huge_memory.c 85.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/coredump.h>
11
#include <linux/sched/numa_balancing.h>
12 13 14 15 16
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
17
#include <linux/shrinker.h>
Andrea Arcangeli's avatar
Andrea Arcangeli committed
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
20
#include <linux/dax.h>
Andrea Arcangeli's avatar
Andrea Arcangeli committed
21
#include <linux/khugepaged.h>
22
#include <linux/freezer.h>
23
#include <linux/pfn_t.h>
24
#include <linux/mman.h>
25
#include <linux/memremap.h>
26
#include <linux/pagemap.h>
27
#include <linux/debugfs.h>
28
#include <linux/migrate.h>
29
#include <linux/hashtable.h>
30
#include <linux/userfaultfd_k.h>
31
#include <linux/page_idle.h>
32
#include <linux/shmem_fs.h>
33
#include <linux/oom.h>
34
#include <linux/numa.h>
35
#include <linux/page_owner.h>
36

37 38 39 40
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

Andrea Arcangeli's avatar
Andrea Arcangeli committed
41
/*
42 43 44 45
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 47
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
Andrea Arcangeli's avatar
Andrea Arcangeli committed
48
 */
49
unsigned long transparent_hugepage_flags __read_mostly =
50
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
Andrea Arcangeli's avatar
Andrea Arcangeli committed
51
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 53 54 55
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
56
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 58
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
Andrea Arcangeli's avatar
Andrea Arcangeli committed
59

60
static struct shrinker deferred_split_shrinker;
61

62
static atomic_t huge_zero_refcount;
63
struct page *huge_zero_page __read_mostly;
64

65 66
bool transparent_hugepage_enabled(struct vm_area_struct *vma)
{
67 68 69 70 71
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
72 73
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
74 75
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
76 77 78 79

	return false;
}

80
static struct page *get_huge_zero_page(void)
81 82 83 84
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85
		return READ_ONCE(huge_zero_page);
86 87

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88
			HPAGE_PMD_ORDER);
89 90
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91
		return NULL;
92 93
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
94
	preempt_disable();
95
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96
		preempt_enable();
97
		__free_pages(zero_page, compound_order(zero_page));
98 99 100 101 102 103
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
104
	return READ_ONCE(huge_zero_page);
105 106
}

107
static void put_huge_zero_page(void)
108
{
109 110 111 112 113
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 115
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

136 137
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
138
{
139 140 141
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
142

143 144 145
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
146
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 148
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
149
		__free_pages(zero_page, compound_order(zero_page));
150
		return HPAGE_PMD_NR;
151 152 153
	}

	return 0;
154 155
}

156
static struct shrinker huge_zero_page_shrinker = {
157 158
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
159 160 161
	.seeks = DEFAULT_SEEKS,
};

162 163 164 165
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
166 167 168 169 170 171
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
172
}
173

174 175 176 177
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
178
	ssize_t ret = count;
Andrea Arcangeli's avatar
Andrea Arcangeli committed
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
Andrea Arcangeli's avatar
Andrea Arcangeli committed
194 195

	if (ret > 0) {
196
		int err = start_stop_khugepaged();
Andrea Arcangeli's avatar
Andrea Arcangeli committed
197 198 199 200
		if (err)
			ret = err;
	}
	return ret;
201 202 203 204
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

205
ssize_t single_hugepage_flag_show(struct kobject *kobj,
206 207 208
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
209 210
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
211
}
212

213
ssize_t single_hugepage_flag_store(struct kobject *kobj,
214 215 216 217
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
218 219 220 221 222 223 224 225 226 227
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
228
		set_bit(flag, &transparent_hugepage_flags);
229
	else
230 231 232 233 234 235 236 237
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
238
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
239
		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
240
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
241 242 243 244 245 246
		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
247
}
248

249 250 251 252
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
253 254 255 256 257 258 259 260 261 262 263 264
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("defer+madvise", buf,
		    min(sizeof("defer+madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
265 266 267 268 269 270
	} else if (!memcmp("defer", buf,
		    min(sizeof("defer")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
287 288 289 290
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

291 292 293
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
294
	return single_hugepage_flag_show(kobj, attr, buf,
295 296 297 298 299
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
300
	return single_hugepage_flag_store(kobj, attr, buf, count,
301 302 303 304
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
305 306 307 308 309 310 311 312 313

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

314 315 316 317
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
318
	return single_hugepage_flag_show(kobj, attr, buf,
319 320 321 322 323 324
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
325
	return single_hugepage_flag_store(kobj, attr, buf, count,
326 327 328 329 330 331 332 333 334
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
335
	&use_zero_page_attr.attr,
336
	&hpage_pmd_size_attr.attr,
337
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
338 339
	&shmem_enabled_attr.attr,
#endif
340 341 342 343 344 345
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

346
static const struct attribute_group hugepage_attr_group = {
347
	.attrs = hugepage_attr,
Andrea Arcangeli's avatar
Andrea Arcangeli committed
348 349
};

350
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
351 352 353
{
	int err;

354 355
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
356
		pr_err("failed to create transparent hugepage kobject\n");
357
		return -ENOMEM;
Andrea Arcangeli's avatar
Andrea Arcangeli committed
358 359
	}

360
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
Andrea Arcangeli's avatar
Andrea Arcangeli committed
361
	if (err) {
362
		pr_err("failed to register transparent hugepage group\n");
363
		goto delete_obj;
Andrea Arcangeli's avatar
Andrea Arcangeli committed
364 365
	}

366
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
Andrea Arcangeli's avatar
Andrea Arcangeli committed
367
	if (err) {
368
		pr_err("failed to register transparent hugepage group\n");
369
		goto remove_hp_group;
Andrea Arcangeli's avatar
Andrea Arcangeli committed
370
	}
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

408 409 410 411 412 413 414 415 416 417
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

418 419
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
420
		goto err_sysfs;
Andrea Arcangeli's avatar
Andrea Arcangeli committed
421

422
	err = khugepaged_init();
Andrea Arcangeli's avatar
Andrea Arcangeli committed
423
	if (err)
424
		goto err_slab;
Andrea Arcangeli's avatar
Andrea Arcangeli committed
425

