intel-iommu.c 137 KB
Newer Older
1
/*
2
 * Copyright © 2006-2014 Intel Corporation.
3 4 5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
13 14 15 16 17
 * Authors: David Woodhouse <dwmw2@infradead.org>,
 *          Ashok Raj <ashok.raj@intel.com>,
 *          Shaohua Li <shaohua.li@intel.com>,
 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
 *          Fenghua Yu <fenghua.yu@intel.com>
18
 *          Joerg Roedel <jroedel@suse.de>
19 20
 */

21 22
#define pr_fmt(fmt)     "DMAR: " fmt

23 24
#include <linux/init.h>
#include <linux/bitmap.h>
mark gross's avatar
mark gross committed
25
#include <linux/debugfs.h>
26
#include <linux/export.h>
27 28 29 30 31 32 33 34
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/dmar.h>
#include <linux/dma-mapping.h>
#include <linux/mempool.h>
35
#include <linux/memory.h>
36
#include <linux/cpu.h>
mark gross's avatar
mark gross committed
37
#include <linux/timer.h>
38
#include <linux/io.h>
Kay, Allen M's avatar
Kay, Allen M committed
39
#include <linux/iova.h>
40
#include <linux/iommu.h>
Kay, Allen M's avatar
Kay, Allen M committed
41
#include <linux/intel-iommu.h>
42
#include <linux/syscore_ops.h>
43
#include <linux/tboot.h>
44
#include <linux/dmi.h>
45
#include <linux/pci-ats.h>
Tejun Heo's avatar
Tejun Heo committed
46
#include <linux/memblock.h>
47
#include <linux/dma-contiguous.h>
48
#include <linux/dma-direct.h>
49
#include <linux/crash_dump.h>
50
#include <asm/irq_remapping.h>
51
#include <asm/cacheflush.h>
52
#include <asm/iommu.h>
53

54
#include "irq_remapping.h"
55
#include "intel-pasid.h"
56

Fenghua Yu's avatar
Fenghua Yu committed
57 58 59
#define ROOT_SIZE		VTD_PAGE_SIZE
#define CONTEXT_SIZE		VTD_PAGE_SIZE

60
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
61
#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
62
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
63
#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
64 65 66 67 68

#define IOAPIC_RANGE_START	(0xfee00000)
#define IOAPIC_RANGE_END	(0xfeefffff)
#define IOVA_START_ADDR		(0x1000)

69
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
70

71
#define MAX_AGAW_WIDTH 64
72
#define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
73

74 75 76 77 78 79 80 81
#define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)

/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
   to match. That way, we can use 'unsigned long' for PFNs with impunity. */
#define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
#define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
82

83 84 85
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)

86
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
mark gross's avatar
mark gross committed
87

88 89 90 91
/* page table handling */
#define LEVEL_STRIDE		(9)
#define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define INTEL_IOMMU_PGSIZES	(~0xFFFUL)

110 111 112 113 114 115 116
static inline int agaw_to_level(int agaw)
{
	return agaw + 2;
}

static inline int agaw_to_width(int agaw)
{
117
	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
118 119 120 121
}

static inline int width_to_agaw(int width)
{
122
	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
}

static inline unsigned int level_to_offset_bits(int level)
{
	return (level - 1) * LEVEL_STRIDE;
}

static inline int pfn_level_offset(unsigned long pfn, int level)
{
	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
}

static inline unsigned long level_mask(int level)
{
	return -1UL << level_to_offset_bits(level);
}

static inline unsigned long level_size(int level)
{
	return 1UL << level_to_offset_bits(level);
}

static inline unsigned long align_to_level(unsigned long pfn, int level)
{
	return (pfn + level_size(level) - 1) & level_mask(level);
}
149

150 151
static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
{
152
	return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
153 154
}

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
   are never going to work. */
static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
{
	return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
}

static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
{
	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
}
static inline unsigned long page_to_dma_pfn(struct page *pg)
{
	return mm_to_dma_pfn(page_to_pfn(pg));
}
static inline unsigned long virt_to_dma_pfn(void *p)
{
	return page_to_dma_pfn(virt_to_page(p));
}

Weidong Han's avatar
Weidong Han committed
175 176 177
/* global iommu list, set NULL for ignored DMAR units */
static struct intel_iommu **g_iommus;

178
static void __init check_tylersburg_isoch(void);
179 180
static int rwbf_quirk;

181 182 183 184 185
/*
 * set to 1 to panic kernel if can't successfully enable VT-d
 * (used when kernel is launched w/ TXT)
 */
static int force_on = 0;
186
int intel_iommu_tboot_noforce;
187

188 189 190 191 192 193 194
/*
 * 0: Present
 * 1-11: Reserved
 * 12-63: Context Ptr (12 - (haw-1))
 * 64-127: Reserved
 */
struct root_entry {
195 196
	u64	lo;
	u64	hi;
197 198 199
};
#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
/*
 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
 * if marked present.
 */
static phys_addr_t root_entry_lctp(struct root_entry *re)
{
	if (!(re->lo & 1))
		return 0;

	return re->lo & VTD_PAGE_MASK;
}

/*
 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
 * if marked present.
 */
static phys_addr_t root_entry_uctp(struct root_entry *re)
{
	if (!(re->hi & 1))
		return 0;
220

221 222
	return re->hi & VTD_PAGE_MASK;
}
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * low 64 bits:
 * 0: present
 * 1: fault processing disable
 * 2-3: translation type
 * 12-63: address space root
 * high 64 bits:
 * 0-2: address width
 * 3-6: aval
 * 8-23: domain id
 */
struct context_entry {
	u64 lo;
	u64 hi;
};
238

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
static inline void context_clear_pasid_enable(struct context_entry *context)
{
	context->lo &= ~(1ULL << 11);
}

static inline bool context_pasid_enabled(struct context_entry *context)
{
	return !!(context->lo & (1ULL << 11));
}

static inline void context_set_copied(struct context_entry *context)
{
	context->hi |= (1ull << 3);
}

static inline bool context_copied(struct context_entry *context)
{
	return !!(context->hi & (1ULL << 3));
}

static inline bool __context_present(struct context_entry *context)
260 261 262
{
	return (context->lo & 1);
}
263 264 265 266 267 268 269 270

static inline bool context_present(struct context_entry *context)
{
	return context_pasid_enabled(context) ?
	     __context_present(context) :
	     __context_present(context) && !context_copied(context);
}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
static inline void context_set_present(struct context_entry *context)
{
	context->lo |= 1;
}

static inline void context_set_fault_enable(struct context_entry *context)
{
	context->lo &= (((u64)-1) << 2) | 1;
}

static inline void context_set_translation_type(struct context_entry *context,
						unsigned long value)
{
	context->lo &= (((u64)-1) << 4) | 3;
	context->lo |= (value & 3) << 2;
}

static inline void context_set_address_root(struct context_entry *context,
					    unsigned long value)
{
291
	context->lo &= ~VTD_PAGE_MASK;
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	context->lo |= value & VTD_PAGE_MASK;
}

static inline void context_set_address_width(struct context_entry *context,
					     unsigned long value)
{
	context->hi |= value & 7;
}

static inline void context_set_domain_id(struct context_entry *context,
					 unsigned long value)
{
	context->hi |= (value & ((1 << 16) - 1)) << 8;
}

307 308 309 310 311
static inline int context_domain_id(struct context_entry *c)
{
	return((c->hi >> 8) & 0xffff);
}

312 313 314 315 316
static inline void context_clear_entry(struct context_entry *context)
{
	context->lo = 0;
	context->hi = 0;
}
317

318 319 320 321 322
/*
 * 0: readable
 * 1: writable
 * 2-6: reserved
 * 7: super page
323 324
 * 8-10: available
 * 11: snoop behavior
325 326 327 328 329 330
 * 12-63: Host physcial address
 */
struct dma_pte {
	u64 val;
};

331 332 333 334 335 336 337
static inline void dma_clear_pte(struct dma_pte *pte)
{
	pte->val = 0;
}

static inline u64 dma_pte_addr(struct dma_pte *pte)
{
338 339 340 341
#ifdef CONFIG_64BIT
	return pte->val & VTD_PAGE_MASK;
#else
	/* Must have a full atomic 64-bit read */
342
	return  __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
343
#endif
344 345 346 347 348 349
}

static inline bool dma_pte_present(struct dma_pte *pte)
{
	return (pte->val & 3) != 0;
}
350

351 352
static inline bool dma_pte_superpage(struct dma_pte *pte)
{
353
	return (pte->val & DMA_PTE_LARGE_PAGE);
354 355
}

356 357 358 359 360
static inline int first_pte_in_page(struct dma_pte *pte)
{
	return !((unsigned long)pte & ~VTD_PAGE_MASK);
}

361 362 363 364 365 366
/*
 * This domain is a statically identity mapping domain.
 *	1. This domain creats a static 1:1 mapping to all usable memory.
 * 	2. It maps to each iommu if successful.
 *	3. Each iommu mapps to this domain if successful.
 */
367 368
static struct dmar_domain *si_domain;
static int hw_pass_through = 1;
369

370 371
/*
 * Domain represents a virtual machine, more than one devices
372 373
 * across iommus may be owned in one domain, e.g. kvm guest.
 */
374
#define DOMAIN_FLAG_VIRTUAL_MACHINE	(1 << 0)
375

376
/* si_domain contains mulitple devices */
377
#define DOMAIN_FLAG_STATIC_IDENTITY	(1 << 1)
378

379 380 381 382
#define for_each_domain_iommu(idx, domain)			\
	for (idx = 0; idx < g_num_of_iommus; idx++)		\
		if (domain->iommu_refcnt[idx])

383 384 385 386 387
struct dmar_rmrr_unit {
	struct list_head list;		/* list of rmrr units	*/
	struct acpi_dmar_header *hdr;	/* ACPI header		*/
	u64	base_address;		/* reserved base address*/
	u64	end_address;		/* reserved end address */
388
	struct dmar_dev_scope *devices;	/* target devices */
389
	int	devices_cnt;		/* target device count */
390
	struct iommu_resv_region *resv; /* reserved region handle */
391 392 393 394 395
};

struct dmar_atsr_unit {
	struct list_head list;		/* list of ATSR units */
	struct acpi_dmar_header *hdr;	/* ACPI header */
396
	struct dmar_dev_scope *devices;	/* target devices */
397 398 399 400 401 402 403 404 405 406
	int devices_cnt;		/* target device count */
	u8 include_all:1;		/* include all ports */
};

static LIST_HEAD(dmar_atsr_units);
static LIST_HEAD(dmar_rmrr_units);

#define for_each_rmrr_units(rmrr) \
	list_for_each_entry(rmrr, &dmar_rmrr_units, list)

mark gross's avatar
mark gross committed
407 408 409
/* bitmap for indexing intel_iommus */
static int g_num_of_iommus;

410
static void domain_exit(struct dmar_domain *domain);
411
static void domain_remove_dev_info(struct dmar_domain *domain);
412 413
static void dmar_remove_one_dev_info(struct dmar_domain *domain,
				     struct device *dev);
414
static void __dmar_remove_one_dev_info(struct device_domain_info *info);
415 416
static void domain_context_clear(struct intel_iommu *iommu,
				 struct device *dev);
417 418
static int domain_detach_iommu(struct dmar_domain *domain,
			       struct intel_iommu *iommu);
419

420
#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
421 422 423
int dmar_disabled = 0;
#else
int dmar_disabled = 1;
424
#endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
425

426 427 428
int intel_iommu_enabled = 0;
EXPORT_SYMBOL_GPL(intel_iommu_enabled);

429
static int dmar_map_gfx = 1;
430
static int dmar_forcedac;
mark gross's avatar
mark gross committed
431
static int intel_iommu_strict;
432
static int intel_iommu_superpage = 1;
433
static int intel_iommu_ecs = 1;
434
static int intel_iommu_pasid28;
435
static int iommu_identity_mapping;
436

437 438 439
#define IDENTMAP_ALL		1
#define IDENTMAP_GFX		2
#define IDENTMAP_AZALIA		4
440

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
/* Broadwell and Skylake have broken ECS support — normal so-called "second
 * level" translation of DMA requests-without-PASID doesn't actually happen
 * unless you also set the NESTE bit in an extended context-entry. Which of
 * course means that SVM doesn't work because it's trying to do nested
 * translation of the physical addresses it finds in the process page tables,
 * through the IOVA->phys mapping found in the "second level" page tables.
 *
 * The VT-d specification was retroactively changed to change the definition
 * of the capability bits and pretend that Broadwell/Skylake never happened...
 * but unfortunately the wrong bit was changed. It's ECS which is broken, but
 * for some reason it was the PASID capability bit which was redefined (from
 * bit 28 on BDW/SKL to bit 40 in future).
 *
 * So our test for ECS needs to eschew those implementations which set the old
 * PASID capabiity bit 28, since those are the ones on which ECS is broken.
 * Unless we are working around the 'pasid28' limitations, that is, by putting
 * the device into passthrough mode for normal DMA and thus masking the bug.
 */
#define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
			    (intel_iommu_pasid28 || !ecap_broken_pasid(iommu->ecap)))
/* PASID support is thus enabled if ECS is enabled and *either* of the old
 * or new capability bits are set. */
#define pasid_enabled(iommu) (ecs_enabled(iommu) &&			\
			      (ecap_pasid(iommu->ecap) || ecap_broken_pasid(iommu->ecap)))
465

466 467 468
int intel_iommu_gfx_mapped;
EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);

469 470 471 472
#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
static DEFINE_SPINLOCK(device_domain_lock);
static LIST_HEAD(device_domain_list);

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
/*
 * Iterate over elements in device_domain_list and call the specified
 * callback @fn against each element. This helper should only be used
 * in the context where the device_domain_lock has already been holden.
 */
int for_each_device_domain(int (*fn)(struct device_domain_info *info,
				     void *data), void *data)
{
	int ret = 0;
	struct device_domain_info *info;

	assert_spin_locked(&device_domain_lock);
	list_for_each_entry(info, &device_domain_list, global) {
		ret = fn(info, data);
		if (ret)
			return ret;
	}

	return 0;
}

494
const struct iommu_ops intel_iommu_ops;
495

496 497 498 499 500
static bool translation_pre_enabled(struct intel_iommu *iommu)
{
	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
}

501 502 503 504 505
static void clear_translation_pre_enabled(struct intel_iommu *iommu)
{
	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
}

506 507 508 509 510 511 512 513 514
static void init_translation_status(struct intel_iommu *iommu)
{
	u32 gsts;

	gsts = readl(iommu->reg + DMAR_GSTS_REG);
	if (gsts & DMA_GSTS_TES)
		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
}

515 516 517 518 519 520
/* Convert generic 'struct iommu_domain to private struct dmar_domain */
static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct dmar_domain, domain);
}

521 522 523 524 525
static int __init intel_iommu_setup(char *str)
{
	if (!str)
		return -EINVAL;
	while (*str) {
526 527
		if (!strncmp(str, "on", 2)) {
			dmar_disabled = 0;
528
			pr_info("IOMMU enabled\n");
529
		} else if (!strncmp(str, "off", 3)) {
530
			dmar_disabled = 1;
531
			pr_info("IOMMU disabled\n");
532 533
		} else if (!strncmp(str, "igfx_off", 8)) {
			dmar_map_gfx = 0;
534
			pr_info("Disable GFX device mapping\n");
535
		} else if (!strncmp(str, "forcedac", 8)) {
536
			pr_info("Forcing DAC for PCI devices\n");
537
			dmar_forcedac = 1;
mark gross's avatar
mark gross committed
538
		} else if (!strncmp(str, "strict", 6)) {
539
			pr_info("Disable batched IOTLB flush\n");
mark gross's avatar
mark gross committed
540
			intel_iommu_strict = 1;
541
		} else if (!strncmp(str, "sp_off", 6)) {
542
			pr_info("Disable supported super page\n");
543
			intel_iommu_superpage = 0;
544 545 546 547
		} else if (!strncmp(str, "ecs_off", 7)) {
			printk(KERN_INFO
				"Intel-IOMMU: disable extended context table support\n");
			intel_iommu_ecs = 0;
548 549 550 551 552
		} else if (!strncmp(str, "pasid28", 7)) {
			printk(KERN_INFO
				"Intel-IOMMU: enable pre-production PASID support\n");
			intel_iommu_pasid28 = 1;
			iommu_identity_mapping |= IDENTMAP_GFX;
553 554 555 556
		} else if (!strncmp(str, "tboot_noforce", 13)) {
			printk(KERN_INFO
				"Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
			intel_iommu_tboot_noforce = 1;
557 558 559 560 561 562 563 564 565 566 567 568 569
		}

		str += strcspn(str, ",");
		while (*str == ',')
			str++;
	}
	return 0;
}
__setup("intel_iommu=", intel_iommu_setup);

static struct kmem_cache *iommu_domain_cache;
static struct kmem_cache *iommu_devinfo_cache;

570 571
static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
{
572 573 574 575 576 577 578 579
	struct dmar_domain **domains;
	int idx = did >> 8;

	domains = iommu->domains[idx];
	if (!domains)
		return NULL;

	return domains[did & 0xff];
580 581 582 583 584
}

static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
			     struct dmar_domain *domain)
{
585 586 587 588 589 590 591 592 593 594 595 596 597
	struct dmar_domain **domains;
	int idx = did >> 8;

	if (!iommu->domains[idx]) {
		size_t size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
	}

	domains = iommu->domains[idx];
	if (WARN_ON(!domains))
		return;
	else
		domains[did & 0xff] = domain;
598 599
}

600
void *alloc_pgtable_page(int node)
601
{
602 603
	struct page *page;
	void *vaddr = NULL;
604

605 606 607
	page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (page)
		vaddr = page_address(page);
608
	return vaddr;
609 610
}

611
void free_pgtable_page(void *vaddr)
612 613 614 615 616 617
{
	free_page((unsigned long)vaddr);
}

static inline void *alloc_domain_mem(void)
{
618
	return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
619 620
}

Kay, Allen M's avatar
Kay, Allen M committed
621
static void free_domain_mem(void *vaddr)
622 623 624 625 626 627
{
	kmem_cache_free(iommu_domain_cache, vaddr);
}

static inline void * alloc_devinfo_mem(void)
{
628
	return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
629 630 631 632 633 634 635
}

static inline void free_devinfo_mem(void *vaddr)
{
	kmem_cache_free(iommu_devinfo_cache, vaddr);
}

636 637 638 639 640
static inline int domain_type_is_vm(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
}

641 642 643 644 645
static inline int domain_type_is_si(struct dmar_domain *domain)
{
	return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
}

646 647 648 649 650
static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
{
	return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
				DOMAIN_FLAG_STATIC_IDENTITY);
}
Weidong Han's avatar
Weidong Han committed
651

652 653 654 655 656 657 658 659
static inline int domain_pfn_supported(struct dmar_domain *domain,
				       unsigned long pfn)
{
	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;

	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
}

660
static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
Weidong Han's avatar
Weidong Han committed
661 662 663 664 665
{
	unsigned long sagaw;
	int agaw = -1;

	sagaw = cap_sagaw(iommu->cap);
666
	for (agaw = width_to_agaw(max_gaw);
Weidong Han's avatar
Weidong Han committed
667 668 669 670 671 672 673 674
	     agaw >= 0; agaw--) {
		if (test_bit(agaw, &sagaw))
			break;
	}

	return agaw;
}

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
/*
 * Calculate max SAGAW for each iommu.
 */
int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
}

/*
 * calculate agaw for each iommu.
 * "SAGAW" may be different across iommus, use a default agaw, and
 * get a supported less agaw for iommus that don't support the default agaw.
 */
int iommu_calculate_agaw(struct intel_iommu *iommu)
{
	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
}

693
/* This functionin only returns single iommu in a domain */
694
struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
695 696 697
{
	int iommu_id;

698
	/* si_domain and vm domain should not get here. */
699
	BUG_ON(domain_type_is_vm_or_si(domain));
700 701 702
	for_each_domain_iommu(iommu_id, domain)
		break;

703 704 705 706 707 708
	if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
		return NULL;

	return g_iommus[iommu_id];
}

Weidong Han's avatar
Weidong Han committed
709 710
static void domain_update_iommu_coherency(struct dmar_domain *domain)
{
711 712
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
713 714
	bool found = false;
	int i;
715

