pwm-tegra.c 11.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6
/*
 * drivers/pwm/pwm-tegra.c
 *
 * Tegra pulse-width-modulation controller driver
 *
7
 * Copyright (c) 2010-2020, NVIDIA Corporation.
8
 * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de>
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 * Overview of Tegra Pulse Width Modulator Register:
 * 1. 13-bit: Frequency division (SCALE)
 * 2. 8-bit : Pulse division (DUTY)
 * 3. 1-bit : Enable bit
 *
 * The PWM clock frequency is divided by 256 before subdividing it based
 * on the programmable frequency division value to generate the required
 * frequency for PWM output. The maximum output frequency that can be
 * achieved is (max rate of source clock) / 256.
 * e.g. if source clock rate is 408 MHz, maximum output frequency can be:
 * 408 MHz/256 = 1.6 MHz.
 * This 1.6 MHz frequency can further be divided using SCALE value in PWM.
 *
 * PWM pulse width: 8 bits are usable [23:16] for varying pulse width.
 * To achieve 100% duty cycle, program Bit [24] of this register to
 * 1’b1. In which case the other bits [23:16] are set to don't care.
 *
 * Limitations:
 * -	When PWM is disabled, the output is driven to inactive.
 * -	It does not allow the current PWM period to complete and
 *	stops abruptly.
 *
 * -	If the register is reconfigured while PWM is running,
 *	it does not complete the currently running period.
 *
 * -	If the user input duty is beyond acceptible limits,
 *	-EINVAL is returned.
37 38 39 40 41 42 43
 */

#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
44
#include <linux/of_device.h>
45
#include <linux/pm_opp.h>
46 47
#include <linux/pwm.h>
#include <linux/platform_device.h>
48
#include <linux/pinctrl/consumer.h>
49
#include <linux/pm_runtime.h>
50
#include <linux/slab.h>
51
#include <linux/reset.h>
52

53 54
#include <soc/tegra/common.h>

55 56 57 58 59 60
#define PWM_ENABLE	(1 << 31)
#define PWM_DUTY_WIDTH	8
#define PWM_DUTY_SHIFT	16
#define PWM_SCALE_WIDTH	13
#define PWM_SCALE_SHIFT	0

61 62
struct tegra_pwm_soc {
	unsigned int num_channels;
63 64 65

	/* Maximum IP frequency for given SoCs */
	unsigned long max_frequency;
66 67
};

68
struct tegra_pwm_chip {
69 70
	struct pwm_chip chip;
	struct device *dev;
71

72
	struct clk *clk;
73
	struct reset_control*rst;
74

75
	unsigned long clk_rate;
76
	unsigned long min_period_ns;
77

78
	void __iomem *regs;
79 80

	const struct tegra_pwm_soc *soc;
81 82 83 84 85 86 87
};

static inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip)
{
	return container_of(chip, struct tegra_pwm_chip, chip);
}

88
static inline u32 pwm_readl(struct tegra_pwm_chip *pc, unsigned int offset)
89
{
90
	return readl(pc->regs + (offset << 4));
91 92
}

93
static inline void pwm_writel(struct tegra_pwm_chip *pc, unsigned int offset, u32 value)
94
{
95
	writel(value, pc->regs + (offset << 4));
96 97 98 99 100 101
}

static int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
			    int duty_ns, int period_ns)
{
	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
102
	unsigned long long c = duty_ns;
103
	unsigned long rate, required_clk_rate;
104 105 106 107 108 109 110 111
	u32 val = 0;
	int err;

	/*
	 * Convert from duty_ns / period_ns to a fixed number of duty ticks
	 * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
	 * nearest integer during division.
	 */
112
	c *= (1 << PWM_DUTY_WIDTH);
113
	c = DIV_ROUND_CLOSEST_ULL(c, period_ns);
114 115 116

	val = (u32)c << PWM_DUTY_SHIFT;

117 118 119 120 121 122
	/*
	 *  min period = max clock limit >> PWM_DUTY_WIDTH
	 */
	if (period_ns < pc->min_period_ns)
		return -EINVAL;

123 124 125
	/*
	 * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
	 * cycles at the PWM clock rate will take period_ns nanoseconds.
126 127 128 129 130 131 132 133 134
	 *
	 * num_channels: If single instance of PWM controller has multiple
	 * channels (e.g. Tegra210 or older) then it is not possible to
	 * configure separate clock rates to each of the channels, in such
	 * case the value stored during probe will be referred.
	 *
	 * If every PWM controller instance has one channel respectively, i.e.
	 * nums_channels == 1 then only the clock rate can be modified
	 * dynamically (e.g. Tegra186 or Tegra194).
135
	 */
136 137 138 139 140 141 142 143 144 145 146 147
	if (pc->soc->num_channels == 1) {
		/*
		 * Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches
		 * with the maximum possible rate that the controller can
		 * provide. Any further lower value can be derived by setting
		 * PFM bits[0:12].
		 *
		 * required_clk_rate is a reference rate for source clock and
		 * it is derived based on user requested period. By setting the
		 * source clock rate as required_clk_rate, PWM controller will
		 * be able to configure the requested period.
		 */
148 149
		required_clk_rate = DIV_ROUND_UP_ULL(NSEC_PER_SEC << PWM_DUTY_WIDTH,
						     period_ns);
150

151 152 153 154 155 156 157 158 159 160 161
		if (required_clk_rate > clk_round_rate(pc->clk, required_clk_rate))
			/*
			 * required_clk_rate is a lower bound for the input
			 * rate; for lower rates there is no value for PWM_SCALE
			 * that yields a period less than or equal to the
			 * requested period. Hence, for lower rates, double the
			 * required_clk_rate to get a clock rate that can meet
			 * the requested period.
			 */
			required_clk_rate *= 2;

162
		err = dev_pm_opp_set_rate(pc->dev, required_clk_rate);
163 164 165 166 167 168 169
		if (err < 0)
			return -EINVAL;

		/* Store the new rate for further references */
		pc->clk_rate = clk_get_rate(pc->clk);
	}

170
	/* Consider precision in PWM_SCALE_WIDTH rate calculation */
171 172
	rate = mul_u64_u64_div_u64(pc->clk_rate, period_ns,
				   (u64)NSEC_PER_SEC << PWM_DUTY_WIDTH);
173 174 175

	/*
	 * Since the actual PWM divider is the register's frequency divider
176
	 * field plus 1, we need to decrement to get the correct value to
177 178 179 180
	 * write to the register.
	 */
	if (rate > 0)
		rate--;
181 182
	else
		return -EINVAL;
183 184 185 186 187 188 189 190 191 192 193 194 195 196

	/*
	 * Make sure that the rate will fit in the register's frequency
	 * divider field.
	 */
	if (rate >> PWM_SCALE_WIDTH)
		return -EINVAL;

	val |= rate << PWM_SCALE_SHIFT;

	/*
	 * If the PWM channel is disabled, make sure to turn on the clock
	 * before writing the register. Otherwise, keep it enabled.
	 */
197
	if (!pwm_is_enabled(pwm)) {
198 199
		err = pm_runtime_resume_and_get(pc->dev);
		if (err)
200 201 202 203 204 205 206 207 208
			return err;
	} else
		val |= PWM_ENABLE;

	pwm_writel(pc, pwm->hwpwm, val);

	/*
	 * If the PWM is not enabled, turn the clock off again to save power.
	 */
209
	if (!pwm_is_enabled(pwm))
210
		pm_runtime_put(pc->dev);
211 212 213 214 215 216 217 218 219 220

	return 0;
}

static int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
{
	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
	int rc = 0;
	u32 val;

221 222
	rc = pm_runtime_resume_and_get(pc->dev);
	if (rc)
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
		return rc;

	val = pwm_readl(pc, pwm->hwpwm);
	val |= PWM_ENABLE;
	pwm_writel(pc, pwm->hwpwm, val);

	return 0;
}

static void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
{
	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
	u32 val;

	val = pwm_readl(pc, pwm->hwpwm);
	val &= ~PWM_ENABLE;
	pwm_writel(pc, pwm->hwpwm, val);

241
	pm_runtime_put_sync(pc->dev);
242 243
}

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
static int tegra_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
			   const struct pwm_state *state)
{
	int err;
	bool enabled = pwm->state.enabled;

	if (state->polarity != PWM_POLARITY_NORMAL)
		return -EINVAL;

	if (!state->enabled) {
		if (enabled)
			tegra_pwm_disable(chip, pwm);

		return 0;
	}

	err = tegra_pwm_config(pwm->chip, pwm, state->duty_cycle, state->period);
	if (err)
		return err;

	if (!enabled)
		err = tegra_pwm_enable(chip, pwm);

	return err;
}

270
static const struct pwm_ops tegra_pwm_ops = {
271
	.apply = tegra_pwm_apply,
272 273 274 275 276
	.owner = THIS_MODULE,
};

static int tegra_pwm_probe(struct platform_device *pdev)
{
277
	struct tegra_pwm_chip *pc;
278 279
	int ret;

280 281
	pc = devm_kzalloc(&pdev->dev, sizeof(*pc), GFP_KERNEL);
	if (!pc)
282 283
		return -ENOMEM;

284 285
	pc->soc = of_device_get_match_data(&pdev->dev);
	pc->dev = &pdev->dev;
286

287 288 289
	pc->regs = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(pc->regs))
		return PTR_ERR(pc->regs);
290

291
	platform_set_drvdata(pdev, pc);
292

293 294 295
	pc->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(pc->clk))
		return PTR_ERR(pc->clk);
296

297 298 299 300 301 302 303 304 305
	ret = devm_tegra_core_dev_init_opp_table_common(&pdev->dev);
	if (ret)
		return ret;

	pm_runtime_enable(&pdev->dev);
	ret = pm_runtime_resume_and_get(&pdev->dev);
	if (ret)
		return ret;

306
	/* Set maximum frequency of the IP */
307
	ret = dev_pm_opp_set_rate(pc->dev, pc->soc->max_frequency);
308 309
	if (ret < 0) {
		dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret);
310
		goto put_pm;
311 312 313 314 315 316 317
	}

	/*
	 * The requested and configured frequency may differ due to
	 * clock register resolutions. Get the configured frequency
	 * so that PWM period can be calculated more accurately.
	 */
318
	pc->clk_rate = clk_get_rate(pc->clk);
319

320
	/* Set minimum limit of PWM period for the IP */
321 322
	pc->min_period_ns =
	    (NSEC_PER_SEC / (pc->soc->max_frequency >> PWM_DUTY_WIDTH)) + 1;
323

324 325 326
	pc->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm");
	if (IS_ERR(pc->rst)) {
		ret = PTR_ERR(pc->rst);
327
		dev_err(&pdev->dev, "Reset control is not found: %d\n", ret);
328
		goto put_pm;
329 330
	}

331
	reset_control_deassert(pc->rst);
332

333 334 335
	pc->chip.dev = &pdev->dev;
	pc->chip.ops = &tegra_pwm_ops;
	pc->chip.npwm = pc->soc->num_channels;
336

337
	ret = pwmchip_add(&pc->chip);
338 339
	if (ret < 0) {
		dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
340
		reset_control_assert(pc->rst);
341
		goto put_pm;
342 343
	}

344 345
	pm_runtime_put(&pdev->dev);

346
	return 0;
347 348 349 350
put_pm:
	pm_runtime_put_sync_suspend(&pdev->dev);
	pm_runtime_force_suspend(&pdev->dev);
	return ret;
351 352
}

353
static int tegra_pwm_remove(struct platform_device *pdev)
354 355
{
	struct tegra_pwm_chip *pc = platform_get_drvdata(pdev);
356

357 358
	pwmchip_remove(&pc->chip);

359 360
	reset_control_assert(pc->rst);

361 362
	pm_runtime_force_suspend(&pdev->dev);

363
	return 0;
364 365
}

366
static int __maybe_unused tegra_pwm_runtime_suspend(struct device *dev)
367
{
368 369 370 371 372 373 374 375 376 377 378 379
	struct tegra_pwm_chip *pc = dev_get_drvdata(dev);
	int err;

	clk_disable_unprepare(pc->clk);

	err = pinctrl_pm_select_sleep_state(dev);
	if (err) {
		clk_prepare_enable(pc->clk);
		return err;
	}

	return 0;
380 381
}

382
static int __maybe_unused tegra_pwm_runtime_resume(struct device *dev)
383
{
384 385 386 387 388 389 390 391 392 393 394 395 396 397
	struct tegra_pwm_chip *pc = dev_get_drvdata(dev);
	int err;

	err = pinctrl_pm_select_default_state(dev);
	if (err)
		return err;

	err = clk_prepare_enable(pc->clk);
	if (err) {
		pinctrl_pm_select_sleep_state(dev);
		return err;
	}

	return 0;
398 399
}

400 401
static const struct tegra_pwm_soc tegra20_pwm_soc = {
	.num_channels = 4,
402
	.max_frequency = 48000000UL,
403 404 405 406
};

static const struct tegra_pwm_soc tegra186_pwm_soc = {
	.num_channels = 1,
407
	.max_frequency = 102000000UL,
408 409
};

410 411 412 413 414
static const struct tegra_pwm_soc tegra194_pwm_soc = {
	.num_channels = 1,
	.max_frequency = 408000000UL,
};

415
static const struct of_device_id tegra_pwm_of_match[] = {
416 417
	{ .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc },
	{ .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc },
418
	{ .compatible = "nvidia,tegra194-pwm", .data = &tegra194_pwm_soc },
419 420 421 422
	{ }
};
MODULE_DEVICE_TABLE(of, tegra_pwm_of_match);

423
static const struct dev_pm_ops tegra_pwm_pm_ops = {
424 425 426 427
	SET_RUNTIME_PM_OPS(tegra_pwm_runtime_suspend, tegra_pwm_runtime_resume,
			   NULL)
	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
				pm_runtime_force_resume)
428 429
};

430 431 432
static struct platform_driver tegra_pwm_driver = {
	.driver = {
		.name = "tegra-pwm",
433
		.of_match_table = tegra_pwm_of_match,
434
		.pm = &tegra_pwm_pm_ops,
435 436
	},
	.probe = tegra_pwm_probe,
437
	.remove = tegra_pwm_remove,
438 439 440 441 442
};

module_platform_driver(tegra_pwm_driver);

MODULE_LICENSE("GPL");
443 444
MODULE_AUTHOR("Sandipan Patra <spatra@nvidia.com>");
MODULE_DESCRIPTION("Tegra PWM controller driver");
445
MODULE_ALIAS("platform:tegra-pwm");