426 427 428
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
429 430 431
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
432

433 434 435 436 437
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
438
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
439
		transparent_hugepage_flags = 0;
440 441
		return 0;
	}
442

443
	err = start_stop_khugepaged();
444 445
	if (err)
		goto err_khugepaged;
Andrea Arcangeli's avatar
Andrea Arcangeli committed
446

447
	return 0;
448
err_khugepaged:
449 450
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
451 452
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
453
	khugepaged_destroy();
454
err_slab:
455
	hugepage_exit_sysfs(hugepage_kobj);
456
err_sysfs:
Andrea Arcangeli's avatar
Andrea Arcangeli committed
457
	return err;
458
}
459
subsys_initcall(hugepage_init);
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
487
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
488 489 490 491
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

492
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
493
{
494
	if (likely(vma->vm_flags & VM_WRITE))
495 496 497 498
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

499 500
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
501
{
502 503 504 505 506 507 508
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
509
}
510 511 512 513 514 515 516 517
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
518 519 520 521 522 523 524 525 526 527 528 529

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

530 531
static unsigned long __thp_get_unmapped_area(struct file *filp,
		unsigned long addr, unsigned long len,
532 533 534 535
		loff_t off, unsigned long flags, unsigned long size)
{
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
536
	unsigned long len_pad, ret;
537 538 539 540 541 542 543 544

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

545
	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
546
					      off >> PAGE_SHIFT, flags);
547 548 549 550 551 552

	/*
	 * The failure might be due to length padding. The caller will retry
	 * without the padding.
	 */
	if (IS_ERR_VALUE(ret))
553 554
		return 0;

555 556 557 558 559 560 561 562 563
	/*
	 * Do not try to align to THP boundary if allocation at the address
	 * hint succeeds.
	 */
	if (ret == addr)
		return addr;

	ret += (off - ret) & (size - 1);
	return ret;
564 565 566 567 568
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
569
	unsigned long ret;
570 571 572 573 574
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

575 576 577 578
	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
	if (ret)
		return ret;
out:
579 580 581 582
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

583 584
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
585
{
586
	struct vm_area_struct *vma = vmf->vma;
587
	struct mem_cgroup *memcg;
588
	pgtable_t pgtable;
589
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
590
	vm_fault_t ret = 0;
591

592
	VM_BUG_ON_PAGE(!PageCompound(page), page);
593

594
	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
595 596 597 598
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
		return VM_FAULT_FALLBACK;
	}
599

600
	pgtable = pte_alloc_one(vma->vm_mm);
601
	if (unlikely(!pgtable)) {
602 603
		ret = VM_FAULT_OOM;
		goto release;
604
	}
605

606
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
607 608 609 610 611
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
612 613
	__SetPageUptodate(page);

614 615
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
616
		goto unlock_release;
617 618
	} else {
		pmd_t entry;
619

620 621 622 623
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

624 625
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
626
			vm_fault_t ret2;
627

628
			spin_unlock(vmf->ptl);
629
			mem_cgroup_cancel_charge(page, memcg, true);
630
			put_page(page);
631
			pte_free(vma->vm_mm, pgtable);
632 633 634
			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
			return ret2;
635 636
		}

637
		entry = mk_huge_pmd(page, vma->vm_page_prot);
638
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
639
		page_add_new_anon_rmap(page, vma, haddr, true);
640
		mem_cgroup_commit_charge(page, memcg, false, true);
641
		lru_cache_add_active_or_unevictable(page, vma);
642 643
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
644
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
645
		mm_inc_nr_ptes(vma->vm_mm);
646
		spin_unlock(vmf->ptl);
647
		count_vm_event(THP_FAULT_ALLOC);
648
		count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
649 650
	}

651
	return 0;
652 653 654 655 656 657 658 659 660
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	mem_cgroup_cancel_charge(page, memcg, true);
	put_page(page);
	return ret;

661 662
}

663
/*
664 665 666 667 668 669 670
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
671
 */
672
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
673
{
674
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
675

676
	/* Always do synchronous compaction */
677 678
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
679 680

	/* Kick kcompactd and fail quickly */
681
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
682
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
683 684

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
685
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
686 687 688
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
689 690

	/* Only do synchronous compaction if madvised */
691
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
692 693
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
694

695
	return GFP_TRANSHUGE_LIGHT;
696 697
}

698
/* Caller must hold page table lock. */
699
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
700
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
701
		struct page *zero_page)
702 703
{
	pmd_t entry;
704 705
	if (!pmd_none(*pmd))
		return false;
706
	entry = mk_pmd(zero_page, vma->vm_page_prot);
707
	entry = pmd_mkhuge(entry);
708 709
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
710
	set_pmd_at(mm, haddr, pmd, entry);
711
	mm_inc_nr_ptes(mm);
712
	return true;
713 714
}

715
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
716
{
717
	struct vm_area_struct *vma = vmf->vma;
718
	gfp_t gfp;
719
	struct page *page;
720
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
721

722
	if (!transhuge_vma_suitable(vma, haddr))
723
		return VM_FAULT_FALLBACK;
724 725
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
726
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
727
		return VM_FAULT_OOM;
728
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
729
			!mm_forbids_zeropage(vma->vm_mm) &&
730 731 732 733
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
734
		vm_fault_t ret;
735
		pgtable = pte_alloc_one(vma->vm_mm);
736
		if (unlikely(!pgtable))
Andrea Arcangeli's avatar
Andrea Arcangeli committed
737
			return VM_FAULT_OOM;
738
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
739
		if (unlikely(!zero_page)) {
740
			pte_free(vma->vm_mm, pgtable);
741
			count_vm_event(THP_FAULT_FALLBACK);
742
			return VM_FAULT_FALLBACK;
Andrea Arcangeli's avatar
Andrea Arcangeli committed
743
		}
744
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
745 746
		ret = 0;
		set = false;
747
		if (pmd_none(*vmf->pmd)) {
748 749 750 751
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
			} else if (userfaultfd_missing(vma)) {
752 753
				spin_unlock(vmf->ptl);
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
754 755
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
756
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
757 758
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
759 760 761
				set = true;
			}
		} else
762
			spin_unlock(vmf->ptl);
763
		if (!set)
764
			pte_free(vma->vm_mm, pgtable);
765
		return ret;
766
	}
767 768
	gfp = alloc_hugepage_direct_gfpmask(vma);
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
769 770
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
771
		return VM_FAULT_FALLBACK;
772
	}
773
	prep_transhuge_page(page);
774
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
775 776
}

