RX Pause ONLY, we will advertise that we
         * support both symmetric and asymmetric RX PAUSE.  Later
         * (in e1000_config_fc_after_link_up) we will disable the
         *hw's ability to send PAUSE frames.
         */
        mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
        break;
    case e1000_fc_tx_pause: /* 2 */
        /* TX Flow control is enabled, and RX Flow control is
         * disabled, by a software over-ride.
         */
        mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
        mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
        break;
    case e1000_fc_full: /* 3 */
        /* Flow control (both RX and TX) is enabled by a software
         * over-ride.
         */
        mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
        break;
    default:
        DEBUGOUT("Flow control param set incorrectly\n");
        return -E1000_ERR_CONFIG;
    }

1384 1385
    ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
    if(ret_val)
1386
        return ret_val;
1387 1388 1389

    DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);

1390 1391
    ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
    if(ret_val)
1392 1393 1394
        return ret_val;

    return E1000_SUCCESS;
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
}

/******************************************************************************
* Force PHY speed and duplex settings to hw->forced_speed_duplex
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_phy_force_speed_duplex(struct e1000_hw *hw)
{
    uint32_t ctrl;
    int32_t ret_val;
    uint16_t mii_ctrl_reg;
    uint16_t mii_status_reg;
    uint16_t phy_data;
    uint16_t i;

    DEBUGFUNC("e1000_phy_force_speed_duplex");

    /* Turn off Flow control if we are forcing speed and duplex. */
    hw->fc = e1000_fc_none;

    DEBUGOUT1("hw->fc = %d\n", hw->fc);

    /* Read the Device Control Register. */
    ctrl = E1000_READ_REG(hw, CTRL);

    /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
    ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
    ctrl &= ~(DEVICE_SPEED_MASK);

    /* Clear the Auto Speed Detect Enable bit. */
    ctrl &= ~E1000_CTRL_ASDE;

    /* Read the MII Control Register. */
1430 1431
    ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
    if(ret_val)
1432
        return ret_val;
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476

    /* We need to disable autoneg in order to force link and duplex. */

    mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;

    /* Are we forcing Full or Half Duplex? */
    if(hw->forced_speed_duplex == e1000_100_full ||
       hw->forced_speed_duplex == e1000_10_full) {
        /* We want to force full duplex so we SET the full duplex bits in the
         * Device and MII Control Registers.
         */
        ctrl |= E1000_CTRL_FD;
        mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
        DEBUGOUT("Full Duplex\n");
    } else {
        /* We want to force half duplex so we CLEAR the full duplex bits in
         * the Device and MII Control Registers.
         */
        ctrl &= ~E1000_CTRL_FD;
        mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
        DEBUGOUT("Half Duplex\n");
    }

    /* Are we forcing 100Mbps??? */
    if(hw->forced_speed_duplex == e1000_100_full ||
       hw->forced_speed_duplex == e1000_100_half) {
        /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
        ctrl |= E1000_CTRL_SPD_100;
        mii_ctrl_reg |= MII_CR_SPEED_100;
        mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
        DEBUGOUT("Forcing 100mb ");
    } else {
        /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
        ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
        mii_ctrl_reg |= MII_CR_SPEED_10;
        mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
        DEBUGOUT("Forcing 10mb ");
    }

    e1000_config_collision_dist(hw);

    /* Write the configured values back to the Device Control Reg. */
    E1000_WRITE_REG(hw, CTRL, ctrl);

1477
    if (hw->phy_type == e1000_phy_m88) {
1478 1479
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
        if(ret_val)
1480
            return ret_val;
1481

1482 1483 1484 1485
        /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
         * forced whenever speed are duplex are forced.
         */
        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1486 1487
        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
        if(ret_val)
1488 1489
            return ret_val;

1490
        DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
Jeb J. Cramer's avatar
Jeb J. Cramer committed
1491

1492 1493 1494 1495 1496 1497
        /* Need to reset the PHY or these changes will be ignored */
        mii_ctrl_reg |= MII_CR_RESET;
    } else {
        /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
         * forced whenever speed or duplex are forced.
         */
1498 1499
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
        if(ret_val)
1500
            return ret_val;
1501

1502 1503
        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
        phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1504

1505 1506
        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
        if(ret_val)
1507
            return ret_val;
1508
    }
Jeb J. Cramer's avatar
Jeb J. Cramer committed
1509 1510

    /* Write back the modified PHY MII control register. */
1511 1512
    ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
    if(ret_val)
1513 1514
        return ret_val;

Jun Komuro's avatar
Jun Komuro committed
1515
    udelay(1);
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533

    /* The wait_autoneg_complete flag may be a little misleading here.
     * Since we are forcing speed and duplex, Auto-Neg is not enabled.
     * But we do want to delay for a period while forcing only so we
     * don't generate false No Link messages.  So we will wait here
     * only if the user has set wait_autoneg_complete to 1, which is
     * the default.
     */
    if(hw->wait_autoneg_complete) {
        /* We will wait for autoneg to complete. */
        DEBUGOUT("Waiting for forced speed/duplex link.\n");
        mii_status_reg = 0;

        /* We will wait for autoneg to complete or 4.5 seconds to expire. */
        for(i = PHY_FORCE_TIME; i > 0; i--) {
            /* Read the MII Status Register and wait for Auto-Neg Complete bit
             * to be set.
             */
1534 1535
            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
            if(ret_val)
1536 1537
                return ret_val;

1538 1539
            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
            if(ret_val)
1540 1541
                return ret_val;

1542 1543 1544
            if(mii_status_reg & MII_SR_LINK_STATUS) break;
            msec_delay(100);
        }
1545 1546
        if((i == 0) && (hw->phy_type == e1000_phy_m88)) {
            /* We didn't get link.  Reset the DSP and wait again for link. */
1547 1548
            ret_val = e1000_phy_reset_dsp(hw);
            if(ret_val) {
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
                DEBUGOUT("Error Resetting PHY DSP\n");
                return ret_val;
            }
        }
        /* This loop will early-out if the link condition has been met.  */
        for(i = PHY_FORCE_TIME; i > 0; i--) {
            if(mii_status_reg & MII_SR_LINK_STATUS) break;
            msec_delay(100);
            /* Read the MII Status Register and wait for Auto-Neg Complete bit
             * to be set.
             */
1560 1561
            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
            if(ret_val)
1562 1563
                return ret_val;

1564 1565
            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
            if(ret_val)
1566
                return ret_val;
1567 1568
        }
    }
1569

1570 1571 1572 1573 1574
    if (hw->phy_type == e1000_phy_m88) {
        /* Because we reset the PHY above, we need to re-force TX_CLK in the
         * Extended PHY Specific Control Register to 25MHz clock.  This value
         * defaults back to a 2.5MHz clock when the PHY is reset.
         */
1575 1576
        ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
        if(ret_val)
1577 1578
            return ret_val;

1579
        phy_data |= M88E1000_EPSCR_TX_CLK_25;
1580 1581
        ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
        if(ret_val)
1582
            return ret_val;
1583

1584 1585 1586
        /* In addition, because of the s/w reset above, we need to enable CRS on
         * TX.  This must be set for both full and half duplex operation.
         */
1587 1588
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
        if(ret_val)
1589 1590
            return ret_val;

1591
        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1592 1593
        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
        if(ret_val)
1594
            return ret_val;
1595
    }
1596
    return E1000_SUCCESS;
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
}

/******************************************************************************
* Sets the collision distance in the Transmit Control register
*
* hw - Struct containing variables accessed by shared code
*
* Link should have been established previously. Reads the speed and duplex
* information from the Device Status register.
******************************************************************************/
void
e1000_config_collision_dist(struct e1000_hw *hw)
{
    uint32_t tctl;

1612 1613
    DEBUGFUNC("e1000_config_collision_dist");

1614 1615 1616 1617 1618 1619
    tctl = E1000_READ_REG(hw, TCTL);

    tctl &= ~E1000_TCTL_COLD;
    tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;

    E1000_WRITE_REG(hw, TCTL, tctl);
1620
    E1000_WRITE_FLUSH(hw);
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
}

/******************************************************************************
* Sets MAC speed and duplex settings to reflect the those in the PHY
*
* hw - Struct containing variables accessed by shared code
* mii_reg - data to write to the MII control register
*
* The contents of the PHY register containing the needed information need to
* be passed in.
******************************************************************************/
static int32_t
e1000_config_mac_to_phy(struct e1000_hw *hw)
{
    uint32_t ctrl;
1636
    int32_t ret_val;
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
    uint16_t phy_data;

    DEBUGFUNC("e1000_config_mac_to_phy");

    /* Read the Device Control Register and set the bits to Force Speed
     * and Duplex.
     */
    ctrl = E1000_READ_REG(hw, CTRL);
    ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
    ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);

    /* Set up duplex in the Device Control and Transmit Control
     * registers depending on negotiated values.
     */
1651
    if (hw->phy_type == e1000_phy_igp) {
1652 1653 1654
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
                                     &phy_data);
        if(ret_val)
1655 1656
            return ret_val;

1657 1658
        if(phy_data & IGP01E1000_PSSR_FULL_DUPLEX) ctrl |= E1000_CTRL_FD;
        else ctrl &= ~E1000_CTRL_FD;
1659

1660
        e1000_config_collision_dist(hw);
1661

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
        /* Set up speed in the Device Control register depending on
         * negotiated values.
         */
        if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
           IGP01E1000_PSSR_SPEED_1000MBPS)
            ctrl |= E1000_CTRL_SPD_1000;
        else if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
                IGP01E1000_PSSR_SPEED_100MBPS)
            ctrl |= E1000_CTRL_SPD_100;
    } else {
1672 1673 1674
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
                                     &phy_data);
        if(ret_val)
1675 1676
            return ret_val;

1677 1678
        if(phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD;
        else ctrl &= ~E1000_CTRL_FD;
1679

1680
        e1000_config_collision_dist(hw);
1681

1682 1683 1684 1685 1686 1687 1688 1689
        /* Set up speed in the Device Control register depending on
         * negotiated values.
         */
        if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
            ctrl |= E1000_CTRL_SPD_1000;
        else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
            ctrl |= E1000_CTRL_SPD_100;
    }
1690 1691
    /* Write the configured values back to the Device Control Reg. */
    E1000_WRITE_REG(hw, CTRL, ctrl);
1692
    return E1000_SUCCESS;
1693 1694 1695 1696
}

/******************************************************************************
 * Forces the MAC's flow control settings.
Jeb J. Cramer's avatar
Jeb J. Cramer committed
1697
 *
1698 1699 1700 1701 1702 1703 1704 1705
 * hw - Struct containing variables accessed by shared code
 *
 * Sets the TFCE and RFCE bits in the device control register to reflect
 * the adapter settings. TFCE and RFCE need to be explicitly set by
 * software when a Copper PHY is used because autonegotiation is managed
 * by the PHY rather than the MAC. Software must also configure these
 * bits when link is forced on a fiber connection.
 *****************************************************************************/
1706
int32_t
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
e1000_force_mac_fc(struct e1000_hw *hw)
{
    uint32_t ctrl;

    DEBUGFUNC("e1000_force_mac_fc");

    /* Get the current configuration of the Device Control Register */
    ctrl = E1000_READ_REG(hw, CTRL);

    /* Because we didn't get link via the internal auto-negotiation
     * mechanism (we either forced link or we got link via PHY
     * auto-neg), we have to manually enable/disable transmit an
     * receive flow control.
     *
     * The "Case" statement below enables/disable flow control
     * according to the "hw->fc" parameter.
     *
     * The possible values of the "fc" parameter are:
     *      0:  Flow control is completely disabled
     *      1:  Rx flow control is enabled (we can receive pause
     *          frames but not send pause frames).
     *      2:  Tx flow control is enabled (we can send pause frames
     *          frames but we do not receive pause frames).
     *      3:  Both Rx and TX flow control (symmetric) is enabled.
     *  other:  No other values should be possible at this point.
     */

    switch (hw->fc) {
    case e1000_fc_none:
        ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
        break;
    case e1000_fc_rx_pause:
        ctrl &= (~E1000_CTRL_TFCE);
        ctrl |= E1000_CTRL_RFCE;
        break;
    case e1000_fc_tx_pause:
        ctrl &= (~E1000_CTRL_RFCE);
        ctrl |= E1000_CTRL_TFCE;
        break;
    case e1000_fc_full:
        ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
        break;
    default:
        DEBUGOUT("Flow control param set incorrectly\n");
        return -E1000_ERR_CONFIG;
    }

    /* Disable TX Flow Control for 82542 (rev 2.0) */
    if(hw->mac_type == e1000_82542_rev2_0)
        ctrl &= (~E1000_CTRL_TFCE);

    E1000_WRITE_REG(hw, CTRL, ctrl);
1759
    return E1000_SUCCESS;
1760 1761 1762 1763
}

/******************************************************************************
 * Configures flow control settings after link is established
Jeb J. Cramer's avatar
Jeb J. Cramer committed
1764
 *
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
 * hw - Struct containing variables accessed by shared code
 *
 * Should be called immediately after a valid link has been established.
 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
 * and autonegotiation is enabled, the MAC flow control settings will be set
 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
 *****************************************************************************/
int32_t
e1000_config_fc_after_link_up(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t mii_status_reg;
    uint16_t mii_nway_adv_reg;
    uint16_t mii_nway_lp_ability_reg;
    uint16_t speed;
    uint16_t duplex;

    DEBUGFUNC("e1000_config_fc_after_link_up");

    /* Check for the case where we have fiber media and auto-neg failed
     * so we had to force link.  In this case, we need to force the
     * configuration of the MAC to match the "fc" parameter.
     */
    if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
1790
       ((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed)) ||
1791
       ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
1792 1793
        ret_val = e1000_force_mac_fc(hw);
        if(ret_val) {
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
            DEBUGOUT("Error forcing flow control settings\n");
            return ret_val;
        }
    }

    /* Check for the case where we have copper media and auto-neg is
     * enabled.  In this case, we need to check and see if Auto-Neg
     * has completed, and if so, how the PHY and link partner has
     * flow control configured.
     */
    if((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
        /* Read the MII Status Register and check to see if AutoNeg
         * has completed.  We read this twice because this reg has
         * some "sticky" (latched) bits.
         */
1809 1810
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
        if(ret_val)
1811
            return ret_val;
1812 1813
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
        if(ret_val)
1814
            return ret_val;
1815 1816 1817 1818 1819 1820 1821 1822

        if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
            /* The AutoNeg process has completed, so we now need to
             * read both the Auto Negotiation Advertisement Register
             * (Address 4) and the Auto_Negotiation Base Page Ability
             * Register (Address 5) to determine how flow control was
             * negotiated.
             */
1823 1824 1825
            ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
                                         &mii_nway_adv_reg);
            if(ret_val)
1826
                return ret_val;
1827 1828 1829
            ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
                                         &mii_nway_lp_ability_reg);
            if(ret_val)
1830
                return ret_val;
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931