716
	domain->iommu_coherency = 1;
Weidong Han's avatar
Weidong Han committed
717

718
	for_each_domain_iommu(i, domain) {
719
		found = true;
Weidong Han's avatar
Weidong Han committed
720 721 722 723 724
		if (!ecap_coherent(g_iommus[i]->ecap)) {
			domain->iommu_coherency = 0;
			break;
		}
	}
725 726 727 728 729 730 731 732 733 734 735 736
	if (found)
		return;

	/* No hardware attached; use lowest common denominator */
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (!ecap_coherent(iommu->ecap)) {
			domain->iommu_coherency = 0;
			break;
		}
	}
	rcu_read_unlock();
Weidong Han's avatar
Weidong Han committed
737 738
}

739
static int domain_update_iommu_snooping(struct intel_iommu *skip)
740
{
741 742 743
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	int ret = 1;
744

745 746 747 748 749 750 751
	rcu_read_lock();
	for_each_active_iommu(iommu, drhd) {
		if (iommu != skip) {
			if (!ecap_sc_support(iommu->ecap)) {
				ret = 0;
				break;
			}
752 753
		}
	}
754 755 756
	rcu_read_unlock();

	return ret;
757 758
}

759
static int domain_update_iommu_superpage(struct intel_iommu *skip)
760
{
761
	struct dmar_drhd_unit *drhd;
762
	struct intel_iommu *iommu;
763
	int mask = 0xf;
764 765

	if (!intel_iommu_superpage) {
766
		return 0;
767 768
	}

769
	/* set iommu_superpage to the smallest common denominator */
770
	rcu_read_lock();
771
	for_each_active_iommu(iommu, drhd) {
772 773 774 775
		if (iommu != skip) {
			mask &= cap_super_page_val(iommu->cap);
			if (!mask)
				break;
776 777
		}
	}
778 779
	rcu_read_unlock();

780
	return fls(mask);
781 782
}

783 784 785 786
/* Some capabilities may be different across iommus */
static void domain_update_iommu_cap(struct dmar_domain *domain)
{
	domain_update_iommu_coherency(domain);
787 788
	domain->iommu_snooping = domain_update_iommu_snooping(NULL);
	domain->iommu_superpage = domain_update_iommu_superpage(NULL);
789 790
}

791 792 793 794 795 796 797
static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
						       u8 bus, u8 devfn, int alloc)
{
	struct root_entry *root = &iommu->root_entry[bus];
	struct context_entry *context;
	u64 *entry;

798
	entry = &root->lo;
799
	if (ecs_enabled(iommu)) {
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
		if (devfn >= 0x80) {
			devfn -= 0x80;
			entry = &root->hi;
		}
		devfn *= 2;
	}
	if (*entry & 1)
		context = phys_to_virt(*entry & VTD_PAGE_MASK);
	else {
		unsigned long phy_addr;
		if (!alloc)
			return NULL;

		context = alloc_pgtable_page(iommu->node);
		if (!context)
			return NULL;

		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
		phy_addr = virt_to_phys((void *)context);
		*entry = phy_addr | 1;
		__iommu_flush_cache(iommu, entry, sizeof(*entry));
	}
	return &context[devfn];
}

825 826 827 828 829
static int iommu_dummy(struct device *dev)
{
	return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
}

830
static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
831 832
{
	struct dmar_drhd_unit *drhd = NULL;
833
	struct intel_iommu *iommu;
834 835
	struct device *tmp;
	struct pci_dev *ptmp, *pdev = NULL;
836
	u16 segment = 0;
837 838
	int i;

839 840 841
	if (iommu_dummy(dev))
		return NULL;

842
	if (dev_is_pci(dev)) {
843 844
		struct pci_dev *pf_pdev;

845
		pdev = to_pci_dev(dev);
846 847 848 849 850 851 852

#ifdef CONFIG_X86
		/* VMD child devices currently cannot be handled individually */
		if (is_vmd(pdev->bus))
			return NULL;
#endif

853 854 855 856
		/* VFs aren't listed in scope tables; we need to look up
		 * the PF instead to find the IOMMU. */
		pf_pdev = pci_physfn(pdev);
		dev = &pf_pdev->dev;
857
		segment = pci_domain_nr(pdev->bus);
858
	} else if (has_acpi_companion(dev))
859 860
		dev = &ACPI_COMPANION(dev)->dev;

861
	rcu_read_lock();
862
	for_each_active_iommu(iommu, drhd) {
863
		if (pdev && segment != drhd->segment)
864
			continue;
865

866
		for_each_active_dev_scope(drhd->devices,
867 868
					  drhd->devices_cnt, i, tmp) {
			if (tmp == dev) {
869 870 871 872
				/* For a VF use its original BDF# not that of the PF
				 * which we used for the IOMMU lookup. Strictly speaking
				 * we could do this for all PCI devices; we only need to
				 * get the BDF# from the scope table for ACPI matches. */
873
				if (pdev && pdev->is_virtfn)
874 875
					goto got_pdev;

876 877
				*bus = drhd->devices[i].bus;
				*devfn = drhd->devices[i].devfn;
878
				goto out;
879 880 881 882 883 884 885 886 887 888
			}

			if (!pdev || !dev_is_pci(tmp))
				continue;

			ptmp = to_pci_dev(tmp);
			if (ptmp->subordinate &&
			    ptmp->subordinate->number <= pdev->bus->number &&
			    ptmp->subordinate->busn_res.end >= pdev->bus->number)
				goto got_pdev;
889
		}
890

891 892 893 894
		if (pdev && drhd->include_all) {
		got_pdev:
			*bus = pdev->bus->number;
			*devfn = pdev->devfn;
895
			goto out;
896
		}
897
	}
898
	iommu = NULL;
899
 out:
900
	rcu_read_unlock();
901

902
	return iommu;
903 904
}

Weidong Han's avatar
Weidong Han committed
905 906 907 908 909 910 911
static void domain_flush_cache(struct dmar_domain *domain,
			       void *addr, int size)
{
	if (!domain->iommu_coherency)
		clflush_cache_range(addr, size);
}

912 913 914
static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
	struct context_entry *context;
915
	int ret = 0;
916 917 918
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);
919 920 921
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (context)
		ret = context_present(context);
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
	spin_unlock_irqrestore(&iommu->lock, flags);
	return ret;
}

static void free_context_table(struct intel_iommu *iommu)
{
	int i;
	unsigned long flags;
	struct context_entry *context;

	spin_lock_irqsave(&iommu->lock, flags);
	if (!iommu->root_entry) {
		goto out;
	}
	for (i = 0; i < ROOT_ENTRY_NR; i++) {
937
		context = iommu_context_addr(iommu, i, 0, 0);
938 939
		if (context)
			free_pgtable_page(context);
940

941
		if (!ecs_enabled(iommu))
942 943 944 945 946 947
			continue;

		context = iommu_context_addr(iommu, i, 0x80, 0);
		if (context)
			free_pgtable_page(context);

948 949 950 951 952 953 954
	}
	free_pgtable_page(iommu->root_entry);
	iommu->root_entry = NULL;
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
}

955
static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
956
				      unsigned long pfn, int *target_level)
957 958 959
{
	struct dma_pte *parent, *pte = NULL;
	int level = agaw_to_level(domain->agaw);
960
	int offset;
961 962

	BUG_ON(!domain->pgd);
963

964
	if (!domain_pfn_supported(domain, pfn))
965 966 967
		/* Address beyond IOMMU's addressing capabilities. */
		return NULL;

968 969
	parent = domain->pgd;

970
	while (1) {
971 972
		void *tmp_page;

973
		offset = pfn_level_offset(pfn, level);
974
		pte = &parent[offset];
975
		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
976
			break;
977
		if (level == *target_level)
978 979
			break;

980
		if (!dma_pte_present(pte)) {
981 982
			uint64_t pteval;

983
			tmp_page = alloc_pgtable_page(domain->nid);
984

985
			if (!tmp_page)
986
				return NULL;
987

988
			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
989
			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
990
			if (cmpxchg64(&pte->val, 0ULL, pteval))
991 992
				/* Someone else set it while we were thinking; use theirs. */
				free_pgtable_page(tmp_page);
993
			else
994
				domain_flush_cache(domain, pte, sizeof(*pte));
995
		}
996 997 998
		if (level == 1)
			break;

999
		parent = phys_to_virt(dma_pte_addr(pte));
1000 1001 1002
		level--;
	}

1003 1004 1005
	if (!*target_level)
		*target_level = level;

1006 1007 1008
	return pte;
}

1009

1010
/* return address's pte at specific level */
1011 1012
static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
					 unsigned long pfn,
1013
					 int level, int *large_page)
1014 1015 1016 1017 1018 1019 1020
{
	struct dma_pte *parent, *pte = NULL;
	int total = agaw_to_level(domain->agaw);
	int offset;

	parent = domain->pgd;
	while (level <= total) {
1021
		offset = pfn_level_offset(pfn, total);
1022 1023 1024 1025
		pte = &parent[offset];
		if (level == total)
			return pte;

1026 1027
		if (!dma_pte_present(pte)) {
			*large_page = total;
1028
			break;
1029 1030
		}

1031
		if (dma_pte_superpage(pte)) {
1032 1033 1034 1035
			*large_page = total;
			return pte;
		}

1036
		parent = phys_to_virt(dma_pte_addr(pte));
1037 1038 1039 1040 1041 1042
		total--;
	}
	return NULL;
}

/* clear last level pte, a tlb flush should be followed */
1043
static void dma_pte_clear_range(struct dmar_domain *domain,
1044 1045
				unsigned long start_pfn,
				unsigned long last_pfn)
1046
{
1047
	unsigned int large_page = 1;
1048
	struct dma_pte *first_pte, *pte;
1049

1050 1051
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1052
	BUG_ON(start_pfn > last_pfn);
1053

1054
	/* we don't need lock here; nobody else touches the iova range */
1055
	do {
1056 1057
		large_page = 1;
		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1058
		if (!pte) {
1059
			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1060 1061
			continue;
		}
1062
		do {
1063
			dma_clear_pte(pte);
1064
			start_pfn += lvl_to_nr_pages(large_page);
1065
			pte++;
1066 1067
		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));

1068 1069
		domain_flush_cache(domain, first_pte,
				   (void *)pte - (void *)first_pte);
1070 1071

	} while (start_pfn && start_pfn <= last_pfn);
1072 1073
}

1074
static void dma_pte_free_level(struct dmar_domain *domain, int level,
1075 1076 1077
			       int retain_level, struct dma_pte *pte,
			       unsigned long pfn, unsigned long start_pfn,
			       unsigned long last_pfn)
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
{
	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;
		struct dma_pte *level_pte;

		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
			goto next;

1089
		level_pfn = pfn & level_mask(level);
1090 1091
		level_pte = phys_to_virt(dma_pte_addr(pte));

1092 1093 1094 1095 1096
		if (level > 2) {
			dma_pte_free_level(domain, level - 1, retain_level,
					   level_pte, level_pfn, start_pfn,
					   last_pfn);
		}
1097

1098 1099 1100 1101 1102
		/*
		 * Free the page table if we're below the level we want to
		 * retain and the range covers the entire table.
		 */
		if (level < retain_level && !(start_pfn > level_pfn ||
1103
		      last_pfn < level_pfn + level_size(level) - 1)) {
1104 1105 1106 1107 1108 1109 1110 1111 1112
			dma_clear_pte(pte);
			domain_flush_cache(domain, pte, sizeof(*pte));
			free_pgtable_page(level_pte);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
}

1113 1114 1115 1116
/*
 * clear last level (leaf) ptes and free page table pages below the
 * level we wish to keep intact.
 */
1117
static void dma_pte_free_pagetable(struct dmar_domain *domain,
1118
				   unsigned long start_pfn,
1119 1120
				   unsigned long last_pfn,
				   int retain_level)
1121
{
1122 1123
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1124
	BUG_ON(start_pfn > last_pfn);
1125

1126 1127
	dma_pte_clear_range(domain, start_pfn, last_pfn);

1128
	/* We don't need lock here; nobody else touches the iova range */
1129
	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1130
			   domain->pgd, 0, start_pfn, last_pfn);
1131

1132
	/* free pgd */
1133
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1134 1135 1136 1137 1138
		free_pgtable_page(domain->pgd);
		domain->pgd = NULL;
	}
}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
/* When a page at a given level is being unlinked from its parent, we don't
   need to *modify* it at all. All we need to do is make a list of all the
   pages which can be freed just as soon as we've flushed the IOTLB and we
   know the hardware page-walk will no longer touch them.
   The 'pte' argument is the *parent* PTE, pointing to the page that is to
   be freed. */
static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
					    int level, struct dma_pte *pte,
					    struct page *freelist)
{
	struct page *pg;

	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
	pg->freelist = freelist;
	freelist = pg;

	if (level == 1)
		return freelist;

1158 1159
	pte = page_address(pg);
	do {
1160 1161 1162
		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
			freelist = dma_pte_list_pagetables(domain, level - 1,
							   pte, freelist);
1163 1164
		pte++;
	} while (!first_pte_in_page(pte));
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220

	return freelist;
}

static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
					struct dma_pte *pte, unsigned long pfn,
					unsigned long start_pfn,
					unsigned long last_pfn,
					struct page *freelist)
{
	struct dma_pte *first_pte = NULL, *last_pte = NULL;

	pfn = max(start_pfn, pfn);
	pte = &pte[pfn_level_offset(pfn, level)];

	do {
		unsigned long level_pfn;

		if (!dma_pte_present(pte))
			goto next;

		level_pfn = pfn & level_mask(level);

		/* If range covers entire pagetable, free it */
		if (start_pfn <= level_pfn &&
		    last_pfn >= level_pfn + level_size(level) - 1) {
			/* These suborbinate page tables are going away entirely. Don't
			   bother to clear them; we're just going to *free* them. */
			if (level > 1 && !dma_pte_superpage(pte))
				freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);

			dma_clear_pte(pte);
			if (!first_pte)
				first_pte = pte;
			last_pte = pte;
		} else if (level > 1) {
			/* Recurse down into a level that isn't *entirely* obsolete */
			freelist = dma_pte_clear_level(domain, level - 1,
						       phys_to_virt(dma_pte_addr(pte)),
						       level_pfn, start_pfn, last_pfn,
						       freelist);
		}
next:
		pfn += level_size(level);
	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);

	if (first_pte)
		domain_flush_cache(domain, first_pte,
				   (void *)++last_pte - (void *)first_pte);

	return freelist;
}

/* We can't just free the pages because the IOMMU may still be walking
   the page tables, and may have cached the intermediate levels. The
   pages can only be freed after the IOTLB flush has been done. */
1221 1222 1223
static struct page *domain_unmap(struct dmar_domain *domain,
				 unsigned long start_pfn,
				 unsigned long last_pfn)
1224 1225 1226
{
	struct page *freelist = NULL;

1227 1228
	BUG_ON(!domain_pfn_supported(domain, start_pfn));
	BUG_ON(!domain_pfn_supported(domain, last_pfn));
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	BUG_ON(start_pfn > last_pfn);

	/* we don't need lock here; nobody else touches the iova range */
	freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
				       domain->pgd, 0, start_pfn, last_pfn, NULL);

	/* free pgd */
	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
		struct page *pgd_page = virt_to_page(domain->pgd);
		pgd_page->freelist = freelist;
		freelist = pgd_page;

		domain->pgd = NULL;
	}

	return freelist;
}

1247
static void dma_free_pagelist(struct page *freelist)
1248 1249 1250 1251 1252 1253 1254 1255 1256
{
	struct page *pg;

	while ((pg = freelist)) {
		freelist = pg->freelist;
		free_pgtable_page(page_address(pg));
	}
}

1257 1258 1259 1260 1261 1262 1263
static void iova_entry_free(unsigned long data)
{
	struct page *freelist = (struct page *)data;

	dma_free_pagelist(freelist);
}

1264 1265 1266 1267 1268 1269
/* iommu handling */
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
{
	struct root_entry *root;
	unsigned long flags;

1270
	root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1271
	if (!root) {
1272
		pr_err("Allocating root entry for %s failed\n",
1273
			iommu->name);
1274
		return -ENOMEM;
1275
	}
1276

Fenghua Yu's avatar
Fenghua Yu committed
1277
	__iommu_flush_cache(iommu, root, ROOT_SIZE);
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287

	spin_lock_irqsave(&iommu->lock, flags);
	iommu->root_entry = root;
	spin_unlock_irqrestore(&iommu->lock, flags);

	return 0;
}

static void iommu_set_root_entry(struct intel_iommu *iommu)
{
1288
	u64 addr;
1289
	u32 sts;
1290 1291
	unsigned long flag;

1292
	addr = virt_to_phys(iommu->root_entry);
1293
	if (ecs_enabled(iommu))
1294
		addr |= DMA_RTADDR_RTT;
1295

1296
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1297
	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1298

1299
	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1300 1301 1302

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1303
		      readl, (sts & DMA_GSTS_RTPS), sts);
1304

1305
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1306 1307 1308 1309 1310 1311 1312
}

static void iommu_flush_write_buffer(struct intel_iommu *iommu)
{
	u32 val;
	unsigned long flag;

1313
	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1314 1315
		return;

1316
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1317
	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1318 1319 1320

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1321
		      readl, (!(val & DMA_GSTS_WBFS)), val);
1322

1323
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1324 1325 1326
}

/* return value determine if we need a write buffer flush */
1327 1328 1329
static void __iommu_flush_context(struct intel_iommu *iommu,
				  u16 did, u16 source_id, u8 function_mask,
				  u64 type)
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
{
	u64 val = 0;
	unsigned long flag;

	switch (type) {
	case DMA_CCMD_GLOBAL_INVL:
		val = DMA_CCMD_GLOBAL_INVL;
		break;
	case DMA_CCMD_DOMAIN_INVL:
		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
		break;
	case DMA_CCMD_DEVICE_INVL:
		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
		break;
	default:
		BUG();
	}
	val |= DMA_CCMD_ICC;

1350
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1351 1352 1353 1354 1355 1356
	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
		dmar_readq, (!(val & DMA_CCMD_ICC)), val);

1357
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1358 1359 1360
}

/* return value determine if we need a write buffer flush */
1361 1362
static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
				u64 addr, unsigned int size_order, u64 type)
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
{
	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
	u64 val = 0, val_iva = 0;
	unsigned long flag;

	switch (type) {
	case DMA_TLB_GLOBAL_FLUSH:
		/* global flush doesn't need set IVA_REG */
		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
		break;
	case DMA_TLB_DSI_FLUSH:
		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
		break;
	case DMA_TLB_PSI_FLUSH:
		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1378
		/* IH bit is passed in as part of address */
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
		val_iva = size_order | addr;
		break;
	default:
		BUG();
	}
	/* Note: set drain read/write */
#if 0
	/*
	 * This is probably to be super secure.. Looks like we can
	 * ignore it without any impact.
	 */
	if (cap_read_drain(iommu->cap))
		val |= DMA_TLB_READ_DRAIN;
#endif
	if (cap_write_drain(iommu->cap))
		val |= DMA_TLB_WRITE_DRAIN;

1396
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1397 1398 1399 1400 1401 1402 1403 1404 1405
	/* Note: Only uses first TLB reg currently */
	if (val_iva)
		dmar_writeq(iommu->reg + tlb_offset, val_iva);
	dmar_writeq(iommu->reg + tlb_offset + 8, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
		dmar_readq, (!(val & DMA_TLB_IVT)), val);

1406
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1407 1408 1409

	/* check IOTLB invalidation granularity */
	if (DMA_TLB_IAIG(val) == 0)
1410
		pr_err("Flush IOTLB failed\n");
1411
	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1412
		pr_debug("TLB flush request %Lx, actual %Lx\n",
Fenghua Yu's avatar
Fenghua Yu committed
1413 1414
			(unsigned long long)DMA_TLB_IIRG(type),
			(unsigned long long)DMA_TLB_IAIG(val));
1415 1416
}

1417 1418 1419
static struct device_domain_info *
iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
			 u8 bus, u8 devfn)
Yu Zhao's avatar
Yu Zhao committed
1420 1421 1422
{
	struct device_domain_info *info;