777
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
778 779
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
780 781 782 783 784 785
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

801 802 803
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
804
	if (write) {
805 806
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
807
	}
808 809 810

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
811
		mm_inc_nr_ptes(mm);
812
		pgtable = NULL;
813 814
	}

815 816
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
817 818

out_unlock:
819
	spin_unlock(ptl);
820 821
	if (pgtable)
		pte_free(mm, pgtable);
822 823
}

824
vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
825
{
826 827
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
828
	pgprot_t pgprot = vma->vm_page_prot;
829
	pgtable_t pgtable = NULL;
830

831 832 833 834 835
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
836 837
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
838 839 840 841 842 843
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
844

845
	if (arch_needs_pgtable_deposit()) {
846
		pgtable = pte_alloc_one(vma->vm_mm);
847 848 849 850
		if (!pgtable)
			return VM_FAULT_OOM;
	}

851 852
	track_pfn_insert(vma, &pgprot, pfn);

853
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
854
	return VM_FAULT_NOPAGE;
855
}
856
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
857

858
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
859
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
860
{
861
	if (likely(vma->vm_flags & VM_WRITE))
862 863 864 865 866 867 868 869 870 871 872 873
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
874 875 876 877 878 879 880 881 882 883 884 885 886 887
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

888 889 890 891
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
892 893
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
894 895 896
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
897 898

out_unlock:
899 900 901
	spin_unlock(ptl);
}

902
vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
903
{
904 905
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;
906
	pgprot_t pgprot = vma->vm_page_prot;
907

908 909 910 911 912
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
913 914
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
915 916 917 918 919 920 921 922 923
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

924
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
925 926 927 928 929
	return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

930
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
931
		pmd_t *pmd, int flags)
932 933 934
{
	pmd_t _pmd;

935 936 937
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
938
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
939
				pmd, _pmd, flags & FOLL_WRITE))
940 941 942 943
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
944
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
945 946 947 948 949 950 951
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

952 953 954 955 956 957
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

958
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
959 960 961 962 963 964 965 966
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
967
		touch_pmd(vma, addr, pmd, flags);
968 969 970 971 972 973 974 975 976

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
977 978
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
979 980 981 982 983 984 985
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);

	return page;
}

986 987 988 989
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
990
	spinlock_t *dst_ptl, *src_ptl;
991 992
	struct page *src_page;
	pmd_t pmd;
993
	pgtable_t pgtable = NULL;
994
	int ret = -ENOMEM;
995

996 997 998 999
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

1000
	pgtable = pte_alloc_one(dst_mm);
1001 1002
	if (unlikely(!pgtable))
		goto out;
1003

1004 1005 1006
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1007 1008 1009

	ret = -EAGAIN;
	pmd = *src_pmd;
1010 1011 1012 1013 1014 1015 1016 1017 1018

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
1019 1020
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1021 1022
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1023
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1024
		mm_inc_nr_ptes(dst_mm);
1025
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1026 1027 1028 1029 1030 1031
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1032
	if (unlikely(!pmd_trans_huge(pmd))) {
1033 1034 1035
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1036
	/*
1037
	 * When page table lock is held, the huge zero pmd should not be
1038 1039 1040 1041
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1042
		struct page *zero_page;
1043 1044 1045 1046 1047
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1048
		zero_page = mm_get_huge_zero_page(dst_mm);
1049
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1050
				zero_page);
1051 1052 1053
		ret = 0;
		goto out_unlock;
	}
1054

1055 1056 1057 1058 1059
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1060
	mm_inc_nr_ptes(dst_mm);
1061
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1062 1063 1064 1065 1066 1067 1068

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1069 1070
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1071 1072 1073 1074
out:
	return ret;
}

1075 1076
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1077
		pud_t *pud, int flags)
1078 1079 1080
{
	pud_t _pud;

1081 1082 1083
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1084
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1085
				pud, _pud, flags & FOLL_WRITE))
1086 1087 1088 1089
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1090
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1091 1092 1093 1094 1095 1096 1097
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1098
	if (flags & FOLL_WRITE && !pud_write(*pud))
1099 1100 1101 1102 1103 1104 1105 1106
		return NULL;

	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1107
		touch_pud(vma, addr, pud, flags);
1108 1109 1110 1111 1112 1113 1114 1115 1116

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1117 1118
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1185
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1186 1187 1188
{
	pmd_t entry;
	unsigned long haddr;
1189
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1190

1191 1192
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1193 1194 1195
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1196 1197
	if (write)
		entry = pmd_mkdirty(entry);
1198
	haddr = vmf->address & HPAGE_PMD_MASK;
1199
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1200
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1201 1202

unlock:
1203
	spin_unlock(vmf->ptl);
1204 1205
}

1206 1207
static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
			pmd_t orig_pmd, struct page *page)
1208
{
1209 1210
	struct vm_area_struct *vma = vmf->vma;
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1211
	struct mem_cgroup *memcg;
1212 1213
	pgtable_t pgtable;
	pmd_t _pmd;
1214 1215
	int i;
	vm_fault_t ret = 0;
1216
	struct page **pages;
1217
	struct mmu_notifier_range range;
1218

