- 25 Oct, 2023 36 commits
-
-
Matthew Wilcox (Oracle) authored
With all users converted, remove the old create_empty_buffers() and rename folio_create_empty_buffers() to create_empty_buffers(). Link: https://lkml.kernel.org/r/20231016201114.1928083-28-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Both callers are now converted to ufs_get_locked_folio(). Link: https://lkml.kernel.org/r/20231016201114.1928083-27-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Convert the locked_page argument to a folio, then use folios throughout. Saves three hidden calls to compound_head(). Link: https://lkml.kernel.org/r/20231016201114.1928083-26-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Switch to the folio APIs, saving one folio->page->folio conversion. Link: https://lkml.kernel.org/r/20231016201114.1928083-25-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Convert the _page variants to call them. Saves a few hidden calls to compound_head(). Link: https://lkml.kernel.org/r/20231016201114.1928083-24-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Convert the incoming page to a folio and then use it throughout the writeback path. This definitely isn't enough to support large folios, but I don't expect reiserfs to gain support for those before it is removed. Link: https://lkml.kernel.org/r/20231016201114.1928083-23-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Convert the page argument to a folio and then use the folio APIs throughout. Replaces three hidden calls to compound_head() with one explicit one. Link: https://lkml.kernel.org/r/20231016201114.1928083-22-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Use the folio API throughout, saving six hidden calls to compound_head(). Link: https://lkml.kernel.org/r/20231016201114.1928083-21-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Convert each element of the pages array to a folio before using it. This in no way renders the function large-folio safe, but it does remove a lot of hidden calls to compound_head(). Link: https://lkml.kernel.org/r/20231016201114.1928083-20-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Use folio APIs throughout. Saves many hidden calls to compound_head(). Link: https://lkml.kernel.org/r/20231016201114.1928083-19-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
The caller already has the folio, so pass it in and use the folio API throughout saving five hidden calls to compound_head(). Link: https://lkml.kernel.org/r/20231016201114.1928083-18-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
This function was already using a folio, so this update to the new API removes a single folio->page->folio conversion. Link: https://lkml.kernel.org/r/20231016201114.1928083-17-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
All users have now been converted to get_nth_block(). Link: https://lkml.kernel.org/r/20231016201114.1928083-16-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Remove a number of folio->page->folio conversions. Link: https://lkml.kernel.org/r/20231016201114.1928083-15-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Remove a number of folio->page->folio conversions. Link: https://lkml.kernel.org/r/20231016201114.1928083-14-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Both callers already have a folio, so pass it in and use it directly. Removes a lot of hidden calls to compound_head(). Link: https://lkml.kernel.org/r/20231016201114.1928083-13-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Remove a number of folio->page->folio conversions. Link: https://lkml.kernel.org/r/20231016201114.1928083-12-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Remove a number of folio->page->folio conversions. Link: https://lkml.kernel.org/r/20231016201114.1928083-11-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Remove several folio->page->folio conversions. Link: https://lkml.kernel.org/r/20231016201114.1928083-10-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Use the folio APIs, saving four hidden calls to compound_head(). Link: https://lkml.kernel.org/r/20231016201114.1928083-9-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Remove several folio->page->folio conversions. Also use __GFP_NOFAIL instead of calling yield() and the new get_nth_bh(). Link: https://lkml.kernel.org/r/20231016201114.1928083-8-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Use the folio APIs, removing numerous hidden calls to compound_head(). Also remove the stale comment about the page being looked up if it's NULL. Link: https://lkml.kernel.org/r/20231016201114.1928083-7-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Extract this useful helper from nilfs_page_get_nth_block() Link: https://lkml.kernel.org/r/20231016201114.1928083-6-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Remove an unnecessary folio->page->folio conversion and take advantage of the new return value from folio_create_empty_buffers(). Link: https://lkml.kernel.org/r/20231016201114.1928083-5-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Pankaj Raghav <p.raghav@samsung.com> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Saves a folio->page->folio conversion. Link: https://lkml.kernel.org/r/20231016201114.1928083-4-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Pankaj Raghav <p.raghav@samsung.com> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Matthew Wilcox (Oracle) authored