1423 1424
	assert_spin_locked(&device_domain_lock);

Yu Zhao's avatar
Yu Zhao committed
1425 1426 1427 1428
	if (!iommu->qi)
		return NULL;

	list_for_each_entry(info, &domain->devices, link)
1429 1430
		if (info->iommu == iommu && info->bus == bus &&
		    info->devfn == devfn) {
1431 1432
			if (info->ats_supported && info->dev)
				return info;
Yu Zhao's avatar
Yu Zhao committed
1433 1434 1435
			break;
		}

1436
	return NULL;
Yu Zhao's avatar
Yu Zhao committed
1437 1438
}

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
static void domain_update_iotlb(struct dmar_domain *domain)
{
	struct device_domain_info *info;
	bool has_iotlb_device = false;

	assert_spin_locked(&device_domain_lock);

	list_for_each_entry(info, &domain->devices, link) {
		struct pci_dev *pdev;

		if (!info->dev || !dev_is_pci(info->dev))
			continue;

		pdev = to_pci_dev(info->dev);
		if (pdev->ats_enabled) {
			has_iotlb_device = true;
			break;
		}
	}

	domain->has_iotlb_device = has_iotlb_device;
}

Yu Zhao's avatar
Yu Zhao committed
1462
static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1463
{
1464 1465
	struct pci_dev *pdev;

1466 1467
	assert_spin_locked(&device_domain_lock);

1468
	if (!info || !dev_is_pci(info->dev))
Yu Zhao's avatar
Yu Zhao committed
1469 1470
		return;

1471
	pdev = to_pci_dev(info->dev);
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	/* For IOMMU that supports device IOTLB throttling (DIT), we assign
	 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
	 * queue depth at PF level. If DIT is not set, PFSID will be treated as
	 * reserved, which should be set to 0.
	 */
	if (!ecap_dit(info->iommu->ecap))
		info->pfsid = 0;
	else {
		struct pci_dev *pf_pdev;

		/* pdev will be returned if device is not a vf */
		pf_pdev = pci_physfn(pdev);
		info->pfsid = PCI_DEVID(pf_pdev->bus->number, pf_pdev->devfn);
	}
1486

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
#ifdef CONFIG_INTEL_IOMMU_SVM
	/* The PCIe spec, in its wisdom, declares that the behaviour of
	   the device if you enable PASID support after ATS support is
	   undefined. So always enable PASID support on devices which
	   have it, even if we can't yet know if we're ever going to
	   use it. */
	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
		info->pasid_enabled = 1;

	if (info->pri_supported && !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
		info->pri_enabled = 1;
#endif
	if (info->ats_supported && !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
		info->ats_enabled = 1;
1501
		domain_update_iotlb(info->domain);
1502 1503
		info->ats_qdep = pci_ats_queue_depth(pdev);
	}
Yu Zhao's avatar
Yu Zhao committed
1504 1505 1506 1507
}

static void iommu_disable_dev_iotlb(struct device_domain_info *info)
{
1508 1509
	struct pci_dev *pdev;

1510 1511
	assert_spin_locked(&device_domain_lock);

1512
	if (!dev_is_pci(info->dev))
Yu Zhao's avatar
Yu Zhao committed
1513 1514
		return;

1515 1516 1517 1518 1519
	pdev = to_pci_dev(info->dev);

	if (info->ats_enabled) {
		pci_disable_ats(pdev);
		info->ats_enabled = 0;
1520
		domain_update_iotlb(info->domain);
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	}
#ifdef CONFIG_INTEL_IOMMU_SVM
	if (info->pri_enabled) {
		pci_disable_pri(pdev);
		info->pri_enabled = 0;
	}
	if (info->pasid_enabled) {
		pci_disable_pasid(pdev);
		info->pasid_enabled = 0;
	}
#endif
Yu Zhao's avatar
Yu Zhao committed
1532 1533 1534 1535 1536 1537 1538 1539 1540
}

static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
				  u64 addr, unsigned mask)
{
	u16 sid, qdep;
	unsigned long flags;
	struct device_domain_info *info;

1541 1542 1543
	if (!domain->has_iotlb_device)
		return;

Yu Zhao's avatar
Yu Zhao committed
1544 1545
	spin_lock_irqsave(&device_domain_lock, flags);
	list_for_each_entry(info, &domain->devices, link) {
1546
		if (!info->ats_enabled)
Yu Zhao's avatar
Yu Zhao committed
1547 1548 1549
			continue;

		sid = info->bus << 8 | info->devfn;
1550
		qdep = info->ats_qdep;
1551 1552
		qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
				qdep, addr, mask);
Yu Zhao's avatar
Yu Zhao committed
1553 1554 1555 1556
	}
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

1557 1558 1559 1560
static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
				  struct dmar_domain *domain,
				  unsigned long pfn, unsigned int pages,
				  int ih, int map)
1561
{
1562
	unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1563
	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1564
	u16 did = domain->iommu_did[iommu->seq_id];
1565 1566 1567

	BUG_ON(pages == 0);

1568 1569
	if (ih)
		ih = 1 << 6;
1570
	/*
1571 1572
	 * Fallback to domain selective flush if no PSI support or the size is
	 * too big.
1573 1574 1575
	 * PSI requires page size to be 2 ^ x, and the base address is naturally
	 * aligned to the size
	 */
1576 1577
	if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
		iommu->flush.flush_iotlb(iommu, did, 0, 0,
1578
						DMA_TLB_DSI_FLUSH);
1579
	else
1580
		iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1581
						DMA_TLB_PSI_FLUSH);
1582 1583

	/*
1584 1585
	 * In caching mode, changes of pages from non-present to present require
	 * flush. However, device IOTLB doesn't need to be flushed in this case.
1586
	 */
1587
	if (!cap_caching_mode(iommu->cap) || !map)
1588
		iommu_flush_dev_iotlb(domain, addr, mask);
1589 1590
}

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
/* Notification for newly created mappings */
static inline void __mapping_notify_one(struct intel_iommu *iommu,
					struct dmar_domain *domain,
					unsigned long pfn, unsigned int pages)
{
	/* It's a non-present to present mapping. Only flush if caching mode */
	if (cap_caching_mode(iommu->cap))
		iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
	else
		iommu_flush_write_buffer(iommu);
}

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
static void iommu_flush_iova(struct iova_domain *iovad)
{
	struct dmar_domain *domain;
	int idx;

	domain = container_of(iovad, struct dmar_domain, iovad);

	for_each_domain_iommu(idx, domain) {
		struct intel_iommu *iommu = g_iommus[idx];
		u16 did = domain->iommu_did[iommu->seq_id];

		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);

		if (!cap_caching_mode(iommu->cap))
			iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
					      0, MAX_AGAW_PFN_WIDTH);
	}
}

mark gross's avatar
mark gross committed
1622 1623 1624 1625 1626
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
{
	u32 pmen;
	unsigned long flags;

1627 1628 1629
	if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
		return;

1630
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
mark gross's avatar
mark gross committed
1631 1632 1633 1634 1635 1636 1637 1638
	pmen = readl(iommu->reg + DMAR_PMEN_REG);
	pmen &= ~DMA_PMEN_EPM;
	writel(pmen, iommu->reg + DMAR_PMEN_REG);

	/* wait for the protected region status bit to clear */
	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
		readl, !(pmen & DMA_PMEN_PRS), pmen);

1639
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
mark gross's avatar
mark gross committed
1640 1641
}

1642
static void iommu_enable_translation(struct intel_iommu *iommu)
1643 1644 1645 1646
{
	u32 sts;
	unsigned long flags;

1647
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1648 1649
	iommu->gcmd |= DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1650 1651 1652

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1653
		      readl, (sts & DMA_GSTS_TES), sts);
1654

1655
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1656 1657
}

1658
static void iommu_disable_translation(struct intel_iommu *iommu)
1659 1660 1661 1662
{
	u32 sts;
	unsigned long flag;

1663
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1664 1665 1666 1667 1668
	iommu->gcmd &= ~DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1669
		      readl, (!(sts & DMA_GSTS_TES)), sts);
1670

1671
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1672 1673
}

1674

1675 1676
static int iommu_init_domains(struct intel_iommu *iommu)
{
1677 1678
	u32 ndomains, nlongs;
	size_t size;
1679 1680

	ndomains = cap_ndoms(iommu->cap);
1681
	pr_debug("%s: Number of Domains supported <%d>\n",
1682
		 iommu->name, ndomains);
1683 1684
	nlongs = BITS_TO_LONGS(ndomains);

1685 1686
	spin_lock_init(&iommu->lock);

1687 1688
	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
	if (!iommu->domain_ids) {
1689 1690
		pr_err("%s: Allocating domain id array failed\n",
		       iommu->name);
1691 1692
		return -ENOMEM;
	}
1693

1694
	size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1695 1696 1697 1698 1699 1700 1701 1702
	iommu->domains = kzalloc(size, GFP_KERNEL);

	if (iommu->domains) {
		size = 256 * sizeof(struct dmar_domain *);
		iommu->domains[0] = kzalloc(size, GFP_KERNEL);
	}

	if (!iommu->domains || !iommu->domains[0]) {
1703 1704
		pr_err("%s: Allocating domain array failed\n",
		       iommu->name);
1705
		kfree(iommu->domain_ids);
1706
		kfree(iommu->domains);
1707
		iommu->domain_ids = NULL;
1708
		iommu->domains    = NULL;
1709 1710 1711
		return -ENOMEM;
	}

1712 1713


1714
	/*
1715 1716 1717 1718
	 * If Caching mode is set, then invalid translations are tagged
	 * with domain-id 0, hence we need to pre-allocate it. We also
	 * use domain-id 0 as a marker for non-allocated domain-id, so
	 * make sure it is not used for a real domain.
1719
	 */
1720 1721
	set_bit(0, iommu->domain_ids);

1722 1723 1724
	return 0;
}

1725
static void disable_dmar_iommu(struct intel_iommu *iommu)
1726
{
1727
	struct device_domain_info *info, *tmp;
1728
	unsigned long flags;
1729

1730 1731
	if (!iommu->domains || !iommu->domain_ids)
		return;
1732

1733
again:
1734
	spin_lock_irqsave(&device_domain_lock, flags);
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
		struct dmar_domain *domain;

		if (info->iommu != iommu)
			continue;

		if (!info->dev || !info->domain)
			continue;

		domain = info->domain;

1746
		__dmar_remove_one_dev_info(info);
1747

1748 1749 1750 1751 1752 1753 1754 1755
		if (!domain_type_is_vm_or_si(domain)) {
			/*
			 * The domain_exit() function  can't be called under
			 * device_domain_lock, as it takes this lock itself.
			 * So release the lock here and re-run the loop
			 * afterwards.
			 */
			spin_unlock_irqrestore(&device_domain_lock, flags);
1756
			domain_exit(domain);
1757 1758
			goto again;
		}
1759
	}
1760
	spin_unlock_irqrestore(&device_domain_lock, flags);
1761 1762 1763

	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);
1764
}
1765

1766 1767 1768
static void free_dmar_iommu(struct intel_iommu *iommu)
{
	if ((iommu->domains) && (iommu->domain_ids)) {
1769
		int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1770 1771 1772 1773
		int i;

		for (i = 0; i < elems; i++)
			kfree(iommu->domains[i]);
1774 1775 1776 1777 1778
		kfree(iommu->domains);
		kfree(iommu->domain_ids);
		iommu->domains = NULL;
		iommu->domain_ids = NULL;
	}
1779

Weidong Han's avatar
Weidong Han committed
1780 1781
	g_iommus[iommu->seq_id] = NULL;

1782 1783
	/* free context mapping */
	free_context_table(iommu);
1784 1785

#ifdef CONFIG_INTEL_IOMMU_SVM
1786 1787 1788
	if (pasid_enabled(iommu)) {
		if (ecap_prs(iommu->ecap))
			intel_svm_finish_prq(iommu);
1789
		intel_svm_exit(iommu);
1790
	}
1791
#endif
1792 1793
}

1794
static struct dmar_domain *alloc_domain(int flags)
1795 1796 1797 1798 1799 1800 1801
{
	struct dmar_domain *domain;

	domain = alloc_domain_mem();
	if (!domain)
		return NULL;

1802
	memset(domain, 0, sizeof(*domain));
1803
	domain->nid = -1;
1804
	domain->flags = flags;
1805
	domain->has_iotlb_device = false;
1806
	INIT_LIST_HEAD(&domain->devices);
1807 1808 1809 1810

	return domain;
}

1811 1812
/* Must be called with iommu->lock */
static int domain_attach_iommu(struct dmar_domain *domain,
1813 1814
			       struct intel_iommu *iommu)
{
1815
	unsigned long ndomains;
1816
	int num;
1817

1818
	assert_spin_locked(&device_domain_lock);
1819
	assert_spin_locked(&iommu->lock);
1820

1821 1822 1823
	domain->iommu_refcnt[iommu->seq_id] += 1;
	domain->iommu_count += 1;
	if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1824
		ndomains = cap_ndoms(iommu->cap);
1825 1826 1827 1828 1829 1830
		num      = find_first_zero_bit(iommu->domain_ids, ndomains);

		if (num >= ndomains) {
			pr_err("%s: No free domain ids\n", iommu->name);
			domain->iommu_refcnt[iommu->seq_id] -= 1;
			domain->iommu_count -= 1;
1831
			return -ENOSPC;
1832
		}
1833

1834 1835 1836 1837 1838
		set_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, domain);

		domain->iommu_did[iommu->seq_id] = num;
		domain->nid			 = iommu->node;
1839 1840 1841

		domain_update_iommu_cap(domain);
	}
1842

1843
	return 0;
1844 1845 1846 1847 1848
}

static int domain_detach_iommu(struct dmar_domain *domain,
			       struct intel_iommu *iommu)
{
1849 1850
	int num, count = INT_MAX;

1851
	assert_spin_locked(&device_domain_lock);
1852
	assert_spin_locked(&iommu->lock);
1853

1854 1855 1856
	domain->iommu_refcnt[iommu->seq_id] -= 1;
	count = --domain->iommu_count;
	if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1857 1858 1859
		num = domain->iommu_did[iommu->seq_id];
		clear_bit(num, iommu->domain_ids);
		set_iommu_domain(iommu, num, NULL);
1860 1861

		domain_update_iommu_cap(domain);
1862
		domain->iommu_did[iommu->seq_id] = 0;
1863 1864 1865 1866 1867
	}

	return count;
}

1868
static struct iova_domain reserved_iova_list;
1869
static struct lock_class_key reserved_rbtree_key;
1870

1871
static int dmar_init_reserved_ranges(void)
1872 1873 1874 1875 1876
{
	struct pci_dev *pdev = NULL;
	struct iova *iova;
	int i;

1877
	init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1878

1879 1880 1881
	lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
		&reserved_rbtree_key);

1882 1883 1884
	/* IOAPIC ranges shouldn't be accessed by DMA */
	iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
		IOVA_PFN(IOAPIC_RANGE_END));
1885
	if (!iova) {
1886
		pr_err("Reserve IOAPIC range failed\n");
1887 1888
		return -ENODEV;
	}
1889 1890 1891 1892 1893 1894 1895 1896 1897

	/* Reserve all PCI MMIO to avoid peer-to-peer access */
	for_each_pci_dev(pdev) {
		struct resource *r;

		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
			r = &pdev->resource[i];
			if (!r->flags || !(r->flags & IORESOURCE_MEM))
				continue;
1898 1899 1900
			iova = reserve_iova(&reserved_iova_list,
					    IOVA_PFN(r->start),
					    IOVA_PFN(r->end));
1901
			if (!iova) {
1902
				pr_err("Reserve iova failed\n");
1903 1904
				return -ENODEV;
			}
1905 1906
		}
	}
1907
	return 0;
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
}

static void domain_reserve_special_ranges(struct dmar_domain *domain)
{
	copy_reserved_iova(&reserved_iova_list, &domain->iovad);
}

static inline int guestwidth_to_adjustwidth(int gaw)
{
	int agaw;
	int r = (gaw - 12) % 9;

	if (r == 0)
		agaw = gaw;
	else
		agaw = gaw + 9 - r;
	if (agaw > 64)
		agaw = 64;
	return agaw;
}

1929 1930
static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
		       int guest_width)
1931 1932 1933
{
	int adjust_width, agaw;
	unsigned long sagaw;
1934
	int err;
1935

1936
	init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
1937 1938 1939 1940 1941 1942

	err = init_iova_flush_queue(&domain->iovad,
				    iommu_flush_iova, iova_entry_free);
	if (err)
		return err;

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
	domain_reserve_special_ranges(domain);

	/* calculate AGAW */
	if (guest_width > cap_mgaw(iommu->cap))
		guest_width = cap_mgaw(iommu->cap);
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	agaw = width_to_agaw(adjust_width);
	sagaw = cap_sagaw(iommu->cap);
	if (!test_bit(agaw, &sagaw)) {
		/* hardware doesn't support it, choose a bigger one */
1954
		pr_debug("Hardware doesn't support agaw %d\n", agaw);
1955 1956 1957 1958 1959 1960
		agaw = find_next_bit(&sagaw, 5, agaw);
		if (agaw >= 5)
			return -ENODEV;
	}
	domain->agaw = agaw;

Weidong Han's avatar
Weidong Han committed
1961 1962 1963 1964 1965
	if (ecap_coherent(iommu->ecap))
		domain->iommu_coherency = 1;
	else
		domain->iommu_coherency = 0;

1966 1967 1968 1969 1970
	if (ecap_sc_support(iommu->ecap))
		domain->iommu_snooping = 1;
	else
		domain->iommu_snooping = 0;

1971 1972 1973 1974 1975
	if (intel_iommu_superpage)
		domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
	else
		domain->iommu_superpage = 0;

1976
	domain->nid = iommu->node;
1977

1978
	/* always allocate the top pgd */
1979
	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1980 1981
	if (!domain->pgd)
		return -ENOMEM;
Fenghua Yu's avatar
Fenghua Yu committed
1982
	__iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1983 1984 1985 1986 1987
	return 0;
}

static void domain_exit(struct dmar_domain *domain)
{
1988
	struct page *freelist = NULL;
1989 1990 1991 1992 1993

	/* Domain 0 is reserved, so dont process it */
	if (!domain)
		return;

1994 1995
	/* Remove associated devices and clear attached or cached domains */
	rcu_read_lock();
1996
	domain_remove_dev_info(domain);
1997
	rcu_read_unlock();
1998

1999 2000 2001
	/* destroy iovas */
	put_iova_domain(&domain->iovad);

2002
	freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
2003

2004 2005
	dma_free_pagelist(freelist);

2006 2007 2008
	free_domain_mem(domain);
}

2009 2010
static int domain_context_mapping_one(struct dmar_domain *domain,
				      struct intel_iommu *iommu,
2011
				      u8 bus, u8 devfn)
2012
{
2013
	u16 did = domain->iommu_did[iommu->seq_id];
2014 2015
	int translation = CONTEXT_TT_MULTI_LEVEL;
	struct device_domain_info *info = NULL;
2016 2017
	struct context_entry *context;
	unsigned long flags;
2018
	struct dma_pte *pgd;
2019
	int ret, agaw;
2020

2021 2022
	WARN_ON(did == 0);

2023 2024
	if (hw_pass_through && domain_type_is_si(domain))
		translation = CONTEXT_TT_PASS_THROUGH;
2025 2026 2027

	pr_debug("Set context mapping for %02x:%02x.%d\n",
		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
2028

2029
	BUG_ON(!domain->pgd);
Weidong Han's avatar
Weidong Han committed
2030

2031 2032 2033 2034
	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -ENOMEM;
2035
	context = iommu_context_addr(iommu, bus, devfn, 1);
2036
	if (!context)
2037
		goto out_unlock;
2038

2039 2040 2041
	ret = 0;
	if (context_present(context))
		goto out_unlock;
2042

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	/*
	 * For kdump cases, old valid entries may be cached due to the
	 * in-flight DMA and copied pgtable, but there is no unmapping
	 * behaviour for them, thus we need an explicit cache flush for
	 * the newly-mapped device. For kdump, at this point, the device
	 * is supposed to finish reset at its driver probe stage, so no
	 * in-flight DMA will exist, and we don't need to worry anymore
	 * hereafter.
	 */
	if (context_copied(context)) {
		u16 did_old = context_domain_id(context);