1219 1220
	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
			      GFP_KERNEL);
1221 1222 1223 1224 1225 1226
	if (unlikely(!pages)) {
		ret |= VM_FAULT_OOM;
		goto out;
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
1227
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1228
					       vmf->address, page_to_nid(page));
Andrea Arcangeli's avatar
Andrea Arcangeli committed
1229
		if (unlikely(!pages[i] ||
1230
			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1231
				     GFP_KERNEL, &memcg, false))) {
Andrea Arcangeli's avatar
Andrea Arcangeli committed
1232
			if (pages[i])
1233
				put_page(pages[i]);
Andrea Arcangeli's avatar
Andrea Arcangeli committed
1234
			while (--i >= 0) {
1235 1236
				memcg = (void *)page_private(pages[i]);
				set_page_private(pages[i], 0);
1237 1238
				mem_cgroup_cancel_charge(pages[i], memcg,
						false);
Andrea Arcangeli's avatar
Andrea Arcangeli committed
1239 1240
				put_page(pages[i]);
			}
1241 1242 1243 1244
			kfree(pages);
			ret |= VM_FAULT_OOM;
			goto out;
		}
1245
		set_page_private(pages[i], (unsigned long)memcg);
1246 1247 1248 1249
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		copy_user_highpage(pages[i], page + i,
1250
				   haddr + PAGE_SIZE * i, vma);
1251 1252 1253 1254
		__SetPageUptodate(pages[i]);
		cond_resched();
	}

1255 1256
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
				haddr, haddr + HPAGE_PMD_SIZE);
1257
	mmu_notifier_invalidate_range_start(&range);
1258

1259 1260
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1261
		goto out_free_pages;
1262
	VM_BUG_ON_PAGE(!PageHead(page), page);
1263

1264 1265 1266 1267 1268 1269
	/*
	 * Leave pmd empty until pte is filled note we must notify here as
	 * concurrent CPU thread might write to new page before the call to
	 * mmu_notifier_invalidate_range_end() happens which can lead to a
	 * device seeing memory write in different order than CPU.
	 *
1270
	 * See Documentation/vm/mmu_notifier.rst
1271
	 */
1272
	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1273

1274
	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1275
	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1276 1277

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1278
		pte_t entry;
1279 1280
		entry = mk_pte(pages[i], vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1281 1282
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
1283
		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1284
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1285
		lru_cache_add_active_or_unevictable(pages[i], vma);
1286 1287 1288 1289
		vmf->pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*vmf->pte));
		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
		pte_unmap(vmf->pte);
1290 1291 1292 1293
	}
	kfree(pages);

	smp_wmb(); /* make pte visible before pmd */
1294
	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1295
	page_remove_rmap(page, true);
1296
	spin_unlock(vmf->ptl);
1297

1298 1299 1300 1301
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
1302
	mmu_notifier_invalidate_range_only_end(&range);
1303

1304 1305 1306 1307 1308 1309 1310
	ret |= VM_FAULT_WRITE;
	put_page(page);

out:
	return ret;

out_free_pages:
1311
	spin_unlock(vmf->ptl);
1312
	mmu_notifier_invalidate_range_end(&range);
Andrea Arcangeli's avatar
Andrea Arcangeli committed
1313
	for (i = 0; i < HPAGE_PMD_NR; i++) {
1314 1315
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
1316
		mem_cgroup_cancel_charge(pages[i], memcg, false);
1317
		put_page(pages[i]);
Andrea Arcangeli's avatar
Andrea Arcangeli committed
1318
	}
1319 1320 1321 1322
	kfree(pages);
	goto out;
}

1323
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1324
{
1325
	struct vm_area_struct *vma = vmf->vma;
1326
	struct page *page = NULL, *new_page;
1327
	struct mem_cgroup *memcg;
1328
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1329
	struct mmu_notifier_range range;
1330
	gfp_t huge_gfp;			/* for allocation and charge */
1331
	vm_fault_t ret = 0;
1332

1333
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1334
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1335 1336
	if (is_huge_zero_pmd(orig_pmd))
		goto alloc;
1337 1338
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1339 1340 1341
		goto out_unlock;

	page = pmd_page(orig_pmd);
1342
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1343 1344
	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
1345
	 * part.
1346
	 */
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
			unlock_page(page);
			put_page(page);
			goto out_unlock;
		}
		put_page(page);
	}
	if (reuse_swap_page(page, NULL)) {
1360 1361
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1362
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1363 1364
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1365
		ret |= VM_FAULT_WRITE;
1366
		unlock_page(page);
1367 1368
		goto out_unlock;
	}
1369
	unlock_page(page);
1370
	get_page(page);
1371
	spin_unlock(vmf->ptl);
1372
alloc:
1373
	if (__transparent_hugepage_enabled(vma) &&
1374
	    !transparent_hugepage_debug_cow()) {
1375 1376
		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1377
	} else
1378 1379
		new_page = NULL;

1380 1381 1382
	if (likely(new_page)) {
		prep_transhuge_page(new_page);
	} else {
1383
		if (!page) {
1384
			split_huge_pmd(vma, vmf->pmd, vmf->address);
1385
			ret |= VM_FAULT_FALLBACK;
1386
		} else {
1387
			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1388
			if (ret & VM_FAULT_OOM) {
1389
				split_huge_pmd(vma, vmf->pmd, vmf->address);
1390 1391
				ret |= VM_FAULT_FALLBACK;
			}
1392
			put_page(page);
1393
		}
1394
		count_vm_event(THP_FAULT_FALLBACK);
1395 1396 1397
		goto out;
	}

1398
	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1399
					huge_gfp, &memcg, true))) {
Andrea Arcangeli's avatar
Andrea Arcangeli committed
1400
		put_page(new_page);
1401
		split_huge_pmd(vma, vmf->pmd, vmf->address);
1402
		if (page)
1403
			put_page(page);
1404
		ret |= VM_FAULT_FALLBACK;
1405
		count_vm_event(THP_FAULT_FALLBACK);
Andrea Arcangeli's avatar
Andrea Arcangeli committed
1406 1407 1408
		goto out;
	}

1409
	count_vm_event(THP_FAULT_ALLOC);
1410
	count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1411

1412
	if (!page)
1413
		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1414
	else
1415 1416
		copy_user_huge_page(new_page, page, vmf->address,
				    vma, HPAGE_PMD_NR);
1417 1418
	__SetPageUptodate(new_page);

1419 1420
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
				haddr, haddr + HPAGE_PMD_SIZE);
1421
	mmu_notifier_invalidate_range_start(&range);
1422