Patch series "Finish the create_empty_buffers() transition", v2. Pankaj recently added folio_create_empty_buffers() as the folio equivalent to create_empty_buffers(). This patch set finishes the conversion by first converting all remaining filesystems to call folio_create_empty_buffers(), then renaming it back to create_empty_buffers(). I took the opportunity to make a few simplifications like making folio_create_empty_buffers() return the head buffer and extracting get_nth_bh() from nilfs2. A few of the patches in this series aren't directly related to create_empty_buffers(), but I saw them while I was working on this and thought they'd be easy enough to add to this series. Compile-tested only, other than ext4. This patch (of 26): Almost all callers want to know the first BH that was allocated for this folio. We already have that handy, so return it. Link: https://lkml.kernel.org/r/20231016201114.1928083-1-willy@infradead.org Link: https://lkml.kernel.org/r/20231016201114.1928083-3-willy@infradead.orgSigned-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Pankaj Raghav <p.raghav@samsung.com> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Usama Arif authored
Most function calls in hugetlb.c are made with folio arguments. This brings hugetlb_vmemmap calls inline with them by using folio instead of head struct page. Head struct page is still needed within these functions. The set/clear/test functions for hugepages are also changed to folio versions. Link: https://lkml.kernel.org/r/20231011144557.1720481-2-usama.arif@bytedance.comSigned-off-by: Usama Arif <usama.arif@bytedance.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Punit Agrawal <punit.agrawal@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Mike Kravetz authored
Update the internal hugetlb restore vmemmap code path such that TLB flushing can be batched. Use the existing mechanism of passing the VMEMMAP_REMAP_NO_TLB_FLUSH flag to indicate flushing should not be performed for individual pages. The routine hugetlb_vmemmap_restore_folios is the only user of this new mechanism, and it will perform a global flush after all vmemmap is restored. Link: https://lkml.kernel.org/r/20231019023113.345257-9-mike.kravetz@oracle.comSigned-off-by: Joao Martins <joao.m.martins@oracle.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Konrad Dybcio <konradybcio@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Usama Arif <usama.arif@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Joao Martins authored
Now that a list of pages is deduplicated at once, the TLB flush can be batched for all vmemmap pages that got remapped. Expand the flags field value to pass whether to skip the TLB flush on remap of the PTE. The TLB flush is global as we don't have guarantees from caller that the set of folios is contiguous, or to add complexity in composing a list of kVAs to flush. Modified by Mike Kravetz to perform TLB flush on single folio if an error is encountered. Link: https://lkml.kernel.org/r/20231019023113.345257-8-mike.kravetz@oracle.comSigned-off-by: Joao Martins <joao.m.martins@oracle.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Konrad Dybcio <konradybcio@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Usama Arif <usama.arif@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Joao Martins authored
In an effort to minimize amount of TLB flushes, batch all PMD splits belonging to a range of pages in order to perform only 1 (global) TLB flush. Add a flags field to the walker and pass whether it's a bulk allocation or just a single page to decide to remap. First value (VMEMMAP_SPLIT_NO_TLB_FLUSH) designates the request to not do the TLB flush when we split the PMD. Rebased and updated by Mike Kravetz Link: https://lkml.kernel.org/r/20231019023113.345257-7-mike.kravetz@oracle.comSigned-off-by: Joao Martins <joao.m.martins@oracle.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Konrad Dybcio <konradybcio@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Usama Arif <usama.arif@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Mike Kravetz authored
Now that batching of hugetlb vmemmap optimization processing is possible, batch the freeing of vmemmap pages. When freeing vmemmap pages for a hugetlb page, we add them to a list that is freed after the entire batch has been processed. This enhances the ability to return contiguous ranges of memory to the low level allocators. Link: https://lkml.kernel.org/r/20231019023113.345257-6-mike.kravetz@oracle.comSigned-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Konrad Dybcio <konradybcio@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Usama Arif <usama.arif@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Mike Kravetz authored