2055
		if (did_old < cap_ndoms(iommu->cap)) {
2056 2057 2058 2059
			iommu->flush.flush_context(iommu, did_old,
						   (((u16)bus) << 8) | devfn,
						   DMA_CCMD_MASK_NOBIT,
						   DMA_CCMD_DEVICE_INVL);
2060 2061 2062
			iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
						 DMA_TLB_DSI_FLUSH);
		}
2063 2064
	}

2065 2066
	pgd = domain->pgd;

2067
	context_clear_entry(context);
2068
	context_set_domain_id(context, did);
2069

2070 2071 2072 2073
	/*
	 * Skip top levels of page tables for iommu which has less agaw
	 * than default.  Unnecessary for PT mode.
	 */
Yu Zhao's avatar
Yu Zhao committed
2074
	if (translation != CONTEXT_TT_PASS_THROUGH) {
2075
		for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
2076
			ret = -ENOMEM;
2077
			pgd = phys_to_virt(dma_pte_addr(pgd));
2078 2079
			if (!dma_pte_present(pgd))
				goto out_unlock;
2080
		}
2081

2082
		info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2083 2084 2085 2086
		if (info && info->ats_supported)
			translation = CONTEXT_TT_DEV_IOTLB;
		else
			translation = CONTEXT_TT_MULTI_LEVEL;
2087

Yu Zhao's avatar
Yu Zhao committed
2088
		context_set_address_root(context, virt_to_phys(pgd));
2089
		context_set_address_width(context, agaw);
2090 2091 2092 2093 2094 2095 2096
	} else {
		/*
		 * In pass through mode, AW must be programmed to
		 * indicate the largest AGAW value supported by
		 * hardware. And ASR is ignored by hardware.
		 */
		context_set_address_width(context, iommu->msagaw);
Yu Zhao's avatar
Yu Zhao committed
2097
	}
2098 2099

	context_set_translation_type(context, translation);
2100 2101
	context_set_fault_enable(context);
	context_set_present(context);
Weidong Han's avatar
Weidong Han committed
2102
	domain_flush_cache(domain, context, sizeof(*context));
2103

2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	/*
	 * It's a non-present to present mapping. If hardware doesn't cache
	 * non-present entry we only need to flush the write-buffer. If the
	 * _does_ cache non-present entries, then it does so in the special
	 * domain #0, which we have to flush:
	 */
	if (cap_caching_mode(iommu->cap)) {
		iommu->flush.flush_context(iommu, 0,
					   (((u16)bus) << 8) | devfn,
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
2115
		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2116
	} else {
2117
		iommu_flush_write_buffer(iommu);
2118
	}
Yu Zhao's avatar
Yu Zhao committed
2119
	iommu_enable_dev_iotlb(info);
2120

2121 2122 2123 2124 2125
	ret = 0;

out_unlock:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);
2126

2127
	return ret;
2128 2129
}

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
struct domain_context_mapping_data {
	struct dmar_domain *domain;
	struct intel_iommu *iommu;
};

static int domain_context_mapping_cb(struct pci_dev *pdev,
				     u16 alias, void *opaque)
{
	struct domain_context_mapping_data *data = opaque;

	return domain_context_mapping_one(data->domain, data->iommu,
2141
					  PCI_BUS_NUM(alias), alias & 0xff);
2142 2143
}

2144
static int
2145
domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2146
{
2147
	struct intel_iommu *iommu;
2148
	u8 bus, devfn;
2149
	struct domain_context_mapping_data data;
2150

2151
	iommu = device_to_iommu(dev, &bus, &devfn);
2152 2153
	if (!iommu)
		return -ENODEV;
2154

2155
	if (!dev_is_pci(dev))
2156
		return domain_context_mapping_one(domain, iommu, bus, devfn);
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170

	data.domain = domain;
	data.iommu = iommu;

	return pci_for_each_dma_alias(to_pci_dev(dev),
				      &domain_context_mapping_cb, &data);
}

static int domain_context_mapped_cb(struct pci_dev *pdev,
				    u16 alias, void *opaque)
{
	struct intel_iommu *iommu = opaque;

	return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2171 2172
}

2173
static int domain_context_mapped(struct device *dev)
2174
{
Weidong Han's avatar
Weidong Han committed
2175
	struct intel_iommu *iommu;
2176
	u8 bus, devfn;
Weidong Han's avatar
Weidong Han committed
2177

2178
	iommu = device_to_iommu(dev, &bus, &devfn);
Weidong Han's avatar
Weidong Han committed
2179 2180
	if (!iommu)
		return -ENODEV;
2181

2182 2183
	if (!dev_is_pci(dev))
		return device_context_mapped(iommu, bus, devfn);
2184

2185 2186
	return !pci_for_each_dma_alias(to_pci_dev(dev),
				       domain_context_mapped_cb, iommu);
2187 2188
}

2189 2190 2191 2192 2193 2194 2195 2196
/* Returns a number of VTD pages, but aligned to MM page size */
static inline unsigned long aligned_nrpages(unsigned long host_addr,
					    size_t size)
{
	host_addr &= ~PAGE_MASK;
	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
}

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
/* Return largest possible superpage level for a given mapping */
static inline int hardware_largepage_caps(struct dmar_domain *domain,
					  unsigned long iov_pfn,
					  unsigned long phy_pfn,
					  unsigned long pages)
{
	int support, level = 1;
	unsigned long pfnmerge;

	support = domain->iommu_superpage;

	/* To use a large page, the virtual *and* physical addresses
	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
	   of them will mean we have to use smaller pages. So just
	   merge them and check both at once. */
	pfnmerge = iov_pfn | phy_pfn;

	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
		pages >>= VTD_STRIDE_SHIFT;
		if (!pages)
			break;
		pfnmerge >>= VTD_STRIDE_SHIFT;
		level++;
		support--;
	}
	return level;
}

2225 2226 2227
static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
			    struct scatterlist *sg, unsigned long phys_pfn,
			    unsigned long nr_pages, int prot)
2228 2229
{
	struct dma_pte *first_pte = NULL, *pte = NULL;
2230
	phys_addr_t uninitialized_var(pteval);
2231
	unsigned long sg_res = 0;
2232 2233
	unsigned int largepage_lvl = 0;
	unsigned long lvl_pages = 0;
2234

2235
	BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2236 2237 2238 2239 2240 2241

	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
		return -EINVAL;

	prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;

2242 2243
	if (!sg) {
		sg_res = nr_pages;
2244 2245 2246
		pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
	}

2247
	while (nr_pages > 0) {
2248 2249
		uint64_t tmp;

2250
		if (!sg_res) {
2251 2252
			unsigned int pgoff = sg->offset & ~PAGE_MASK;

2253
			sg_res = aligned_nrpages(sg->offset, sg->length);
2254
			sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2255
			sg->dma_length = sg->length;
2256
			pteval = (sg_phys(sg) - pgoff) | prot;
2257
			phys_pfn = pteval >> VTD_PAGE_SHIFT;
2258
		}
2259

2260
		if (!pte) {
2261 2262
			largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);

2263
			first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2264 2265
			if (!pte)
				return -ENOMEM;
2266
			/* It is large page*/
2267
			if (largepage_lvl > 1) {
2268 2269
				unsigned long nr_superpages, end_pfn;

2270
				pteval |= DMA_PTE_LARGE_PAGE;
2271
				lvl_pages = lvl_to_nr_pages(largepage_lvl);
2272 2273 2274 2275

				nr_superpages = sg_res / lvl_pages;
				end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;

2276 2277
				/*
				 * Ensure that old small page tables are
2278
				 * removed to make room for superpage(s).
2279 2280
				 * We're adding new large pages, so make sure
				 * we don't remove their parent tables.
2281
				 */
2282 2283
				dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
						       largepage_lvl + 1);
2284
			} else {
2285
				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2286
			}
2287

2288 2289 2290 2291
		}
		/* We don't need lock here, nobody else
		 * touches the iova range
		 */
2292
		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2293
		if (tmp) {
2294
			static int dumps = 5;
2295 2296
			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
				iov_pfn, tmp, (unsigned long long)pteval);
2297 2298 2299 2300 2301 2302
			if (dumps) {
				dumps--;
				debug_dma_dump_mappings(NULL);
			}
			WARN_ON(1);
		}
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325

		lvl_pages = lvl_to_nr_pages(largepage_lvl);

		BUG_ON(nr_pages < lvl_pages);
		BUG_ON(sg_res < lvl_pages);

		nr_pages -= lvl_pages;
		iov_pfn += lvl_pages;
		phys_pfn += lvl_pages;
		pteval += lvl_pages * VTD_PAGE_SIZE;
		sg_res -= lvl_pages;

		/* If the next PTE would be the first in a new page, then we
		   need to flush the cache on the entries we've just written.
		   And then we'll need to recalculate 'pte', so clear it and
		   let it get set again in the if (!pte) block above.

		   If we're done (!nr_pages) we need to flush the cache too.

		   Also if we've been setting superpages, we may need to
		   recalculate 'pte' and switch back to smaller pages for the
		   end of the mapping, if the trailing size is not enough to
		   use another superpage (i.e. sg_res < lvl_pages). */
2326
		pte++;
2327 2328
		if (!nr_pages || first_pte_in_page(pte) ||
		    (largepage_lvl > 1 && sg_res < lvl_pages)) {
2329 2330 2331 2332
			domain_flush_cache(domain, first_pte,
					   (void *)pte - (void *)first_pte);
			pte = NULL;
		}
2333 2334

		if (!sg_res && nr_pages)
2335 2336 2337 2338 2339
			sg = sg_next(sg);
	}
	return 0;
}

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
                         struct scatterlist *sg, unsigned long phys_pfn,
                         unsigned long nr_pages, int prot)
{
       int ret;
       struct intel_iommu *iommu;

       /* Do the real mapping first */
       ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
       if (ret)
               return ret;

       /* Notify about the new mapping */
       if (domain_type_is_vm(domain)) {
	       /* VM typed domains can have more than one IOMMUs */
	       int iommu_id;
	       for_each_domain_iommu(iommu_id, domain) {
		       iommu = g_iommus[iommu_id];
		       __mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
	       }
       } else {
	       /* General domains only have one IOMMU */
	       iommu = domain_get_iommu(domain);
	       __mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
       }

       return 0;
}

2369 2370 2371
static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				    struct scatterlist *sg, unsigned long nr_pages,
				    int prot)
2372
{
2373
	return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2374
}
2375

2376 2377 2378 2379
static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
				     unsigned long phys_pfn, unsigned long nr_pages,
				     int prot)
{
2380
	return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2381 2382
}

2383
static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2384
{
2385 2386 2387 2388
	unsigned long flags;
	struct context_entry *context;
	u16 did_old;

2389 2390
	if (!iommu)
		return;
2391

2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	spin_lock_irqsave(&iommu->lock, flags);
	context = iommu_context_addr(iommu, bus, devfn, 0);
	if (!context) {
		spin_unlock_irqrestore(&iommu->lock, flags);
		return;
	}
	did_old = context_domain_id(context);
	context_clear_entry(context);
	__iommu_flush_cache(iommu, context, sizeof(*context));
	spin_unlock_irqrestore(&iommu->lock, flags);
	iommu->flush.flush_context(iommu,
				   did_old,
				   (((u16)bus) << 8) | devfn,
				   DMA_CCMD_MASK_NOBIT,
				   DMA_CCMD_DEVICE_INVL);
	iommu->flush.flush_iotlb(iommu,
				 did_old,
				 0,
				 0,
				 DMA_TLB_DSI_FLUSH);
2412 2413
}

2414 2415 2416 2417 2418 2419
static inline void unlink_domain_info(struct device_domain_info *info)
{
	assert_spin_locked(&device_domain_lock);
	list_del(&info->link);
	list_del(&info->global);
	if (info->dev)
2420
		info->dev->archdata.iommu = NULL;
2421 2422
}

2423 2424
static void domain_remove_dev_info(struct dmar_domain *domain)
{
2425
	struct device_domain_info *info, *tmp;
2426
	unsigned long flags;
2427 2428

	spin_lock_irqsave(&device_domain_lock, flags);
2429
	list_for_each_entry_safe(info, tmp, &domain->devices, link)
2430
		__dmar_remove_one_dev_info(info);
2431 2432 2433 2434 2435
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

/*
 * find_domain
2436
 * Note: we use struct device->archdata.iommu stores the info
2437
 */
2438
static struct dmar_domain *find_domain(struct device *dev)
2439 2440 2441 2442
{
	struct device_domain_info *info;

	/* No lock here, assumes no domain exit in normal case */
2443
	info = dev->archdata.iommu;
2444
	if (likely(info))
2445 2446 2447 2448
		return info->domain;
	return NULL;
}

2449
static inline struct device_domain_info *
2450 2451 2452 2453 2454
dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
{
	struct device_domain_info *info;

	list_for_each_entry(info, &device_domain_list, global)
2455
		if (info->iommu->segment == segment && info->bus == bus &&
2456
		    info->devfn == devfn)
2457
			return info;
2458 2459 2460 2461

	return NULL;
}

2462 2463 2464 2465
static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
						    int bus, int devfn,
						    struct device *dev,
						    struct dmar_domain *domain)
2466
{
2467
	struct dmar_domain *found = NULL;
2468 2469
	struct device_domain_info *info;
	unsigned long flags;
2470
	int ret;
2471 2472 2473

	info = alloc_devinfo_mem();
	if (!info)
2474
		return NULL;
2475 2476 2477

	info->bus = bus;
	info->devfn = devfn;
2478 2479 2480
	info->ats_supported = info->pasid_supported = info->pri_supported = 0;
	info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
	info->ats_qdep = 0;
2481 2482
	info->dev = dev;
	info->domain = domain;
2483
	info->iommu = iommu;
2484
	info->pasid_table = NULL;
2485

2486 2487 2488
	if (dev && dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(info->dev);

2489 2490
		if (!pci_ats_disabled() &&
		    ecap_dev_iotlb_support(iommu->ecap) &&
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
		    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
		    dmar_find_matched_atsr_unit(pdev))
			info->ats_supported = 1;

		if (ecs_enabled(iommu)) {
			if (pasid_enabled(iommu)) {
				int features = pci_pasid_features(pdev);
				if (features >= 0)
					info->pasid_supported = features | 1;
			}

			if (info->ats_supported && ecap_prs(iommu->ecap) &&
			    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
				info->pri_supported = 1;
		}
	}

2508 2509
	spin_lock_irqsave(&device_domain_lock, flags);
	if (dev)
2510
		found = find_domain(dev);
2511 2512

	if (!found) {
2513
		struct device_domain_info *info2;
2514
		info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2515 2516 2517 2518
		if (info2) {
			found      = info2->domain;
			info2->dev = dev;
		}
2519
	}
2520

2521 2522 2523
	if (found) {
		spin_unlock_irqrestore(&device_domain_lock, flags);
		free_devinfo_mem(info);
2524 2525
		/* Caller must free the original domain */
		return found;
2526 2527
	}

2528 2529 2530 2531 2532
	spin_lock(&iommu->lock);
	ret = domain_attach_iommu(domain, iommu);
	spin_unlock(&iommu->lock);

	if (ret) {
2533
		spin_unlock_irqrestore(&device_domain_lock, flags);
2534
		free_devinfo_mem(info);
2535 2536 2537
		return NULL;
	}

2538 2539 2540 2541
	list_add(&info->link, &domain->devices);
	list_add(&info->global, &device_domain_list);
	if (dev)
		dev->archdata.iommu = info;
2542 2543 2544 2545

	if (dev && dev_is_pci(dev) && info->pasid_supported) {
		ret = intel_pasid_alloc_table(dev);
		if (ret) {
2546 2547 2548
			pr_warn("No pasid table for %s, pasid disabled\n",
				dev_name(dev));
			info->pasid_supported = 0;
2549 2550
		}
	}
2551 2552
	spin_unlock_irqrestore(&device_domain_lock, flags);

2553 2554
	if (dev && domain_context_mapping(domain, dev)) {
		pr_err("Domain context map for %s failed\n", dev_name(dev));
2555
		dmar_remove_one_dev_info(domain, dev);
2556 2557 2558
		return NULL;
	}

2559
	return domain;
2560 2561
}

2562 2563 2564 2565 2566 2567
static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
{
	*(u16 *)opaque = alias;
	return 0;
}

2568
static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2569
{
2570
	struct device_domain_info *info = NULL;
2571
	struct dmar_domain *domain = NULL;
2572
	struct intel_iommu *iommu;
2573
	u16 dma_alias;
2574
	unsigned long flags;
2575
	u8 bus, devfn;
2576

2577 2578 2579 2580
	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return NULL;

2581 2582
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);
2583

2584 2585 2586 2587 2588 2589 2590 2591 2592
		pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);

		spin_lock_irqsave(&device_domain_lock, flags);
		info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
						      PCI_BUS_NUM(dma_alias),
						      dma_alias & 0xff);
		if (info) {
			iommu = info->iommu;
			domain = info->domain;
2593
		}
2594
		spin_unlock_irqrestore(&device_domain_lock, flags);
2595

2596
		/* DMA alias already has a domain, use it */
2597
		if (info)
2598
			goto out;
2599
	}
2600

2601
	/* Allocate and initialize new domain for the device */
2602
	domain = alloc_domain(0);
2603
	if (!domain)
2604
		return NULL;
2605
	if (domain_init(domain, iommu, gaw)) {
2606 2607
		domain_exit(domain);
		return NULL;
2608
	}
2609

2610
out:
2611

2612 2613
	return domain;
}
2614

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
static struct dmar_domain *set_domain_for_dev(struct device *dev,
					      struct dmar_domain *domain)
{
	struct intel_iommu *iommu;
	struct dmar_domain *tmp;
	u16 req_id, dma_alias;
	u8 bus, devfn;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return NULL;

	req_id = ((u16)bus << 8) | devfn;

	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);

		pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);

		/* register PCI DMA alias device */
		if (req_id != dma_alias) {
			tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
					dma_alias & 0xff, NULL, domain);

			if (!tmp || tmp != domain)
				return tmp;
		}
2642 2643
	}

2644
	tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2645 2646 2647 2648 2649
	if (!tmp || tmp != domain)
		return tmp;

	return domain;
}
2650

2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
{
	struct dmar_domain *domain, *tmp;

	domain = find_domain(dev);
	if (domain)
		goto out;

	domain = find_or_alloc_domain(dev, gaw);
	if (!domain)
		goto out;

	tmp = set_domain_for_dev(dev, domain);
	if (!tmp || domain != tmp) {
2665 2666 2667
		domain_exit(domain);
		domain = tmp;
	}
2668

2669 2670
out:

2671
	return domain;
2672 2673
}

2674 2675 2676
static int iommu_domain_identity_map(struct dmar_domain *domain,
				     unsigned long long start,
				     unsigned long long end)
2677
{
2678 2679 2680 2681 2682
	unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
	unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;

	if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
			  dma_to_mm_pfn(last_vpfn))) {
2683
		pr_err("Reserving iova failed\n");
2684
		return -ENOMEM;
2685 2686
	}

2687
	pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2688 2689 2690 2691
	/*
	 * RMRR range might have overlap with physical memory range,
	 * clear it first
	 */
2692
	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2693

2694 2695 2696
	return __domain_mapping(domain, first_vpfn, NULL,
				first_vpfn, last_vpfn - first_vpfn + 1,
				DMA_PTE_READ|DMA_PTE_WRITE);
2697 2698
}

2699 2700 2701 2702
static int domain_prepare_identity_map(struct device *dev,
				       struct dmar_domain *domain,
				       unsigned long long start,
				       unsigned long long end)
2703
{
2704 2705 2706 2707 2708
	/* For _hardware_ passthrough, don't bother. But for software
	   passthrough, we do it anyway -- it may indicate a memory
	   range which is reserved in E820, so which didn't get set
	   up to start with in si_domain */
	if (domain == si_domain && hw_pass_through) {
2709 2710
		pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
			dev_name(dev), start, end);
2711 2712 2713
		return 0;
	}

2714 2715 2716
	pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
		dev_name(dev), start, end);

2717 2718 2719 2720 2721 2722
	if (end < start) {
		WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
			"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			dmi_get_system_info(DMI_BIOS_VENDOR),
			dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
2723
		return -EIO;
2724 2725
	}