1423
	spin_lock(vmf->ptl);
1424
	if (page)
1425
		put_page(page);
1426 1427
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
1428
		mem_cgroup_cancel_charge(new_page, memcg, true);
1429
		put_page(new_page);
1430
		goto out_mn;
Andrea Arcangeli's avatar
Andrea Arcangeli committed
1431
	} else {
1432
		pmd_t entry;
1433
		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1434
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1435
		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1436
		page_add_new_anon_rmap(new_page, vma, haddr, true);
1437
		mem_cgroup_commit_charge(new_page, memcg, false, true);
1438
		lru_cache_add_active_or_unevictable(new_page, vma);
1439 1440
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1441
		if (!page) {
1442
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1443
		} else {
1444
			VM_BUG_ON_PAGE(!PageHead(page), page);
1445
			page_remove_rmap(page, true);
1446 1447
			put_page(page);
		}
1448 1449
		ret |= VM_FAULT_WRITE;
	}
1450
	spin_unlock(vmf->ptl);
1451
out_mn:
1452 1453 1454 1455
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
1456
	mmu_notifier_invalidate_range_only_end(&range);
1457 1458
out:
	return ret;
1459
out_unlock:
1460
	spin_unlock(vmf->ptl);
1461
	return ret;
1462 1463
}

1464 1465 1466 1467 1468 1469
/*
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1470
	return pmd_write(pmd) ||
1471 1472 1473
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
}

1474
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1475 1476 1477 1478
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1479
	struct mm_struct *mm = vma->vm_mm;
1480 1481
	struct page *page = NULL;

1482
	assert_spin_locked(pmd_lockptr(mm, pmd));
1483

1484
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1485 1486
		goto out;

1487 1488 1489 1490
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1491
	/* Full NUMA hinting faults to serialise migration in fault paths */
1492
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1493 1494
		goto out;

1495
	page = pmd_page(*pmd);
1496
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1497
	if (flags & FOLL_TOUCH)
1498
		touch_pmd(vma, addr, pmd, flags);
1499
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1500 1501 1502 1503
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1504 1505
		 * For anon THP:
		 *
1506 1507 1508 1509 1510 1511 1512
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1513 1514 1515 1516 1517 1518
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1519
		 */
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1531
	}
1532
skip_mlock:
1533
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1534
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1535
	if (flags & FOLL_GET)
1536
		get_page(page);
1537 1538 1539 1540 1541

out:
	return page;
}

1542
/* NUMA hinting page fault entry point for trans huge pmds */
1543
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1544
{
1545
	struct vm_area_struct *vma = vmf->vma;
1546
	struct anon_vma *anon_vma = NULL;
1547
	struct page *page;
1548
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1549
	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1550
	int target_nid, last_cpupid = -1;
1551 1552
	bool page_locked;
	bool migrated = false;
1553
	bool was_writable;
1554
	int flags = 0;
1555

1556 1557
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1558 1559
		goto out_unlock;

1560 1561 1562 1563 1564
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
1565 1566
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1567 1568
		if (!get_page_unless_zero(page))
			goto out_unlock;
1569
		spin_unlock(vmf->ptl);
1570
		put_and_wait_on_page_locked(page);
1571 1572 1573
		goto out;
	}

1574
	page = pmd_page(pmd);
1575
	BUG_ON(is_huge_zero_page(page));
1576
	page_nid = page_to_nid(page);
1577
	last_cpupid = page_cpupid_last(page);
1578
	count_vm_numa_event(NUMA_HINT_FAULTS);
1579
	if (page_nid == this_nid) {
1580
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1581 1582
		flags |= TNF_FAULT_LOCAL;
	}
1583

1584
	/* See similar comment in do_numa_page for explanation */
1585
	if (!pmd_savedwrite(pmd))
1586 1587
		flags |= TNF_NO_GROUP;

1588 1589 1590 1591
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1592 1593
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
1594
	if (target_nid == NUMA_NO_NODE) {
1595
		/* If the page was locked, there are no parallel migrations */
1596
		if (page_locked)
1597
			goto clear_pmdnuma;
1598
	}
1599

1600
	/* Migration could have started since the pmd_trans_migrating check */
1601
	if (!page_locked) {
1602
		page_nid = NUMA_NO_NODE;
1603 1604
		if (!get_page_unless_zero(page))
			goto out_unlock;
1605
		spin_unlock(vmf->ptl);
1606
		put_and_wait_on_page_locked(page);
1607 1608 1609
		goto out;
	}

1610 1611 1612 1613
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1614
	get_page(page);
1615
	spin_unlock(vmf->ptl);
1616
	anon_vma = page_lock_anon_vma_read(page);
1617

Peter Zijlstra's avatar
Peter Zijlstra committed
1618
	/* Confirm the PMD did not change while page_table_lock was released */
1619 1620
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1621 1622
		unlock_page(page);
		put_page(page);
1623
		page_nid = NUMA_NO_NODE;
1624
		goto out_unlock;
1625
	}
1626

1627 1628 1629
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
1630
		page_nid = NUMA_NO_NODE;
1631 1632 1633
		goto clear_pmdnuma;
	}

1634 1635 1636 1637 1638 1639
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1640 1641 1642 1643
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1644
	 */
1645
	if (mm_tlb_flush_pending(vma->vm_mm)) {
1646
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
		/*
		 * change_huge_pmd() released the pmd lock before
		 * invalidating the secondary MMUs sharing the primary
		 * MMU pagetables (with ->invalidate_range()). The
		 * mmu_notifier_invalidate_range_end() (which
		 * internally calls ->invalidate_range()) in
		 * change_pmd_range() will run after us, so we can't
		 * rely on it here and we need an explicit invalidate.
		 */
		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
					      haddr + HPAGE_PMD_SIZE);
	}
1659

1660 1661
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1662
	 * and access rights restored.
1663
	 */
1664
	spin_unlock(vmf->ptl);
1665

1666
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1667
				vmf->pmd, pmd, vmf->address, page, target_nid);
1668 1669
	if (migrated) {
		flags |= TNF_MIGRATED;
1670
		page_nid = target_nid;
1671 1672
	} else
		flags |= TNF_MIGRATE_FAIL;
1673