The routine update_and_free_pages_bulk already performs vmemmap restoration on the list of hugetlb pages in a separate step. In preparation for more functionality to be added in this step, create a new routine hugetlb_vmemmap_restore_folios() that will restore vmemmap for a list of folios. This new routine must provide sufficient feedback about errors and actual restoration performed so that update_and_free_pages_bulk can perform optimally. Special care must be taken when encountering an error from hugetlb_vmemmap_restore_folios. We want to continue making as much forward progress as possible. A new routine bulk_vmemmap_restore_error handles this specific situation. Link: https://lkml.kernel.org/r/20231019023113.345257-5-mike.kravetz@oracle.comSigned-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Konrad Dybcio <konradybcio@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Usama Arif <usama.arif@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Mike Kravetz authored
When adding hugetlb pages to the pool, we first create a list of the allocated pages before adding to the pool. Pass this list of pages to a new routine hugetlb_vmemmap_optimize_folios() for vmemmap optimization. Due to significant differences in vmemmmap initialization for bootmem allocated hugetlb pages, a new routine prep_and_add_bootmem_folios is created. We also modify the routine vmemmap_should_optimize() to check for pages that are already optimized. There are code paths that might request vmemmap optimization twice and we want to make sure this is not attempted. Link: https://lkml.kernel.org/r/20231019023113.345257-4-mike.kravetz@oracle.comSigned-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Konrad Dybcio <konradybcio@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Usama Arif <usama.arif@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Mike Kravetz authored
Allocation of a hugetlb page for the hugetlb pool is done by the routine alloc_pool_huge_page. This routine will allocate contiguous pages from a low level allocator, prep the pages for usage as a hugetlb page and then add the resulting hugetlb page to the pool. In the 'prep' stage, optional vmemmap optimization is done. For performance reasons we want to perform vmemmap optimization on multiple hugetlb pages at once. To do this, restructure the hugetlb pool allocation code such that vmemmap optimization can be isolated and later batched. The code to allocate hugetlb pages from bootmem was also modified to allow batching. No functional changes, only code restructure. Link: https://lkml.kernel.org/r/20231019023113.345257-3-mike.kravetz@oracle.comSigned-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Tested-by: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Konrad Dybcio <konradybcio@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Usama Arif <usama.arif@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Mike Kravetz authored
Patch series "Batch hugetlb vmemmap modification operations", v8. When hugetlb vmemmap optimization was introduced, the overhead of enabling the option was measured as described in commit 426e5c42 [1]. The summary states that allocating a hugetlb page should be ~2x slower with optimization and freeing a hugetlb page should be ~2-3x slower. Such overhead was deemed an acceptable trade off for the memory savings obtained by freeing vmemmap pages. It was recently reported that the overhead associated with enabling vmemmap optimization could be as high as 190x for hugetlb page allocations. Yes, 190x! Some actual numbers from other environments are: Bare Metal 8 socket Intel(R) Xeon(R) CPU E7-8895 ------------------------------------------------ Unmodified next-20230824, vm.hugetlb_optimize_vmemmap = 0 time echo 500000 > .../hugepages-2048kB/nr_hugepages real 0m4.119s time echo 0 > .../hugepages-2048kB/nr_hugepages real 0m4.477s Unmodified next-20230824, vm.hugetlb_optimize_vmemmap = 1 time echo 500000 > .../hugepages-2048kB/nr_hugepages real 0m28.973s time echo 0 > .../hugepages-2048kB/nr_hugepages real 0m36.748s VM with 252 vcpus on host with 2 socket AMD EPYC 7J13 Milan ----------------------------------------------------------- Unmodified next-20230824, vm.hugetlb_optimize_vmemmap = 0 time echo 524288 > .../hugepages-2048kB/nr_hugepages real 0m2.463s time echo 0 > .../hugepages-2048kB/nr_hugepages real 0m2.931s Unmodified next-20230824, vm.hugetlb_optimize_vmemmap = 1 time echo 524288 > .../hugepages-2048kB/nr_hugepages real 2m27.609s time echo 0 > .../hugepages-2048kB/nr_hugepages real 2m29.924s In the VM environment, the slowdown of enabling hugetlb vmemmap optimization resulted in allocation times being 61x slower. A quick profile showed that the vast majority of this overhead was due to TLB flushing. Each time we modify the kernel pagetable we need to flush the TLB. For each hugetlb that is optimized, there could be potentially two TLB flushes performed. One for the vmemmap pages associated with the hugetlb page, and potentially another one if the vmemmap pages are mapped at the PMD level and must be split. The TLB flushes required for the kernel pagetable, result in a broadcast IPI with each CPU having to flush a range of pages, or do a global flush if a threshold is exceeded. So, the flush time increases with the number of CPUs. In addition, in virtual environments the broadcast IPI can’t be accelerated by hypervisor hardware and leads to traps that need to wakeup/IPI all vCPUs which is very expensive. Because of this the slowdown in virtual environments is even worse than bare metal as the number of vCPUS/CPUs is increased. The following