2726 2727 2728 2729 2730 2731 2732
	if (end >> agaw_to_width(domain->agaw)) {
		WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     agaw_to_width(domain->agaw),
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
2733
		return -EIO;
2734
	}
2735

2736 2737
	return iommu_domain_identity_map(domain, start, end);
}
2738

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
static int iommu_prepare_identity_map(struct device *dev,
				      unsigned long long start,
				      unsigned long long end)
{
	struct dmar_domain *domain;
	int ret;

	domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
	if (!domain)
		return -ENOMEM;

	ret = domain_prepare_identity_map(dev, domain, start, end);
	if (ret)
		domain_exit(domain);
2753

2754 2755 2756 2757
	return ret;
}

static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2758
					 struct device *dev)
2759
{
2760
	if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2761
		return 0;
2762 2763
	return iommu_prepare_identity_map(dev, rmrr->base_address,
					  rmrr->end_address);
2764 2765
}

2766
#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2767 2768 2769 2770 2771 2772 2773 2774 2775
static inline void iommu_prepare_isa(void)
{
	struct pci_dev *pdev;
	int ret;

	pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
	if (!pdev)
		return;

2776
	pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2777
	ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2778 2779

	if (ret)
2780
		pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2781

2782
	pci_dev_put(pdev);
2783 2784 2785 2786 2787 2788
}
#else
static inline void iommu_prepare_isa(void)
{
	return;
}
2789
#endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2790

2791
static int md_domain_init(struct dmar_domain *domain, int guest_width);
2792

2793
static int __init si_domain_init(int hw)
2794
{
2795
	int nid, ret = 0;
2796

2797
	si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2798 2799 2800 2801 2802 2803 2804 2805
	if (!si_domain)
		return -EFAULT;

	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
		domain_exit(si_domain);
		return -EFAULT;
	}

2806
	pr_debug("Identity mapping domain allocated\n");
2807

2808 2809 2810
	if (hw)
		return 0;

2811
	for_each_online_node(nid) {
2812 2813 2814 2815 2816 2817 2818 2819 2820
		unsigned long start_pfn, end_pfn;
		int i;

		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
			ret = iommu_domain_identity_map(si_domain,
					PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
			if (ret)
				return ret;
		}
2821 2822
	}

2823 2824 2825
	return 0;
}

2826
static int identity_mapping(struct device *dev)
2827 2828 2829 2830 2831 2832
{
	struct device_domain_info *info;

	if (likely(!iommu_identity_mapping))
		return 0;

2833
	info = dev->archdata.iommu;
2834 2835
	if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
		return (info->domain == si_domain);
2836 2837 2838 2839

	return 0;
}

2840
static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2841
{
2842
	struct dmar_domain *ndomain;
2843
	struct intel_iommu *iommu;
2844
	u8 bus, devfn;
2845

2846
	iommu = device_to_iommu(dev, &bus, &devfn);
2847 2848 2849
	if (!iommu)
		return -ENODEV;

2850
	ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2851 2852
	if (ndomain != domain)
		return -EBUSY;
2853 2854 2855 2856

	return 0;
}

2857
static bool device_has_rmrr(struct device *dev)
2858 2859
{
	struct dmar_rmrr_unit *rmrr;
2860
	struct device *tmp;
2861 2862
	int i;

2863
	rcu_read_lock();
2864
	for_each_rmrr_units(rmrr) {
2865 2866 2867 2868 2869 2870
		/*
		 * Return TRUE if this RMRR contains the device that
		 * is passed in.
		 */
		for_each_active_dev_scope(rmrr->devices,
					  rmrr->devices_cnt, i, tmp)
2871
			if (tmp == dev) {
2872
				rcu_read_unlock();
2873
				return true;
2874
			}
2875
	}
2876
	rcu_read_unlock();
2877 2878 2879
	return false;
}

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
/*
 * There are a couple cases where we need to restrict the functionality of
 * devices associated with RMRRs.  The first is when evaluating a device for
 * identity mapping because problems exist when devices are moved in and out
 * of domains and their respective RMRR information is lost.  This means that
 * a device with associated RMRRs will never be in a "passthrough" domain.
 * The second is use of the device through the IOMMU API.  This interface
 * expects to have full control of the IOVA space for the device.  We cannot
 * satisfy both the requirement that RMRR access is maintained and have an
 * unencumbered IOVA space.  We also have no ability to quiesce the device's
 * use of the RMRR space or even inform the IOMMU API user of the restriction.
 * We therefore prevent devices associated with an RMRR from participating in
 * the IOMMU API, which eliminates them from device assignment.
 *
 * In both cases we assume that PCI USB devices with RMRRs have them largely
 * for historical reasons and that the RMRR space is not actively used post
 * boot.  This exclusion may change if vendors begin to abuse it.
2897 2898 2899 2900
 *
 * The same exception is made for graphics devices, with the requirement that
 * any use of the RMRR regions will be torn down before assigning the device
 * to a guest.
2901 2902 2903 2904 2905 2906 2907 2908 2909
 */
static bool device_is_rmrr_locked(struct device *dev)
{
	if (!device_has_rmrr(dev))
		return false;

	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);

2910
		if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2911 2912 2913 2914 2915 2916
			return false;
	}

	return true;
}

2917
static int iommu_should_identity_map(struct device *dev, int startup)
2918
{
2919

2920 2921
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);
2922

2923
		if (device_is_rmrr_locked(dev))
2924
			return 0;
2925

2926 2927
		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
			return 1;
2928

2929 2930
		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
			return 1;
2931

2932
		if (!(iommu_identity_mapping & IDENTMAP_ALL))
2933
			return 0;
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957

		/*
		 * We want to start off with all devices in the 1:1 domain, and
		 * take them out later if we find they can't access all of memory.
		 *
		 * However, we can't do this for PCI devices behind bridges,
		 * because all PCI devices behind the same bridge will end up
		 * with the same source-id on their transactions.
		 *
		 * Practically speaking, we can't change things around for these
		 * devices at run-time, because we can't be sure there'll be no
		 * DMA transactions in flight for any of their siblings.
		 *
		 * So PCI devices (unless they're on the root bus) as well as
		 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
		 * the 1:1 domain, just in _case_ one of their siblings turns out
		 * not to be able to map all of memory.
		 */
		if (!pci_is_pcie(pdev)) {
			if (!pci_is_root_bus(pdev->bus))
				return 0;
			if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
				return 0;
		} else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2958
			return 0;
2959 2960 2961 2962
	} else {
		if (device_has_rmrr(dev))
			return 0;
	}
2963

2964
	/*
2965
	 * At boot time, we don't yet know if devices will be 64-bit capable.
2966
	 * Assume that they will — if they turn out not to be, then we can
2967 2968
	 * take them out of the 1:1 domain later.
	 */
2969 2970 2971 2972 2973
	if (!startup) {
		/*
		 * If the device's dma_mask is less than the system's memory
		 * size then this is not a candidate for identity mapping.
		 */
2974
		u64 dma_mask = *dev->dma_mask;
2975

2976 2977 2978
		if (dev->coherent_dma_mask &&
		    dev->coherent_dma_mask < dma_mask)
			dma_mask = dev->coherent_dma_mask;
2979

2980
		return dma_mask >= dma_get_required_mask(dev);
2981
	}
2982 2983 2984 2985

	return 1;
}

2986 2987 2988 2989 2990 2991 2992
static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
{
	int ret;

	if (!iommu_should_identity_map(dev, 1))
		return 0;

2993
	ret = domain_add_dev_info(si_domain, dev);
2994
	if (!ret)
2995 2996
		pr_info("%s identity mapping for device %s\n",
			hw ? "Hardware" : "Software", dev_name(dev));
2997 2998 2999 3000 3001 3002 3003 3004
	else if (ret == -ENODEV)
		/* device not associated with an iommu */
		ret = 0;

	return ret;
}


3005
static int __init iommu_prepare_static_identity_mapping(int hw)
3006 3007
{
	struct pci_dev *pdev = NULL;
3008 3009 3010 3011 3012
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
	struct device *dev;
	int i;
	int ret = 0;
3013 3014

	for_each_pci_dev(pdev) {
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
		ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
		if (ret)
			return ret;
	}

	for_each_active_iommu(iommu, drhd)
		for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
			struct acpi_device_physical_node *pn;
			struct acpi_device *adev;

			if (dev->bus != &acpi_bus_type)
				continue;
3027

3028 3029 3030 3031 3032 3033
			adev= to_acpi_device(dev);
			mutex_lock(&adev->physical_node_lock);
			list_for_each_entry(pn, &adev->physical_node_list, node) {
				ret = dev_prepare_static_identity_mapping(pn->dev, hw);
				if (ret)
					break;
3034
			}
3035 3036 3037
			mutex_unlock(&adev->physical_node_lock);
			if (ret)
				return ret;
3038
		}
3039 3040 3041 3042

	return 0;
}

3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
static void intel_iommu_init_qi(struct intel_iommu *iommu)
{
	/*
	 * Start from the sane iommu hardware state.
	 * If the queued invalidation is already initialized by us
	 * (for example, while enabling interrupt-remapping) then
	 * we got the things already rolling from a sane state.
	 */
	if (!iommu->qi) {
		/*
		 * Clear any previous faults.
		 */
		dmar_fault(-1, iommu);
		/*
		 * Disable queued invalidation if supported and already enabled
		 * before OS handover.
		 */
		dmar_disable_qi(iommu);
	}

	if (dmar_enable_qi(iommu)) {
		/*
		 * Queued Invalidate not enabled, use Register Based Invalidate
		 */
		iommu->flush.flush_context = __iommu_flush_context;
		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
3069
		pr_info("%s: Using Register based invalidation\n",
3070 3071 3072 3073
			iommu->name);
	} else {
		iommu->flush.flush_context = qi_flush_context;
		iommu->flush.flush_iotlb = qi_flush_iotlb;
3074
		pr_info("%s: Using Queued invalidation\n", iommu->name);
3075 3076 3077
	}
}

3078
static int copy_context_table(struct intel_iommu *iommu,
3079
			      struct root_entry *old_re,
3080 3081 3082
			      struct context_entry **tbl,
			      int bus, bool ext)
{
3083
	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3084
	struct context_entry *new_ce = NULL, ce;
3085
	struct context_entry *old_ce = NULL;
3086
	struct root_entry re;
3087 3088 3089
	phys_addr_t old_ce_phys;

	tbl_idx = ext ? bus * 2 : bus;
3090
	memcpy(&re, old_re, sizeof(re));
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105

	for (devfn = 0; devfn < 256; devfn++) {
		/* First calculate the correct index */
		idx = (ext ? devfn * 2 : devfn) % 256;

		if (idx == 0) {
			/* First save what we may have and clean up */
			if (new_ce) {
				tbl[tbl_idx] = new_ce;
				__iommu_flush_cache(iommu, new_ce,
						    VTD_PAGE_SIZE);
				pos = 1;
			}

			if (old_ce)
3106
				memunmap(old_ce);
3107 3108 3109

			ret = 0;
			if (devfn < 0x80)
3110
				old_ce_phys = root_entry_lctp(&re);
3111
			else
3112
				old_ce_phys = root_entry_uctp(&re);
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124

			if (!old_ce_phys) {
				if (ext && devfn == 0) {
					/* No LCTP, try UCTP */
					devfn = 0x7f;
					continue;
				} else {
					goto out;
				}
			}

			ret = -ENOMEM;
3125 3126
			old_ce = memremap(old_ce_phys, PAGE_SIZE,
					MEMREMAP_WB);
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
			if (!old_ce)
				goto out;

			new_ce = alloc_pgtable_page(iommu->node);
			if (!new_ce)
				goto out_unmap;

			ret = 0;
		}

		/* Now copy the context entry */
3138
		memcpy(&ce, old_ce + idx, sizeof(ce));
3139

3140
		if (!__context_present(&ce))
3141 3142
			continue;

3143 3144 3145 3146
		did = context_domain_id(&ce);
		if (did >= 0 && did < cap_ndoms(iommu->cap))
			set_bit(did, iommu->domain_ids);

3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
		/*
		 * We need a marker for copied context entries. This
		 * marker needs to work for the old format as well as
		 * for extended context entries.
		 *
		 * Bit 67 of the context entry is used. In the old
		 * format this bit is available to software, in the
		 * extended format it is the PGE bit, but PGE is ignored
		 * by HW if PASIDs are disabled (and thus still
		 * available).
		 *
		 * So disable PASIDs first and then mark the entry
		 * copied. This means that we don't copy PASID
		 * translations from the old kernel, but this is fine as
		 * faults there are not fatal.
		 */
		context_clear_pasid_enable(&ce);
		context_set_copied(&ce);

3166 3167 3168 3169 3170 3171 3172 3173
		new_ce[idx] = ce;
	}

	tbl[tbl_idx + pos] = new_ce;

	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);

out_unmap:
3174
	memunmap(old_ce);
3175 3176 3177 3178 3179 3180 3181 3182

out:
	return ret;
}

static int copy_translation_tables(struct intel_iommu *iommu)
{
	struct context_entry **ctxt_tbls;
3183
	struct root_entry *old_rt;
3184 3185 3186 3187 3188
	phys_addr_t old_rt_phys;
	int ctxt_table_entries;
	unsigned long flags;
	u64 rtaddr_reg;
	int bus, ret;
3189
	bool new_ext, ext;
3190 3191 3192

	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
	ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
	new_ext    = !!ecap_ecs(iommu->ecap);

	/*
	 * The RTT bit can only be changed when translation is disabled,
	 * but disabling translation means to open a window for data
	 * corruption. So bail out and don't copy anything if we would
	 * have to change the bit.
	 */
	if (new_ext != ext)
		return -EINVAL;
3203 3204 3205 3206 3207

	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
	if (!old_rt_phys)
		return -EINVAL;

3208
	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3209 3210 3211 3212 3213 3214
	if (!old_rt)
		return -ENOMEM;

	/* This is too big for the stack - allocate it from slab */
	ctxt_table_entries = ext ? 512 : 256;
	ret = -ENOMEM;
3215
	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
	if (!ctxt_tbls)
		goto out_unmap;

	for (bus = 0; bus < 256; bus++) {
		ret = copy_context_table(iommu, &old_rt[bus],
					 ctxt_tbls, bus, ext);
		if (ret) {
			pr_err("%s: Failed to copy context table for bus %d\n",
				iommu->name, bus);
			continue;
		}
	}

	spin_lock_irqsave(&iommu->lock, flags);

	/* Context tables are copied, now write them to the root_entry table */
	for (bus = 0; bus < 256; bus++) {
		int idx = ext ? bus * 2 : bus;
		u64 val;

		if (ctxt_tbls[idx]) {
			val = virt_to_phys(ctxt_tbls[idx]) | 1;
			iommu->root_entry[bus].lo = val;
		}

		if (!ext || !ctxt_tbls[idx + 1])
			continue;

		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
		iommu->root_entry[bus].hi = val;
	}

	spin_unlock_irqrestore(&iommu->lock, flags);

	kfree(ctxt_tbls);

	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);

	ret = 0;

out_unmap:
3257
	memunmap(old_rt);
3258 3259 3260 3261

	return ret;
}

3262
static int __init init_dmars(void)
3263 3264 3265
{
	struct dmar_drhd_unit *drhd;
	struct dmar_rmrr_unit *rmrr;
3266
	bool copied_tables = false;
3267
	struct device *dev;
3268
	struct intel_iommu *iommu;
3269
	int i, ret;
3270

3271 3272 3273 3274 3275 3276 3277
	/*
	 * for each drhd
	 *    allocate root
	 *    initialize and program root entry to not present
	 * endfor
	 */
	for_each_drhd_unit(drhd) {
mark gross's avatar
mark gross committed
3278 3279 3280 3281 3282
		/*
		 * lock not needed as this is only incremented in the single
		 * threaded kernel __init code path all other access are read
		 * only
		 */
3283
		if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3284 3285 3286
			g_num_of_iommus++;
			continue;
		}
3287
		pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
mark gross's avatar
mark gross committed
3288 3289
	}

3290 3291 3292 3293
	/* Preallocate enough resources for IOMMU hot-addition */
	if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
		g_num_of_iommus = DMAR_UNITS_SUPPORTED;

Weidong Han's avatar
Weidong Han committed
3294 3295 3296
	g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
			GFP_KERNEL);
	if (!g_iommus) {
3297
		pr_err("Allocating global iommu array failed\n");
Weidong Han's avatar
Weidong Han committed
3298 3299 3300 3301
		ret = -ENOMEM;
		goto error;
	}

3302
	for_each_active_iommu(iommu, drhd) {
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
		/*
		 * Find the max pasid size of all IOMMU's in the system.
		 * We need to ensure the system pasid table is no bigger
		 * than the smallest supported.
		 */
		if (pasid_enabled(iommu)) {
			u32 temp = 2 << ecap_pss(iommu->ecap);

			intel_pasid_max_id = min_t(u32, temp,
						   intel_pasid_max_id);
		}

Weidong Han's avatar
Weidong Han committed
3315
		g_iommus[iommu->seq_id] = iommu;
3316

3317 3318
		intel_iommu_init_qi(iommu);

3319 3320
		ret = iommu_init_domains(iommu);
		if (ret)
3321
			goto free_iommu;
3322

3323 3324
		init_translation_status(iommu);

3325 3326 3327 3328 3329 3330
		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
			iommu_disable_translation(iommu);
			clear_translation_pre_enabled(iommu);
			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
				iommu->name);
		}
3331

3332 3333 3334
		/*
		 * TBD:
		 * we could share the same root & context tables
Lucas De Marchi's avatar
Lucas De Marchi committed
3335
		 * among all IOMMU's. Need to Split it later.
3336 3337
		 */
		ret = iommu_alloc_root_entry(iommu);
3338
		if (ret)
3339
			goto free_iommu;
3340

3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
		if (translation_pre_enabled(iommu)) {
			pr_info("Translation already enabled - trying to copy translation structures\n");

			ret = copy_translation_tables(iommu);
			if (ret) {
				/*
				 * We found the IOMMU with translation
				 * enabled - but failed to copy over the
				 * old root-entry table. Try to proceed
				 * by disabling translation now and
				 * allocating a clean root-entry table.
				 * This might cause DMAR faults, but
				 * probably the dump will still succeed.
				 */
				pr_err("Failed to copy translation tables from previous kernel for %s\n",
				       iommu->name);
				iommu_disable_translation(iommu);
				clear_translation_pre_enabled(iommu);
			} else {
				pr_info("Copied translation tables from previous kernel for %s\n",
					iommu->name);
3362
				copied_tables = true;
3363 3364 3365
			}
		}

3366
		if (!ecap_pass_through(iommu->ecap))
3367
			hw_pass_through = 0;
3368 3369
#ifdef CONFIG_INTEL_IOMMU_SVM
		if (pasid_enabled(iommu))
3370
			intel_svm_init(iommu);
3371
#endif
3372 3373
	}

3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
	/*
	 * Now that qi is enabled on all iommus, set the root entry and flush
	 * caches. This is required on some Intel X58 chipsets, otherwise the
	 * flush_context function will loop forever and the boot hangs.
	 */
	for_each_active_iommu(iommu, drhd) {
		iommu_flush_write_buffer(iommu);
		iommu_set_root_entry(iommu);
		iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	}

3386
	if (iommu_pass_through)
3387 3388
		iommu_identity_mapping |= IDENTMAP_ALL;

3389
#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3390
	iommu_identity_mapping |= IDENTMAP_GFX;
3391
#endif
3392

3393 3394
	check_tylersburg_isoch();

3395 3396 3397 3398 3399 3400
	if (iommu_identity_mapping) {
		ret = si_domain_init(hw_pass_through);
		if (ret)
			goto free_iommu;
	}

3401

3402 3403 3404 3405 3406 3407 3408 3409 3410
	/*
	 * If we copied translations from a previous kernel in the kdump
	 * case, we can not assign the devices to domains now, as that
	 * would eliminate the old mappings. So skip this part and defer
	 * the assignment to device driver initialization time.
	 */
	if (copied_tables)
		goto domains_done;