1674
	goto out;
1675
clear_pmdnuma:
1676
	BUG_ON(!PageLocked(page));
1677
	was_writable = pmd_savedwrite(pmd);
1678
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1679
	pmd = pmd_mkyoung(pmd);
1680 1681
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
1682 1683
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1684
	unlock_page(page);
1685
out_unlock:
1686
	spin_unlock(vmf->ptl);
1687 1688 1689 1690 1691

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1692
	if (page_nid != NUMA_NO_NODE)
1693
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1694
				flags);
1695

1696 1697 1698
	return 0;
}

1699 1700 1701 1702 1703
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1704 1705 1706 1707 1708 1709
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1710
	bool ret = false;
1711

1712
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1713

1714 1715
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1716
		goto out_unlocked;
1717 1718

	orig_pmd = *pmd;
1719
	if (is_huge_zero_pmd(orig_pmd))
1720 1721
		goto out;

1722 1723 1724 1725 1726 1727
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1746
		split_huge_page(page);
1747
		unlock_page(page);
1748
		put_page(page);
1749 1750 1751 1752 1753 1754 1755 1756
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1757
		pmdp_invalidate(vma, addr, pmd);
1758 1759 1760 1761 1762 1763
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
Shaohua Li's avatar
Shaohua Li committed
1764 1765

	mark_page_lazyfree(page);
1766
	ret = true;
1767 1768 1769 1770 1771 1772
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1773 1774 1775 1776 1777 1778
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1779
	mm_dec_nr_ptes(mm);
1780 1781
}

1782
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1783
		 pmd_t *pmd, unsigned long addr)
1784
{
1785
	pmd_t orig_pmd;
1786
	spinlock_t *ptl;
1787

1788
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1789

1790 1791
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	if (vma_is_dax(vma)) {
1803 1804
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1805 1806
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1807
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1808
	} else if (is_huge_zero_pmd(orig_pmd)) {
1809
		zap_deposited_table(tlb->mm, pmd);
1810
		spin_unlock(ptl);
1811
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1812
	} else {
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1831
		if (PageAnon(page)) {
1832
			zap_deposited_table(tlb->mm, pmd);
1833 1834
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1835 1836
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1837
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1838
		}
1839

1840
		spin_unlock(ptl);
1841 1842
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1843
	}
1844
	return 1;
1845 1846
}

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1873
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1874
		  unsigned long new_addr, unsigned long old_end,
1875
		  pmd_t *old_pmd, pmd_t *new_pmd)
1876
{
1877
	spinlock_t *old_ptl, *new_ptl;
1878 1879
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1880
	bool force_flush = false;
1881 1882 1883

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1884
	    old_end - old_addr < HPAGE_PMD_SIZE)
1885
		return false;
1886 1887 1888 1889 1890 1891 1892

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1893
		return false;
1894 1895
	}

1896 1897 1898 1899
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1900 1901
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1902 1903 1904
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1905
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1906
		if (pmd_present(pmd))
1907
			force_flush = true;
1908
		VM_BUG_ON(!pmd_none(*new_pmd));
1909

1910
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1911
			pgtable_t pgtable;
1912 1913 1914
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1915 1916
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1917 1918
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1919 1920
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1921
		spin_unlock(old_ptl);
1922
		return true;
1923
	}
1924
	return false;
1925 1926
}

1927 1928 1929 1930 1931 1932
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1933
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1934
		unsigned long addr, pgprot_t newprot, int prot_numa)
1935 1936
{
	struct mm_struct *mm = vma->vm_mm;
1937
	spinlock_t *ptl;
1938 1939 1940
	pmd_t entry;
	bool preserve_write;
	int ret;
1941

1942
	ptl = __pmd_trans_huge_lock(pmd, vma);
1943 1944
	if (!ptl)
		return 0;
1945

1946 1947
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1948

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1962 1963
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1964 1965 1966 1967 1968 1969
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1970 1971 1972 1973 1974 1975 1976
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1977

1978 1979 1980
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	/*
	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
	 * which is also under down_read(mmap_sem):
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
2002
	entry = pmdp_invalidate(vma, addr, pmd);
2003

2004 2005 2006 2007 2008 2009 2010 2011
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
2012 2013 2014 2015
	return ret;
}

/*
2016
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2017
 *
2018 2019
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
2020
 */
2021
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2022
{
2023 2024
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
2025 2026
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
2027 2028 2029
		return ptl;
	spin_unlock(ptl);
	return NULL;
2030 2031
}

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
2064
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
	if (vma_is_dax(vma)) {
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

2084
	count_vm_event(THP_SPLIT_PUD);
2085 2086 2087 2088 2089 2090 2091 2092

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
2093
	struct mmu_notifier_range range;
2094

2095
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2096
				address & HPAGE_PUD_MASK,
2097 2098 2099
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
2100 2101
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
2102
	__split_huge_pud_locked(vma, pud, range.start);
2103 2104 2105

out:
	spin_unlock(ptl);
2106 2107 2108 2109
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
2110
	mmu_notifier_invalidate_range_only_end(&range);
2111 2112 2113
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

2114 2115 2116 2117 2118 2119 2120 2121
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

2122 2123 2124 2125 2126 2127
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
2128
	 * See Documentation/vm/mmu_notifier.rst
2129 2130
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2149
		unsigned long haddr, bool freeze)
2150 2151 2152 2153
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2154
	pmd_t old_pmd, _pmd;
2155
	bool young, write, soft_dirty, pmd_migration = false;
2156
	unsigned long addr;
2157 2158 2159 2160 2161
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2162 2163
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2164 2165 2166

	count_vm_event(THP_SPLIT_PMD);

2167 2168
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2169 2170 2171 2172 2173 2174
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2175 2176 2177
		if (vma_is_dax(vma))
			return;
		page = pmd_page(_pmd);
2178 2179
		if (!PageDirty(page) && pmd_dirty(_pmd))
			set_page_dirty(page);
2180 2181 2182 2183
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
2184
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2185 2186
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
2187 2188 2189 2190 2191 2192 2193 2194 2195
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2196 2197 2198
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2222
	if (unlikely(pmd_migration)) {
2223 2224
		swp_entry_t entry;