series attempts to reduce amount of time spent in TLB flushing. The idea is to batch the vmemmap modification operations for multiple hugetlb pages. Instead of doing one or two TLB flushes for each page, we do two TLB flushes for each batch of pages. One flush after splitting pages mapped at the PMD level, and another after remapping vmemmap associated with all hugetlb pages. Results of such batching are as follows: Bare Metal 8 socket Intel(R) Xeon(R) CPU E7-8895 ------------------------------------------------ next-20230824 + Batching patches, vm.hugetlb_optimize_vmemmap = 0 time echo 500000 > .../hugepages-2048kB/nr_hugepages real 0m4.719s time echo 0 > .../hugepages-2048kB/nr_hugepages real 0m4.245s next-20230824 + Batching patches, vm.hugetlb_optimize_vmemmap = 1 time echo 500000 > .../hugepages-2048kB/nr_hugepages real 0m7.267s time echo 0 > .../hugepages-2048kB/nr_hugepages real 0m13.199s VM with 252 vcpus on host with 2 socket AMD EPYC 7J13 Milan ----------------------------------------------------------- next-20230824 + Batching patches, vm.hugetlb_optimize_vmemmap = 0 time echo 524288 > .../hugepages-2048kB/nr_hugepages real 0m2.715s time echo 0 > .../hugepages-2048kB/nr_hugepages real 0m3.186s next-20230824 + Batching patches, vm.hugetlb_optimize_vmemmap = 1 time echo 524288 > .../hugepages-2048kB/nr_hugepages real 0m4.799s time echo 0 > .../hugepages-2048kB/nr_hugepages real 0m5.273s With batching, results are back in the 2-3x slowdown range. This patch (of 8): update_and_free_pages_bulk is designed to free a list of hugetlb pages back to their associated lower level allocators. This may require allocating vmemmmap pages associated with each hugetlb page. The hugetlb page destructor must be changed before pages are freed to lower level allocators. However, the destructor must be changed under the hugetlb lock. This means there is potentially one lock cycle per page. Minimize the number of lock cycles in update_and_free_pages_bulk by: 1) allocating necessary vmemmap for all hugetlb pages on the list 2) take hugetlb lock and clear destructor for all pages on the list 3) free all pages on list back to low level allocators Link: https://lkml.kernel.org/r/20231019023113.345257-1-mike.kravetz@oracle.com Link: https://lkml.kernel.org/r/20231019023113.345257-2-mike.kravetz@oracle.comSigned-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Acked-by: James Houghton <jthoughton@google.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Konrad Dybcio <konradybcio@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Usama Arif <usama.arif@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Huang Ying authored
If there is no memory allocation/freeing in the PCP (Per-CPU Pageset) of a remote zone (zone in remote NUMA node) after some time (3 seconds for now), the pages of the PCP of the remote zone will be drained to avoid memory wastage. This behavior was introduced in the commit 4ae7c039 ("[PATCH] Periodically drain non local pagesets") and the commit 4037d452 ("Move remote node draining out of slab allocators") But, after the commit 7cc36bbd ("vmstat: on-demand vmstat workers V8"), the vmstat updater worker which is used to drain the PCP of remote zones may not be re-queued when we are waiting for the timeout (pcp->expire != 0) if there are no vmstat changes on this CPU, for example, when the CPU goes idle or runs user space only workloads. This may cause the pages of a remote zone be kept in PCP of this CPU for long time. So that, the page reclaiming of the remote zone may be triggered prematurely. This isn't a severe problem in practice, because the PCP of the remote zone will be drained if some memory are allocated/freed again on this CPU. And, the PCP will eventually be drained during the direct reclaiming if necessary. Anyway, the problem still deserves a fix via guaranteeing that the vmstat updater worker will always be re-queued when we are waiting for the timeout. In effect, this restores the original behavior before the commit 7cc36bbd. We can reproduce the bug via allocating/freeing pages from a remote zone then go idle as follows. And the patch can fix it. - Run some workloads, use `numactl` to bind CPU to node 0 and memory to node 1. So the PCP of the CPU on node 0 for zone on node 1 will be filled. - After workloads finish, idle for 60s - Check /proc/zoneinfo With the original kernel, the number of pages in the PCP of the CPU on node 0 for zone on node 1 is non-zero after idle. With the patched kernel, it becomes 0 after idle. That is, we avoid to keep pages in the remote PCP during idle. Link: https://lkml.kernel.org/r/20231007062356.187621-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20230811090819.60845-1-ying.huang@intel.com Fixes: 7cc36bbd ("vmstat: on-demand vmstat workers V8") Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Christoph Lameter <cl@linux.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
- 18 Oct, 2023 4 commits
-
-
Lorenzo Stoakes authored