            /* Two bits in the Auto Negotiation Advertisement Register
             * (Address 4) and two bits in the Auto Negotiation Base
             * Page Ability Register (Address 5) determine flow control
             * for both the PHY and the link partner.  The following
             * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
             * 1999, describes these PAUSE resolution bits and how flow
             * control is determined based upon these settings.
             * NOTE:  DC = Don't Care
             *
             *   LOCAL DEVICE  |   LINK PARTNER
             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
             *-------|---------|-------|---------|--------------------
             *   0   |    0    |  DC   |   DC    | e1000_fc_none
             *   0   |    1    |   0   |   DC    | e1000_fc_none
             *   0   |    1    |   1   |    0    | e1000_fc_none
             *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
             *   1   |    0    |   0   |   DC    | e1000_fc_none
             *   1   |   DC    |   1   |   DC    | e1000_fc_full
             *   1   |    1    |   0   |    0    | e1000_fc_none
             *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
             *
             */
            /* Are both PAUSE bits set to 1?  If so, this implies
             * Symmetric Flow Control is enabled at both ends.  The
             * ASM_DIR bits are irrelevant per the spec.
             *
             * For Symmetric Flow Control:
             *
             *   LOCAL DEVICE  |   LINK PARTNER
             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
             *-------|---------|-------|---------|--------------------
             *   1   |   DC    |   1   |   DC    | e1000_fc_full
             *
             */
            if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
               (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
                /* Now we need to check if the user selected RX ONLY
                 * of pause frames.  In this case, we had to advertise
                 * FULL flow control because we could not advertise RX
                 * ONLY. Hence, we must now check to see if we need to
                 * turn OFF  the TRANSMISSION of PAUSE frames.
                 */
                if(hw->original_fc == e1000_fc_full) {
                    hw->fc = e1000_fc_full;
                    DEBUGOUT("Flow Control = FULL.\r\n");
                } else {
                    hw->fc = e1000_fc_rx_pause;
                    DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
                }
            }
            /* For receiving PAUSE frames ONLY.
             *
             *   LOCAL DEVICE  |   LINK PARTNER
             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
             *-------|---------|-------|---------|--------------------
             *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
             *
             */
            else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
                    (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
                    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
                    (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
                hw->fc = e1000_fc_tx_pause;
                DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
            }
            /* For transmitting PAUSE frames ONLY.
             *
             *   LOCAL DEVICE  |   LINK PARTNER
             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
             *-------|---------|-------|---------|--------------------
             *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
             *
             */
            else if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
                    (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
                    !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
                    (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
                hw->fc = e1000_fc_rx_pause;
                DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
            }
            /* Per the IEEE spec, at this point flow control should be
             * disabled.  However, we want to consider that we could
             * be connected to a legacy switch that doesn't advertise
             * desired flow control, but can be forced on the link
             * partner.  So if we advertised no flow control, that is
             * what we will resolve to.  If we advertised some kind of
             * receive capability (Rx Pause Only or Full Flow Control)
             * and the link partner advertised none, we will configure
             * ourselves to enable Rx Flow Control only.  We can do
             * this safely for two reasons:  If the link partner really
             * didn't want flow control enabled, and we enable Rx, no
             * harm done since we won't be receiving any PAUSE frames
             * anyway.  If the intent on the link partner was to have
             * flow control enabled, then by us enabling RX only, we
             * can at least receive pause frames and process them.
             * This is a good idea because in most cases, since we are
             * predominantly a server NIC, more times than not we will
             * be asked to delay transmission of packets than asking
             * our link partner to pause transmission of frames.
             */
Scott Feldman's avatar
Scott Feldman committed
1932 1933 1934
            else if((hw->original_fc == e1000_fc_none ||
                     hw->original_fc == e1000_fc_tx_pause) ||
                    hw->fc_strict_ieee) {
1935 1936
                hw->fc = e1000_fc_none;
                DEBUGOUT("Flow Control = NONE.\r\n");
Scott Feldman's avatar
Scott Feldman committed
1937
            } else {
1938 1939 1940 1941 1942 1943 1944 1945
                hw->fc = e1000_fc_rx_pause;
                DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
            }

            /* Now we need to do one last check...  If we auto-
             * negotiated to HALF DUPLEX, flow control should not be
             * enabled per IEEE 802.3 spec.
             */
1946 1947
            ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
            if(ret_val) {
1948 1949 1950
                DEBUGOUT("Error getting link speed and duplex\n");
                return ret_val;
            }
1951 1952 1953 1954 1955 1956 1957

            if(duplex == HALF_DUPLEX)
                hw->fc = e1000_fc_none;

            /* Now we call a subroutine to actually force the MAC
             * controller to use the correct flow control settings.
             */
1958 1959
            ret_val = e1000_force_mac_fc(hw);
            if(ret_val) {
1960 1961
                DEBUGOUT("Error forcing flow control settings\n");
                return ret_val;
1962
            }
1963 1964 1965 1966
        } else {
            DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n");
        }
    }
1967
    return E1000_SUCCESS;
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
}

/******************************************************************************
 * Checks to see if the link status of the hardware has changed.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Called by any function that needs to check the link status of the adapter.
 *****************************************************************************/
int32_t
e1000_check_for_link(struct e1000_hw *hw)
{
1980
    uint32_t rxcw = 0;
1981 1982 1983
    uint32_t ctrl;
    uint32_t status;
    uint32_t rctl;
1984
    uint32_t signal = 0;
1985 1986 1987 1988
    int32_t ret_val;
    uint16_t phy_data;

    DEBUGFUNC("e1000_check_for_link");
Jeb J. Cramer's avatar
Jeb J. Cramer committed
1989

1990 1991 1992
    ctrl = E1000_READ_REG(hw, CTRL);
    status = E1000_READ_REG(hw, STATUS);

1993
    /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
Jeb J. Cramer's avatar
Jeb J. Cramer committed
1994
     * set when the optics detect a signal. On older adapters, it will be
1995
     * cleared when there is a signal.  This applies to fiber media only.
1996
     */
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
    if((hw->media_type == e1000_media_type_fiber) ||
       (hw->media_type == e1000_media_type_internal_serdes)) {
        rxcw = E1000_READ_REG(hw, RXCW);

        if(hw->media_type == e1000_media_type_fiber) {
            signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
            if(status & E1000_STATUS_LU)
                hw->get_link_status = FALSE;
        }
    }
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

    /* If we have a copper PHY then we only want to go out to the PHY
     * registers to see if Auto-Neg has completed and/or if our link
     * status has changed.  The get_link_status flag will be set if we
     * receive a Link Status Change interrupt or we have Rx Sequence
     * Errors.
     */
    if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
        /* First we want to see if the MII Status Register reports
         * link.  If so, then we want to get the current speed/duplex
         * of the PHY.
         * Read the register twice since the link bit is sticky.
         */
2020 2021
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
        if(ret_val)
2022
            return ret_val;
2023 2024
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
        if(ret_val)
2025
            return ret_val;
2026 2027 2028

        if(phy_data & MII_SR_LINK_STATUS) {
            hw->get_link_status = FALSE;
2029 2030 2031 2032
            /* Check if there was DownShift, must be checked immediately after
             * link-up */
            e1000_check_downshift(hw);

2033 2034
        } else {
            /* No link detected */
2035
            e1000_config_dsp_after_link_change(hw, FALSE);
2036 2037 2038 2039 2040 2041 2042 2043
            return 0;
        }

        /* If we are forcing speed/duplex, then we simply return since
         * we have already determined whether we have link or not.
         */
        if(!hw->autoneg) return -E1000_ERR_CONFIG;

2044 2045 2046
        /* optimize the dsp settings for the igp phy */
        e1000_config_dsp_after_link_change(hw, TRUE);

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
        /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
         * have Si on board that is 82544 or newer, Auto
         * Speed Detection takes care of MAC speed/duplex
         * configuration.  So we only need to configure Collision
         * Distance in the MAC.  Otherwise, we need to force
         * speed/duplex on the MAC to the current PHY speed/duplex
         * settings.
         */
        if(hw->mac_type >= e1000_82544)
            e1000_config_collision_dist(hw);
        else {
2058 2059
            ret_val = e1000_config_mac_to_phy(hw);
            if(ret_val) {
2060 2061 2062 2063 2064
                DEBUGOUT("Error configuring MAC to PHY settings\n");
                return ret_val;
            }
        }

Jeb J. Cramer's avatar
Jeb J. Cramer committed
2065
        /* Configure Flow Control now that Auto-Neg has completed. First, we
2066 2067 2068
         * need to restore the desired flow control settings because we may
         * have had to re-autoneg with a different link partner.
         */
2069 2070
        ret_val = e1000_config_fc_after_link_up(hw);
        if(ret_val) {
2071 2072 2073 2074 2075 2076
            DEBUGOUT("Error configuring flow control\n");
            return ret_val;
        }

        /* At this point we know that we are on copper and we have
         * auto-negotiated link.  These are conditions for checking the link
2077 2078 2079 2080
         * partner capability register.  We use the link speed to determine if
         * TBI compatibility needs to be turned on or off.  If the link is not
         * at gigabit speed, then TBI compatibility is not needed.  If we are
         * at gigabit speed, we turn on TBI compatibility.
2081
         */
2082 2083 2084 2085 2086 2087
	if(hw->tbi_compatibility_en) {
            uint16_t speed, duplex;
            e1000_get_speed_and_duplex(hw, &speed, &duplex);
            if(speed != SPEED_1000) {
                /* If link speed is not set to gigabit speed, we do not need
                 * to enable TBI compatibility.
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
                 */
                if(hw->tbi_compatibility_on) {
                    /* If we previously were in the mode, turn it off. */
                    rctl = E1000_READ_REG(hw, RCTL);
                    rctl &= ~E1000_RCTL_SBP;
                    E1000_WRITE_REG(hw, RCTL, rctl);
                    hw->tbi_compatibility_on = FALSE;
                }
            } else {
                /* If TBI compatibility is was previously off, turn it on. For
                 * compatibility with a TBI link partner, we will store bad
                 * packets. Some frames have an additional byte on the end and
                 * will look like CRC errors to to the hardware.
                 */
                if(!hw->tbi_compatibility_on) {
                    hw->tbi_compatibility_on = TRUE;
                    rctl = E1000_READ_REG(hw, RCTL);
                    rctl |= E1000_RCTL_SBP;
                    E1000_WRITE_REG(hw, RCTL, rctl);
                }
            }
        }
    }
    /* If we don't have link (auto-negotiation failed or link partner cannot
     * auto-negotiate), the cable is plugged in (we have signal), and our
     * link partner is not trying to auto-negotiate with us (we are receiving
     * idles or data), we need to force link up. We also need to give
     * auto-negotiation time to complete, in case the cable was just plugged
     * in. The autoneg_failed flag does this.
     */
2118
    else if((((hw->media_type == e1000_media_type_fiber) &&
2119 2120
              ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
             (hw->media_type == e1000_media_type_internal_serdes)) &&
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
            (!(status & E1000_STATUS_LU)) &&
            (!(rxcw & E1000_RXCW_C))) {
        if(hw->autoneg_failed == 0) {
            hw->autoneg_failed = 1;
            return 0;
        }
        DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");

        /* Disable auto-negotiation in the TXCW register */
        E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));

        /* Force link-up and also force full-duplex. */
        ctrl = E1000_READ_REG(hw, CTRL);
        ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
        E1000_WRITE_REG(hw, CTRL, ctrl);

        /* Configure Flow Control after forcing link up. */
2138 2139
        ret_val = e1000_config_fc_after_link_up(hw);
        if(ret_val) {
2140 2141 2142 2143 2144 2145 2146 2147 2148
            DEBUGOUT("Error configuring flow control\n");
            return ret_val;
        }
    }
    /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
     * auto-negotiation in the TXCW register and disable forced link in the
     * Device Control register in an attempt to auto-negotiate with our link
     * partner.
     */
2149 2150
    else if(((hw->media_type == e1000_media_type_fiber) ||
             (hw->media_type == e1000_media_type_internal_serdes)) &&
2151
            (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2152 2153 2154
        DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
        E1000_WRITE_REG(hw, TXCW, hw->txcw);
        E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173

        hw->serdes_link_down = FALSE;
    }
    /* If we force link for non-auto-negotiation switch, check link status
     * based on MAC synchronization for internal serdes media type.
     */
    else if((hw->media_type == e1000_media_type_internal_serdes) &&
            !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
        /* SYNCH bit and IV bit are sticky. */
        udelay(10);
        if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
            if(!(rxcw & E1000_RXCW_IV)) {
                hw->serdes_link_down = FALSE;
                DEBUGOUT("SERDES: Link is up.\n");
            }
        } else {
            hw->serdes_link_down = TRUE;
            DEBUGOUT("SERDES: Link is down.\n");
        }
2174
    }
2175 2176 2177 2178
    if((hw->media_type == e1000_media_type_internal_serdes) &&
       (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
        hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
    }
2179
    return E1000_SUCCESS;
2180 2181 2182 2183 2184 2185 2186 2187 2188
}

/******************************************************************************
 * Detects the current speed and duplex settings of the hardware.
 *
 * hw - Struct containing variables accessed by shared code
 * speed - Speed of the connection
 * duplex - Duplex setting of the connection
 *****************************************************************************/
2189
int32_t
2190 2191 2192 2193 2194
e1000_get_speed_and_duplex(struct e1000_hw *hw,
                           uint16_t *speed,
                           uint16_t *duplex)
{
    uint32_t status;
2195 2196
    int32_t ret_val;
    uint16_t phy_data;
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224

    DEBUGFUNC("e1000_get_speed_and_duplex");

    if(hw->mac_type >= e1000_82543) {
        status = E1000_READ_REG(hw, STATUS);
        if(status & E1000_STATUS_SPEED_1000) {
            *speed = SPEED_1000;
            DEBUGOUT("1000 Mbs, ");
        } else if(status & E1000_STATUS_SPEED_100) {
            *speed = SPEED_100;
            DEBUGOUT("100 Mbs, ");
        } else {
            *speed = SPEED_10;
            DEBUGOUT("10 Mbs, ");
        }

        if(status & E1000_STATUS_FD) {
            *duplex = FULL_DUPLEX;
            DEBUGOUT("Full Duplex\r\n");
        } else {
            *duplex = HALF_DUPLEX;
            DEBUGOUT(" Half Duplex\r\n");
        }
    } else {
        DEBUGOUT("1000 Mbs, Full Duplex\r\n");
        *speed = SPEED_1000;
        *duplex = FULL_DUPLEX;
    }
2225 2226 2227 2228 2229 2230

    /* IGP01 PHY may advertise full duplex operation after speed downgrade even
     * if it is operating at half duplex.  Here we set the duplex settings to
     * match the duplex in the link partner's capabilities.
     */
    if(hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2231 2232
        ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
        if(ret_val)
2233 2234 2235 2236 2237
            return ret_val;

        if(!(phy_data & NWAY_ER_LP_NWAY_CAPS))
            *duplex = HALF_DUPLEX;
        else {
2238 2239
            ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
            if(ret_val)
2240 2241 2242 2243 2244 2245 2246 2247
                return ret_val;
            if((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
               (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
                *duplex = HALF_DUPLEX;
        }
    }

    return E1000_SUCCESS;
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
}

/******************************************************************************
* Blocks until autoneg completes or times out (~4.5 seconds)
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
int32_t
e1000_wait_autoneg(struct e1000_hw *hw)
{
2258
    int32_t ret_val;
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
    uint16_t i;
    uint16_t phy_data;

    DEBUGFUNC("e1000_wait_autoneg");
    DEBUGOUT("Waiting for Auto-Neg to complete.\n");

    /* We will wait for autoneg to complete or 4.5 seconds to expire. */
    for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
        /* Read the MII Status Register and wait for Auto-Neg
         * Complete bit to be set.
         */
2270 2271
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
        if(ret_val)
2272
            return ret_val;
2273 2274
        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
        if(ret_val)
2275
            return ret_val;
2276
        if(phy_data & MII_SR_AUTONEG_COMPLETE) {
2277
            return E1000_SUCCESS;
2278 2279 2280
        }
        msec_delay(100);
    }
2281
    return E1000_SUCCESS;
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
}

/******************************************************************************
* Raises the Management Data Clock
*
* hw - Struct containing variables accessed by shared code
* ctrl - Device control register's current value
******************************************************************************/
static void
e1000_raise_mdi_clk(struct e1000_hw *hw,
                    uint32_t *ctrl)
{
    /* Raise the clock input to the Management Data Clock (by setting the MDC
2295
     * bit), and then delay 10 microseconds.
2296 2297
     */
    E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
2298
    E1000_WRITE_FLUSH(hw);
2299
    udelay(10);
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
}

/******************************************************************************
* Lowers the Management Data Clock
*
* hw - Struct containing variables accessed by shared code
* ctrl - Device control register's current value
******************************************************************************/
static void
e1000_lower_mdi_clk(struct e1000_hw *hw,
                    uint32_t *ctrl)
{
    /* Lower the clock input to the Management Data Clock (by clearing the MDC
2313
     * bit), and then delay 10 microseconds.
2314 2315
     */
    E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
2316
    E1000_WRITE_FLUSH(hw);
2317
    udelay(10);
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
}

/******************************************************************************
* Shifts data bits out to the PHY
*
* hw - Struct containing variables accessed by shared code
* data - Data to send out to the PHY
* count - Number of bits to shift out
*
* Bits are shifted out in MSB to LSB order.
******************************************************************************/
static void
e1000_shift_out_mdi_bits(struct e1000_hw *hw,
                         uint32_t data,
                         uint16_t count)
{
    uint32_t ctrl;
    uint32_t mask;

    /* We need to shift "count" number of bits out to the PHY. So, the value
Jeb J. Cramer's avatar
Jeb J. Cramer committed
2338
     * in the "data" parameter will be shifted out to the PHY one bit at a
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
     * time. In order to do this, "data" must be broken down into bits.
     */
    mask = 0x01;
    mask <<= (count - 1);

    ctrl = E1000_READ_REG(hw, CTRL);

    /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
    ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);

    while(mask) {
        /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
         * then raising and lowering the Management Data Clock. A "0" is
         * shifted out to the PHY by setting the MDIO bit to "0" and then
         * raising and lowering the clock.
         */
        if(data & mask) ctrl |= E1000_CTRL_MDIO;
        else ctrl &= ~E1000_CTRL_MDIO;

        E1000_WRITE_REG(hw, CTRL, ctrl);
2359
        E1000_WRITE_FLUSH(hw);
2360

2361
        udelay(10);
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374

        e1000_raise_mdi_clk(hw, &ctrl);
        e1000_lower_mdi_clk(hw, &ctrl);

        mask = mask >> 1;
    }
}

/******************************************************************************
* Shifts data bits in from the PHY
*
* hw - Struct containing variables accessed by shared code
*
Jeb J. Cramer's avatar
Jeb J. Cramer committed
2375
* Bits are shifted in in MSB to LSB order.
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
******************************************************************************/
static uint16_t
e1000_shift_in_mdi_bits(struct e1000_hw *hw)
{
    uint32_t ctrl;
    uint16_t data = 0;
    uint8_t i;

    /* In order to read a register from the PHY, we need to shift in a total
     * of 18 bits from the PHY. The first two bit (turnaround) times are used
     * to avoid contention on the MDIO pin when a read operation is performed.
     * These two bits are ignored by us and thrown away. Bits are "shifted in"
     * by raising the input to the Management Data Clock (setting the MDC bit),
     * and then reading the value of the MDIO bit.
Jeb J. Cramer's avatar
Jeb J. Cramer committed
2390
     */
2391 2392 2393 2394 2395 2396 2397
    ctrl = E1000_READ_REG(hw, CTRL);

    /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
    ctrl &= ~E1000_CTRL_MDIO_DIR;
    ctrl &= ~E1000_CTRL_MDIO;

    E1000_WRITE_REG(hw, CTRL, ctrl);
2398
    E1000_WRITE_FLUSH(hw);
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422

    /* Raise and Lower the clock before reading in the data. This accounts for
     * the turnaround bits. The first clock occurred when we clocked out the
     * last bit of the Register Address.
     */
    e1000_raise_mdi_clk(hw, &ctrl);
    e1000_lower_mdi_clk(hw, &ctrl);

    for(data = 0, i = 0; i < 16; i++) {
        data = data << 1;
        e1000_raise_mdi_clk(hw, &ctrl);
        ctrl = E1000_READ_REG(hw, CTRL);
        /* Check to see if we shifted in a "1". */
        if(ctrl & E1000_CTRL_MDIO) data |= 1;
        e1000_lower_mdi_clk(hw, &ctrl);
    }

    e1000_raise_mdi_clk(hw, &ctrl);
    e1000_lower_mdi_clk(hw, &ctrl);

    return data;
}

/*****************************************************************************
2423 2424
* Reads the value from a PHY register, if the value is on a specific non zero
* page, sets the page first.
2425 2426 2427 2428 2429 2430 2431 2432
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
******************************************************************************/
int32_t
e1000_read_phy_reg(struct e1000_hw *hw,
                   uint32_t reg_addr,
                   uint16_t *phy_data)
{
2433
    uint32_t ret_val;
2434 2435 2436

    DEBUGFUNC("e1000_read_phy_reg");

2437 2438
    if(hw->phy_type == e1000_phy_igp &&
       (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2439 2440 2441
        ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
                                         (uint16_t)reg_addr);
        if(ret_val)
2442
            return ret_val;
2443 2444
    }

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
    ret_val = e1000_read_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT & reg_addr,
                                    phy_data);

    return ret_val;
}

int32_t
e1000_read_phy_reg_ex(struct e1000_hw *hw,
                      uint32_t reg_addr,
                      uint16_t *phy_data)
{
    uint32_t i;
    uint32_t mdic = 0;
    const uint32_t phy_addr = 1;

    DEBUGFUNC("e1000_read_phy_reg_ex");

    if(reg_addr > MAX_PHY_REG_ADDRESS) {
        DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
        return -E1000_ERR_PARAM;
    }

    if(hw->mac_type > e1000_82543) {
2468 2469 2470 2471 2472
        /* Set up Op-code, Phy Address, and register address in the MDI
         * Control register.  The MAC will take care of interfacing with the
         * PHY to retrieve the desired data.
         */
        mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
Jeb J. Cramer's avatar
Jeb J. Cramer committed
2473
                (phy_addr << E1000_MDIC_PHY_SHIFT) |
2474 2475 2476 2477 2478 2479
                (E1000_MDIC_OP_READ));

        E1000_WRITE_REG(hw, MDIC, mdic);

        /* Poll the ready bit to see if the MDI read completed */
        for(i = 0; i < 64; i++) {
2480
            udelay(50);
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
            mdic = E1000_READ_REG(hw, MDIC);
            if(mdic & E1000_MDIC_READY) break;
        }
        if(!(mdic & E1000_MDIC_READY)) {
            DEBUGOUT("MDI Read did not complete\n");
            return -E1000_ERR_PHY;
        }
        if(mdic & E1000_MDIC_ERROR) {
            DEBUGOUT("MDI Error\n");
            return -E1000_ERR_PHY;
        }
        *phy_data = (uint16_t) mdic;
    } else {
        /* We must first send a preamble through the MDIO pin to signal the
         * beginning of an MII instruction.  This is done by sending 32
         * consecutive "1" bits.
         */
        e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);

        /* Now combine the next few fields that are required for a read
         * operation.  We use this method instead of calling the
         * e1000_shift_out_mdi_bits routine five different times. The format of
         * a MII read instruction consists of a shift out of 14 bits and is
         * defined as follows:
         *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
         * followed by a shift in of 18 bits.  This first two bits shifted in
         * are TurnAround bits used to avoid contention on the MDIO pin when a
         * READ operation is performed.  These two bits are thrown away
         * followed by a shift in of 16 bits which contains the desired data.
         */
Jeb J. Cramer's avatar
Jeb J. Cramer committed
2511
        mdic = ((reg_addr) | (phy_addr << 5) |
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
                (PHY_OP_READ << 10) | (PHY_SOF << 12));

        e1000_shift_out_mdi_bits(hw, mdic, 14);

        /* Now that we've shifted out the read command to the MII, we need to
         * "shift in" the 16-bit value (18 total bits) of the requested PHY
         * register address.
         */
        *phy_data = e1000_shift_in_mdi_bits(hw);
    }
2522
    return E1000_SUCCESS;
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
}

/******************************************************************************
* Writes a value to a PHY register
*
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
* data - data to write to the PHY
******************************************************************************/
int32_t
e1000_write_phy_reg(struct e1000_hw *hw,
                    uint32_t reg_addr,
                    uint16_t phy_data)
2536 2537 2538 2539 2540 2541 2542
{
    uint32_t ret_val;

    DEBUGFUNC("e1000_write_phy_reg");

    if(hw->phy_type == e1000_phy_igp &&
       (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2543 2544 2545
        ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
                                         (uint16_t)reg_addr);
        if(ret_val)
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
            return ret_val;
    }

    ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT & reg_addr,
                                     phy_data);

    return ret_val;
}

int32_t
e1000_write_phy_reg_ex(struct e1000_hw *hw,
                    uint32_t reg_addr,
                    uint16_t phy_data)
2559 2560 2561 2562 2563
{
    uint32_t i;
    uint32_t mdic = 0;
    const uint32_t phy_addr = 1;

2564
    DEBUGFUNC("e1000_write_phy_reg_ex");
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577

    if(reg_addr > MAX_PHY_REG_ADDRESS) {
        DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
        return -E1000_ERR_PARAM;
    }

    if(hw->mac_type > e1000_82543) {
        /* Set up Op-code, Phy Address, register address, and data intended
         * for the PHY register in the MDI Control register.  The MAC will take
         * care of interfacing with the PHY to send the desired data.
         */
        mdic = (((uint32_t) phy_data) |
                (reg_addr << E1000_MDIC_REG_SHIFT) |
Jeb J. Cramer's avatar
Jeb J. Cramer committed
2578
                (phy_addr << E1000_MDIC_PHY_SHIFT) |
2579 2580 2581 2582 2583
                (E1000_MDIC_OP_WRITE));

        E1000_WRITE_REG(hw, MDIC, mdic);

        /* Poll the ready bit to see if the MDI read completed */
2584 2585
        for(i = 0; i < 640; i++) {
            udelay(5);
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
            mdic = E1000_READ_REG(hw, MDIC);
            if(mdic & E1000_MDIC_READY) break;
        }
        if(!(mdic & E1000_MDIC_READY)) {
            DEBUGOUT("MDI Write did not complete\n");
            return -E1000_ERR_PHY;
        }
    } else {
        /* We'll need to use the SW defined pins to shift the write command
         * out to the PHY. We first send a preamble to the PHY to signal the
Jeb J. Cramer's avatar
Jeb J. Cramer committed
2596
         * beginning of the MII instruction.  This is done by sending 32
2597 2598 2599 2600
         * consecutive "1" bits.
         */
        e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);

Jeb J. Cramer's avatar
Jeb J. Cramer committed
2601
        /* Now combine the remaining required fields that will indicate a
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
         * write operation. We use this method instead of calling the
         * e1000_shift_out_mdi_bits routine for each field in the command. The
         * format of a MII write instruction is as follows:
         * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
         */
        mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
                (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
        mdic <<= 16;
        mdic |= (uint32_t) phy_data;

        e1000_shift_out_mdi_bits(hw, mdic, 32);
    }
Jeb J. Cramer's avatar
Jeb J. Cramer committed
2614

2615
    return E1000_SUCCESS;
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
}

/******************************************************************************
* Returns the PHY to the power-on reset state
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
void
e1000_phy_hw_reset(struct e1000_hw *hw)
{
Scott Feldman's avatar
Scott Feldman committed
2626 2627
    uint32_t ctrl, ctrl_ext;
    uint32_t led_ctrl;
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638

    DEBUGFUNC("e1000_phy_hw_reset");

    DEBUGOUT("Resetting Phy...\n");

    if(hw->mac_type > e1000_82543) {
        /* Read the device control register and assert the E1000_CTRL_PHY_RST
         * bit. Then, take it out of reset.
         */
        ctrl = E1000_READ_REG(hw, CTRL);
        E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
2639
        E1000_WRITE_FLUSH(hw);
2640 2641
        msec_delay(10);
        E1000_WRITE_REG(hw, CTRL, ctrl);
2642
        E1000_WRITE_FLUSH(hw);
2643 2644 2645 2646 2647 2648 2649 2650
    } else {
        /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
         * bit to put the PHY into reset. Then, take it out of reset.
         */
        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
        ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
        ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2651
        E1000_WRITE_FLUSH(hw);
2652 2653 2654
        msec_delay(10);
        ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2655
        E1000_WRITE_FLUSH(hw);
2656
    }
Scott Feldman's avatar
Scott Feldman committed
2657
    udelay(150);
2658 2659 2660 2661 2662

    if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
        /* Configure activity LED after PHY reset */
        led_ctrl = E1000_READ_REG(hw, LEDCTL);
        led_ctrl &= IGP_ACTIVITY_LED_MASK;
2663
        led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2664 2665
        E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
    }
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
}

/******************************************************************************
* Resets the PHY
*
* hw - Struct containing variables accessed by shared code
*
* Sets bit 15 of the MII Control regiser
******************************************************************************/
int32_t
e1000_phy_reset(struct e1000_hw *hw)
{
2678
    int32_t ret_val;
2679 2680 2681 2682
    uint16_t phy_data;

    DEBUGFUNC("e1000_phy_reset");

2683
    if(hw->mac_type != e1000_82541_rev_2) {
2684 2685
        ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
        if(ret_val)
2686 2687 2688
            return ret_val;

        phy_data |= MII_CR_RESET;
2689 2690
        ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
        if(ret_val)
2691 2692 2693 2694 2695 2696
            return ret_val;

        udelay(1);
    } else e1000_phy_hw_reset(hw);

    if(hw->phy_type == e1000_phy_igp)
2697
        e1000_phy_init_script(hw);
2698 2699

    return E1000_SUCCESS;
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
}

/******************************************************************************
* Probes the expected PHY address for known PHY IDs
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
int32_t
e1000_detect_gig_phy(struct e1000_hw *hw)
{
2710
    int32_t phy_init_status, ret_val;
2711 2712 2713 2714 2715 2716
    uint16_t phy_id_high, phy_id_low;
    boolean_t match = FALSE;

    DEBUGFUNC("e1000_detect_gig_phy");

    /* Read the PHY ID Registers to identify which PHY is onboard. */
2717 2718
    ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
    if(ret_val)
2719 2720
        return ret_val;

2721
    hw->phy_id = (uint32_t) (phy_id_high << 16);
2722
    udelay(20);
2723 2724
    ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
    if(ret_val)
2725 2726
        return ret_val;

2727
    hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
Jeb J. Cramer's avatar
Jeb J. Cramer committed
2728 2729
    hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;

2730 2731 2732 2733 2734 2735 2736 2737
    switch(hw->mac_type) {
    case e1000_82543:
        if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
        break;
    case e1000_82544:
        if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
        break;
    case e1000_82540:
Scott Feldman's avatar
Scott Feldman committed
2738
    case e1000_82545:
2739
    case e1000_82545_rev_3:
Scott Feldman's avatar
Scott Feldman committed
2740
    case e1000_82546:
2741
    case e1000_82546_rev_3:
2742 2743
        if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
        break;
2744
    case e1000_82541:
2745
    case e1000_82541_rev_2:
2746
    case e1000_82547:
2747
    case e1000_82547_rev_2:
2748 2749
        if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
        break;
2750 2751 2752 2753
    default:
        DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
        return -E1000_ERR_CONFIG;
    }
2754 2755 2756
    phy_init_status = e1000_set_phy_type(hw);

    if ((match) && (phy_init_status == E1000_SUCCESS)) {
2757
        DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
2758
        return E1000_SUCCESS;
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
    }
    DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
    return -E1000_ERR_PHY;
}

/******************************************************************************
* Resets the PHY's DSP
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_phy_reset_dsp(struct e1000_hw *hw)
{
2772
    int32_t ret_val;
2773
    DEBUGFUNC("e1000_phy_reset_dsp");
Jeb J. Cramer's avatar
Jeb J. Cramer committed
2774

2775
    do {
2776 2777 2778 2779 2780 2781
        ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
        if(ret_val) break;
        ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
        if(ret_val) break;
        ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
        if(ret_val) break;
2782
        ret_val = E1000_SUCCESS;
2783 2784 2785 2786 2787
    } while(0);

    return ret_val;
}

2788 2789 2790 2791 2792 2793 2794
/******************************************************************************
* Get PHY information from various PHY registers for igp PHY only.
*
* hw - Struct containing variables accessed by shared code
* phy_info - PHY information structure
******************************************************************************/
int32_t
2795 2796
e1000_phy_igp_get_info(struct e1000_hw *hw,
                       struct e1000_phy_info *phy_info)
2797
{
2798
    int32_t ret_val;
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
    uint16_t phy_data, polarity, min_length, max_length, average;

    DEBUGFUNC("e1000_phy_igp_get_info");

    /* The downshift status is checked only once, after link is established,
     * and it stored in the hw->speed_downgraded parameter. */
    phy_info->downshift = hw->speed_downgraded;

    /* IGP01E1000 does not need to support it. */
    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;

    /* IGP01E1000 always correct polarity reversal */
    phy_info->polarity_correction = e1000_polarity_reversal_enabled;

    /* Check polarity status */
2814 2815
    ret_val = e1000_check_polarity(hw, &polarity);
    if(ret_val)
2816
        return ret_val;
2817 2818 2819

    phy_info->cable_polarity = polarity;

2820 2821
    ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
    if(ret_val)
2822
        return ret_val;
2823 2824 2825 2826 2827 2828 2829

    phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >>
                          IGP01E1000_PSSR_MDIX_SHIFT;

    if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
       IGP01E1000_PSSR_SPEED_1000MBPS) {
        /* Local/Remote Receiver Information are only valid at 1000 Mbps */
2830 2831
        ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
        if(ret_val)
2832
            return ret_val;
2833 2834 2835 2836 2837 2838 2839

        phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
                             SR_1000T_LOCAL_RX_STATUS_SHIFT;
        phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
                              SR_1000T_REMOTE_RX_STATUS_SHIFT;

        /* Get cable length */
2840 2841
        ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
        if(ret_val)
2842
            return ret_val;
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868

        /* transalte to old method */
        average = (max_length + min_length) / 2;

        if(average <= e1000_igp_cable_length_50)
            phy_info->cable_length = e1000_cable_length_50;
        else if(average <= e1000_igp_cable_length_80)
            phy_info->cable_length = e1000_cable_length_50_80;
        else if(average <= e1000_igp_cable_length_110)
            phy_info->cable_length = e1000_cable_length_80_110;
        else if(average <= e1000_igp_cable_length_140)
            phy_info->cable_length = e1000_cable_length_110_140;
        else
            phy_info->cable_length = e1000_cable_length_140;
    }

    return E1000_SUCCESS;
}

/******************************************************************************
* Get PHY information from various PHY registers fot m88 PHY only.
*
* hw - Struct containing variables accessed by shared code
* phy_info - PHY information structure
******************************************************************************/
int32_t
2869 2870
e1000_phy_m88_get_info(struct e1000_hw *hw,
                       struct e1000_phy_info *phy_info)
2871
{
2872
    int32_t ret_val;
2873 2874 2875 2876 2877 2878 2879 2880
    uint16_t phy_data, polarity;

    DEBUGFUNC("e1000_phy_m88_get_info");

    /* The downshift status is checked only once, after link is established,
     * and it stored in the hw->speed_downgraded parameter. */
    phy_info->downshift = hw->speed_downgraded;

2881 2882
    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
    if(ret_val)
2883
        return ret_val;
2884 2885 2886 2887 2888 2889 2890 2891 2892

    phy_info->extended_10bt_distance =
        (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
        M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT;
    phy_info->polarity_correction =
        (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
        M88E1000_PSCR_POLARITY_REVERSAL_SHIFT;

    /* Check polarity status */
2893 2894
    ret_val = e1000_check_polarity(hw, &polarity);
    if(ret_val)
2895
        return ret_val;
2896 2897 2898

    phy_info->cable_polarity = polarity;

2899 2900
    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
    if(ret_val)
2901
        return ret_val;
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912

    phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
                          M88E1000_PSSR_MDIX_SHIFT;

    if(phy_data & M88E1000_PSSR_1000MBS) {
        /* Cable Length Estimation and Local/Remote Receiver Informatoion
         * are only valid at 1000 Mbps
         */
        phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
                                  M88E1000_PSSR_CABLE_LENGTH_SHIFT);

2913 2914
        ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
        if(ret_val)
2915
            return ret_val;
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926

        phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
                             SR_1000T_LOCAL_RX_STATUS_SHIFT;

        phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
                              SR_1000T_REMOTE_RX_STATUS_SHIFT;
    }

    return E1000_SUCCESS;
}

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
/******************************************************************************
* Get PHY information from various PHY registers
*
* hw - Struct containing variables accessed by shared code
* phy_info - PHY information structure
******************************************************************************/
int32_t
e1000_phy_get_info(struct e1000_hw *hw,
                   struct e1000_phy_info *phy_info)
{
2937
    int32_t ret_val;
2938 2939 2940 2941 2942 2943 2944
    uint16_t phy_data;

    DEBUGFUNC("e1000_phy_get_info");

    phy_info->cable_length = e1000_cable_length_undefined;
    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
    phy_info->cable_polarity = e1000_rev_polarity_undefined;
2945
    phy_info->downshift = e1000_downshift_undefined;
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
    phy_info->polarity_correction = e1000_polarity_reversal_undefined;
    phy_info->mdix_mode = e1000_auto_x_mode_undefined;
    phy_info->local_rx = e1000_1000t_rx_status_undefined;
    phy_info->remote_rx = e1000_1000t_rx_status_undefined;

    if(hw->media_type != e1000_media_type_copper) {
        DEBUGOUT("PHY info is only valid for copper media\n");
        return -E1000_ERR_CONFIG;
    }

2956 2957
    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
    if(ret_val)
2958 2959
        return ret_val;

2960 2961
    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
    if(ret_val)
2962 2963
        return ret_val;

2964 2965 2966 2967
    if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
        DEBUGOUT("PHY info is only valid if link is up\n");
        return -E1000_ERR_CONFIG;
    }
2968

2969
    if(hw->phy_type == e1000_phy_igp)
2970 2971 2972
        return e1000_phy_igp_get_info(hw, phy_info);
    else
        return e1000_phy_m88_get_info(hw, phy_info);
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
}

int32_t
e1000_validate_mdi_setting(struct e1000_hw *hw)
{
    DEBUGFUNC("e1000_validate_mdi_settings");

    if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
        DEBUGOUT("Invalid MDI setting detected\n");
        hw->mdix = 1;
        return -E1000_ERR_CONFIG;
    }
2985
    return E1000_SUCCESS;
2986 2987
}

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016

/******************************************************************************
 * Sets up eeprom variables in the hw struct.  Must be called after mac_type
 * is configured.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
void
e1000_init_eeprom_params(struct e1000_hw *hw)
{
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
    uint32_t eecd = E1000_READ_REG(hw, EECD);
    uint16_t eeprom_size;

    DEBUGFUNC("e1000_init_eeprom_params");

    switch (hw->mac_type) {
    case e1000_82542_rev2_0:
    case e1000_82542_rev2_1:
    case e1000_82543:
    case e1000_82544:
        eeprom->type = e1000_eeprom_microwire;
        eeprom->word_size = 64;
        eeprom->opcode_bits = 3;
        eeprom->address_bits = 6;
        eeprom->delay_usec = 50;
        break;
    case e1000_82540:
    case e1000_82545:
3017
    case e1000_82545_rev_3:
3018
    case e1000_82546:
3019
    case e1000_82546_rev_3:
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
        eeprom->type = e1000_eeprom_microwire;
        eeprom->opcode_bits = 3;
        eeprom->delay_usec = 50;
        if(eecd & E1000_EECD_SIZE) {
            eeprom->word_size = 256;
            eeprom->address_bits = 8;
        } else {
            eeprom->word_size = 64;
            eeprom->address_bits = 6;
        }
        break;
    case e1000_82541:
3032
    case e1000_82541_rev_2:
3033
    case e1000_82547:
3034
    case e1000_82547_rev_2:
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
        if (eecd & E1000_EECD_TYPE) {
            eeprom->type = e1000_eeprom_spi;
            eeprom->opcode_bits = 8;
            eeprom->delay_usec = 1;
            if (eecd & E1000_EECD_ADDR_BITS) {
                eeprom->page_size = 32;
                eeprom->address_bits = 16;
            } else {
                eeprom->page_size = 8;
                eeprom->address_bits = 8;
            }
        } else {
            eeprom->type = e1000_eeprom_microwire;
            eeprom->opcode_bits = 3;
            eeprom->delay_usec = 50;
            if (eecd & E1000_EECD_ADDR_BITS) {
                eeprom->word_size = 256;
                eeprom->address_bits = 8;
            } else {
                eeprom->word_size = 64;
                eeprom->address_bits = 6;
            }
        }
        break;
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
    default:
        eeprom->type = e1000_eeprom_spi;
        eeprom->opcode_bits = 8;
        eeprom->delay_usec = 1;
        if (eecd & E1000_EECD_ADDR_BITS) {
            eeprom->page_size = 32;
            eeprom->address_bits = 16;
        } else {
            eeprom->page_size = 8;
            eeprom->address_bits = 8;
        }
        break;
3071 3072 3073 3074 3075 3076 3077 3078
    }

    if (eeprom->type == e1000_eeprom_spi) {
        eeprom->word_size = 64;
        if (e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size) == 0) {
            eeprom_size &= EEPROM_SIZE_MASK;

            switch (eeprom_size) {
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
            case EEPROM_SIZE_16KB:
                eeprom->word_size = 8192;
                break;
            case EEPROM_SIZE_8KB:
                eeprom->word_size = 4096;
                break;
            case EEPROM_SIZE_4KB:
                eeprom->word_size = 2048;
                break;
            case EEPROM_SIZE_2KB:
                eeprom->word_size = 1024;
                break;
            case EEPROM_SIZE_1KB:
                eeprom->word_size = 512;
                break;
            case EEPROM_SIZE_512B:
                eeprom->word_size = 256;
                break;
            case EEPROM_SIZE_128B:
            default:
                eeprom->word_size = 64;
                break;
3101 3102 3103 3104 3105
            }
        }
    }
}

3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
/******************************************************************************
 * Raises the EEPROM's clock input.
 *
 * hw - Struct containing variables accessed by shared code
 * eecd - EECD's current value
 *****************************************************************************/
static void
e1000_raise_ee_clk(struct e1000_hw *hw,
                   uint32_t *eecd)
{
    /* Raise the clock input to the EEPROM (by setting the SK bit), and then
Jeb J. Cramer's avatar
Jeb J. Cramer committed
3117
     * wait <delay> microseconds.
3118 3119 3120
     */
    *eecd = *eecd | E1000_EECD_SK;
    E1000_WRITE_REG(hw, EECD, *eecd);
3121
    E1000_WRITE_FLUSH(hw);
3122
    udelay(hw->eeprom.delay_usec);
3123 3124 3125 3126 3127
}

/******************************************************************************
 * Lowers the EEPROM's clock input.
 *
3128
 * hw - Struct containing variables accessed by shared code
3129 3130 3131 3132 3133 3134
 * eecd - EECD's current value
 *****************************************************************************/
static void
e1000_lower_ee_clk(struct e1000_hw *hw,
                   uint32_t *eecd)
{
3135 3136
    /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
     * wait 50 microseconds.
3137 3138 3139
     */
    *eecd = *eecd & ~E1000_EECD_SK;
    E1000_WRITE_REG(hw, EECD, *eecd);
3140
    E1000_WRITE_FLUSH(hw);
3141
    udelay(hw->eeprom.delay_usec);
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
}

/******************************************************************************
 * Shift data bits out to the EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * data - data to send to the EEPROM
 * count - number of bits to shift out
 *****************************************************************************/
static void
e1000_shift_out_ee_bits(struct e1000_hw *hw,
                        uint16_t data,
                        uint16_t count)
{
3156
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
3157 3158 3159 3160 3161
    uint32_t eecd;
    uint32_t mask;

    /* We need to shift "count" bits out to the EEPROM. So, value in the
     * "data" parameter will be shifted out to the EEPROM one bit at a time.
3162
     * In order to do this, "data" must be broken down into bits.
3163 3164 3165
     */
    mask = 0x01 << (count - 1);
    eecd = E1000_READ_REG(hw, EECD);
3166 3167 3168 3169 3170
    if (eeprom->type == e1000_eeprom_microwire) {
        eecd &= ~E1000_EECD_DO;
    } else if (eeprom->type == e1000_eeprom_spi) {
        eecd |= E1000_EECD_DO;
    }
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
    do {
        /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
         * and then raising and then lowering the clock (the SK bit controls
         * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
         * by setting "DI" to "0" and then raising and then lowering the clock.
         */
        eecd &= ~E1000_EECD_DI;

        if(data & mask)
            eecd |= E1000_EECD_DI;

        E1000_WRITE_REG(hw, EECD, eecd);
3183
        E1000_WRITE_FLUSH(hw);
3184

3185
        udelay(eeprom->delay_usec);
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204

        e1000_raise_ee_clk(hw, &eecd);
        e1000_lower_ee_clk(hw, &eecd);

        mask = mask >> 1;

    } while(mask);

    /* We leave the "DI" bit set to "0" when we leave this routine. */
    eecd &= ~E1000_EECD_DI;
    E1000_WRITE_REG(hw, EECD, eecd);
}

/******************************************************************************
 * Shift data bits in from the EEPROM
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static uint16_t
3205 3206
e1000_shift_in_ee_bits(struct e1000_hw *hw,
                       uint16_t count)
3207 3208 3209 3210 3211
{
    uint32_t eecd;
    uint32_t i;
    uint16_t data;

Jeb J. Cramer's avatar
Jeb J. Cramer committed
3212 3213 3214 3215 3216
    /* In order to read a register from the EEPROM, we need to shift 'count'
     * bits in from the EEPROM. Bits are "shifted in" by raising the clock
     * input to the EEPROM (setting the SK bit), and then reading the value of
     * the "DO" bit.  During this "shifting in" process the "DI" bit should
     * always be clear.
3217 3218 3219 3220 3221 3222 3223
     */

    eecd = E1000_READ_REG(hw, EECD);

    eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
    data = 0;

3224
    for(i = 0; i < count; i++) {
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
        data = data << 1;
        e1000_raise_ee_clk(hw, &eecd);

        eecd = E1000_READ_REG(hw, EECD);

        eecd &= ~(E1000_EECD_DI);
        if(eecd & E1000_EECD_DO)
            data |= 1;

        e1000_lower_ee_clk(hw, &eecd);
    }

    return data;
}

/******************************************************************************
 * Prepares EEPROM for access
 *
 * hw - Struct containing variables accessed by shared code
 *
3245
 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3246 3247
 * function should be called before issuing a command to the EEPROM.
 *****************************************************************************/
3248 3249
static int32_t
e1000_acquire_eeprom(struct e1000_hw *hw)
3250
{
3251 3252 3253 3254
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
    uint32_t eecd, i=0;

    DEBUGFUNC("e1000_acquire_eeprom");
3255 3256 3257

    eecd = E1000_READ_REG(hw, EECD);

3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
    /* Request EEPROM Access */
    if(hw->mac_type > e1000_82544) {
        eecd |= E1000_EECD_REQ;
        E1000_WRITE_REG(hw, EECD, eecd);
        eecd = E1000_READ_REG(hw, EECD);
        while((!(eecd & E1000_EECD_GNT)) &&
              (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
            i++;
            udelay(5);
            eecd = E1000_READ_REG(hw, EECD);
        }
        if(!(eecd & E1000_EECD_GNT)) {
            eecd &= ~E1000_EECD_REQ;
            E1000_WRITE_REG(hw, EECD, eecd);
            DEBUGOUT("Could not acquire EEPROM grant\n");
            return -E1000_ERR_EEPROM;
        }
    }
3276

3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
    /* Setup EEPROM for Read/Write */

    if (eeprom->type == e1000_eeprom_microwire) {
        /* Clear SK and DI */
        eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
        E1000_WRITE_REG(hw, EECD, eecd);

        /* Set CS */
        eecd |= E1000_EECD_CS;
        E1000_WRITE_REG(hw, EECD, eecd);
    } else if (eeprom->type == e1000_eeprom_spi) {
        /* Clear SK and CS */
        eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
        E1000_WRITE_REG(hw, EECD, eecd);
        udelay(1);
    }

    return E1000_SUCCESS;
3295 3296 3297 3298
}

/******************************************************************************
 * Returns EEPROM to a "standby" state
3299
 *
3300 3301 3302 3303 3304
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
e1000_standby_eeprom(struct e1000_hw *hw)
{
3305
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
3306 3307 3308 3309
    uint32_t eecd;

    eecd = E1000_READ_REG(hw, EECD);

3310 3311 3312 3313 3314
    if(eeprom->type == e1000_eeprom_microwire) {
        eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(eeprom->delay_usec);
3315

3316 3317 3318 3319 3320
        /* Clock high */
        eecd |= E1000_EECD_SK;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(eeprom->delay_usec);
3321

3322 3323 3324 3325 3326
        /* Select EEPROM */
        eecd |= E1000_EECD_CS;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(eeprom->delay_usec);
3327

3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
        /* Clock low */
        eecd &= ~E1000_EECD_SK;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(eeprom->delay_usec);
    } else if(eeprom->type == e1000_eeprom_spi) {
        /* Toggle CS to flush commands */
        eecd |= E1000_EECD_CS;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(eeprom->delay_usec);
        eecd &= ~E1000_EECD_CS;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(eeprom->delay_usec);
    }
3344 3345
}

3346
/******************************************************************************
3347
 * Terminates a command by inverting the EEPROM's chip select pin
3348 3349 3350 3351
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
3352
e1000_release_eeprom(struct e1000_hw *hw)
3353 3354 3355
{
    uint32_t eecd;

3356 3357
    DEBUGFUNC("e1000_release_eeprom");

3358 3359
    eecd = E1000_READ_REG(hw, EECD);

3360 3361 3362
    if (hw->eeprom.type == e1000_eeprom_spi) {
        eecd |= E1000_EECD_CS;  /* Pull CS high */
        eecd &= ~E1000_EECD_SK; /* Lower SCK */
3363

3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
        E1000_WRITE_REG(hw, EECD, eecd);

        udelay(hw->eeprom.delay_usec);
    } else if(hw->eeprom.type == e1000_eeprom_microwire) {
        /* cleanup eeprom */

        /* CS on Microwire is active-high */
        eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);

        E1000_WRITE_REG(hw, EECD, eecd);

        /* Rising edge of clock */
        eecd |= E1000_EECD_SK;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(hw->eeprom.delay_usec);

        /* Falling edge of clock */
        eecd &= ~E1000_EECD_SK;
        E1000_WRITE_REG(hw, EECD, eecd);
        E1000_WRITE_FLUSH(hw);
        udelay(hw->eeprom.delay_usec);
    }

    /* Stop requesting EEPROM access */
    if(hw->mac_type > e1000_82544) {
        eecd &= ~E1000_EECD_REQ;
        E1000_WRITE_REG(hw, EECD, eecd);
    }
3393 3394 3395
}

/******************************************************************************
3396
 * Reads a 16 bit word from the EEPROM.
3397 3398 3399
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
3400 3401
int32_t
e1000_spi_eeprom_ready(struct e1000_hw *hw)
3402
{
3403 3404
    uint16_t retry_count = 0;
    uint8_t spi_stat_reg;
3405

3406
    DEBUGFUNC("e1000_spi_eeprom_ready");
3407

3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
    /* Read "Status Register" repeatedly until the LSB is cleared.  The
     * EEPROM will signal that the command has been completed by clearing
     * bit 0 of the internal status register.  If it's not cleared within
     * 5 milliseconds, then error out.
     */
    retry_count = 0;
    do {
        e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
                                hw->eeprom.opcode_bits);
        spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
        if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
            break;
3420

3421 3422 3423
        udelay(5);
        retry_count += 5;

3424
        e1000_standby_eeprom(hw);
3425
    } while(retry_count < EEPROM_MAX_RETRY_SPI);
3426

3427 3428 3429 3430 3431 3432 3433 3434 3435
    /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
     * only 0-5mSec on 5V devices)
     */
    if(retry_count >= EEPROM_MAX_RETRY_SPI) {
        DEBUGOUT("SPI EEPROM Status error\n");
        return -E1000_ERR_EEPROM;
    }

    return E1000_SUCCESS;
3436
}
3437 3438 3439 3440 3441 3442

/******************************************************************************
 * Reads a 16 bit word from the EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset of  word in the EEPROM to read
3443 3444
 * data - word read from the EEPROM
 * words - number of words to read
3445 3446 3447 3448
 *****************************************************************************/
int32_t
e1000_read_eeprom(struct e1000_hw *hw,
                  uint16_t offset,
3449
                  uint16_t words,
3450 3451
                  uint16_t *data)
{
3452
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
3453 3454 3455 3456
    uint32_t i = 0;

    DEBUGFUNC("e1000_read_eeprom");

3457 3458 3459 3460 3461 3462 3463
    /* A check for invalid values:  offset too large, too many words, and not
     * enough words.
     */
    if((offset > eeprom->word_size) || (words > eeprom->word_size - offset) ||
       (words == 0)) {
        DEBUGOUT("\"words\" parameter out of bounds\n");
        return -E1000_ERR_EEPROM;
3464 3465
    }

3466
    /* Prepare the EEPROM for reading  */
3467
    if(e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3468
        return -E1000_ERR_EEPROM;
3469

3470
    if(eeprom->type == e1000_eeprom_spi) {
3471
        uint16_t word_in;
3472
        uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
3473

3474 3475 3476 3477
        if(e1000_spi_eeprom_ready(hw)) {
            e1000_release_eeprom(hw);
            return -E1000_ERR_EEPROM;
        }
3478

3479
        e1000_standby_eeprom(hw);
3480

3481 3482 3483 3484 3485 3486 3487
        /* Some SPI eeproms use the 8th address bit embedded in the opcode */
        if((eeprom->address_bits == 8) && (offset >= 128))
            read_opcode |= EEPROM_A8_OPCODE_SPI;

        /* Send the READ command (opcode + addr)  */
        e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
        e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
3488

3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
        /* Read the data.  The address of the eeprom internally increments with
         * each byte (spi) being read, saving on the overhead of eeprom setup
         * and tear-down.  The address counter will roll over if reading beyond
         * the size of the eeprom, thus allowing the entire memory to be read
         * starting from any offset. */
        for (i = 0; i < words; i++) {
            word_in = e1000_shift_in_ee_bits(hw, 16);
            data[i] = (word_in >> 8) | (word_in << 8);
        }
    } else if(eeprom->type == e1000_eeprom_microwire) {
        for (i = 0; i < words; i++) {
            /* Send the READ command (opcode + addr)  */
            e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
                                    eeprom->opcode_bits);
            e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
                                    eeprom->address_bits);

            /* Read the data.  For microwire, each word requires the overhead
             * of eeprom setup and tear-down. */
            data[i] = e1000_shift_in_ee_bits(hw, 16);
            e1000_standby_eeprom(hw);
        }
3511 3512 3513 3514 3515
    }

    /* End this read operation */
    e1000_release_eeprom(hw);

3516
    return E1000_SUCCESS;
3517 3518 3519 3520
}

/******************************************************************************
 * Verifies that the EEPROM has a valid checksum
3521
 *
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
 * hw - Struct containing variables accessed by shared code
 *
 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
 * valid.
 *****************************************************************************/
int32_t
e1000_validate_eeprom_checksum(struct e1000_hw *hw)
{
    uint16_t checksum = 0;
    uint16_t i, eeprom_data;

    DEBUGFUNC("e1000_validate_eeprom_checksum");

    for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3537
        if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3538 3539 3540 3541 3542 3543
            DEBUGOUT("EEPROM Read Error\n");
            return -E1000_ERR_EEPROM;
        }
        checksum += eeprom_data;
    }

3544 3545 3546
    if(checksum == (uint16_t) EEPROM_SUM)
        return E1000_SUCCESS;
    else {
Jeb J. Cramer's avatar
Jeb J. Cramer committed
3547
        DEBUGOUT("EEPROM Checksum Invalid\n");
3548 3549 3550 3551
        return -E1000_ERR_EEPROM;
    }
}

3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
/******************************************************************************
 * Calculates the EEPROM checksum and writes it to the EEPROM
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
 * Writes the difference to word offset 63 of the EEPROM.
 *****************************************************************************/
int32_t
e1000_update_eeprom_checksum(struct e1000_hw *hw)
{
    uint16_t checksum = 0;
    uint16_t i, eeprom_data;

    DEBUGFUNC("e1000_update_eeprom_checksum");

    for(i = 0; i < EEPROM_CHECKSUM_REG; i++) {
3569
        if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3570 3571 3572 3573 3574 3575
            DEBUGOUT("EEPROM Read Error\n");
            return -E1000_ERR_EEPROM;
        }
        checksum += eeprom_data;
    }
    checksum = (uint16_t) EEPROM_SUM - checksum;
3576
    if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
3577 3578 3579
        DEBUGOUT("EEPROM Write Error\n");
        return -E1000_ERR_EEPROM;
    }
3580
    return E1000_SUCCESS;
3581 3582 3583
}

/******************************************************************************
3584
 * Parent function for writing words to the different EEPROM types.
3585 3586 3587
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset within the EEPROM to be written to
3588 3589
 * words - number of words to write
 * data - 16 bit word to be written to the EEPROM
3590
 *
3591
 * If e1000_update_eeprom_checksum is not called after this function, the
3592 3593 3594 3595 3596
 * EEPROM will most likely contain an invalid checksum.
 *****************************************************************************/
int32_t
e1000_write_eeprom(struct e1000_hw *hw,
                   uint16_t offset,
3597 3598
                   uint16_t words,
                   uint16_t *data)
3599
{
3600
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
3601 3602 3603 3604
    int32_t status = 0;

    DEBUGFUNC("e1000_write_eeprom");

3605 3606 3607 3608 3609 3610 3611
    /* A check for invalid values:  offset too large, too many words, and not
     * enough words.
     */
    if((offset > eeprom->word_size) || (words > eeprom->word_size - offset) ||
       (words == 0)) {
        DEBUGOUT("\"words\" parameter out of bounds\n");
        return -E1000_ERR_EEPROM;
3612 3613 3614
    }

    /* Prepare the EEPROM for writing  */
3615 3616
    if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
        return -E1000_ERR_EEPROM;
3617

3618
    if(eeprom->type == e1000_eeprom_microwire) {
3619
        status = e1000_write_eeprom_microwire(hw, offset, words, data);
3620
    } else {
3621
        status = e1000_write_eeprom_spi(hw, offset, words, data);
3622 3623
        msec_delay(10);
    }
3624

3625 3626
    /* Done with writing */
    e1000_release_eeprom(hw);
3627

3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
    return status;
}

/******************************************************************************
 * Writes a 16 bit word to a given offset in an SPI EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset within the EEPROM to be written to
 * words - number of words to write
 * data - pointer to array of 8 bit words to be written to the EEPROM
 *
 *****************************************************************************/
int32_t
e1000_write_eeprom_spi(struct e1000_hw *hw,
                       uint16_t offset,
                       uint16_t words,
                       uint16_t *data)
{
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
    uint16_t widx = 0;
3648

3649
    DEBUGFUNC("e1000_write_eeprom_spi");
3650

3651 3652
    while (widx < words) {
        uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
3653

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
        if(e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;

        e1000_standby_eeprom(hw);

        /*  Send the WRITE ENABLE command (8 bit opcode )  */
        e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
                                    eeprom->opcode_bits);

        e1000_standby_eeprom(hw);

        /* Some SPI eeproms use the 8th address bit embedded in the opcode */
        if((eeprom->address_bits == 8) && (offset >= 128))
            write_opcode |= EEPROM_A8_OPCODE_SPI;

        /* Send the Write command (8-bit opcode + addr) */
        e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);

        e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
                                eeprom->address_bits);

        /* Send the data */

        /* Loop to allow for up to whole page write (32 bytes) of eeprom */
        while (widx < words) {
            uint16_t word_out = data[widx];
            word_out = (word_out >> 8) | (word_out << 8);
            e1000_shift_out_ee_bits(hw, word_out, 16);
            widx++;

            /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
             * operation, while the smaller eeproms are capable of an 8-byte
             * PAGE WRITE operation.  Break the inner loop to pass new address
             */
            if((((offset + widx)*2) % eeprom->page_size) == 0) {
                e1000_standby_eeprom(hw);
                break;
            }
        }
3692 3693
    }

3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
    return E1000_SUCCESS;
}

/******************************************************************************
 * Writes a 16 bit word to a given offset in a Microwire EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset within the EEPROM to be written to
 * words - number of words to write
 * data - pointer to array of 16 bit words to be written to the EEPROM
 *
 *****************************************************************************/
int32_t
e1000_write_eeprom_microwire(struct e1000_hw *hw,
                             uint16_t offset,
                             uint16_t words,
                             uint16_t *data)
{
    struct e1000_eeprom_info *eeprom = &hw->eeprom;
    uint32_t eecd;
    uint16_t words_written = 0;
    uint16_t i = 0;
3716

3717 3718 3719 3720 3721 3722 3723
    DEBUGFUNC("e1000_write_eeprom_microwire");

    /* Send the write enable command to the EEPROM (3-bit opcode plus
     * 6/8-bit dummy address beginning with 11).  It's less work to include
     * the 11 of the dummy address as part of the opcode than it is to shift
     * it over the correct number of bits for the address.  This puts the
     * EEPROM into write/erase mode.
3724
     */
3725 3726
    e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
                            (uint16_t)(eeprom->opcode_bits + 2));
3727

3728
    e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
3729

3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
    /* Prepare the EEPROM */
    e1000_standby_eeprom(hw);

    while (words_written < words) {
        /* Send the Write command (3-bit opcode + addr) */
        e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
                                eeprom->opcode_bits);

        e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
                                eeprom->address_bits);

        /* Send the data */
        e1000_shift_out_ee_bits(hw, data[words_written], 16);

        /* Toggle the CS line.  This in effect tells the EEPROM to execute
         * the previous command.
         */
        e1000_standby_eeprom(hw);

        /* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
         * signal that the command has been completed by raising the DO signal.
         * If DO does not go high in 10 milliseconds, then error out.
         */
        for(i = 0; i < 200; i++) {
            eecd = E1000_READ_REG(hw, EECD);
            if(eecd & E1000_EECD_DO) break;
            udelay(50);
        }
        if(i == 200) {
            DEBUGOUT("EEPROM Write did not complete\n");
            return -E1000_ERR_EEPROM;
        }

        /* Recover from write */
        e1000_standby_eeprom(hw);

        words_written++;
3767 3768
    }

3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
    /* Send the write disable command to the EEPROM (3-bit opcode plus
     * 6/8-bit dummy address beginning with 10).  It's less work to include
     * the 10 of the dummy address as part of the opcode than it is to shift
     * it over the correct number of bits for the address.  This takes the
     * EEPROM out of write/erase mode.
     */
    e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
                            (uint16_t)(eeprom->opcode_bits + 2));

    e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));

3780
    return E1000_SUCCESS;
3781 3782
}

3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
/******************************************************************************
 * Reads the adapter's part number from the EEPROM
 *
 * hw - Struct containing variables accessed by shared code
 * part_num - Adapter's part number
 *****************************************************************************/
int32_t
e1000_read_part_num(struct e1000_hw *hw,
                    uint32_t *part_num)
{
    uint16_t offset = EEPROM_PBA_BYTE_1;
    uint16_t eeprom_data;

    DEBUGFUNC("e1000_read_part_num");

    /* Get word 0 from EEPROM */
3799
    if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
3800 3801 3802 3803 3804 3805 3806
        DEBUGOUT("EEPROM Read Error\n");
        return -E1000_ERR_EEPROM;
    }
    /* Save word 0 in upper half of part_num */
    *part_num = (uint32_t) (eeprom_data << 16);

    /* Get word 1 from EEPROM */
3807
    if(e1000_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
3808 3809 3810 3811 3812 3813
        DEBUGOUT("EEPROM Read Error\n");
        return -E1000_ERR_EEPROM;
    }
    /* Save word 1 in lower half of part_num */
    *part_num |= eeprom_data;

3814
    return E1000_SUCCESS;
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
}

/******************************************************************************
 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
 * second function of dual function devices
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_read_mac_addr(struct e1000_hw * hw)
{
    uint16_t offset;
    uint16_t eeprom_data, i;

    DEBUGFUNC("e1000_read_mac_addr");

    for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
        offset = i >> 1;
3833
        if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
3834 3835 3836 3837 3838 3839
            DEBUGOUT("EEPROM Read Error\n");
            return -E1000_ERR_EEPROM;
        }
        hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
        hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
    }
3840
    if(((hw->mac_type == e1000_82546) || (hw->mac_type == e1000_82546_rev_3)) &&
3841 3842 3843
       (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1))
            hw->perm_mac_addr[5] ^= 0x01;

3844 3845
    for(i = 0; i < NODE_ADDRESS_SIZE; i++)
        hw->mac_addr[i] = hw->perm_mac_addr[i];
3846
    return E1000_SUCCESS;
3847 3848 3849 3850 3851
}

/******************************************************************************
 * Initializes receive address filters.
 *
Jeb J. Cramer's avatar
Jeb J. Cramer committed
3852
 * hw - Struct containing variables accessed by shared code
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
 *
 * Places the MAC address in receive address register 0 and clears the rest
 * of the receive addresss registers. Clears the multicast table. Assumes
 * the receiver is in reset when the routine is called.
 *****************************************************************************/
void
e1000_init_rx_addrs(struct e1000_hw *hw)
{
    uint32_t i;

    DEBUGFUNC("e1000_init_rx_addrs");

    /* Setup the receive address. */
    DEBUGOUT("Programming MAC Address into RAR[0]\n");

3868
    e1000_rar_set(hw, hw->mac_addr, 0);
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884

    /* Zero out the other 15 receive addresses. */
    DEBUGOUT("Clearing RAR[1-15]\n");
    for(i = 1; i < E1000_RAR_ENTRIES; i++) {
        E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
        E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
    }
}

/******************************************************************************
 * Updates the MAC's list of multicast addresses.
 *
 * hw - Struct containing variables accessed by shared code
 * mc_addr_list - the list of new multicast addresses
 * mc_addr_count - number of addresses
 * pad - number of bytes between addresses in the list
3885
 * rar_used_count - offset where to start adding mc addresses into the RAR's
3886 3887 3888
 *
 * The given list replaces any existing list. Clears the last 15 receive
 * address registers and the multicast table. Uses receive address registers
Jeb J. Cramer's avatar
Jeb J. Cramer committed
3889
 * for the first 15 multicast addresses, and hashes the rest into the
3890 3891 3892 3893 3894 3895
 * multicast table.
 *****************************************************************************/
void
e1000_mc_addr_list_update(struct e1000_hw *hw,
                          uint8_t *mc_addr_list,
                          uint32_t mc_addr_count,
3896
                          uint32_t pad,
3897
                          uint32_t rar_used_count)
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
{
    uint32_t hash_value;
    uint32_t i;

    DEBUGFUNC("e1000_mc_addr_list_update");

    /* Set the new number of MC addresses that we are being requested to use. */
    hw->num_mc_addrs = mc_addr_count;

    /* Clear RAR[1-15] */
    DEBUGOUT(" Clearing RAR[1-15]\n");
    for(i = rar_used_count; i < E1000_RAR_ENTRIES; i++) {
        E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
        E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
    }

    /* Clear the MTA */
    DEBUGOUT(" Clearing MTA\n");
    for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++) {
        E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
    }

    /* Add the new addresses */
    for(i = 0; i < mc_addr_count; i++) {
        DEBUGOUT(" Adding the multicast addresses:\n");
        DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);

        hash_value = e1000_hash_mc_addr(hw,
                                        mc_addr_list +
                                        (i * (ETH_LENGTH_OF_ADDRESS + pad)));

        DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);

        /* Place this multicast address in the RAR if there is room, *
Jeb J. Cramer's avatar
Jeb J. Cramer committed
3938
         * else put it in the MTA
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
         */
        if(rar_used_count < E1000_RAR_ENTRIES) {
            e1000_rar_set(hw,
                          mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
                          rar_used_count);
            rar_used_count++;
        } else {
            e1000_mta_set(hw, hash_value);
        }
    }
    DEBUGOUT("MC Update Complete\n");
}

/******************************************************************************
 * Hashes an address to determine its location in the multicast table
 *
 * hw - Struct containing variables accessed by shared code
Jeb J. Cramer's avatar
Jeb J. Cramer committed
3956
 * mc_addr - the multicast address to hash
3957 3958 3959 3960 3961 3962 3963 3964
 *****************************************************************************/
uint32_t
e1000_hash_mc_addr(struct e1000_hw *hw,
                   uint8_t *mc_addr)
{
    uint32_t hash_value = 0;

    /* The portion of the address that is used for the hash table is
Jeb J. Cramer's avatar
Jeb J. Cramer committed
3965
     * determined by the mc_filter_type setting.
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
     */
    switch (hw->mc_filter_type) {
    /* [0] [1] [2] [3] [4] [5]
     * 01  AA  00  12  34  56
     * LSB                 MSB
     */
    case 0:
        /* [47:36] i.e. 0x563 for above example address */
        hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
        break;
    case 1:
        /* [46:35] i.e. 0xAC6 for above example address */
        hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
        break;
    case 2:
        /* [45:34] i.e. 0x5D8 for above example address */
        hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
        break;
    case 3:
        /* [43:32] i.e. 0x634 for above example address */
        hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
        break;
    }

    hash_value &= 0xFFF;
    return hash_value;
}

/******************************************************************************
 * Sets the bit in the multicast table corresponding to the hash value.
 *
 * hw - Struct containing variables accessed by shared code
 * hash_value - Multicast address hash value
 *****************************************************************************/
void
e1000_mta_set(struct e1000_hw *hw,
              uint32_t hash_value)
{
    uint32_t hash_bit, hash_reg;
    uint32_t mta;
    uint32_t temp;

Jeb J. Cramer's avatar
Jeb J. Cramer committed
4008 4009
    /* The MTA is a register array of 128 32-bit registers.
     * It is treated like an array of 4096 bits.  We want to set
4010 4011
     * bit BitArray[hash_value]. So we figure out what register
     * the bit is in, read it, OR in the new bit, then write
Jeb J. Cramer's avatar
Jeb J. Cramer committed
4012 4013
     * back the new value.  The register is determined by the
     * upper 7 bits of the hash value and the bit within that
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
     * register are determined by the lower 5 bits of the value.
     */
    hash_reg = (hash_value >> 5) & 0x7F;
    hash_bit = hash_value & 0x1F;

    mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);

    mta |= (1 << hash_bit);

    /* If we are on an 82544 and we are trying to write an odd offset
     * in the MTA, save off the previous entry before writing and
     * restore the old value after writing.
     */
    if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
        temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
        E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
        E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
    } else {
        E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
    }
}

/******************************************************************************
 * Puts an ethernet address into a receive address register.
 *
 * hw - Struct containing variables accessed by shared code
 * addr - Address to put into receive address register
 * index - Receive address register to write
 *****************************************************************************/
void
e1000_rar_set(struct e1000_hw *hw,
              uint8_t *addr,
              uint32_t index)
{
    uint32_t rar_low, rar_high;

    /* HW expects these in little endian so we reverse the byte order
Jeb J. Cramer's avatar
Jeb J. Cramer committed
4051
     * from network order (big endian) to little endian
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
     */
    rar_low = ((uint32_t) addr[0] |
               ((uint32_t) addr[1] << 8) |
               ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));

    rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8) | E1000_RAH_AV);

    E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
    E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
}

/******************************************************************************
 * Writes a value to the specified offset in the VLAN filter table.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - Offset in VLAN filer table to write
 * value - Value to write into VLAN filter table
 *****************************************************************************/
void
e1000_write_vfta(struct e1000_hw *hw,
                 uint32_t offset,
                 uint32_t value)
{
    uint32_t temp;

    if((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
        temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
        E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
    } else {
        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
    }
}

/******************************************************************************
 * Clears the VLAN filer table
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
void
e1000_clear_vfta(struct e1000_hw *hw)
{
    uint32_t offset;

    for(offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
}

Scott Feldman's avatar
Scott Feldman committed
4100 4101 4102 4103 4104 4105 4106 4107 4108
static int32_t
e1000_id_led_init(struct e1000_hw * hw)
{
    uint32_t ledctl;
    const uint32_t ledctl_mask = 0x000000FF;
    const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
    const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
    uint16_t eeprom_data, i, temp;
    const uint16_t led_mask = 0x0F;
4109

Scott Feldman's avatar
Scott Feldman committed
4110
    DEBUGFUNC("e1000_id_led_init");
4111

Scott Feldman's avatar
Scott Feldman committed
4112
    if(hw->mac_type < e1000_82540) {
Scott Feldman's avatar
Scott Feldman committed
4113
        /* Nothing to do */
4114
        return E1000_SUCCESS;
Scott Feldman's avatar
Scott Feldman committed
4115
    }
4116

Scott Feldman's avatar
Scott Feldman committed
4117 4118 4119 4120
    ledctl = E1000_READ_REG(hw, LEDCTL);
    hw->ledctl_default = ledctl;
    hw->ledctl_mode1 = hw->ledctl_default;
    hw->ledctl_mode2 = hw->ledctl_default;
4121 4122

    if(e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
Scott Feldman's avatar
Scott Feldman committed
4123 4124 4125
        DEBUGOUT("EEPROM Read Error\n");
        return -E1000_ERR_EEPROM;
    }
4126
    if((eeprom_data== ID_LED_RESERVED_0000) ||
Scott Feldman's avatar
Scott Feldman committed
4127 4128 4129 4130
       (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT;
    for(i = 0; i < 4; i++) {
        temp = (eeprom_data >> (i << 2)) & led_mask;
        switch(temp) {
Scott Feldman's avatar
Scott Feldman committed
4131 4132 4133
        case ID_LED_ON1_DEF2:
        case ID_LED_ON1_ON2:
        case ID_LED_ON1_OFF2:
Scott Feldman's avatar
Scott Feldman committed
4134 4135 4136
            hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
            hw->ledctl_mode1 |= ledctl_on << (i << 3);
            break;
Scott Feldman's avatar
Scott Feldman committed
4137 4138 4139
        case ID_LED_OFF1_DEF2:
        case ID_LED_OFF1_ON2:
        case ID_LED_OFF1_OFF2:
Scott Feldman's avatar
Scott Feldman committed
4140 4141 4142
            hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
            hw->ledctl_mode1 |= ledctl_off << (i << 3);
            break;
Scott Feldman's avatar
Scott Feldman committed
4143 4144 4145 4146 4147 4148 4149 4150
        default:
            /* Do nothing */
            break;
        }
        switch(temp) {
        case ID_LED_DEF1_ON2:
        case ID_LED_ON1_ON2:
        case ID_LED_OFF1_ON2:
Scott Feldman's avatar
Scott Feldman committed
4151 4152 4153
            hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
            hw->ledctl_mode2 |= ledctl_on << (i << 3);
            break;
Scott Feldman's avatar
Scott Feldman committed
4154 4155 4156
        case ID_LED_DEF1_OFF2:
        case ID_LED_ON1_OFF2:
        case ID_LED_OFF1_OFF2:
Scott Feldman's avatar
Scott Feldman committed
4157 4158 4159
            hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
            hw->ledctl_mode2 |= ledctl_off << (i << 3);
            break;
Scott Feldman's avatar
Scott Feldman committed
4160 4161 4162 4163
        default:
            /* Do nothing */
            break;
        }
Scott Feldman's avatar
Scott Feldman committed
4164
    }
4165
    return E1000_SUCCESS;
Scott Feldman's avatar
Scott Feldman committed
4166 4167
}

4168 4169 4170 4171 4172 4173 4174 4175 4176
/******************************************************************************
 * Prepares SW controlable LED for use and saves the current state of the LED.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_setup_led(struct e1000_hw *hw)
{
    uint32_t ledctl;
4177
    int32_t ret_val = E1000_SUCCESS;
Jeb J. Cramer's avatar
Jeb J. Cramer committed
4178

4179
    DEBUGFUNC("e1000_setup_led");
Jeb J. Cramer's avatar
Jeb J. Cramer committed
4180

4181 4182 4183 4184 4185
    switch(hw->mac_type) {
    case e1000_82542_rev2_0:
    case e1000_82542_rev2_1:
    case e1000_82543:
    case e1000_82544:
4186 4187
        /* No setup necessary */
        break;
4188 4189 4190 4191 4192
    case e1000_82541:
    case e1000_82547:
    case e1000_82541_rev_2:
    case e1000_82547_rev_2:
        /* Turn off PHY Smart Power Down (if enabled) */
4193 4194 4195
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
                                     &hw->phy_spd_default);
        if(ret_val)
4196
            return ret_val;
4197 4198 4199 4200
        ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
                                      (uint16_t)(hw->phy_spd_default &
                                      ~IGP01E1000_GMII_SPD));
        if(ret_val)
4201 4202
            return ret_val;
        /* Fall Through */
4203
    default:
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
        if(hw->media_type == e1000_media_type_fiber) {
            ledctl = E1000_READ_REG(hw, LEDCTL);
            /* Save current LEDCTL settings */
            hw->ledctl_default = ledctl;
            /* Turn off LED0 */
            ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
                        E1000_LEDCTL_LED0_BLINK |
                        E1000_LEDCTL_LED0_MODE_MASK);
            ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
                       E1000_LEDCTL_LED0_MODE_SHIFT);
            E1000_WRITE_REG(hw, LEDCTL, ledctl);
        } else if(hw->media_type == e1000_media_type_copper)
            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
        break;
4218
    }
4219 4220

    return E1000_SUCCESS;
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
}

/******************************************************************************
 * Restores the saved state of the SW controlable LED.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_cleanup_led(struct e1000_hw *hw)
{
4231 4232
    int32_t ret_val = E1000_SUCCESS;

4233 4234
    DEBUGFUNC("e1000_cleanup_led");

4235 4236 4237 4238 4239
    switch(hw->mac_type) {
    case e1000_82542_rev2_0:
    case e1000_82542_rev2_1:
    case e1000_82543:
    case e1000_82544:
4240 4241
        /* No cleanup necessary */
        break;
4242 4243 4244 4245 4246
    case e1000_82541:
    case e1000_82547:
    case e1000_82541_rev_2:
    case e1000_82547_rev_2:
        /* Turn on PHY Smart Power Down (if previously enabled) */
4247 4248 4249
        ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
                                      hw->phy_spd_default);
        if(ret_val)
4250 4251 4252
            return ret_val;
        /* Fall Through */
    default:
4253
        /* Restore LEDCTL settings */
Scott Feldman's avatar
Scott Feldman committed
4254
        E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
4255 4256
        break;
    }
4257 4258

    return E1000_SUCCESS;
4259
}
Jeb J. Cramer's avatar
Jeb J. Cramer committed
4260

4261 4262 4263 4264 4265 4266 4267 4268
/******************************************************************************
 * Turns on the software controllable LED
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_led_on(struct e1000_hw *hw)
{
4269
    uint32_t ctrl = E1000_READ_REG(hw, CTRL);
4270 4271 4272

    DEBUGFUNC("e1000_led_on");

4273 4274 4275 4276
    switch(hw->mac_type) {
    case e1000_82542_rev2_0:
    case e1000_82542_rev2_1:
    case e1000_82543:
4277 4278 4279 4280
        /* Set SW Defineable Pin 0 to turn on the LED */
        ctrl |= E1000_CTRL_SWDPIN0;
        ctrl |= E1000_CTRL_SWDPIO0;
        break;
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
    case e1000_82544:
        if(hw->media_type == e1000_media_type_fiber) {
            /* Set SW Defineable Pin 0 to turn on the LED */
            ctrl |= E1000_CTRL_SWDPIN0;
            ctrl |= E1000_CTRL_SWDPIO0;
        } else {
            /* Clear SW Defineable Pin 0 to turn on the LED */
            ctrl &= ~E1000_CTRL_SWDPIN0;
            ctrl |= E1000_CTRL_SWDPIO0;
        }
4291 4292
        break;
    default:
4293 4294 4295 4296 4297 4298 4299 4300 4301
        if(hw->media_type == e1000_media_type_fiber) {
            /* Clear SW Defineable Pin 0 to turn on the LED */
            ctrl &= ~E1000_CTRL_SWDPIN0;
            ctrl |= E1000_CTRL_SWDPIO0;
        } else if(hw->media_type == e1000_media_type_copper) {
            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
            return E1000_SUCCESS;
        }
        break;
4302
    }
4303 4304 4305 4306

    E1000_WRITE_REG(hw, CTRL, ctrl);

    return E1000_SUCCESS;
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
}

/******************************************************************************
 * Turns off the software controllable LED
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_led_off(struct e1000_hw *hw)
{
4317
    uint32_t ctrl = E1000_READ_REG(hw, CTRL);
4318 4319 4320

    DEBUGFUNC("e1000_led_off");

4321 4322 4323 4324
    switch(hw->mac_type) {
    case e1000_82542_rev2_0:
    case e1000_82542_rev2_1:
    case e1000_82543:
4325 4326 4327 4328
        /* Clear SW Defineable Pin 0 to turn off the LED */
        ctrl &= ~E1000_CTRL_SWDPIN0;
        ctrl |= E1000_CTRL_SWDPIO0;
        break;
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
    case e1000_82544:
        if(hw->media_type == e1000_media_type_fiber) {
            /* Clear SW Defineable Pin 0 to turn off the LED */
            ctrl &= ~E1000_CTRL_SWDPIN0;
            ctrl |= E1000_CTRL_SWDPIO0;
        } else {
            /* Set SW Defineable Pin 0 to turn off the LED */
            ctrl |= E1000_CTRL_SWDPIN0;
            ctrl |= E1000_CTRL_SWDPIO0;
        }
4339 4340
        break;
    default:
4341 4342 4343 4344 4345 4346 4347 4348 4349
        if(hw->media_type == e1000_media_type_fiber) {
            /* Set SW Defineable Pin 0 to turn off the LED */
            ctrl |= E1000_CTRL_SWDPIN0;
            ctrl |= E1000_CTRL_SWDPIO0;
        } else if(hw->media_type == e1000_media_type_copper) {
            E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
            return E1000_SUCCESS;
        }
        break;
4350
    }
4351 4352 4353 4354

    E1000_WRITE_REG(hw, CTRL, ctrl);

    return E1000_SUCCESS;
4355 4356 4357
}

/******************************************************************************
Jeb J. Cramer's avatar
Jeb J. Cramer committed
4358
 * Clears all hardware statistics counters.
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
void
e1000_clear_hw_cntrs(struct e1000_hw *hw)
{
    volatile uint32_t temp;

    temp = E1000_READ_REG(hw, CRCERRS);
    temp = E1000_READ_REG(hw, SYMERRS);
    temp = E1000_READ_REG(hw, MPC);
    temp = E1000_READ_REG(hw, SCC);
    temp = E1000_READ_REG(hw, ECOL);
    temp = E1000_READ_REG(hw, MCC);
    temp = E1000_READ_REG(hw, LATECOL);
    temp = E1000_READ_REG(hw, COLC);
    temp = E1000_READ_REG(hw, DC);
    temp = E1000_READ_REG(hw, SEC);
    temp = E1000_READ_REG(hw, RLEC);
    temp = E1000_READ_REG(hw, XONRXC);
    temp = E1000_READ_REG(hw, XONTXC);
    temp = E1000_READ_REG(hw, XOFFRXC);
    temp = E1000_READ_REG(hw, XOFFTXC);
    temp = E1000_READ_REG(hw, FCRUC);
    temp = E1000_READ_REG(hw, PRC64);
    temp = E1000_READ_REG(hw, PRC127);
    temp = E1000_READ_REG(hw, PRC255);
    temp = E1000_READ_REG(hw, PRC511);
    temp = E1000_READ_REG(hw, PRC1023);
    temp = E1000_READ_REG(hw, PRC1522);
    temp = E1000_READ_REG(hw, GPRC);
    temp = E1000_READ_REG(hw, BPRC);
    temp = E1000_READ_REG(hw, MPRC);
    temp = E1000_READ_REG(hw, GPTC);
    temp = E1000_READ_REG(hw, GORCL);
    temp = E1000_READ_REG(hw, GORCH);
    temp = E1000_READ_REG(hw, GOTCL);
    temp = E1000_READ_REG(hw, GOTCH);
    temp = E1000_READ_REG(hw, RNBC);
    temp = E1000_READ_REG(hw, RUC);
    temp = E1000_READ_REG(hw, RFC);
    temp = E1000_READ_REG(hw, ROC);
    temp = E1000_READ_REG(hw, RJC);
    temp = E1000_READ_REG(hw, TORL);
    temp = E1000_READ_REG(hw, TORH);
    temp = E1000_READ_REG(hw, TOTL);
    temp = E1000_READ_REG(hw, TOTH);
    temp = E1000_READ_REG(hw, TPR);
    temp = E1000_READ_REG(hw, TPT);
    temp = E1000_READ_REG(hw, PTC64);
    temp = E1000_READ_REG(hw, PTC127);
    temp = E1000_READ_REG(hw, PTC255);
    temp = E1000_READ_REG(hw, PTC511);
    temp = E1000_READ_REG(hw, PTC1023);
    temp = E1000_READ_REG(hw, PTC1522);
    temp = E1000_READ_REG(hw, MPTC);
    temp = E1000_READ_REG(hw, BPTC);

    if(hw->mac_type < e1000_82543) return;

    temp = E1000_READ_REG(hw, ALGNERRC);
    temp = E1000_READ_REG(hw, RXERRC);
    temp = E1000_READ_REG(hw, TNCRS);
    temp = E1000_READ_REG(hw, CEXTERR);
    temp = E1000_READ_REG(hw, TSCTC);
    temp = E1000_READ_REG(hw, TSCTFC);

    if(hw->mac_type <= e1000_82544) return;

    temp = E1000_READ_REG(hw, MGTPRC);
    temp = E1000_READ_REG(hw, MGTPDC);
    temp = E1000_READ_REG(hw, MGTPTC);
}

/******************************************************************************
 * Resets Adaptive IFS to its default state.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Call this after e1000_init_hw. You may override the IFS defaults by setting
 * hw->ifs_params_forced to TRUE. However, you must initialize hw->
 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
 * before calling this function.
 *****************************************************************************/
void
e1000_reset_adaptive(struct e1000_hw *hw)
{
    DEBUGFUNC("e1000_reset_adaptive");

    if(hw->adaptive_ifs) {
        if(!hw->ifs_params_forced) {
            hw->current_ifs_val = 0;
            hw->ifs_min_val = IFS_MIN;
            hw->ifs_max_val = IFS_MAX;
            hw->ifs_step_size = IFS_STEP;
            hw->ifs_ratio = IFS_RATIO;
        }
        hw->in_ifs_mode = FALSE;
        E1000_WRITE_REG(hw, AIT, 0);
    } else {
        DEBUGOUT("Not in Adaptive IFS mode!\n");
    }
}

/******************************************************************************
 * Called during the callback/watchdog routine to update IFS value based on
 * the ratio of transmits to collisions.
 *
 * hw - Struct containing variables accessed by shared code
 * tx_packets - Number of transmits since last callback
 * total_collisions - Number of collisions since last callback
 *****************************************************************************/
void
e1000_update_adaptive(struct e1000_hw *hw)
{
    DEBUGFUNC("e1000_update_adaptive");

    if(hw->adaptive_ifs) {
4477
        if((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
            if(hw->tx_packet_delta > MIN_NUM_XMITS) {
                hw->in_ifs_mode = TRUE;
                if(hw->current_ifs_val < hw->ifs_max_val) {
                    if(hw->current_ifs_val == 0)
                        hw->current_ifs_val = hw->ifs_min_val;
                    else
                        hw->current_ifs_val += hw->ifs_step_size;
                    E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
                }
            }
        } else {
4489
            if(hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
                hw->current_ifs_val = 0;
                hw->in_ifs_mode = FALSE;
                E1000_WRITE_REG(hw, AIT, 0);
            }
        }
    } else {
        DEBUGOUT("Not in Adaptive IFS mode!\n");
    }
}

/******************************************************************************
 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
Jeb J. Cramer's avatar
Jeb J. Cramer committed
4502
 *
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
 * hw - Struct containing variables accessed by shared code
 * frame_len - The length of the frame in question
 * mac_addr - The Ethernet destination address of the frame in question
 *****************************************************************************/
void
e1000_tbi_adjust_stats(struct e1000_hw *hw,
                       struct e1000_hw_stats *stats,
                       uint32_t frame_len,
                       uint8_t *mac_addr)
{
    uint64_t carry_bit;

    /* First adjust the frame length. */
    frame_len--;
    /* We need to adjust the statistics counters, since the hardware
     * counters overcount this packet as a CRC error and undercount
     * the packet as a good packet
     */
    /* This packet should not be counted as a CRC error.    */
    stats->crcerrs--;
    /* This packet does count as a Good Packet Received.    */
    stats->gprc++;

    /* Adjust the Good Octets received counters             */
    carry_bit = 0x80000000 & stats->gorcl;
    stats->gorcl += frame_len;
    /* If the high bit of Gorcl (the low 32 bits of the Good Octets
Jeb J. Cramer's avatar
Jeb J. Cramer committed
4530 4531
     * Received Count) was one before the addition,
     * AND it is zero after, then we lost the carry out,
4532
     * need to add one to Gorch (Good Octets Received Count High).
Jeb J. Cramer's avatar
Jeb J. Cramer committed
4533
     * This could be simplified if all environments supported
4534 4535 4536 4537 4538
     * 64-bit integers.
     */
    if(carry_bit && ((stats->gorcl & 0x80000000) == 0))
        stats->gorch++;
    /* Is this a broadcast or multicast?  Check broadcast first,
Jeb J. Cramer's avatar
Jeb J. Cramer committed
4539
     * since the test for a multicast frame will test positive on
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
     * a broadcast frame.
     */
    if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
        /* Broadcast packet */
        stats->bprc++;
    else if(*mac_addr & 0x01)
        /* Multicast packet */
        stats->mprc++;

    if(frame_len == hw->max_frame_size) {
        /* In this case, the hardware has overcounted the number of
         * oversize frames.
         */
        if(stats->roc > 0)
            stats->roc--;
    }

    /* Adjust the bin counters when the extra byte put the frame in the
     * wrong bin. Remember that the frame_len was adjusted above.
     */
    if(frame_len == 64) {
        stats->prc64++;
        stats->prc127--;
    } else if(frame_len == 127) {
        stats->prc127++;
        stats->prc255--;
    } else if(frame_len == 255) {
        stats->prc255++;
        stats->prc511--;
    } else if(frame_len == 511) {
        stats->prc511++;
        stats->prc1023--;
    } else if(frame_len == 1023) {
        stats->prc1023++;
        stats->prc1522--;
    } else if(frame_len == 1522) {
        stats->prc1522++;
    }
}

/******************************************************************************
 * Gets the current PCI bus type, speed, and width of the hardware
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
void
e1000_get_bus_info(struct e1000_hw *hw)
{
    uint32_t status;

    if(hw->mac_type < e1000_82543) {
        hw->bus_type = e1000_bus_type_unknown;
        hw->bus_speed = e1000_bus_speed_unknown;
        hw->bus_width = e1000_bus_width_unknown;
        return;
    }

    status = E1000_READ_REG(hw, STATUS);
    hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
                   e1000_bus_type_pcix : e1000_bus_type_pci;
4600 4601 4602 4603 4604

    if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
        hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
                        e1000_bus_speed_66 : e1000_bus_speed_120;
    } else if(hw->bus_type == e1000_bus_type_pci) {
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
        hw->bus_speed = (status & E1000_STATUS_PCI66) ?
                        e1000_bus_speed_66 : e1000_bus_speed_33;
    } else {
        switch (status & E1000_STATUS_PCIX_SPEED) {
        case E1000_STATUS_PCIX_SPEED_66:
            hw->bus_speed = e1000_bus_speed_66;
            break;
        case E1000_STATUS_PCIX_SPEED_100:
            hw->bus_speed = e1000_bus_speed_100;
            break;
        case E1000_STATUS_PCIX_SPEED_133:
            hw->bus_speed = e1000_bus_speed_133;
            break;
        default:
            hw->bus_speed = e1000_bus_speed_reserved;
            break;
        }
    }
    hw->bus_width = (status & E1000_STATUS_BUS64) ?
                    e1000_bus_width_64 : e1000_bus_width_32;
}
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
/******************************************************************************
 * Reads a value from one of the devices registers using port I/O (as opposed
 * memory mapped I/O). Only 82544 and newer devices support port I/O.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset to read from
 *****************************************************************************/
uint32_t
e1000_read_reg_io(struct e1000_hw *hw,
                  uint32_t offset)
{
4637 4638
    unsigned long io_addr = hw->io_base;
    unsigned long io_data = hw->io_base + 4;
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656

    e1000_io_write(hw, io_addr, offset);
    return e1000_io_read(hw, io_data);
}

/******************************************************************************
 * Writes a value to one of the devices registers using port I/O (as opposed to
 * memory mapped I/O). Only 82544 and newer devices support port I/O.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset to write to
 * value - value to write
 *****************************************************************************/
void
e1000_write_reg_io(struct e1000_hw *hw,
                   uint32_t offset,
                   uint32_t value)
{
4657 4658
    unsigned long io_addr = hw->io_base;
    unsigned long io_data = hw->io_base + 4;
4659 4660 4661 4662

    e1000_io_write(hw, io_addr, offset);
    e1000_io_write(hw, io_data, value);
}
4663

4664 4665 4666 4667 4668 4669 4670 4671

/******************************************************************************
 * Estimates the cable length.
 *
 * hw - Struct containing variables accessed by shared code
 * min_length - The estimated minimum length
 * max_length - The estimated maximum length
 *
4672 4673
 * returns: - E1000_ERR_XXX
 *            E1000_SUCCESS
4674 4675 4676 4677 4678 4679 4680
 *
 * This function always returns a ranged length (minimum & maximum).
 * So for M88 phy's, this function interprets the one value returned from the
 * register to the minimum and maximum range.
 * For IGP phy's, the function calculates the range by the AGC registers.
 *****************************************************************************/
int32_t
4681 4682
e1000_get_cable_length(struct e1000_hw *hw,
                       uint16_t *min_length,
4683 4684
                       uint16_t *max_length)
{
4685
    int32_t ret_val;
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
    uint16_t agc_value = 0;
    uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
    uint16_t i, phy_data;

    DEBUGFUNC("e1000_get_cable_length");

    *min_length = *max_length = 0;

    /* Use old method for Phy older than IGP */
    if(hw->phy_type == e1000_phy_m88) {
4696 4697 4698
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
                                     &phy_data);
        if(ret_val)
4699
            return ret_val;
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728

        /* Convert the enum value to ranged values */
        switch((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
               M88E1000_PSSR_CABLE_LENGTH_SHIFT) {
        case e1000_cable_length_50:
            *min_length = 0;
            *max_length = e1000_igp_cable_length_50;
            break;
        case e1000_cable_length_50_80:
            *min_length = e1000_igp_cable_length_50;
            *max_length = e1000_igp_cable_length_80;
            break;
        case e1000_cable_length_80_110:
            *min_length = e1000_igp_cable_length_80;
            *max_length = e1000_igp_cable_length_110;
            break;
        case e1000_cable_length_110_140:
            *min_length = e1000_igp_cable_length_110;
            *max_length = e1000_igp_cable_length_140;
            break;
        case e1000_cable_length_140:
            *min_length = e1000_igp_cable_length_140;
            *max_length = e1000_igp_cable_length_170;
            break;
        default:
            return -E1000_ERR_PHY;
            break;
        }
    } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
4729 4730
        uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
                                                         {IGP01E1000_PHY_AGC_A,
4731 4732 4733 4734
                                                          IGP01E1000_PHY_AGC_B,
                                                          IGP01E1000_PHY_AGC_C,
                                                          IGP01E1000_PHY_AGC_D};
        /* Read the AGC registers for all channels */
4735 4736
        for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {

4737 4738
            ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
            if(ret_val)
4739
                return ret_val;
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755

            cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;

            /* Array bound check. */
            if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
               (cur_agc == 0))
                return -E1000_ERR_PHY;

            agc_value += cur_agc;

            /* Update minimal AGC value. */
            if(min_agc > cur_agc)
                min_agc = cur_agc;
        }

        /* Remove the minimal AGC result for length < 50m */
4756
        if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
4757 4758 4759
            agc_value -= min_agc;

            /* Get the average length of the remaining 3 channels */
4760
            agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
4761 4762
        } else {
            /* Get the average length of all the 4 channels. */
4763
            agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
        }

        /* Set the range of the calculated length. */
        *min_length = ((e1000_igp_cable_length_table[agc_value] -
                       IGP01E1000_AGC_RANGE) > 0) ?
                       (e1000_igp_cable_length_table[agc_value] -
                       IGP01E1000_AGC_RANGE) : 0;
        *max_length = e1000_igp_cable_length_table[agc_value] +
                      IGP01E1000_AGC_RANGE;
    }

    return E1000_SUCCESS;
}

/******************************************************************************
 * Check the cable polarity
 *
 * hw - Struct containing variables accessed by shared code
 * polarity - output parameter : 0 - Polarity is not reversed
 *                               1 - Polarity is reversed.
 *
4785 4786
 * returns: - E1000_ERR_XXX
 *            E1000_SUCCESS
4787 4788 4789 4790 4791 4792 4793 4794
 *
 * For phy's older then IGP, this function simply reads the polarity bit in the
 * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
 * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
 * return 0.  If the link speed is 1000 Mbps the polarity status is in the
 * IGP01E1000_PHY_PCS_INIT_REG.
 *****************************************************************************/
int32_t
4795 4796
e1000_check_polarity(struct e1000_hw *hw,
                     uint16_t *polarity)
4797
{
4798
    int32_t ret_val;
4799 4800 4801 4802 4803 4804
    uint16_t phy_data;

    DEBUGFUNC("e1000_check_polarity");

    if(hw->phy_type == e1000_phy_m88) {
        /* return the Polarity bit in the Status register. */
4805 4806 4807
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
                                     &phy_data);
        if(ret_val)
4808
            return ret_val;
4809 4810 4811 4812
        *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
                    M88E1000_PSSR_REV_POLARITY_SHIFT;
    } else if(hw->phy_type == e1000_phy_igp) {
        /* Read the Status register to check the speed */
4813 4814 4815
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
                                     &phy_data);
        if(ret_val)
4816
            return ret_val;
4817 4818 4819 4820 4821 4822 4823

        /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
         * find the polarity status */
        if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
           IGP01E1000_PSSR_SPEED_1000MBPS) {

            /* Read the GIG initialization PCS register (0x00B4) */
4824 4825 4826
            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
                                         &phy_data);
            if(ret_val)
4827
                return ret_val;
4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846

            /* Check the polarity bits */
            *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0;
        } else {
            /* For 10 Mbps, read the polarity bit in the status register. (for
             * 100 Mbps this bit is always 0) */
            *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
        }
    }
    return E1000_SUCCESS;
}

/******************************************************************************
 * Check if Downshift occured
 *
 * hw - Struct containing variables accessed by shared code
 * downshift - output parameter : 0 - No Downshift ocured.
 *                                1 - Downshift ocured.
 *
4847 4848
 * returns: - E1000_ERR_XXX
 *            E1000_SUCCESS 
4849 4850 4851 4852 4853 4854 4855 4856 4857
 *
 * For phy's older then IGP, this function reads the Downshift bit in the Phy
 * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
 * Link Health register.  In IGP this bit is latched high, so the driver must
 * read it immediately after link is established.
 *****************************************************************************/
int32_t
e1000_check_downshift(struct e1000_hw *hw)
{
4858
    int32_t ret_val;
4859 4860 4861 4862 4863
    uint16_t phy_data;

    DEBUGFUNC("e1000_check_downshift");

    if(hw->phy_type == e1000_phy_igp) {
4864 4865 4866
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
                                     &phy_data);
        if(ret_val)
4867 4868
            return ret_val;

4869 4870 4871
        hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
    }
    else if(hw->phy_type == e1000_phy_m88) {
4872 4873 4874
        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
                                     &phy_data);
        if(ret_val)
4875 4876
            return ret_val;

4877
        hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
                               M88E1000_PSSR_DOWNSHIFT_SHIFT;
    }
    return E1000_SUCCESS;
}

/*****************************************************************************
 *
 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
 * gigabit link is achieved to improve link quality.
 *
 * hw: Struct containing variables accessed by shared code
 *
 * returns: - E1000_ERR_PHY if fail to read/write the PHY
 *            E1000_SUCCESS at any other case.
 *
 ****************************************************************************/

int32_t
e1000_config_dsp_after_link_change(struct e1000_hw *hw,
                                   boolean_t link_up)
{
    int32_t ret_val;
    uint16_t phy_data, speed, duplex, i;
    uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
                                        {IGP01E1000_PHY_AGC_PARAM_A,
                                        IGP01E1000_PHY_AGC_PARAM_B,
                                        IGP01E1000_PHY_AGC_PARAM_C,
                                        IGP01E1000_PHY_AGC_PARAM_D};
    uint16_t min_length, max_length;

    DEBUGFUNC("e1000_config_dsp_after_link_change");

    if(hw->phy_type != e1000_phy_igp)
        return E1000_SUCCESS;

    if(link_up) {
4914 4915
        ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
        if(ret_val) {
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
            DEBUGOUT("Error getting link speed and duplex\n");
            return ret_val;
        }

        if(speed == SPEED_1000) {

            e1000_get_cable_length(hw, &min_length, &max_length);

            if((hw->dsp_config_state == e1000_dsp_config_enabled) &&
                min_length >= e1000_igp_cable_length_50) {

                for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
4928 4929 4930
                    ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
                                                 &phy_data);
                    if(ret_val)
4931 4932 4933 4934
                        return ret_val;

                    phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;

4935 4936 4937
                    ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
                                                  phy_data);
                    if(ret_val)
4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
                        return ret_val;
                }
                hw->dsp_config_state = e1000_dsp_config_activated;
            }

            if((hw->ffe_config_state == e1000_ffe_config_enabled) &&
               (min_length < e1000_igp_cable_length_50)) {

                uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
                uint32_t idle_errs = 0;

                /* clear previous idle error counts */
4950 4951 4952
                ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
                                             &phy_data);
                if(ret_val)
4953 4954 4955 4956
                    return ret_val;

                for(i = 0; i < ffe_idle_err_timeout; i++) {
                    udelay(1000);
4957 4958 4959
                    ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
                                                 &phy_data);
                    if(ret_val)
4960 4961 4962 4963 4964 4965
                        return ret_val;

                    idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
                    if(idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
                        hw->ffe_config_state = e1000_ffe_config_active;

4966
                        ret_val = e1000_write_phy_reg(hw,
4967
                                    IGP01E1000_PHY_DSP_FFE,
4968 4969
                                    IGP01E1000_PHY_DSP_FFE_CM_CP);
                        if(ret_val)
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
                            return ret_val;
                        break;
                    }

                    if(idle_errs)
                        ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
                }
            }
        }
    } else {
        if(hw->dsp_config_state == e1000_dsp_config_activated) {
4981 4982 4983
            ret_val = e1000_write_phy_reg(hw, 0x0000,
                                          IGP01E1000_IEEE_FORCE_GIGA);
            if(ret_val)
4984 4985
                return ret_val;
            for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
4986 4987
                ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
                if(ret_val)
4988 4989 4990 4991 4992
                    return ret_val;

                phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
                phy_data |=  IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;

4993 4994
                ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
                if(ret_val)
4995 4996 4997
                    return ret_val;
            }

4998 4999 5000
            ret_val = e1000_write_phy_reg(hw, 0x0000,
                                          IGP01E1000_IEEE_RESTART_AUTONEG);
            if(ret_val)
5001 5002 5003 5004 5005 5006
                return ret_val;

            hw->dsp_config_state = e1000_dsp_config_enabled;
        }

        if(hw->ffe_config_state == e1000_ffe_config_active) {
5007 5008 5009
            ret_val = e1000_write_phy_reg(hw, 0x0000,
                                          IGP01E1000_IEEE_FORCE_GIGA);
            if(ret_val)
5010
                return ret_val;
5011 5012 5013
            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
                                          IGP01E1000_PHY_DSP_FFE_DEFAULT);
            if(ret_val)
5014 5015
                return ret_val;

5016 5017 5018
            ret_val = e1000_write_phy_reg(hw, 0x0000,
                                          IGP01E1000_IEEE_RESTART_AUTONEG);
            if(ret_val)
5019
                return ret_val;
5020
            hw->ffe_config_state = e1000_ffe_config_enabled;
5021 5022 5023 5024 5025
        }
    }
    return E1000_SUCCESS;
}

5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
/*****************************************************************************
 * Set PHY to class A mode
 * Assumes the following operations will follow to enable the new class mode.
 *  1. Do a PHY soft reset
 *  2. Restart auto-negotiation or force link.
 *
 * hw - Struct containing variables accessed by shared code
 ****************************************************************************/
static int32_t
e1000_set_phy_mode(struct e1000_hw *hw)
{
    int32_t ret_val;
    uint16_t eeprom_data;

    DEBUGFUNC("e1000_set_phy_mode");

    if((hw->mac_type == e1000_82545_rev_3) &&
       (hw->media_type == e1000_media_type_copper)) {
        ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
        if(ret_val) {
            return ret_val;
        }

        if((eeprom_data != EEPROM_RESERVED_WORD) &&
           (eeprom_data & EEPROM_PHY_CLASS_A)) {
            ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
            if(ret_val)
                return ret_val;
            ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
            if(ret_val)
                return ret_val;

            hw->phy_reset_disable = FALSE;
        }
    }

    return E1000_SUCCESS;
}

5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093
/*****************************************************************************
 *
 * This function sets the lplu state according to the active flag.  When
 * activating lplu this function also disables smart speed and vise versa.
 * lplu will not be activated unless the device autonegotiation advertisment
 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
 * hw: Struct containing variables accessed by shared code
 * active - true to enable lplu false to disable lplu.
 *
 * returns: - E1000_ERR_PHY if fail to read/write the PHY
 *            E1000_SUCCESS at any other case.
 *
 ****************************************************************************/

int32_t
e1000_set_d3_lplu_state(struct e1000_hw *hw,
                        boolean_t active)
{
    int32_t ret_val;
    uint16_t phy_data;
    DEBUGFUNC("e1000_set_d3_lplu_state");

    if(!((hw->mac_type == e1000_82541_rev_2) ||
         (hw->mac_type == e1000_82547_rev_2)))
        return E1000_SUCCESS;

    /* During driver activity LPLU should not be used or it will attain link
     * from the lowest speeds starting from 10Mbps. The capability is used for
     * Dx transitions and states */
5094 5095
    ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
    if(ret_val)
5096 5097 5098 5099
        return ret_val;

    if(!active) {
        phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5100 5101
        ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
        if(ret_val)
5102 5103 5104 5105 5106 5107
            return ret_val;

        /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
         * Dx states where the power conservation is most important.  During
         * driver activity we should enable SmartSpeed, so performance is
         * maintained. */
5108 5109
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
        if(ret_val)
5110 5111 5112
            return ret_val;

        phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5113 5114
        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
        if(ret_val)
5115 5116 5117 5118 5119 5120 5121
            return ret_val;

    } else if((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
              (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
              (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {

        phy_data |= IGP01E1000_GMII_FLEX_SPD;
5122 5123
        ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
        if(ret_val)
5124 5125 5126
            return ret_val;

        /* When LPLU is enabled we should disable SmartSpeed */
5127 5128
        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
        if(ret_val)
5129 5130 5131
            return ret_val;

        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5132 5133
        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
        if(ret_val)
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
            return ret_val;

    }
    return E1000_SUCCESS;
}

/******************************************************************************
 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static int32_t
e1000_set_vco_speed(struct e1000_hw *hw)
{
    int32_t  ret_val;
    uint16_t default_page = 0;
    uint16_t phy_data;

    DEBUGFUNC("e1000_set_vco_speed");

    switch(hw->mac_type) {
    case e1000_82545_rev_3:
    case e1000_82546_rev_3:
       break;
    default:
        return E1000_SUCCESS;
5160
    }
5161 5162 5163

    /* Set PHY register 30, page 5, bit 8 to 0 */

5164 5165
    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
    if(ret_val)
5166 5167
        return ret_val;

5168 5169
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
    if(ret_val)
5170 5171
        return ret_val;

5172 5173
    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
    if(ret_val)
5174 5175 5176
        return ret_val;

    phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5177 5178
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
    if(ret_val)
5179 5180 5181 5182
        return ret_val;

    /* Set PHY register 30, page 4, bit 11 to 1 */

5183 5184
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
    if(ret_val)
5185 5186
        return ret_val;

5187 5188
    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
    if(ret_val)
5189 5190 5191
        return ret_val;

    phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5192 5193
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
    if(ret_val)
5194 5195
        return ret_val;

5196 5197
    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
    if(ret_val)
5198 5199
        return ret_val;

5200 5201 5202
    return E1000_SUCCESS;
}

5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
/******************************************************************************
 * Verifies the hardware needs to allow ARPs to be processed by the host
 *
 * hw - Struct containing variables accessed by shared code
 *
 * returns: - TRUE/FALSE
 *
 *****************************************************************************/
uint32_t
e1000_enable_mng_pass_thru(struct e1000_hw *hw)
{
    uint32_t manc;

    if (hw->asf_firmware_present) {
        manc = E1000_READ_REG(hw, MANC);

        if (!(manc & E1000_MANC_RCV_TCO_EN) ||
            !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
            return FALSE;
        if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
            return TRUE;
    }
    return FALSE;
}