3411
	/*
3412 3413 3414
	 * If pass through is not set or not enabled, setup context entries for
	 * identity mappings for rmrr, gfx, and isa and may fall back to static
	 * identity mapping if iommu_identity_mapping is set.
3415
	 */
3416 3417
	if (iommu_identity_mapping) {
		ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3418
		if (ret) {
3419
			pr_crit("Failed to setup IOMMU pass-through\n");
3420
			goto free_iommu;
3421 3422 3423
		}
	}
	/*
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
	 * For each rmrr
	 *   for each dev attached to rmrr
	 *   do
	 *     locate drhd for dev, alloc domain for dev
	 *     allocate free domain
	 *     allocate page table entries for rmrr
	 *     if context not allocated for bus
	 *           allocate and init context
	 *           set present in root table for this bus
	 *     init context with domain, translation etc
	 *    endfor
	 * endfor
3436
	 */
3437
	pr_info("Setting RMRR:\n");
3438
	for_each_rmrr_units(rmrr) {
3439 3440
		/* some BIOS lists non-exist devices in DMAR table. */
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3441
					  i, dev) {
3442
			ret = iommu_prepare_rmrr_dev(rmrr, dev);
3443
			if (ret)
3444
				pr_err("Mapping reserved region failed\n");
3445
		}
3446
	}
3447

3448 3449
	iommu_prepare_isa();

3450 3451
domains_done:

3452 3453 3454 3455 3456 3457 3458
	/*
	 * for each drhd
	 *   enable fault log
	 *   global invalidate context cache
	 *   global invalidate iotlb
	 *   enable translation
	 */
3459
	for_each_iommu(iommu, drhd) {
3460 3461 3462 3463 3464 3465
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
3466
				iommu_disable_protect_mem_regions(iommu);
3467
			continue;
3468
		}
3469 3470 3471

		iommu_flush_write_buffer(iommu);

3472 3473 3474 3475 3476 3477 3478
#ifdef CONFIG_INTEL_IOMMU_SVM
		if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
			ret = intel_svm_enable_prq(iommu);
			if (ret)
				goto free_iommu;
		}
#endif
3479 3480
		ret = dmar_set_interrupt(iommu);
		if (ret)
3481
			goto free_iommu;
3482

3483 3484 3485
		if (!translation_pre_enabled(iommu))
			iommu_enable_translation(iommu);

3486
		iommu_disable_protect_mem_regions(iommu);
3487 3488 3489
	}

	return 0;
3490 3491

free_iommu:
3492 3493
	for_each_active_iommu(iommu, drhd) {
		disable_dmar_iommu(iommu);
3494
		free_dmar_iommu(iommu);
3495
	}
3496

Weidong Han's avatar
Weidong Han committed
3497
	kfree(g_iommus);
3498

3499
error:
3500 3501 3502
	return ret;
}

3503
/* This takes a number of _MM_ pages, not VTD pages */
3504
static unsigned long intel_alloc_iova(struct device *dev,
3505 3506
				     struct dmar_domain *domain,
				     unsigned long nrpages, uint64_t dma_mask)
3507
{
3508
	unsigned long iova_pfn = 0;
3509

3510 3511
	/* Restrict dma_mask to the width that the iommu can handle */
	dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3512 3513
	/* Ensure we reserve the whole size-aligned region */
	nrpages = __roundup_pow_of_two(nrpages);
3514 3515

	if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3516 3517
		/*
		 * First try to allocate an io virtual address in
3518
		 * DMA_BIT_MASK(32) and if that fails then try allocating
Joe Perches's avatar
Joe Perches committed
3519
		 * from higher range
3520
		 */
3521
		iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3522
					   IOVA_PFN(DMA_BIT_MASK(32)), false);
3523 3524
		if (iova_pfn)
			return iova_pfn;
3525
	}
3526 3527
	iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
				   IOVA_PFN(dma_mask), true);
3528
	if (unlikely(!iova_pfn)) {
3529
		pr_err("Allocating %ld-page iova for %s failed",
3530
		       nrpages, dev_name(dev));
3531
		return 0;
3532 3533
	}

3534
	return iova_pfn;
3535 3536
}

3537
struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3538
{
3539
	struct dmar_domain *domain, *tmp;
3540 3541 3542
	struct dmar_rmrr_unit *rmrr;
	struct device *i_dev;
	int i, ret;
3543

3544 3545 3546 3547 3548 3549 3550
	domain = find_domain(dev);
	if (domain)
		goto out;

	domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
	if (!domain)
		goto out;
3551

3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
	/* We have a new domain - setup possible RMRRs for the device */
	rcu_read_lock();
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, i_dev) {
			if (i_dev != dev)
				continue;

			ret = domain_prepare_identity_map(dev, domain,
							  rmrr->base_address,
							  rmrr->end_address);
			if (ret)
				dev_err(dev, "Mapping reserved region failed\n");
		}
	}
	rcu_read_unlock();

3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
	tmp = set_domain_for_dev(dev, domain);
	if (!tmp || domain != tmp) {
		domain_exit(domain);
		domain = tmp;
	}

out:

	if (!domain)
		pr_err("Allocating domain for %s failed\n", dev_name(dev));


3581 3582 3583
	return domain;
}

3584
/* Check if the dev needs to go through non-identity map and unmap process.*/
3585
static int iommu_no_mapping(struct device *dev)
3586 3587 3588
{
	int found;

3589
	if (iommu_dummy(dev))
3590 3591
		return 1;

3592
	if (!iommu_identity_mapping)
3593
		return 0;
3594

3595
	found = identity_mapping(dev);
3596
	if (found) {
3597
		if (iommu_should_identity_map(dev, 0))
3598 3599 3600 3601 3602 3603
			return 1;
		else {
			/*
			 * 32 bit DMA is removed from si_domain and fall back
			 * to non-identity mapping.
			 */
3604
			dmar_remove_one_dev_info(si_domain, dev);
3605 3606
			pr_info("32bit %s uses non-identity mapping\n",
				dev_name(dev));
3607 3608 3609 3610 3611 3612 3613
			return 0;
		}
	} else {
		/*
		 * In case of a detached 64 bit DMA device from vm, the device
		 * is put into si_domain for identity mapping.
		 */
3614
		if (iommu_should_identity_map(dev, 0)) {
3615
			int ret;
3616
			ret = domain_add_dev_info(si_domain, dev);
3617
			if (!ret) {
3618 3619
				pr_info("64bit %s uses identity mapping\n",
					dev_name(dev));
3620 3621 3622 3623 3624
				return 1;
			}
		}
	}

3625
	return 0;
3626 3627
}

3628
static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3629
				     size_t size, int dir, u64 dma_mask)
3630 3631
{
	struct dmar_domain *domain;
Fenghua Yu's avatar
Fenghua Yu committed
3632
	phys_addr_t start_paddr;
3633
	unsigned long iova_pfn;
3634
	int prot = 0;
Ingo Molnar's avatar
Ingo Molnar committed
3635
	int ret;
3636
	struct intel_iommu *iommu;
3637
	unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3638 3639

	BUG_ON(dir == DMA_NONE);
3640

3641
	if (iommu_no_mapping(dev))
Ingo Molnar's avatar
Ingo Molnar committed
3642
		return paddr;
3643

3644
	domain = get_valid_domain_for_dev(dev);
3645 3646 3647
	if (!domain)
		return 0;

3648
	iommu = domain_get_iommu(domain);
3649
	size = aligned_nrpages(paddr, size);
3650

3651 3652
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
	if (!iova_pfn)
3653 3654
		goto error;

3655 3656 3657 3658 3659
	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3660
			!cap_zlr(iommu->cap))
3661 3662 3663 3664
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;
	/*
Ingo Molnar's avatar
Ingo Molnar committed
3665
	 * paddr - (paddr + size) might be partial page, we should map the whole
3666
	 * page.  Note: if two part of one page are separately mapped, we
Ingo Molnar's avatar
Ingo Molnar committed
3667
	 * might have two guest_addr mapping to the same host paddr, but this
3668 3669
	 * is not a big problem
	 */
3670
	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3671
				 mm_to_dma_pfn(paddr_pfn), size, prot);
3672 3673 3674
	if (ret)
		goto error;

3675
	start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3676 3677
	start_paddr += paddr & ~PAGE_MASK;
	return start_paddr;
3678 3679

error:
3680
	if (iova_pfn)
3681
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3682
	pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3683
		dev_name(dev), size, (unsigned long long)paddr, dir);
3684 3685 3686
	return 0;
}

3687 3688 3689
static dma_addr_t intel_map_page(struct device *dev, struct page *page,
				 unsigned long offset, size_t size,
				 enum dma_data_direction dir,
3690
				 unsigned long attrs)
3691
{
3692
	return __intel_map_single(dev, page_to_phys(page) + offset, size,
3693
				  dir, *dev->dma_mask);
3694 3695
}

3696
static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3697
{
3698
	struct dmar_domain *domain;
3699
	unsigned long start_pfn, last_pfn;
3700
	unsigned long nrpages;
3701
	unsigned long iova_pfn;
3702
	struct intel_iommu *iommu;
3703
	struct page *freelist;
3704

3705
	if (iommu_no_mapping(dev))
3706
		return;
3707

3708
	domain = find_domain(dev);
3709 3710
	BUG_ON(!domain);

3711 3712
	iommu = domain_get_iommu(domain);

3713
	iova_pfn = IOVA_PFN(dev_addr);
3714

3715
	nrpages = aligned_nrpages(dev_addr, size);
3716
	start_pfn = mm_to_dma_pfn(iova_pfn);
3717
	last_pfn = start_pfn + nrpages - 1;
3718

3719
	pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3720
		 dev_name(dev), start_pfn, last_pfn);
3721

3722
	freelist = domain_unmap(domain, start_pfn, last_pfn);
3723

3724
	if (intel_iommu_strict || !has_iova_flush_queue(&domain->iovad)) {
3725
		iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3726
				      nrpages, !freelist, 0);
mark gross's avatar
mark gross committed
3727
		/* free iova */
3728
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3729
		dma_free_pagelist(freelist);
mark gross's avatar
mark gross committed
3730
	} else {
3731 3732
		queue_iova(&domain->iovad, iova_pfn, nrpages,
			   (unsigned long)freelist);
mark gross's avatar
mark gross committed
3733 3734 3735 3736 3737
		/*
		 * queue up the release of the unmap to save the 1/6th of the
		 * cpu used up by the iotlb flush operation...
		 */
	}
3738 3739
}

3740 3741
static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
			     size_t size, enum dma_data_direction dir,
3742
			     unsigned long attrs)
3743
{
3744
	intel_unmap(dev, dev_addr, size);
3745 3746
}

3747
static void *intel_alloc_coherent(struct device *dev, size_t size,
3748
				  dma_addr_t *dma_handle, gfp_t flags,
3749
				  unsigned long attrs)
3750
{
3751 3752
	struct page *page = NULL;
	int order;
3753

3754 3755
	size = PAGE_ALIGN(size);
	order = get_order(size);
3756

3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
	if (!iommu_no_mapping(dev))
		flags &= ~(GFP_DMA | GFP_DMA32);
	else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
		if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
			flags |= GFP_DMA;
		else
			flags |= GFP_DMA32;
	}

	if (gfpflags_allow_blocking(flags)) {
		unsigned int count = size >> PAGE_SHIFT;

3769 3770
		page = dma_alloc_from_contiguous(dev, count, order,
						 flags & __GFP_NOWARN);
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
		if (page && iommu_no_mapping(dev) &&
		    page_to_phys(page) + size > dev->coherent_dma_mask) {
			dma_release_from_contiguous(dev, page, count);
			page = NULL;
		}
	}

	if (!page)
		page = alloc_pages(flags, order);
	if (!page)
		return NULL;
	memset(page_address(page), 0, size);

	*dma_handle = __intel_map_single(dev, page_to_phys(page), size,
					 DMA_BIDIRECTIONAL,
					 dev->coherent_dma_mask);
	if (*dma_handle)
		return page_address(page);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
3791

3792 3793 3794
	return NULL;
}

3795
static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3796
				dma_addr_t dma_handle, unsigned long attrs)
3797
{
3798 3799 3800 3801 3802 3803 3804 3805 3806
	int order;
	struct page *page = virt_to_page(vaddr);

	size = PAGE_ALIGN(size);
	order = get_order(size);

	intel_unmap(dev, dma_handle, size);
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, order);
3807 3808
}

3809
static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3810
			   int nelems, enum dma_data_direction dir,
3811
			   unsigned long attrs)
3812
{
3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
	dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
	unsigned long nrpages = 0;
	struct scatterlist *sg;
	int i;

	for_each_sg(sglist, sg, nelems, i) {
		nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
	}

	intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3823 3824 3825
}

static int intel_nontranslate_map_sg(struct device *hddev,
3826
	struct scatterlist *sglist, int nelems, int dir)
3827 3828
{
	int i;
3829
	struct scatterlist *sg;
3830

3831
	for_each_sg(sglist, sg, nelems, i) {
FUJITA Tomonori's avatar
FUJITA Tomonori committed
3832
		BUG_ON(!sg_page(sg));
3833
		sg->dma_address = sg_phys(sg);
3834
		sg->dma_length = sg->length;
3835 3836 3837 3838
	}
	return nelems;
}

3839
static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3840
			enum dma_data_direction dir, unsigned long attrs)
3841 3842 3843
{
	int i;
	struct dmar_domain *domain;
3844 3845
	size_t size = 0;
	int prot = 0;
3846
	unsigned long iova_pfn;
3847
	int ret;
3848
	struct scatterlist *sg;
3849
	unsigned long start_vpfn;
3850
	struct intel_iommu *iommu;
3851 3852

	BUG_ON(dir == DMA_NONE);
3853 3854
	if (iommu_no_mapping(dev))
		return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3855

3856
	domain = get_valid_domain_for_dev(dev);
3857 3858 3859
	if (!domain)
		return 0;

3860 3861
	iommu = domain_get_iommu(domain);

3862
	for_each_sg(sglist, sg, nelems, i)
3863
		size += aligned_nrpages(sg->offset, sg->length);
3864

3865
	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3866
				*dev->dma_mask);
3867
	if (!iova_pfn) {
3868
		sglist->dma_length = 0;
3869 3870 3871 3872 3873 3874 3875 3876
		return 0;
	}

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3877
			!cap_zlr(iommu->cap))
3878 3879 3880 3881
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

3882
	start_vpfn = mm_to_dma_pfn(iova_pfn);
3883

3884
	ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3885 3886
	if (unlikely(ret)) {
		dma_pte_free_pagetable(domain, start_vpfn,
3887 3888
				       start_vpfn + size - 1,
				       agaw_to_level(domain->agaw) + 1);
3889
		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3890
		return 0;
3891 3892 3893 3894 3895
	}

	return nelems;
}

3896 3897 3898 3899 3900
static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return !dma_addr;
}

3901
const struct dma_map_ops intel_dma_ops = {
3902 3903
	.alloc = intel_alloc_coherent,
	.free = intel_free_coherent,
3904 3905
	.map_sg = intel_map_sg,
	.unmap_sg = intel_unmap_sg,
3906 3907
	.map_page = intel_map_page,
	.unmap_page = intel_unmap_page,
3908
	.mapping_error = intel_mapping_error,
3909
#ifdef CONFIG_X86
3910
	.dma_supported = dma_direct_supported,
3911
#endif
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
};

static inline int iommu_domain_cache_init(void)
{
	int ret = 0;

	iommu_domain_cache = kmem_cache_create("iommu_domain",
					 sizeof(struct dmar_domain),
					 0,
					 SLAB_HWCACHE_ALIGN,

					 NULL);
	if (!iommu_domain_cache) {
3925
		pr_err("Couldn't create iommu_domain cache\n");
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
		ret = -ENOMEM;
	}

	return ret;
}

static inline int iommu_devinfo_cache_init(void)
{
	int ret = 0;

	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
					 sizeof(struct device_domain_info),
					 0,
					 SLAB_HWCACHE_ALIGN,
					 NULL);
	if (!iommu_devinfo_cache) {
3942
		pr_err("Couldn't create devinfo cache\n");
3943 3944 3945 3946 3947 3948 3949 3950 3951
		ret = -ENOMEM;
	}

	return ret;
}

static int __init iommu_init_mempool(void)
{
	int ret;
3952
	ret = iova_cache_get();
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
	if (ret)
		return ret;

	ret = iommu_domain_cache_init();
	if (ret)
		goto domain_error;

	ret = iommu_devinfo_cache_init();
	if (!ret)
		return ret;

	kmem_cache_destroy(iommu_domain_cache);
domain_error:
3966
	iova_cache_put();
3967 3968 3969 3970 3971 3972 3973 3974

	return -ENOMEM;
}

static void __init iommu_exit_mempool(void)
{
	kmem_cache_destroy(iommu_devinfo_cache);
	kmem_cache_destroy(iommu_domain_cache);
3975
	iova_cache_put();
3976 3977
}

3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
{
	struct dmar_drhd_unit *drhd;
	u32 vtbar;
	int rc;

	/* We know that this device on this chipset has its own IOMMU.
	 * If we find it under a different IOMMU, then the BIOS is lying
	 * to us. Hope that the IOMMU for this device is actually
	 * disabled, and it needs no translation...
	 */
	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
	if (rc) {
		/* "can't" happen */
		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
		return;
	}
	vtbar &= 0xffff0000;

	/* we know that the this iommu should be at offset 0xa000 from vtbar */
	drhd = dmar_find_matched_drhd_unit(pdev);
	if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
			    TAINT_FIRMWARE_WORKAROUND,
			    "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
		pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
}
DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);

4006 4007 4008
static void __init init_no_remapping_devices(void)
{
	struct dmar_drhd_unit *drhd;
4009
	struct device *dev;
4010
	int i;
4011 4012 4013

	for_each_drhd_unit(drhd) {
		if (!drhd->include_all) {
4014 4015 4016
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
				break;
4017
			/* ignore DMAR unit if no devices exist */
4018 4019 4020 4021 4022
			if (i == drhd->devices_cnt)
				drhd->ignored = 1;
		}
	}

4023 4024
	for_each_active_drhd_unit(drhd) {
		if (drhd->include_all)
4025 4026
			continue;

4027 4028
		for_each_active_dev_scope(drhd->devices,
					  drhd->devices_cnt, i, dev)
4029
			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4030 4031 4032 4033
				break;
		if (i < drhd->devices_cnt)
			continue;

4034 4035
		/* This IOMMU has *only* gfx devices. Either bypass it or
		   set the gfx_mapped flag, as appropriate */
4036
		if (!dmar_map_gfx) {
4037
			drhd->ignored = 1;
4038 4039
			for_each_active_dev_scope(drhd->devices,
						  drhd->devices_cnt, i, dev)
4040
				dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4041 4042 4043 4044
		}
	}
}

4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
#ifdef CONFIG_SUSPEND
static int init_iommu_hw(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	for_each_active_iommu(iommu, drhd)
		if (iommu->qi)
			dmar_reenable_qi(iommu);

4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
	for_each_iommu(iommu, drhd) {
		if (drhd->ignored) {
			/*
			 * we always have to disable PMRs or DMA may fail on
			 * this device
			 */
			if (force_on)
				iommu_disable_protect_mem_regions(iommu);
			continue;
		}
	
4066 4067 4068 4069 4070
		iommu_flush_write_buffer(iommu);

		iommu_set_root_entry(iommu);

		iommu->flush.flush_context(iommu, 0, 0, 0,
4071
					   DMA_CCMD_GLOBAL_INVL);
4072 4073
		iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
		iommu_enable_translation(iommu);
4074
		iommu_disable_protect_mem_regions(iommu);
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
	}

	return 0;
}

static void iommu_flush_all(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	for_each_active_iommu(iommu, drhd) {
		iommu->flush.flush_context(iommu, 0, 0, 0,
4087
					   DMA_CCMD_GLOBAL_INVL);
4088
		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4089
					 DMA_TLB_GLOBAL_FLUSH);
4090 4091 4092
	}
}

4093
static int iommu_suspend(void)
4094 4095 4096 4097 4098 4099
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	for_each_active_iommu(iommu, drhd) {
4100
		iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
						 GFP_ATOMIC);
		if (!iommu->iommu_state)
			goto nomem;
	}

	iommu_flush_all();

	for_each_active_iommu(iommu, drhd) {
		iommu_disable_translation(iommu);

4111
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121

		iommu->iommu_state[SR_DMAR_FECTL_REG] =
			readl(iommu->reg + DMAR_FECTL_REG);
		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
			readl(iommu->reg + DMAR_FEDATA_REG);
		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
			readl(iommu->reg + DMAR_FEADDR_REG);
		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
			readl(iommu->reg + DMAR_FEUADDR_REG);

4122
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
	}
	return 0;

nomem:
	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);

	return -ENOMEM;
}

4133
static void iommu_resume(void)
4134 4135 4136 4137 4138 4139
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;
	unsigned long flag;

	if (init_iommu_hw()) {
4140 4141 4142 4143
		if (force_on)
			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
		else
			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4144
		return;
4145 4146 4147 4148
	}

	for_each_active_iommu(iommu, drhd) {

4149
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159

		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
			iommu->reg + DMAR_FECTL_REG);
		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
			iommu->reg + DMAR_FEDATA_REG);
		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
			iommu->reg + DMAR_FEADDR_REG);
		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
			iommu->reg + DMAR_FEUADDR_REG);

4160
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4161 4162 4163 4164 4165 4166
	}

	for_each_active_iommu(iommu, drhd)
		kfree(iommu->iommu_state);
}

4167
static struct syscore_ops iommu_syscore_ops = {
4168 4169 4170 4171
	.resume		= iommu_resume,
	.suspend	= iommu_suspend,
};

4172
static void __init init_iommu_pm_ops(void)
4173
{
4174
	register_syscore_ops(&iommu_syscore_ops);
4175 4176 4177
}

#else
4178
static inline void init_iommu_pm_ops(void) {}
4179 4180
#endif	/* CONFIG_PM */

4181

4182
int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4183 4184
{
	struct acpi_dmar_reserved_memory *rmrr;
4185
	int prot = DMA_PTE_READ|DMA_PTE_WRITE;
4186
	struct dmar_rmrr_unit *rmrru;
4187
	size_t length;
4188 4189 4190

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
4191
		goto out;
4192 4193 4194 4195 4196

	rmrru->hdr = header;
	rmrr = (struct acpi_dmar_reserved_memory *)header;
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
4197 4198 4199 4200 4201 4202 4203

	length = rmrr->end_address - rmrr->base_address + 1;
	rmrru->resv = iommu_alloc_resv_region(rmrr->base_address, length, prot,
					      IOMMU_RESV_DIRECT);
	if (!rmrru->resv)
		goto free_rmrru;

4204 4205 4206
	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				&rmrru->devices_cnt);
4207 4208
	if (rmrru->devices_cnt && rmrru->devices == NULL)
		goto free_all;
4209

4210
	list_add(&rmrru->list, &dmar_rmrr_units);
4211

4212
	return 0;
4213 4214 4215 4216 4217 4218
free_all:
	kfree(rmrru->resv);
free_rmrru:
	kfree(rmrru);
out:
	return -ENOMEM;
4219 4220
}

4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
{
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *tmp;

	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
		if (atsr->segment != tmp->segment)
			continue;
		if (atsr->header.length != tmp->header.length)
			continue;
		if (memcmp(atsr, tmp, atsr->header.length) == 0)
			return atsru;
	}

	return NULL;
}

int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4240 4241 4242 4243
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

4244
	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4245 4246
		return 0;

4247
	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4248 4249 4250 4251 4252
	atsru = dmar_find_atsr(atsr);
	if (atsru)
		return 0;

	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4253 4254 4255
	if (!atsru)
		return -ENOMEM;

4256 4257 4258 4259 4260 4261 4262
	/*
	 * If memory is allocated from slab by ACPI _DSM method, we need to
	 * copy the memory content because the memory buffer will be freed
	 * on return.
	 */
	atsru->hdr = (void *)(atsru + 1);
	memcpy(atsru->hdr, hdr, hdr->length);
4263
	atsru->include_all = atsr->flags & 0x1;
4264 4265 4266 4267 4268 4269 4270 4271 4272
	if (!atsru->include_all) {
		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt);
		if (atsru->devices_cnt && atsru->devices == NULL) {
			kfree(atsru);
			return -ENOMEM;
		}
	}
4273

4274
	list_add_rcu(&atsru->list, &dmar_atsr_units);
4275 4276 4277 4278

	return 0;
}

4279 4280 4281 4282 4283 4284
static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
{
	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
	kfree(atsru);
}

4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (atsru) {
		list_del_rcu(&atsru->list);
		synchronize_rcu();
		intel_iommu_free_atsr(atsru);
	}

	return 0;
}

int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
{
	int i;
	struct device *dev;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = dmar_find_atsr(atsr);
	if (!atsru)
		return 0;

4313
	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4314 4315 4316
		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
					  i, dev)
			return -EBUSY;
4317
	}
4318 4319 4320 4321

	return 0;
}

4322 4323 4324 4325 4326 4327 4328 4329 4330
static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
{
	int sp, ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (g_iommus[iommu->seq_id])
		return 0;

	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4331
		pr_warn("%s: Doesn't support hardware pass through.\n",
4332 4333 4334 4335 4336
			iommu->name);
		return -ENXIO;
	}
	if (!ecap_sc_support(iommu->ecap) &&
	    domain_update_iommu_snooping(iommu)) {
4337
		pr_warn("%s: Doesn't support snooping.\n",
4338 4339 4340 4341 4342
			iommu->name);
		return -ENXIO;
	}
	sp = domain_update_iommu_superpage(iommu) - 1;
	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4343
		pr_warn("%s: Doesn't support large page.\n",
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
			iommu->name);
		return -ENXIO;
	}

	/*
	 * Disable translation if already enabled prior to OS handover.
	 */
	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);

	g_iommus[iommu->seq_id] = iommu;
	ret = iommu_init_domains(iommu);
	if (ret == 0)
		ret = iommu_alloc_root_entry(iommu);
	if (ret)
		goto out;

4361 4362
#ifdef CONFIG_INTEL_IOMMU_SVM
	if (pasid_enabled(iommu))
4363
		intel_svm_init(iommu);
4364 4365
#endif

4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
	if (dmaru->ignored) {
		/*
		 * we always have to disable PMRs or DMA may fail on this device
		 */
		if (force_on)
			iommu_disable_protect_mem_regions(iommu);
		return 0;
	}

	intel_iommu_init_qi(iommu);
	iommu_flush_write_buffer(iommu);
4377 4378 4379 4380 4381 4382 4383 4384

#ifdef CONFIG_INTEL_IOMMU_SVM
	if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
		ret = intel_svm_enable_prq(iommu);
		if (ret)
			goto disable_iommu;
	}
#endif
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
	ret = dmar_set_interrupt(iommu);
	if (ret)
		goto disable_iommu;

	iommu_set_root_entry(iommu);
	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
	iommu_enable_translation(iommu);

	iommu_disable_protect_mem_regions(iommu);
	return 0;

disable_iommu:
	disable_dmar_iommu(iommu);
out:
	free_dmar_iommu(iommu);
	return ret;
}

4404 4405
int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
	int ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (!intel_iommu_enabled)
		return 0;
	if (iommu == NULL)
		return -EINVAL;

	if (insert) {
		ret = intel_iommu_add(dmaru);
	} else {
		disable_dmar_iommu(iommu);
		free_dmar_iommu(iommu);
	}

	return ret;
4422 4423
}

4424 4425 4426 4427 4428 4429 4430 4431
static void intel_iommu_free_dmars(void)
{
	struct dmar_rmrr_unit *rmrru, *rmrr_n;
	struct dmar_atsr_unit *atsru, *atsr_n;

	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
		list_del(&rmrru->list);
		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4432
		kfree(rmrru->resv);
4433
		kfree(rmrru);
4434 4435
	}

4436 4437 4438 4439
	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
		list_del(&atsru->list);
		intel_iommu_free_atsr(atsru);
	}
4440 4441 4442 4443
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
4444
	int i, ret = 1;
4445
	struct pci_bus *bus;
4446 4447
	struct pci_dev *bridge = NULL;
	struct device *tmp;
4448 4449 4450 4451 4452
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	dev = pci_physfn(dev);
	for (bus = dev->bus; bus; bus = bus->parent) {
4453
		bridge = bus->self;
4454 4455 4456 4457 4458
		/* If it's an integrated device, allow ATS */
		if (!bridge)
			return 1;
		/* Connected via non-PCIe: no ATS */
		if (!pci_is_pcie(bridge) ||
4459
		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4460
			return 0;
4461
		/* If we found the root port, look it up in the ATSR */
4462
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4463 4464 4465
			break;
	}

4466
	rcu_read_lock();
4467 4468 4469 4470 4471
	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment != pci_domain_nr(dev->bus))
			continue;

4472
		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4473
			if (tmp == &bridge->dev)
4474
				goto out;
4475 4476

		if (atsru->include_all)
4477
			goto out;
4478
	}
4479 4480
	ret = 0;
out:
4481
	rcu_read_unlock();
4482

4483
	return ret;
4484 4485
}

4486 4487 4488 4489 4490 4491 4492 4493
int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
{
	int ret = 0;
	struct dmar_rmrr_unit *rmrru;
	struct dmar_atsr_unit *atsru;
	struct acpi_dmar_atsr *atsr;
	struct acpi_dmar_reserved_memory *rmrr;

4494
	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
		return 0;

	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
		rmrr = container_of(rmrru->hdr,
				    struct acpi_dmar_reserved_memory, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
				((void *)rmrr) + rmrr->header.length,
				rmrr->segment, rmrru->devices,
				rmrru->devices_cnt);
4505
			if(ret < 0)
4506
				return ret;
4507
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4508 4509
			dmar_remove_dev_scope(info, rmrr->segment,
				rmrru->devices, rmrru->devices_cnt);
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
		}
	}

	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		if (atsru->include_all)
			continue;

		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
					(void *)atsr + atsr->header.length,
					atsr->segment, atsru->devices,
					atsru->devices_cnt);
			if (ret > 0)
				break;
			else if(ret < 0)
				return ret;
4527
		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4528 4529 4530 4531 4532 4533 4534 4535 4536
			if (dmar_remove_dev_scope(info, atsr->segment,
					atsru->devices, atsru->devices_cnt))
				break;
		}
	}

	return 0;
}

4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
/*
 * Here we only respond to action of unbound device from driver.
 *
 * Added device is not attached to its DMAR domain here yet. That will happen
 * when mapping the device to iova.
 */
static int device_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
	struct dmar_domain *domain;

4549
	if (iommu_dummy(dev))
4550 4551
		return 0;

4552
	if (action != BUS_NOTIFY_REMOVED_DEVICE)
4553 4554
		return 0;

4555
	domain = find_domain(dev);
4556 4557 4558
	if (!domain)
		return 0;

4559
	dmar_remove_one_dev_info(domain, dev);
4560
	if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4561
		domain_exit(domain);
4562

4563 4564 4565 4566 4567 4568 4569
	return 0;
}

static struct notifier_block device_nb = {
	.notifier_call = device_notifier,
};

4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
static int intel_iommu_memory_notifier(struct notifier_block *nb,
				       unsigned long val, void *v)
{
	struct memory_notify *mhp = v;
	unsigned long long start, end;
	unsigned long start_vpfn, last_vpfn;

	switch (val) {
	case MEM_GOING_ONLINE:
		start = mhp->start_pfn << PAGE_SHIFT;
		end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
		if (iommu_domain_identity_map(si_domain, start, end)) {
4582
			pr_warn("Failed to build identity map for [%llx-%llx]\n",
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
				start, end);
			return NOTIFY_BAD;
		}
		break;

	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
		last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
		while (start_vpfn <= last_vpfn) {
			struct iova *iova;
			struct dmar_drhd_unit *drhd;
			struct intel_iommu *iommu;
4596
			struct page *freelist;
4597 4598 4599

			iova = find_iova(&si_domain->iovad, start_vpfn);
			if (iova == NULL) {
4600
				pr_debug("Failed get IOVA for PFN %lx\n",
4601 4602 4603 4604 4605 4606 4607
					 start_vpfn);
				break;
			}

			iova = split_and_remove_iova(&si_domain->iovad, iova,
						     start_vpfn, last_vpfn);
			if (iova == NULL) {
4608
				pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4609 4610 4611 4612
					start_vpfn, last_vpfn);
				return NOTIFY_BAD;
			}

4613 4614 4615
			freelist = domain_unmap(si_domain, iova->pfn_lo,
					       iova->pfn_hi);

4616 4617
			rcu_read_lock();
			for_each_active_iommu(iommu, drhd)
4618
				iommu_flush_iotlb_psi(iommu, si_domain,
4619
					iova->pfn_lo, iova_size(iova),
4620
					!freelist, 0);
4621
			rcu_read_unlock();
4622
			dma_free_pagelist(freelist);
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637

			start_vpfn = iova->pfn_hi + 1;
			free_iova_mem(iova);
		}
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block intel_iommu_memory_nb = {
	.notifier_call = intel_iommu_memory_notifier,
	.priority = 0
};

4638 4639 4640 4641 4642 4643 4644
static void free_all_cpu_cached_iovas(unsigned int cpu)
{
	int i;

	for (i = 0; i < g_num_of_iommus; i++) {
		struct intel_iommu *iommu = g_iommus[i];
		struct dmar_domain *domain;
4645
		int did;
4646 4647 4648 4649

		if (!iommu)
			continue;

4650
		for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4651
			domain = get_iommu_domain(iommu, (u16)did);
4652 4653 4654 4655 4656 4657 4658 4659

			if (!domain)
				continue;
			free_cpu_cached_iovas(cpu, &domain->iovad);
		}
	}
}

4660
static int intel_iommu_cpu_dead(unsigned int cpu)
4661
{
4662 4663
	free_all_cpu_cached_iovas(cpu);
	return 0;
4664 4665
}

4666 4667 4668 4669 4670 4671 4672 4673 4674
static void intel_disable_iommus(void)
{
	struct intel_iommu *iommu = NULL;
	struct dmar_drhd_unit *drhd;

	for_each_iommu(iommu, drhd)
		iommu_disable_translation(iommu);
}

4675 4676
static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
{
4677 4678 4679
	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);

	return container_of(iommu_dev, struct intel_iommu, iommu);
4680 4681
}

4682 4683 4684 4685
static ssize_t intel_iommu_show_version(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4686
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
	u32 ver = readl(iommu->reg + DMAR_VER_REG);
	return sprintf(buf, "%d:%d\n",
		       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
}
static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);

static ssize_t intel_iommu_show_address(struct device *dev,
					struct device_attribute *attr,
					char *buf)
{
4697
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4698 4699 4700 4701 4702 4703 4704 4705
	return sprintf(buf, "%llx\n", iommu->reg_phys);
}
static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);

static ssize_t intel_iommu_show_cap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4706
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4707 4708 4709 4710 4711 4712 4713 4714
	return sprintf(buf, "%llx\n", iommu->cap);
}
static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);

static ssize_t intel_iommu_show_ecap(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
4715
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4716 4717 4718 4719
	return sprintf(buf, "%llx\n", iommu->ecap);
}
static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);

4720 4721 4722 4723
static ssize_t intel_iommu_show_ndoms(struct device *dev,
				      struct device_attribute *attr,
				      char *buf)
{
4724
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4725 4726 4727 4728 4729 4730 4731 4732
	return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
}
static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);

static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
4733
	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4734 4735 4736 4737 4738
	return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
						  cap_ndoms(iommu->cap)));
}
static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);

4739 4740 4741 4742 4743
static struct attribute *intel_iommu_attrs[] = {
	&dev_attr_version.attr,
	&dev_attr_address.attr,
	&dev_attr_cap.attr,
	&dev_attr_ecap.attr,
4744 4745
	&dev_attr_domains_supported.attr,
	&dev_attr_domains_used.attr,
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
	NULL,
};

static struct attribute_group intel_iommu_group = {
	.name = "intel-iommu",
	.attrs = intel_iommu_attrs,
};

const struct attribute_group *intel_iommu_groups[] = {
	&intel_iommu_group,
	NULL,
};

4759 4760
int __init intel_iommu_init(void)
{
4761
	int ret = -ENODEV;
4762
	struct dmar_drhd_unit *drhd;
4763
	struct intel_iommu *iommu;
4764

4765 4766 4767
	/* VT-d is required for a TXT/tboot launch, so enforce that */
	force_on = tboot_force_iommu();

4768 4769 4770 4771 4772 4773 4774
	if (iommu_init_mempool()) {
		if (force_on)
			panic("tboot: Failed to initialize iommu memory\n");
		return -ENOMEM;
	}

	down_write(&dmar_global_lock);
4775 4776 4777
	if (dmar_table_init()) {
		if (force_on)
			panic("tboot: Failed to initialize DMAR table\n");
4778
		goto out_free_dmar;
4779
	}
4780

4781
	if (dmar_dev_scope_init() < 0) {
4782 4783
		if (force_on)
			panic("tboot: Failed to initialize DMAR device scope\n");
4784
		goto out_free_dmar;
4785
	}
4786

4787 4788 4789 4790 4791 4792 4793 4794 4795 4796
	up_write(&dmar_global_lock);

	/*
	 * The bus notifier takes the dmar_global_lock, so lockdep will
	 * complain later when we register it under the lock.
	 */
	dmar_register_bus_notifier();

	down_write(&dmar_global_lock);

4797
	if (no_iommu || dmar_disabled) {
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
		/*
		 * We exit the function here to ensure IOMMU's remapping and
		 * mempool aren't setup, which means that the IOMMU's PMRs
		 * won't be disabled via the call to init_dmars(). So disable
		 * it explicitly here. The PMRs were setup by tboot prior to
		 * calling SENTER, but the kernel is expected to reset/tear
		 * down the PMRs.
		 */
		if (intel_iommu_tboot_noforce) {
			for_each_iommu(iommu, drhd)
				iommu_disable_protect_mem_regions(iommu);
		}

4811 4812 4813 4814 4815 4816
		/*
		 * Make sure the IOMMUs are switched off, even when we
		 * boot into a kexec kernel and the previous kernel left
		 * them enabled
		 */
		intel_disable_iommus();
4817
		goto out_free_dmar;
4818
	}
4819

4820
	if (list_empty(&dmar_rmrr_units))
4821
		pr_info("No RMRR found\n");
4822 4823

	if (list_empty(&dmar_atsr_units))
4824
		pr_info("No ATSR found\n");
4825

4826 4827 4828
	if (dmar_init_reserved_ranges()) {
		if (force_on)
			panic("tboot: Failed to reserve iommu ranges\n");
4829
		goto out_free_reserved_range;
4830
	}
4831

4832 4833 4834
	if (dmar_map_gfx)
		intel_iommu_gfx_mapped = 1;

4835 4836
	init_no_remapping_devices();

4837
	ret = init_dmars();
4838
	if (ret) {
4839 4840
		if (force_on)
			panic("tboot: Failed to initialize DMARs\n");
4841
		pr_err("Initialization failed\n");
4842
		goto out_free_reserved_range;
4843
	}
4844
	up_write(&dmar_global_lock);
4845
	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4846

4847
#if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
4848 4849
	swiotlb = 0;
#endif
4850
	dma_ops = &intel_dma_ops;
4851

4852
	init_iommu_pm_ops();
4853

4854 4855 4856 4857 4858 4859 4860
	for_each_active_iommu(iommu, drhd) {
		iommu_device_sysfs_add(&iommu->iommu, NULL,
				       intel_iommu_groups,
				       "%s", iommu->name);
		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
		iommu_device_register(&iommu->iommu);
	}
4861

4862
	bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4863
	bus_register_notifier(&pci_bus_type, &device_nb);
4864 4865
	if (si_domain && !hw_pass_through)
		register_memory_notifier(&intel_iommu_memory_nb);
4866 4867
	cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
			  intel_iommu_cpu_dead);
4868 4869
	intel_iommu_enabled = 1;

4870
	return 0;
4871 4872 4873 4874 4875

out_free_reserved_range:
	put_iova_domain(&reserved_iova_list);
out_free_dmar:
	intel_iommu_free_dmars();
4876 4877
	up_write(&dmar_global_lock);
	iommu_exit_mempool();
4878
	return ret;
4879
}
4880

4881
static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4882 4883 4884
{
	struct intel_iommu *iommu = opaque;

4885
	domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4886 4887 4888 4889 4890 4891 4892 4893 4894
	return 0;
}

/*
 * NB - intel-iommu lacks any sort of reference counting for the users of
 * dependent devices.  If multiple endpoints have intersecting dependent
 * devices, unbinding the driver from any one of them will possibly leave
 * the others unable to operate.
 */
4895
static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4896
{
4897
	if (!iommu || !dev || !dev_is_pci(dev))
4898 4899
		return;

4900
	pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4901 4902
}

4903
static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4904 4905 4906 4907
{
	struct intel_iommu *iommu;
	unsigned long flags;

4908 4909
	assert_spin_locked(&device_domain_lock);

4910
	if (WARN_ON(!info))
4911 4912
		return;

4913
	iommu = info->iommu;
4914

4915 4916 4917
	if (info->dev) {
		iommu_disable_dev_iotlb(info);
		domain_context_clear(iommu, info->dev);
4918
		intel_pasid_free_table(info->dev);
4919
	}
4920

4921
	unlink_domain_info(info);
4922

4923
	spin_lock_irqsave(&iommu->lock, flags);
4924
	domain_detach_iommu(info->domain, iommu);
4925
	spin_unlock_irqrestore(&iommu->lock, flags);
4926

4927
	free_devinfo_mem(info);
4928 4929
}

4930 4931 4932
static void dmar_remove_one_dev_info(struct dmar_domain *domain,
				     struct device *dev)
{
4933
	struct device_domain_info *info;
4934
	unsigned long flags;
4935

4936
	spin_lock_irqsave(&device_domain_lock, flags);
4937 4938
	info = dev->archdata.iommu;
	__dmar_remove_one_dev_info(info);
4939
	spin_unlock_irqrestore(&device_domain_lock, flags);
4940 4941
}

4942
static int md_domain_init(struct dmar_domain *domain, int guest_width)
4943 4944 4945
{
	int adjust_width;

4946
	init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
4947 4948 4949 4950 4951 4952 4953 4954
	domain_reserve_special_ranges(domain);

	/* calculate AGAW */
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	domain->agaw = width_to_agaw(adjust_width);

	domain->iommu_coherency = 0;
4955
	domain->iommu_snooping = 0;
4956
	domain->iommu_superpage = 0;
4957
	domain->max_addr = 0;
4958 4959

	/* always allocate the top pgd */
4960
	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4961 4962 4963 4964 4965 4966
	if (!domain->pgd)
		return -ENOMEM;
	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
	return 0;
}

4967
static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
Kay, Allen M's avatar
Kay, Allen M committed
4968
{
4969
	struct dmar_domain *dmar_domain;
4970 4971 4972 4973
	struct iommu_domain *domain;

	if (type != IOMMU_DOMAIN_UNMANAGED)
		return NULL;
Kay, Allen M's avatar
Kay, Allen M committed
4974

4975
	dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4976
	if (!dmar_domain) {
4977
		pr_err("Can't allocate dmar_domain\n");
4978
		return NULL;
Kay, Allen M's avatar
Kay, Allen M committed
4979
	}
4980
	if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4981
		pr_err("Domain initialization failed\n");
4982
		domain_exit(dmar_domain);
4983
		return NULL;
Kay, Allen M's avatar
Kay, Allen M committed
4984
	}
4985
	domain_update_iommu_cap(dmar_domain);
4986

4987
	domain = &dmar_domain->domain;
4988 4989 4990 4991
	domain->geometry.aperture_start = 0;
	domain->geometry.aperture_end   = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
	domain->geometry.force_aperture = true;

4992
	return domain;
Kay, Allen M's avatar
Kay, Allen M committed
4993 4994
}

4995
static void intel_iommu_domain_free(struct iommu_domain *domain)
Kay, Allen M's avatar
Kay, Allen M committed
4996
{
4997
	domain_exit(to_dmar_domain(domain));
Kay, Allen M's avatar
Kay, Allen M committed
4998 4999
}

5000 5001
static int intel_iommu_attach_device(struct iommu_domain *domain,
				     struct device *dev)
Kay, Allen M's avatar
Kay, Allen M committed
5002
{
5003
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5004 5005
	struct intel_iommu *iommu;
	int addr_width;
5006
	u8 bus, devfn;
5007

5008 5009 5010 5011 5012
	if (device_is_rmrr_locked(dev)) {
		dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
		return -EPERM;
	}

5013 5014
	/* normally dev is not mapped */
	if (unlikely(domain_context_mapped(dev))) {
5015 5016
		struct dmar_domain *old_domain;

5017
		old_domain = find_domain(dev);
5018
		if (old_domain) {
5019
			rcu_read_lock();
5020
			dmar_remove_one_dev_info(old_domain, dev);
5021
			rcu_read_unlock();
5022 5023 5024 5025

			if (!domain_type_is_vm_or_si(old_domain) &&
			     list_empty(&old_domain->devices))
				domain_exit(old_domain);
5026 5027 5028
		}
	}

5029
	iommu = device_to_iommu(dev, &bus, &devfn);
5030 5031 5032 5033 5034
	if (!iommu)
		return -ENODEV;

	/* check if this iommu agaw is sufficient for max mapped address */
	addr_width = agaw_to_width(iommu->agaw);
5035 5036 5037 5038
	if (addr_width > cap_mgaw(iommu->cap))
		addr_width = cap_mgaw(iommu->cap);

	if (dmar_domain->max_addr > (1LL << addr_width)) {
5039
		pr_err("%s: iommu width (%d) is not "
5040
		       "sufficient for the mapped address (%llx)\n",
5041
		       __func__, addr_width, dmar_domain->max_addr);
5042 5043
		return -EFAULT;
	}
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
	dmar_domain->gaw = addr_width;

	/*
	 * Knock out extra levels of page tables if necessary
	 */
	while (iommu->agaw < dmar_domain->agaw) {
		struct dma_pte *pte;

		pte = dmar_domain->pgd;
		if (dma_pte_present(pte)) {
5054 5055
			dmar_domain->pgd = (struct dma_pte *)
				phys_to_virt(dma_pte_addr(pte));
5056
			free_pgtable_page(pte);
5057 5058 5059
		}
		dmar_domain->agaw--;
	}
5060

5061
	return domain_add_dev_info(dmar_domain, dev);
Kay, Allen M's avatar
Kay, Allen M committed
5062 5063
}

5064 5065
static void intel_iommu_detach_device(struct iommu_domain *domain,
				      struct device *dev)
Kay, Allen M's avatar
Kay, Allen M committed
5066
{
5067
	dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
5068
}
5069

5070 5071
static int intel_iommu_map(struct iommu_domain *domain,
			   unsigned long iova, phys_addr_t hpa,
5072
			   size_t size, int iommu_prot)
5073
{
5074
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5075
	u64 max_addr;
5076
	int prot = 0;
5077
	int ret;
5078

5079 5080 5081 5082
	if (iommu_prot & IOMMU_READ)
		prot |= DMA_PTE_READ;
	if (iommu_prot & IOMMU_WRITE)
		prot |= DMA_PTE_WRITE;
5083 5084
	if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
		prot |= DMA_PTE_SNP;
5085

5086
	max_addr = iova + size;
5087
	if (dmar_domain->max_addr < max_addr) {
5088 5089 5090
		u64 end;

		/* check if minimum agaw is sufficient for mapped address */
5091
		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5092
		if (end < max_addr) {
5093
			pr_err("%s: iommu width (%d) is not "
5094
			       "sufficient for the mapped address (%llx)\n",
5095
			       __func__, dmar_domain->gaw, max_addr);
5096 5097
			return -EFAULT;
		}
5098
		dmar_domain->max_addr = max_addr;
5099
	}
5100 5101
	/* Round up size to next multiple of PAGE_SIZE, if it and
	   the low bits of hpa would take us onto the next page */
5102
	size = aligned_nrpages(hpa, size);
5103 5104
	ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
				 hpa >> VTD_PAGE_SHIFT, size, prot);
5105
	return ret;
Kay, Allen M's avatar
Kay, Allen M committed
5106 5107
}

5108
static size_t intel_iommu_unmap(struct iommu_domain *domain,
5109
				unsigned long iova, size_t size)
Kay, Allen M's avatar
Kay, Allen M committed
5110
{
5111
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5112 5113 5114
	struct page *freelist = NULL;
	unsigned long start_pfn, last_pfn;
	unsigned int npages;
5115
	int iommu_id, level = 0;
5116 5117 5118

	/* Cope with horrid API which requires us to unmap more than the
	   size argument if it happens to be a large-page mapping. */
5119
	BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5120 5121 5122

	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5123

5124 5125 5126 5127 5128 5129 5130
	start_pfn = iova >> VTD_PAGE_SHIFT;
	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;

	freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);

	npages = last_pfn - start_pfn + 1;

5131
	for_each_domain_iommu(iommu_id, dmar_domain)
5132 5133
		iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
				      start_pfn, npages, !freelist, 0);
5134 5135

	dma_free_pagelist(freelist);
5136

5137 5138
	if (dmar_domain->max_addr == iova + size)
		dmar_domain->max_addr = iova;
5139

5140
	return size;
Kay, Allen M's avatar
Kay, Allen M committed
5141 5142
}

5143
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5144
					    dma_addr_t iova)
Kay, Allen M's avatar
Kay, Allen M committed
5145
{
5146
	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
Kay, Allen M's avatar
Kay, Allen M committed
5147
	struct dma_pte *pte;
5148
	int level = 0;
5149
	u64 phys = 0;
Kay, Allen M's avatar
Kay, Allen M committed
5150

5151
	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
Kay, Allen M's avatar
Kay, Allen M committed
5152
	if (pte)
5153
		phys = dma_pte_addr(pte);
Kay, Allen M's avatar
Kay, Allen M committed
5154

5155
	return phys;
Kay, Allen M's avatar
Kay, Allen M committed
5156
}
5157

5158
static bool intel_iommu_capable(enum iommu_cap cap)
5159 5160
{
	if (cap == IOMMU_CAP_CACHE_COHERENCY)
5161
		return domain_update_iommu_snooping(NULL) == 1;
5162
	if (cap == IOMMU_CAP_INTR_REMAP)
5163
		return irq_remapping_enabled == 1;
5164

5165
	return false;
5166 5167
}

5168 5169
static int intel_iommu_add_device(struct device *dev)
{
5170
	struct intel_iommu *iommu;
5171
	struct iommu_group *group;
5172
	u8 bus, devfn;
5173

5174 5175
	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
5176 5177
		return -ENODEV;

5178
	iommu_device_link(&iommu->iommu, dev);
5179

5180
	group = iommu_group_get_for_dev(dev);
5181

5182 5183
	if (IS_ERR(group))
		return PTR_ERR(group);
5184

5185
	iommu_group_put(group);
5186
	return 0;
5187
}
5188

5189 5190
static void intel_iommu_remove_device(struct device *dev)
{
5191 5192 5193 5194 5195 5196 5197
	struct intel_iommu *iommu;
	u8 bus, devfn;

	iommu = device_to_iommu(dev, &bus, &devfn);
	if (!iommu)
		return;

5198
	iommu_group_remove_device(dev);
5199

5200
	iommu_device_unlink(&iommu->iommu, dev);
5201 5202
}

5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224
static void intel_iommu_get_resv_regions(struct device *device,
					 struct list_head *head)
{
	struct iommu_resv_region *reg;
	struct dmar_rmrr_unit *rmrr;
	struct device *i_dev;
	int i;

	rcu_read_lock();
	for_each_rmrr_units(rmrr) {
		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
					  i, i_dev) {
			if (i_dev != device)
				continue;

			list_add_tail(&rmrr->resv->list, head);
		}
	}
	rcu_read_unlock();

	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5225
				      0, IOMMU_RESV_MSI);
5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236
	if (!reg)
		return;
	list_add_tail(&reg->list, head);
}

static void intel_iommu_put_resv_regions(struct device *dev,
					 struct list_head *head)
{
	struct iommu_resv_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list) {
5237
		if (entry->type == IOMMU_RESV_MSI)
5238 5239
			kfree(entry);
	}
5240 5241
}

5242
#ifdef CONFIG_INTEL_IOMMU_SVM
5243
#define MAX_NR_PASID_BITS (20)
5244
static inline unsigned long intel_iommu_get_pts(struct device *dev)
5245
{
5246 5247 5248 5249 5250
	int pts, max_pasid;

	max_pasid = intel_pasid_get_dev_max_id(dev);
	pts = find_first_bit((unsigned long *)&max_pasid, MAX_NR_PASID_BITS);
	if (pts < 5)
5251 5252
		return 0;

5253
	return pts - 5;
5254 5255
}

5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286
int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct intel_svm_dev *sdev)
{
	struct device_domain_info *info;
	struct context_entry *context;
	struct dmar_domain *domain;
	unsigned long flags;
	u64 ctx_lo;
	int ret;

	domain = get_valid_domain_for_dev(sdev->dev);
	if (!domain)
		return -EINVAL;

	spin_lock_irqsave(&device_domain_lock, flags);
	spin_lock(&iommu->lock);

	ret = -EINVAL;
	info = sdev->dev->archdata.iommu;
	if (!info || !info->pasid_supported)
		goto out;

	context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
	if (WARN_ON(!context))
		goto out;

	ctx_lo = context[0].lo;

	sdev->did = domain->iommu_did[iommu->seq_id];
	sdev->sid = PCI_DEVID(info->bus, info->devfn);

	if (!(ctx_lo & CONTEXT_PASIDE)) {
5287 5288
		if (iommu->pasid_state_table)
			context[1].hi = (u64)virt_to_phys(iommu->pasid_state_table);
5289 5290
		context[1].lo = (u64)virt_to_phys(info->pasid_table->table) |
			intel_iommu_get_pts(sdev->dev);
5291

5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
		wmb();
		/* CONTEXT_TT_MULTI_LEVEL and CONTEXT_TT_DEV_IOTLB are both
		 * extended to permit requests-with-PASID if the PASIDE bit
		 * is set. which makes sense. For CONTEXT_TT_PASS_THROUGH,
		 * however, the PASIDE bit is ignored and requests-with-PASID
		 * are unconditionally blocked. Which makes less sense.
		 * So convert from CONTEXT_TT_PASS_THROUGH to one of the new
		 * "guest mode" translation types depending on whether ATS
		 * is available or not. Annoyingly, we can't use the new
		 * modes *unless* PASIDE is set. */
		if ((ctx_lo & CONTEXT_TT_MASK) == (CONTEXT_TT_PASS_THROUGH << 2)) {
			ctx_lo &= ~CONTEXT_TT_MASK;
			if (info->ats_supported)
				ctx_lo |= CONTEXT_TT_PT_PASID_DEV_IOTLB << 2;
			else
				ctx_lo |= CONTEXT_TT_PT_PASID << 2;
		}
		ctx_lo |= CONTEXT_PASIDE;
5310 5311
		if (iommu->pasid_state_table)
			ctx_lo |= CONTEXT_DINVE;
5312 5313
		if (info->pri_supported)
			ctx_lo |= CONTEXT_PRS;
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
		context[0].lo = ctx_lo;
		wmb();
		iommu->flush.flush_context(iommu, sdev->did, sdev->sid,
					   DMA_CCMD_MASK_NOBIT,
					   DMA_CCMD_DEVICE_INVL);
	}

	/* Enable PASID support in the device, if it wasn't already */
	if (!info->pasid_enabled)
		iommu_enable_dev_iotlb(info);

	if (info->ats_enabled) {
		sdev->dev_iotlb = 1;
		sdev->qdep = info->ats_qdep;
		if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
			sdev->qdep = 0;
	}
	ret = 0;

 out:
	spin_unlock(&iommu->lock);
	spin_unlock_irqrestore(&device_domain_lock, flags);

	return ret;
}

struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
{
	struct intel_iommu *iommu;
	u8 bus, devfn;

	if (iommu_dummy(dev)) {
		dev_warn(dev,
			 "No IOMMU translation for device; cannot enable SVM\n");
		return NULL;
	}

	iommu = device_to_iommu(dev, &bus, &devfn);
	if ((!iommu)) {
5353
		dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5354 5355 5356 5357 5358 5359 5360
		return NULL;
	}

	return iommu;
}
#endif /* CONFIG_INTEL_IOMMU_SVM */

5361
const struct iommu_ops intel_iommu_ops = {
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
	.capable		= intel_iommu_capable,
	.domain_alloc		= intel_iommu_domain_alloc,
	.domain_free		= intel_iommu_domain_free,
	.attach_dev		= intel_iommu_attach_device,
	.detach_dev		= intel_iommu_detach_device,
	.map			= intel_iommu_map,
	.unmap			= intel_iommu_unmap,
	.iova_to_phys		= intel_iommu_iova_to_phys,
	.add_device		= intel_iommu_add_device,
	.remove_device		= intel_iommu_remove_device,
	.get_resv_regions	= intel_iommu_get_resv_regions,
	.put_resv_regions	= intel_iommu_put_resv_regions,
	.device_group		= pci_device_group,
	.pgsize_bitmap		= INTEL_IOMMU_PGSIZES,
5376
};
5377

5378 5379 5380
static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
{
	/* G4x/GM45 integrated gfx dmar support is totally busted. */
5381
	pr_info("Disabling IOMMU for graphics on this chipset\n");
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
	dmar_map_gfx = 0;
}

DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);

5393
static void quirk_iommu_rwbf(struct pci_dev *dev)
5394 5395 5396
{
	/*
	 * Mobile 4 Series Chipset neglects to set RWBF capability,
5397
	 * but needs it. Same seems to hold for the desktop versions.
5398
	 */
5399
	pr_info("Forcing write-buffer flush capability\n");
5400 5401 5402 5403
	rwbf_quirk = 1;
}

DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5404 5405 5406 5407 5408 5409
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5410

5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
#define GGC 0x52
#define GGC_MEMORY_SIZE_MASK	(0xf << 8)
#define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
#define GGC_MEMORY_SIZE_1M	(0x1 << 8)
#define GGC_MEMORY_SIZE_2M	(0x3 << 8)
#define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
#define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
#define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
#define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)

5421
static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5422 5423 5424
{
	unsigned short ggc;

5425
	if (pci_read_config_word(dev, GGC, &ggc))
5426 5427
		return;

5428
	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5429
		pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5430
		dmar_map_gfx = 0;
5431 5432
	} else if (dmar_map_gfx) {
		/* we have to ensure the gfx device is idle before we flush */
5433
		pr_info("Disabling batched IOTLB flush on Ironlake\n");
5434 5435
		intel_iommu_strict = 1;
       }
5436 5437 5438 5439 5440 5441
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);

5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
/* On Tylersburg chipsets, some BIOSes have been known to enable the
   ISOCH DMAR unit for the Azalia sound device, but not give it any
   TLB entries, which causes it to deadlock. Check for that.  We do
   this in a function called from init_dmars(), instead of in a PCI
   quirk, because we don't want to print the obnoxious "BIOS broken"
   message if VT-d is actually disabled.
*/
static void __init check_tylersburg_isoch(void)
{
	struct pci_dev *pdev;
	uint32_t vtisochctrl;

	/* If there's no Azalia in the system anyway, forget it. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
	if (!pdev)
		return;
	pci_dev_put(pdev);

	/* System Management Registers. Might be hidden, in which case
	   we can't do the sanity check. But that's OK, because the
	   known-broken BIOSes _don't_ actually hide it, so far. */
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
	if (!pdev)
		return;

	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
		pci_dev_put(pdev);
		return;
	}

	pci_dev_put(pdev);

	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
	if (vtisochctrl & 1)
		return;

	/* Drop all bits other than the number of TLB entries */
	vtisochctrl &= 0x1c;

	/* If we have the recommended number of TLB entries (16), fine. */
	if (vtisochctrl == 0x10)
		return;

	/* Zero TLB entries? You get to ride the short bus to school. */
	if (!vtisochctrl) {
		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		     dmi_get_system_info(DMI_BIOS_VENDOR),
		     dmi_get_system_info(DMI_BIOS_VERSION),
		     dmi_get_system_info(DMI_PRODUCT_VERSION));
		iommu_identity_mapping |= IDENTMAP_AZALIA;
		return;
	}
5495 5496

	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5497 5498
	       vtisochctrl);
}