In order for a F_SEAL_WRITE sealed memfd mapping to have an opportunity to clear VM_MAYWRITE, we must be able to invoke the appropriate vm_ops->mmap() handler to do so. We would otherwise fail the mapping_map_writable() check before we had the opportunity to avoid it. This patch moves this check after the call_mmap() invocation. Only memfd actively denies write access causing a potential failure here (in memfd_add_seals()), so there should be no impact on non-memfd cases. This patch makes the userland-visible change that MAP_SHARED, PROT_READ mappings of an F_SEAL_WRITE sealed memfd mapping will now succeed. There is a delicate situation with cleanup paths assuming that a writable mapping must have occurred in circumstances where it may now not have. In order to ensure we do not accidentally mark a writable file unwritable by mistake, we explicitly track whether we have a writable mapping and unmap only if we do. [lstoakes@gmail.com: do not set writable_file_mapping in inappropriate case] Link: https://lkml.kernel.org/r/c9eb4cc6-7db4-4c2b-838d-43a0b319a4f0@lucifer.local Link: https://bugzilla.kernel.org/show_bug.cgi?id=217238 Link: https://lkml.kernel.org/r/55e413d20678a1bb4c7cce889062bbb07b0df892.1697116581.git.lstoakes@gmail.comSigned-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Christian Brauner <brauner@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Lorenzo Stoakes authored
The seal_check_future_write() function is called by shmem_mmap() or hugetlbfs_file_mmap() to disallow any future writable mappings of an memfd sealed this way. The F_SEAL_WRITE flag is not checked here, as that is handled via the mapping->i_mmap_writable mechanism and so any attempt at a mapping would fail before this could be run. However we intend to change this, meaning this check can be performed for F_SEAL_WRITE mappings also. The logic here is equally applicable to both flags, so update this function to accommodate both and rename it accordingly. Link: https://lkml.kernel.org/r/913628168ce6cce77df7d13a63970bae06a526e0.1697116581.git.lstoakes@gmail.comSigned-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Christian Brauner <brauner@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Lorenzo Stoakes authored
Patch series "permit write-sealed memfd read-only shared mappings", v4. The man page for fcntl() describing memfd file seals states the following about F_SEAL_WRITE:- Furthermore, trying to create new shared, writable memory-mappings via mmap(2) will also fail with EPERM. With emphasis on 'writable'. In turns out in fact that currently the kernel simply disallows all new shared memory mappings for a memfd with F_SEAL_WRITE applied, rendering this documentation inaccurate. This matters because users are therefore unable to obtain a shared mapping to a memfd after write sealing altogether, which limits their usefulness. This was reported in the discussion thread [1] originating from a bug report [2]. This is a product of both using the struct address_space->i_mmap_writable atomic counter to determine whether writing may be permitted, and the kernel adjusting this counter when any VM_SHARED mapping is performed and more generally implicitly assuming VM_SHARED implies writable. It seems sensible that we should only update this mapping if VM_MAYWRITE is specified, i.e. whether it is possible that this mapping could at any point be written to. If we do so then all we need to do to permit write seals to function as documented is to clear VM_MAYWRITE when mapping read-only. It turns out this functionality already exists for F_SEAL_FUTURE_WRITE - we can therefore simply adapt this logic to do the same for F_SEAL_WRITE. We then hit a chicken and egg situation in mmap_region() where the check for VM_MAYWRITE occurs before we are able to clear this flag. To work around this, perform this check after we invoke call_mmap(), with careful consideration of error paths. Thanks to Andy Lutomirski for the suggestion! [1]:https://lore.kernel.org/all/20230324133646.16101dfa666f253c4715d965@linux-foundation.org/ [2]:https://bugzilla.kernel.org/show_bug.cgi?id=217238 This patch (of 3): There is a general assumption that VMAs with the VM_SHARED flag set are writable. If the VM_MAYWRITE flag is not set, then this is simply not the case. Update those checks which affect the struct address_space->i_mmap_writable field to explicitly test for this by introducing [vma_]is_shared_maywrite() helper functions. This remains entirely conservative, as the lack of VM_MAYWRITE guarantees that the VMA cannot be written to. Link: https://lkml.kernel.org/r/cover.1697116581.git.lstoakes@gmail.com Link: https://lkml.kernel.org/r/d978aefefa83ec42d18dfa964ad180dbcde34795.1697116581.git.lstoakes@gmail.comSigned-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Suggested-by: Andy Lutomirski <luto@kernel.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christian Brauner <brauner@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
SeongJae Park authored
The documentation says DAMOS tried regions update feature of DAMON sysfs interface is doing the update for one aggregation interval after the request is made. Since the introduction of the per-scheme apply interval, that behavior makes no much sense. Hence the implementation has changed to update the regions for each scheme for only its apply interval. Further update the document to reflect the real behavior. Link: https://lkml.kernel.org/r/20231012192256.33556-4-sj@kernel.orgSigned-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-