2225
		entry = pmd_to_swp_entry(old_pmd);
2226
		page = pfn_to_page(swp_offset(entry));
2227 2228 2229 2230
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
	} else {
2231
		page = pmd_page(old_pmd);
2232 2233 2234 2235 2236 2237
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
	}
2238
	VM_BUG_ON_PAGE(!page_count(page), page);
2239
	page_ref_add(page, HPAGE_PMD_NR - 1);
2240

2241 2242 2243 2244
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2245 2246 2247
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2248
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2249 2250 2251 2252 2253 2254
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2255
		if (freeze || pmd_migration) {
2256 2257 2258
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2259 2260
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2261
		} else {
2262
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2263
			entry = maybe_mkwrite(entry, vma);
2264 2265 2266 2267
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2268 2269
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2270
		}
2271
		pte = pte_offset_map(&_pmd, addr);
2272
		BUG_ON(!pte_none(*pte));
2273
		set_pte_at(mm, addr, pte, entry);
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
2289
		__dec_node_page_state(page, NR_ANON_THPS);
2290 2291 2292 2293 2294 2295 2296 2297 2298
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2299 2300

	if (freeze) {
2301
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2302 2303 2304 2305
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2306 2307 2308
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2309
		unsigned long address, bool freeze, struct page *page)
2310 2311
{
	spinlock_t *ptl;
2312
	struct mmu_notifier_range range;
2313

2314
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2315
				address & HPAGE_PMD_MASK,
2316 2317 2318
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2319 2320 2321 2322 2323 2324 2325 2326 2327

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

2328
	if (pmd_trans_huge(*pmd)) {
2329
		page = pmd_page(*pmd);
2330
		if (PageMlocked(page))
2331
			clear_page_mlock(page);
2332
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2333
		goto out;
2334
	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2335
out:
2336
	spin_unlock(ptl);
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2350
	mmu_notifier_invalidate_range_only_end(&range);
2351 2352
}

2353 2354
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2355
{
2356
	pgd_t *pgd;
2357
	p4d_t *p4d;
2358
	pud_t *pud;
2359 2360
	pmd_t *pmd;

2361
	pgd = pgd_offset(vma->vm_mm, address);
2362 2363 2364
	if (!pgd_present(*pgd))
		return;

2365 2366 2367 2368 2369
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2370 2371 2372 2373
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2374

2375
	__split_huge_pmd(vma, pmd, address, freeze, page);
2376 2377
}

2378
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2391
		split_huge_pmd_address(vma, start, false, NULL);
2392 2393 2394 2395 2396 2397 2398 2399 2400

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2401
		split_huge_pmd_address(vma, end, false, NULL);
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2415
			split_huge_pmd_address(next, nstart, false, NULL);
2416 2417
	}
}
2418

2419
static void unmap_page(struct page *page)
2420
{
2421
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2422
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2423
	bool unmap_success;
2424 2425 2426

	VM_BUG_ON_PAGE(!PageHead(page), page);

2427
	if (PageAnon(page))
2428
		ttu_flags |= TTU_SPLIT_FREEZE;
2429

2430 2431
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2432 2433
}

2434
static void remap_page(struct page *page)
2435
{
2436
	int i;
2437 2438 2439 2440 2441 2442
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			remove_migration_ptes(page + i, page + i, true);
	}
2443 2444
}

2445
static void __split_huge_page_tail(struct page *head, int tail,
2446 2447 2448 2449
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2450
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2451 2452

	/*
2453 2454 2455 2456
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
	 * for exmaple lock_page() which set PG_waiters.
2457 2458 2459 2460 2461
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2462
			 (1L << PG_swapcache) |
2463 2464 2465
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2466
			 (1L << PG_workingset) |
2467
			 (1L << PG_locked) |
2468 2469
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
2470

2471 2472 2473 2474 2475 2476
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2477
	/* Page flags must be visible before we make the page non-compound. */
2478 2479
	smp_wmb();

2480 2481 2482 2483 2484 2485
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2486 2487
	clear_compound_head(page_tail);

2488 2489 2490 2491
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2492 2493 2494 2495 2496 2497
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
Michal Hocko's avatar
Michal Hocko committed
2498 2499 2500 2501 2502 2503

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2504 2505 2506
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2507
static void __split_huge_page(struct page *page, struct list_head *list,
2508
		pgoff_t end, unsigned long flags)
2509 2510
{
	struct page *head = compound_head(page);
2511
	pg_data_t *pgdat = page_pgdat(head);
2512
	struct lruvec *lruvec;
2513 2514
	struct address_space *swap_cache = NULL;
	unsigned long offset = 0;
2515
	int i;
2516

2517
	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2518 2519 2520 2521

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2522 2523 2524 2525 2526 2527 2528 2529
	if (PageAnon(head) && PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		offset = swp_offset(entry);
		swap_cache = swap_address_space(entry);
		xa_lock(&swap_cache->i_pages);
	}

2530
	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2531
		__split_huge_page_tail(head, i, lruvec, list);
2532 2533
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2534
			ClearPageDirty(head + i);
2535
			__delete_from_page_cache(head + i, NULL);
2536 2537
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2538
			put_page(head + i);
2539 2540 2541 2542 2543 2544
		} else if (!PageAnon(page)) {
			__xa_store(&head->mapping->i_pages, head[i].index,
					head + i, 0);
		} else if (swap_cache) {
			__xa_store(&swap_cache->i_pages, offset + i,
					head + i, 0);
2545 2546
		}
	}
2547 2548

	ClearPageCompound(head);
2549 2550 2551

	split_page_owner(head, HPAGE_PMD_ORDER);

2552 2553
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
2554
		/* Additional pin to swap cache */
2555
		if (PageSwapCache(head)) {
2556
			page_ref_add(head, 2);
2557 2558
			xa_unlock(&swap_cache->i_pages);
		} else {
2559
			page_ref_inc(head);
2560
		}
2561
	} else {
2562
		/* Additional pin to page cache */
2563
		page_ref_add(head, 2);
Matthew Wilcox's avatar
Matthew Wilcox committed
2564
		xa_unlock(&head->mapping->i_pages);
2565 2566
	}

2567
	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2568

2569
	remap_page(head);
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2588 2589
int total_mapcount(struct page *page)
{
2590
	int i, compound, ret;
2591 2592 2593 2594 2595 2596

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

2597
	compound = compound_mapcount(page);
2598
	if (PageHuge(page))
2599 2600
		return compound;
	ret = compound;
2601 2602
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
2603 2604 2605
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
2606 2607 2608 2609 2610
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2669 2670 2671 2672 2673
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

2674
	/* Additional pins from page cache */
2675 2676 2677 2678 2679 2680 2681 2682 2683
	if (PageAnon(page))
		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
	else
		extra_pins = HPAGE_PMD_NR;
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2706
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2707
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2708 2709 2710
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2711
	bool mlocked;
2712
	unsigned long flags;
2713
	pgoff_t end;
2714

2715
	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2716 2717 2718
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageCompound(page), page);

2719 2720 2721
	if (PageWriteback(page))
		return -EBUSY;

2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2736
		end = -1;
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2750 2751 2752 2753 2754 2755 2756 2757 2758

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2759 2760 2761
	}

	/*
2762
	 * Racy check if we can split the page, before unmap_page() will
2763 2764
	 * split PMDs
	 */
2765
	if (!can_split_huge_page(head, &extra_pins)) {
2766 2767 2768 2769
		ret = -EBUSY;
		goto out_unlock;
	}

2770
	mlocked = PageMlocked(page);
2771
	unmap_page(head);
2772 2773
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2774 2775 2776 2777
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2778
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2779
	spin_lock_irqsave(&pgdata->lru_lock, flags);
2780 2781

	if (mapping) {
2782
		XA_STATE(xas, &mapping->i_pages, page_index(head));
2783 2784

		/*
2785
		 * Check if the head page is present in page cache.
2786 2787
		 * We assume all tail are present too, if head is there.
		 */
2788 2789
		xa_lock(&mapping->i_pages);
		if (xas_load(&xas) != head)
2790 2791 2792
			goto fail;
	}

2793
	/* Prevent deferred_split_scan() touching ->_refcount */
2794
	spin_lock(&ds_queue->split_queue_lock);
2795 2796
	count = page_count(head);
	mapcount = total_mapcount(head);
2797
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2798
		if (!list_empty(page_deferred_list(head))) {
2799
			ds_queue->split_queue_len--;
2800 2801
			list_del(page_deferred_list(head));
		}
2802 2803 2804 2805 2806 2807 2808
		if (mapping) {
			if (PageSwapBacked(page))
				__dec_node_page_state(page, NR_SHMEM_THPS);
			else
				__dec_node_page_state(page, NR_FILE_THPS);
		}

2809
		spin_unlock(&ds_queue->split_queue_lock);
2810
		__split_huge_page(page, list, end, flags);
2811 2812 2813 2814 2815 2816
		if (PageSwapCache(head)) {
			swp_entry_t entry = { .val = page_private(head) };

			ret = split_swap_cluster(entry);
		} else
			ret = 0;
2817
	} else {
2818 2819 2820 2821 2822 2823 2824 2825
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
2826
		spin_unlock(&ds_queue->split_queue_lock);
2827
fail:		if (mapping)
Matthew Wilcox's avatar
Matthew Wilcox committed
2828
			xa_unlock(&mapping->i_pages);
2829
		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2830
		remap_page(head);
2831 2832 2833 2834
		ret = -EBUSY;
	}

out_unlock:
2835 2836 2837 2838 2839 2840
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2841 2842 2843 2844
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2845 2846 2847

void free_transhuge_page(struct page *page)
{
2848
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2849 2850
	unsigned long flags;

2851
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2852
	if (!list_empty(page_deferred_list(page))) {
2853
		ds_queue->split_queue_len--;
2854 2855
		list_del(page_deferred_list(page));
	}
2856
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2857 2858 2859 2860 2861
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2862 2863 2864 2865
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
#endif
2866 2867 2868 2869
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2883
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2884
	if (list_empty(page_deferred_list(page))) {
2885
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2886 2887
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2888 2889 2890 2891 2892
#ifdef CONFIG_MEMCG
		if (memcg)
			memcg_set_shrinker_bit(memcg, page_to_nid(page),
					       deferred_split_shrinker.id);
#endif
2893
	}
2894
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2895 2896 2897 2898 2899
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2900
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2901
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2902 2903 2904 2905 2906

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2907
	return READ_ONCE(ds_queue->split_queue_len);
2908 2909 2910 2911 2912
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2913
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2914
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2915 2916 2917 2918 2919
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2920 2921 2922 2923 2924
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2925
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2926
	/* Take pin on all head pages to avoid freeing them under us */
2927
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2928 2929
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2930 2931 2932 2933
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2934
			list_del_init(page_deferred_list(page));
2935
			ds_queue->split_queue_len--;
2936
		}
2937 2938
		if (!--sc->nr_to_scan)
			break;
2939
	}
2940
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2941 2942 2943

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2944 2945
		if (!trylock_page(page))
			goto next;
2946 2947 2948 2949
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2950
next:
2951 2952 2953
		put_page(page);
	}

2954 2955 2956
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2957

2958 2959 2960 2961
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2962
	if (!split && list_empty(&ds_queue->split_queue))
2963 2964
		return SHRINK_STOP;
	return split;
2965 2966 2967 2968 2969 2970
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2971 2972
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
2973
};
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2999
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

3012
	pr_info("%lu of %lu THP split\n", split, total);
3013 3014 3015

	return 0;
}
3016
DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3017 3018 3019 3020
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
3021 3022
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
3023 3024 3025 3026
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
3037
	pmd_t pmdswp;
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
	pmdval = *pvmw->pmd;
	pmdp_invalidate(vma, address, pvmw->pmd);
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
3048 3049 3050 3051
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3071 3072
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
3073
	if (is_write_migration_entry(entry))
3074
		pmde = maybe_pmd_mkwrite(pmde, vma);
3075 3076

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3077 3078 3079 3080
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
3081
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3082
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3083 3084 3085 3086
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif