- 15 Nov, 2022 4 commits
-
-
Anand Jain authored
btrfs_ioctl_ino_to_path() frees the search path after the userspace copy from the temp buffer @ipath->fspath. Which potentially can lead to a lock splat warning. Fix this by freeing the path before we copy it to userspace. CC: stable@vger.kernel.org # 4.19+ Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Anand Jain authored
btrfs_ioctl_logical_to_ino() frees the search path after the userspace copy from the temp buffer @inodes. Which potentially can lead to a lock splat. Fix this by freeing the path before we copy @inodes to userspace. CC: stable@vger.kernel.org # 4.19+ Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
Syzbot reported the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 6.0.0-rc7-syzkaller-18095-gbbed346d5a96 #0 Not tainted ------------------------------------------------------ syz-executor307/3029 is trying to acquire lock: ffff0000c02525d8 (&mm->mmap_lock){++++}-{3:3}, at: __might_fault+0x54/0xb4 mm/memory.c:5576 but task is already holding lock: ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock fs/btrfs/locking.c:134 [inline] ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_tree_read_lock fs/btrfs/locking.c:140 [inline] ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_read_lock_root_node+0x13c/0x1c0 fs/btrfs/locking.c:279 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (btrfs-root-00){++++}-{3:3}: down_read_nested+0x64/0x84 kernel/locking/rwsem.c:1624 __btrfs_tree_read_lock fs/btrfs/locking.c:134 [inline] btrfs_tree_read_lock fs/btrfs/locking.c:140 [inline] btrfs_read_lock_root_node+0x13c/0x1c0 fs/btrfs/locking.c:279 btrfs_search_slot_get_root+0x74/0x338 fs/btrfs/ctree.c:1637 btrfs_search_slot+0x1b0/0xfd8 fs/btrfs/ctree.c:1944 btrfs_update_root+0x6c/0x5a0 fs/btrfs/root-tree.c:132 commit_fs_roots+0x1f0/0x33c fs/btrfs/transaction.c:1459 btrfs_commit_transaction+0x89c/0x12d8 fs/btrfs/transaction.c:2343 flush_space+0x66c/0x738 fs/btrfs/space-info.c:786 btrfs_async_reclaim_metadata_space+0x43c/0x4e0 fs/btrfs/space-info.c:1059 process_one_work+0x2d8/0x504 kernel/workqueue.c:2289 worker_thread+0x340/0x610 kernel/workqueue.c:2436 kthread+0x12c/0x158 kernel/kthread.c:376 ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:860 -> #2 (&fs_info->reloc_mutex){+.+.}-{3:3}: __mutex_lock_common+0xd4/0xca8 kernel/locking/mutex.c:603 __mutex_lock kernel/locking/mutex.c:747 [inline] mutex_lock_nested+0x38/0x44 kernel/locking/mutex.c:799 btrfs_record_root_in_trans fs/btrfs/transaction.c:516 [inline] start_transaction+0x248/0x944 fs/btrfs/transaction.c:752 btrfs_start_transaction+0x34/0x44 fs/btrfs/transaction.c:781 btrfs_create_common+0xf0/0x1b4 fs/btrfs/inode.c:6651 btrfs_create+0x8c/0xb0 fs/btrfs/inode.c:6697 lookup_open fs/namei.c:3413 [inline] open_last_lookups fs/namei.c:3481 [inline] path_openat+0x804/0x11c4 fs/namei.c:3688 do_filp_open+0xdc/0x1b8 fs/namei.c:3718 do_sys_openat2+0xb8/0x22c fs/open.c:1313 do_sys_open fs/open.c:1329 [inline] __do_sys_openat fs/open.c:1345 [inline] __se_sys_openat fs/open.c:1340 [inline] __arm64_sys_openat+0xb0/0xe0 fs/open.c:1340 __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline] invoke_syscall arch/arm64/kernel/syscall.c:52 [inline] el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142 do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206 el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636 el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654 el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581 -> #1 (sb_internal#2){.+.+}-{0:0}: percpu_down_read include/linux/percpu-rwsem.h:51 [inline] __sb_start_write include/linux/fs.h:1826 [inline] sb_start_intwrite include/linux/fs.h:1948 [inline] start_transaction+0x360/0x944 fs/btrfs/transaction.c:683 btrfs_join_transaction+0x30/0x40 fs/btrfs/transaction.c:795 btrfs_dirty_inode+0x50/0x140 fs/btrfs/inode.c:6103 btrfs_update_time+0x1c0/0x1e8 fs/btrfs/inode.c:6145 inode_update_time fs/inode.c:1872 [inline] touch_atime+0x1f0/0x4a8 fs/inode.c:1945 file_accessed include/linux/fs.h:2516 [inline] btrfs_file_mmap+0x50/0x88 fs/btrfs/file.c:2407 call_mmap include/linux/fs.h:2192 [inline] mmap_region+0x7fc/0xc14 mm/mmap.c:1752 do_mmap+0x644/0x97c mm/mmap.c:1540 vm_mmap_pgoff+0xe8/0x1d0 mm/util.c:552 ksys_mmap_pgoff+0x1cc/0x278 mm/mmap.c:1586 __do_sys_mmap arch/arm64/kernel/sys.c:28 [inline] __se_sys_mmap arch/arm64/kernel/sys.c:21 [inline] __arm64_sys_mmap+0x58/0x6c arch/arm64/kernel/sys.c:21 __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline] invoke_syscall arch/arm64/kernel/syscall.c:52 [inline] el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142 do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206 el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636 el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654 el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581 -> #0 (&mm->mmap_lock){++++}-{3:3}: check_prev_add kernel/locking/lockdep.c:3095 [inline] check_prevs_add kernel/locking/lockdep.c:3214 [inline] validate_chain kernel/locking/lockdep.c:3829 [inline] __lock_acquire+0x1530/0x30a4 kernel/locking/lockdep.c:5053 lock_acquire+0x100/0x1f8 kernel/locking/lockdep.c:5666 __might_fault+0x7c/0xb4 mm/memory.c:5577 _copy_to_user include/linux/uaccess.h:134 [inline] copy_to_user include/linux/uaccess.h:160 [inline] btrfs_ioctl_get_subvol_rootref+0x3a8/0x4bc fs/btrfs/ioctl.c:3203 btrfs_ioctl+0xa08/0xa64 fs/btrfs/ioctl.c:5556 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl fs/ioctl.c:856 [inline] __arm64_sys_ioctl+0xd0/0x140 fs/ioctl.c:856 __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline] invoke_syscall arch/arm64/kernel/syscall.c:52 [inline] el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142 do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206 el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636 el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654 el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581 other info that might help us debug this: Chain exists of: &mm->mmap_lock --> &fs_info->reloc_mutex --> btrfs-root-00 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-root-00); lock(&fs_info->reloc_mutex); lock(btrfs-root-00); lock(&mm->mmap_lock); *** DEADLOCK *** 1 lock held by syz-executor307/3029: #0: ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock fs/btrfs/locking.c:134 [inline] #0: ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_tree_read_lock fs/btrfs/locking.c:140 [inline] #0: ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_read_lock_root_node+0x13c/0x1c0 fs/btrfs/locking.c:279 stack backtrace: CPU: 0 PID: 3029 Comm: syz-executor307 Not tainted 6.0.0-rc7-syzkaller-18095-gbbed346d5a96 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/30/2022 Call trace: dump_backtrace+0x1c4/0x1f0 arch/arm64/kernel/stacktrace.c:156 show_stack+0x2c/0x54 arch/arm64/kernel/stacktrace.c:163 __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x104/0x16c lib/dump_stack.c:106 dump_stack+0x1c/0x58 lib/dump_stack.c:113 print_circular_bug+0x2c4/0x2c8 kernel/locking/lockdep.c:2053 check_noncircular+0x14c/0x154 kernel/locking/lockdep.c:2175 check_prev_add kernel/locking/lockdep.c:3095 [inline] check_prevs_add kernel/locking/lockdep.c:3214 [inline] validate_chain kernel/locking/lockdep.c:3829 [inline] __lock_acquire+0x1530/0x30a4 kernel/locking/lockdep.c:5053 lock_acquire+0x100/0x1f8 kernel/locking/lockdep.c:5666 __might_fault+0x7c/0xb4 mm/memory.c:5577 _copy_to_user include/linux/uaccess.h:134 [inline] copy_to_user include/linux/uaccess.h:160 [inline] btrfs_ioctl_get_subvol_rootref+0x3a8/0x4bc fs/btrfs/ioctl.c:3203 btrfs_ioctl+0xa08/0xa64 fs/btrfs/ioctl.c:5556 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl fs/ioctl.c:856 [inline] __arm64_sys_ioctl+0xd0/0x140 fs/ioctl.c:856 __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline] invoke_syscall arch/arm64/kernel/syscall.c:52 [inline] el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142 do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206 el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636 el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654 el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581 We do generally the right thing here, copying the references into a temporary buffer, however we are still holding the path when we do copy_to_user from the temporary buffer. Fix this by freeing the path before we copy to user space. Reported-by: syzbot+4ef9e52e464c6ff47d9d@syzkaller.appspotmail.com CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
When doing a nowait buffered write we can trigger the following assertion: [11138.437027] assertion failed: !path->nowait, in fs/btrfs/ctree.c:4658 [11138.438251] ------------[ cut here ]------------ [11138.438254] kernel BUG at fs/btrfs/messages.c:259! [11138.438762] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI [11138.439450] CPU: 4 PID: 1091021 Comm: fsstress Not tainted 6.1.0-rc4-btrfs-next-128 #1 [11138.440611] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [11138.442553] RIP: 0010:btrfs_assertfail+0x19/0x1b [btrfs] [11138.443583] Code: 5b 41 5a 41 (...) [11138.446437] RSP: 0018:ffffbaf0cf05b840 EFLAGS: 00010246 [11138.447235] RAX: 0000000000000039 RBX: ffffbaf0cf05b938 RCX: 0000000000000000 [11138.448303] RDX: 0000000000000000 RSI: ffffffffb2ef59f6 RDI: 00000000ffffffff [11138.449370] RBP: ffff9165f581eb68 R08: 00000000ffffffff R09: 0000000000000001 [11138.450493] R10: ffff9167a88421f8 R11: 0000000000000000 R12: ffff9164981b1000 [11138.451661] R13: 000000008c8f1000 R14: ffff9164991d4000 R15: ffff9164981b1000 [11138.452225] FS: 00007f1438a66440(0000) GS:ffff9167ad600000(0000) knlGS:0000000000000000 [11138.452949] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [11138.453394] CR2: 00007f1438a64000 CR3: 0000000100c36002 CR4: 0000000000370ee0 [11138.454057] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [11138.454879] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [11138.455779] Call Trace: [11138.456211] <TASK> [11138.456598] btrfs_next_old_leaf.cold+0x18/0x1d [btrfs] [11138.457827] ? kmem_cache_alloc+0x18d/0x2a0 [11138.458516] btrfs_lookup_csums_range+0x149/0x4d0 [btrfs] [11138.459407] csum_exist_in_range+0x56/0x110 [btrfs] [11138.460271] can_nocow_file_extent+0x27c/0x310 [btrfs] [11138.461155] can_nocow_extent+0x1ec/0x2e0 [btrfs] [11138.461672] btrfs_check_nocow_lock+0x114/0x1c0 [btrfs] [11138.462951] btrfs_buffered_write+0x44c/0x8e0 [btrfs] [11138.463482] btrfs_do_write_iter+0x42b/0x5f0 [btrfs] [11138.463982] ? lock_release+0x153/0x4a0 [11138.464347] io_write+0x11b/0x570 [11138.464660] ? lock_release+0x153/0x4a0 [11138.465213] ? lock_is_held_type+0xe8/0x140 [11138.466003] io_issue_sqe+0x63/0x4a0 [11138.466339] io_submit_sqes+0x238/0x770 [11138.466741] __do_sys_io_uring_enter+0x37b/0xb10 [11138.467206] ? lock_is_held_type+0xe8/0x140 [11138.467879] ? syscall_enter_from_user_mode+0x1d/0x50 [11138.468688] do_syscall_64+0x38/0x90 [11138.469265] entry_SYSCALL_64_after_hwframe+0x63/0xcd [11138.470017] RIP: 0033:0x7f1438c539e6 This is because to check if we can NOCOW, we check that if we can NOCOW into an extent (it's prealloc extent or the inode has NOCOW attribute), and then check if there are csums for the extent's range in the csum tree. The search may leave us beyond the last slot of a leaf, and then when we call btrfs_next_leaf() we end up at btrfs_next_old_leaf() with a time_seq of 0. This triggers a failure of the first assertion at btrfs_next_old_leaf(), since we have a nowait path. With assertions disabled, we simply don't respect the NOWAIT semantics, allowing the write to block on locks or blocking on IO for reading an extent buffer from disk. Fix this by: 1) Triggering the assertion only if time_seq is not 0, which means that search is being done by a tree mod log user, and in the buffered and direct IO write paths we don't use the tree mod log; 2) Implementing NOWAIT semantics at btrfs_next_old_leaf(). Any failure to lock an extent buffer should return immediately and not retry the search, as well as if we need to do IO to read an extent buffer from disk. Fixes: c922b016 ("btrfs: assert nowait mode is not used for some btree search functions") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
- 07 Nov, 2022 7 commits
-
-
Johannes Thumshirn authored
If we're doing device replace on a zoned filesystem and discover in scrub_enumerate_chunks() that we don't have to copy the block group it is unlocked before it gets skipped. But as the block group hasn't yet been locked before it leads to a locking imbalance. To fix this simply remove the unlock. This was uncovered by fstests' testcase btrfs/163. Fixes: 9283b9e0 ("btrfs: remove lock protection for BLOCK_GROUP_FLAG_TO_COPY") Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Johannes Thumshirn authored
When performing seeding on a zoned filesystem it is necessary to initialize each zoned device's btrfs_zoned_device_info structure, otherwise mounting the filesystem will cause a NULL pointer dereference. This was uncovered by fstests' testcase btrfs/163. CC: stable@vger.kernel.org # 5.15+ Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Johannes Thumshirn authored
When cloning a btrfs_device, we're not cloning the associated btrfs_zoned_device_info structure of the device in case of a zoned filesystem. Later on this leads to a NULL pointer dereference when accessing the device's zone_info for instance when setting a zone as active. This was uncovered by fstests' testcase btrfs/161. CC: stable@vger.kernel.org # 5.15+ Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
This reverts commit 786672e9. [BUG] Since commit 786672e9 ("btrfs: scrub: use larger block size for data extent scrub"), btrfs scrub no longer reports errors if the corruption is not in the first sector of a STRIPE_LEN. The following script can expose the problem: mkfs.btrfs -f $dev mount $dev $mnt xfs_io -f -c "pwrite -S 0xff 0 8k" $mnt/foobar umount $mnt # 13631488 is the logical bytenr of above 8K extent btrfs-map-logical -l 13631488 -b 4096 $dev mirror 1 logical 13631488 physical 13631488 device /dev/test/scratch1 # Corrupt the 2nd sector of that extent xfs_io -f -c "pwrite -S 0x00 13635584 4k" $dev mount $dev $mnt btrfs scrub start -B $mnt scrub done for 54e63f9f-0c30-4c84-a33b-5c56014629b7 Scrub started: Mon Nov 7 07:18:27 2022 Status: finished Duration: 0:00:00 Total to scrub: 536.00MiB Rate: 0.00B/s Error summary: no errors found <<< [CAUSE] That offending commit enlarges the data extent scrub size from sector size to BTRFS_STRIPE_LEN, to avoid extra scrub_block to be allocated. But unfortunately the data extent scrub is still heavily relying on the fact that there is only one scrub_sector per scrub_block. Thus it will only check the first sector, and ignoring the remaining sectors. Furthermore the error reporting is not able to handle multiple sectors either. [FIX] For now just revert the offending commit. The consequence is just extra memory usage during scrub. We will need a proper change to make the remaining data scrub path to handle multiple sectors before we enlarging the data scrub size. Reported-by: Li Zhang <zhanglikernel@gmail.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
Add ENOMEM among the error codes that don't print stack trace on transaction abort. We've got several reports from syzbot that detects stacks as errors but caused by limiting memory. As this is an artificial condition we don't need to know where exactly the error happens, the abort and error cleanup will continue like e.g. for EIO. As the transaction aborts code needs to be inline in a lot of code, the implementation cases about minimal bloat. The error codes are in a separate function and the WARN uses the condition directly. This increases the code size by 571 bytes on release build. Alternatives considered: add -ENOMEM among the errors, this increases size by 2340 bytes, various attempts to combine the WARN and helper calls, increase by 700 or more bytes. Example syzbot reports (error -12): - https://syzkaller.appspot.com/bug?extid=5244d35be7f589cf093e - https://syzkaller.appspot.com/bug?extid=9c37714c07194d816417Signed-off-by: David Sterba <dsterba@suse.com>
-
Zhang Xiaoxu authored
The btrfs_alloc_dummy_root() uses ERR_PTR as the error return value rather than NULL, if error happened, there will be a NULL pointer dereference: BUG: KASAN: null-ptr-deref in btrfs_free_dummy_root+0x21/0x50 [btrfs] Read of size 8 at addr 000000000000002c by task insmod/258926 CPU: 2 PID: 258926 Comm: insmod Tainted: G W 6.1.0-rc2+ #5 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x34/0x44 kasan_report+0xb7/0x140 kasan_check_range+0x145/0x1a0 btrfs_free_dummy_root+0x21/0x50 [btrfs] btrfs_test_free_space_cache+0x1a8c/0x1add [btrfs] btrfs_run_sanity_tests+0x65/0x80 [btrfs] init_btrfs_fs+0xec/0x154 [btrfs] do_one_initcall+0x87/0x2a0 do_init_module+0xdf/0x320 load_module+0x3006/0x3390 __do_sys_finit_module+0x113/0x1b0 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Fixes: aaedb55b ("Btrfs: add tests for btrfs_get_extent") CC: stable@vger.kernel.org # 4.9+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Zhang Xiaoxu <zhangxiaoxu5@huawei.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Liu Shixin authored
syzkaller found a failed assertion: assertion failed: (args->devid != (u64)-1) || args->missing, in fs/btrfs/volumes.c:6921 This can be triggered when we set devid to (u64)-1 by ioctl. In this case, the match of devid will be skipped and the match of device may succeed incorrectly. Patch 562d7b15 introduced this function which is used to match device. This function contains two matching scenarios, we can distinguish them by checking the value of args->missing rather than check whether args->devid and args->uuid is default value. Reported-by: syzbot+031687116258450f9853@syzkaller.appspotmail.com Fixes: 562d7b15 ("btrfs: handle device lookup with btrfs_dev_lookup_args") CC: stable@vger.kernel.org # 5.16+ Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Liu Shixin <liushixin2@huawei.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
- 02 Nov, 2022 6 commits
-
-
Filipe Manana authored
During a nowait buffered write, if we fail to balance dirty pages we exit btrfs_buffered_write() without releasing the delalloc space reserved for an extent, resulting in leaking space from the inode's block reserve. So fix that by releasing the delalloc space for the extent when balancing dirty pages fails. Reported-by: kernel test robot <yujie.liu@intel.com> Link: https://lore.kernel.org/all/202210111304.d369bc32-yujie.liu@intel.com Fixes: 965f47ae ("btrfs: make btrfs_buffered_write nowait compatible") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
If we are doing a buffered write in NOWAIT context and we can't reserve metadata space due to -ENOSPC, then we should return -EAGAIN so that we retry the write in a context allowed to block and do metadata reservation with flushing, which might succeed this time due to the allowed flushing. Returning -ENOSPC while in NOWAIT context simply makes some writes fail with -ENOSPC when they would likely succeed after switching from NOWAIT context to blocking context. That is unexpected behaviour and even fio complains about it with a warning like this: fio: io_u error on file /mnt/sdi/task_0.0.0: No space left on device: write offset=1535705088, buflen=65536 fio: pid=592630, err=28/file:io_u.c:1846, func=io_u error, error=No space left on device The fio's job config is this: [global] bs=64K ioengine=io_uring iodepth=1 size=2236962133 nr_files=1 filesize=2236962133 direct=0 runtime=10 fallocate=posix io_size=2236962133 group_reporting time_based [task_0] rw=randwrite directory=/mnt/sdi numjobs=4 So fix this by returning -EAGAIN if we are in NOWAIT context and the metadata reservation failed with -ENOSPC. Fixes: 304e45ac ("btrfs: plumb NOWAIT through the write path") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
Several places in the qgroup self tests follow the pattern of freeing the ulist pointer they passed to btrfs_find_all_roots() if the call to that function returned an error. That is pointless because that function always frees the ulist in case it returns an error. Also In some places like at test_multiple_refs(), after a call to btrfs_qgroup_account_extent() we also leave "old_roots" and "new_roots" pointing to ulists that were freed, because btrfs_qgroup_account_extent() has freed those ulists, and if after that the next call to btrfs_find_all_roots() fails, we call ulist_free() on the "old_roots" ulist again, resulting in a double free. So remove those calls to reduce the code size and avoid double ulist free in case of an error. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
In the test_no_shared_qgroup() and test_multiple_refs() qgroup self tests, if we fail to add the tree ref, remove the extent item or remove the extent ref, we are returning from the test function without freeing the "old_roots" ulist that was allocated by the previous calls to btrfs_find_all_roots(). Fix that by calling ulist_free() before returning. Fixes: 442244c9 ("btrfs: qgroup: Switch self test to extent-oriented qgroup mechanism.") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
During backref walking, at find_parent_nodes(), if we are dealing with a data extent and we get an error while resolving the indirect backrefs, at resolve_indirect_refs(), or in the while loop that iterates over the refs in the direct refs rbtree, we end up leaking the inode lists attached to the direct refs we have in the direct refs rbtree that were not yet added to the refs ulist passed as argument to find_parent_nodes(). Since they were not yet added to the refs ulist and prelim_release() does not free the lists, on error the caller can only free the lists attached to the refs that were added to the refs ulist, all the remaining refs get their inode lists never freed, therefore leaking their memory. Fix this by having prelim_release() always free any attached inode list to each ref found in the rbtree, and have find_parent_nodes() set the ref's inode list to NULL once it transfers ownership of the inode list to a ref added to the refs ulist passed to find_parent_nodes(). Fixes: 86d5f994 ("btrfs: convert prelimary reference tracking to use rbtrees") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
During backref walking, at resolve_indirect_refs(), if we get an error we jump to the 'out' label and call ulist_free() on the 'parents' ulist, which frees all the elements in the ulist - however that does not free any inode lists that may be attached to elements, through the 'aux' field of a ulist node, so we end up leaking lists if we have any attached to the unodes. Fix this by calling free_leaf_list() instead of ulist_free() when we exit from resolve_indirect_refs(). The static function free_leaf_list() is moved up for this to be possible and it's slightly simplified by removing unnecessary code. Fixes: 3301958b ("Btrfs: add inodes before dropping the extent lock in find_all_leafs") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
- 31 Oct, 2022 2 commits
-
-
Filipe Manana authored
When doing a direct IO write using a iocb with nowait and dsync set, we end up not syncing the file once the write completes. This is because we tell iomap to not call generic_write_sync(), which would result in calling btrfs_sync_file(), in order to avoid a deadlock since iomap can call it while we are holding the inode's lock and btrfs_sync_file() needs to acquire the inode's lock. The deadlock happens only if the write happens synchronously, when iomap_dio_rw() calls iomap_dio_complete() before it returns. Instead we do the sync ourselves at btrfs_do_write_iter(). For a nowait write however we can end up not doing the sync ourselves at at btrfs_do_write_iter() because the write could have been queued, and therefore we get -EIOCBQUEUED returned from iomap in such case. That makes us skip the sync call at btrfs_do_write_iter(), as we don't do it for any error returned from btrfs_direct_write(). We can't simply do the call even if -EIOCBQUEUED is returned, since that would block the task waiting for IO, both for the data since there are bios still in progress as well as potentially blocking when joining a log transaction and when syncing the log (writing log trees, super blocks, etc). So let iomap do the sync call itself and in order to avoid deadlocks for the case of synchronous writes (without nowait), use __iomap_dio_rw() and have ourselves call iomap_dio_complete() after unlocking the inode. A test case will later be sent for fstests, after this is fixed in Linus' tree. Fixes: 51bd9563 ("btrfs: fix deadlock due to page faults during direct IO reads and writes") Reported-by: Марк Коренберг <socketpair@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CAEmTpZGRKbzc16fWPvxbr6AfFsQoLmz-Lcg-7OgJOZDboJ+SGQ@mail.gmail.com/ CC: stable@vger.kernel.org # 6.0+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Christophe JAILLET authored
After allocation 'dip' is tested instead of 'dip->csums'. Fix it. Fixes: 642c5d34 ("btrfs: allocate the btrfs_dio_private as part of the iomap dio bio") CC: stable@vger.kernel.org # 5.19+ Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
- 25 Oct, 2022 1 commit
-
-
Qu Wenruo authored
[BUG] There are two reports (the earliest one from LKP, a more recent one from kernel bugzilla) that we can have some chunks with 0 as sub_stripes. This will cause divide-by-zero errors at btrfs_rmap_block, which is introduced by a recent kernel patch ac067734 ("btrfs: merge calculations for simple striped profiles in btrfs_rmap_block"): if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { stripe_nr = stripe_nr * map->num_stripes + i; stripe_nr = div_u64(stripe_nr, map->sub_stripes); <<< } [CAUSE] From the more recent report, it has been proven that we have some chunks with 0 as sub_stripes, mostly caused by older mkfs. It turns out that the mkfs.btrfs fix is only introduced in 6718ab4d33aa ("btrfs-progs: Initialize sub_stripes to 1 in btrfs_alloc_data_chunk") which is included in v5.4 btrfs-progs release. So there would be quite some old filesystems with such 0 sub_stripes. [FIX] Just don't trust the sub_stripes values from disk. We have a trusted btrfs_raid_array[] to fetch the correct sub_stripes numbers for each profile and that are fixed. By this, we can keep the compatibility with older filesystems while still avoid divide-by-zero bugs. Reported-by: kernel test robot <oliver.sang@intel.com> Reported-by: Viktor Kuzmin <kvaster@gmail.com> Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216559 Fixes: ac067734 ("btrfs: merge calculations for simple striped profiles in btrfs_rmap_block") CC: stable@vger.kernel.org # 6.0 Reviewed-by: Su Yue <glass@fydeos.io> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
- 24 Oct, 2022 7 commits
-
-
David Sterba authored
The type of parameter generation has been u32 since the beginning, however all callers pass a u64 generation, so unify the types to prevent potential loss. CC: stable@vger.kernel.org # 4.9+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
BingJing Chang authored
Commit 9ed0a72e ("btrfs: send: fix failures when processing inodes with no links") tries to fix all incremental send cases of orphan inodes the send operation will meet. However, there's still a bug causing the corner subcase fails with a ENOENT error. Here's shortened steps of that subcase: $ btrfs subvolume create vol $ touch vol/foo $ btrfs subvolume snapshot -r vol snap1 $ btrfs subvolume snapshot -r vol snap2 # Turn the second snapshot to RW mode and delete the file while # holding an open file descriptor on it $ btrfs property set snap2 ro false $ exec 73<snap2/foo $ rm snap2/foo # Set the second snapshot back to RO mode and do an incremental send # with an unusal reverse order $ btrfs property set snap2 ro true $ btrfs send -p snap2 snap1 > /dev/null At subvol snap1 ERROR: send ioctl failed with -2: No such file or directory It's subcase 3 of BTRFS_COMPARE_TREE_CHANGED in the commit 9ed0a72e ("btrfs: send: fix failures when processing inodes with no links"). And it's not a common case. We still have not met it in the real world. Theoretically, this case can happen in a batch cascading snapshot backup. In cascading backups, the receive operation in the middle may cause orphan inodes to appear because of the open file descriptors on the snapshot files during receiving. And if we don't do the batch snapshot backups in their creation order, then we can have an inode, which is an orphan in the parent snapshot but refers to a file in the send snapshot. Since an orphan inode has no paths, the send operation will fail with a ENOENT error if it tries to generate a path for it. In that patch, this subcase will be treated as an inode with a new generation. However, when the routine tries to delete the old paths in the parent snapshot, the function process_all_refs() doesn't check whether there are paths recorded or not before it calls the function process_recorded_refs(). And the function process_recorded_refs() try to get the first path in the parent snapshot in the beginning. Since it has no paths in the parent snapshot, the send operation fails. To fix this, we can easily put a link count check to avoid entering the deletion routine like what we do a link count check to avoid creating a new one. Moreover, we can assume that the function process_all_refs() can always collect references to process because we know it has a positive link count. Fixes: 9ed0a72e ("btrfs: send: fix failures when processing inodes with no links") Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: BingJing Chang <bingjingc@synology.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
Previous commit a05d3c91 ("btrfs: check superblock to ensure the fs was not modified at thaw time") only checks the content of the super block, but it doesn't really check if the on-disk super block has a matching checksum. This patch will add the checksum verification to thaw time superblock verification. This involves the following extra changes: - Export btrfs_check_super_csum() As we need to call it in super.c. - Change the argument list of btrfs_check_super_csum() Instead of passing a char *, directly pass struct btrfs_super_block * pointer. - Verify that our checksum type didn't change before checking the checksum value, like it's done at mount time Fixes: a05d3c91 ("btrfs: check superblock to ensure the fs was not modified at thaw time") Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We have been seeing the following panic in production kernel BUG at fs/btrfs/tree-mod-log.c:677! invalid opcode: 0000 [#1] SMP RIP: 0010:tree_mod_log_rewind+0x1b4/0x200 RSP: 0000:ffffc9002c02f890 EFLAGS: 00010293 RAX: 0000000000000003 RBX: ffff8882b448c700 RCX: 0000000000000000 RDX: 0000000000008000 RSI: 00000000000000a7 RDI: ffff88877d831c00 RBP: 0000000000000002 R08: 000000000000009f R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000100c40 R12: 0000000000000001 R13: ffff8886c26d6a00 R14: ffff88829f5424f8 R15: ffff88877d831a00 FS: 00007fee1d80c780(0000) GS:ffff8890400c0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fee1963a020 CR3: 0000000434f33002 CR4: 00000000007706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: btrfs_get_old_root+0x12b/0x420 btrfs_search_old_slot+0x64/0x2f0 ? tree_mod_log_oldest_root+0x3d/0xf0 resolve_indirect_ref+0xfd/0x660 ? ulist_alloc+0x31/0x60 ? kmem_cache_alloc_trace+0x114/0x2c0 find_parent_nodes+0x97a/0x17e0 ? ulist_alloc+0x30/0x60 btrfs_find_all_roots_safe+0x97/0x150 iterate_extent_inodes+0x154/0x370 ? btrfs_search_path_in_tree+0x240/0x240 iterate_inodes_from_logical+0x98/0xd0 ? btrfs_search_path_in_tree+0x240/0x240 btrfs_ioctl_logical_to_ino+0xd9/0x180 btrfs_ioctl+0xe2/0x2ec0 ? __mod_memcg_lruvec_state+0x3d/0x280 ? do_sys_openat2+0x6d/0x140 ? kretprobe_dispatcher+0x47/0x70 ? kretprobe_rethook_handler+0x38/0x50 ? rethook_trampoline_handler+0x82/0x140 ? arch_rethook_trampoline_callback+0x3b/0x50 ? kmem_cache_free+0xfb/0x270 ? do_sys_openat2+0xd5/0x140 __x64_sys_ioctl+0x71/0xb0 do_syscall_64+0x2d/0x40 Which is this code in tree_mod_log_rewind() switch (tm->op) { case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING: BUG_ON(tm->slot < n); This occurs because we replay the nodes in order that they happened, and when we do a REPLACE we will log a REMOVE_WHILE_FREEING for every slot, starting at 0. 'n' here is the number of items in this block, which in this case was 1, but we had 2 REMOVE_WHILE_FREEING operations. The actual root cause of this was that we were replaying operations for a block that shouldn't have been replayed. Consider the following sequence of events 1. We have an already modified root, and we do a btrfs_get_tree_mod_seq(). 2. We begin removing items from this root, triggering KEY_REPLACE for it's child slots. 3. We remove one of the 2 children this root node points to, thus triggering the root node promotion of the remaining child, and freeing this node. 4. We modify a new root, and re-allocate the above node to the root node of this other root. The tree mod log looks something like this logical 0 op KEY_REPLACE (slot 1) seq 2 logical 0 op KEY_REMOVE (slot 1) seq 3 logical 0 op KEY_REMOVE_WHILE_FREEING (slot 0) seq 4 logical 4096 op LOG_ROOT_REPLACE (old logical 0) seq 5 logical 8192 op KEY_REMOVE_WHILE_FREEING (slot 1) seq 6 logical 8192 op KEY_REMOVE_WHILE_FREEING (slot 0) seq 7 logical 0 op LOG_ROOT_REPLACE (old logical 8192) seq 8 >From here the bug is triggered by the following steps 1. Call btrfs_get_old_root() on the new_root. 2. We call tree_mod_log_oldest_root(btrfs_root_node(new_root)), which is currently logical 0. 3. tree_mod_log_oldest_root() calls tree_mod_log_search_oldest(), which gives us the KEY_REPLACE seq 2, and since that's not a LOG_ROOT_REPLACE we incorrectly believe that we don't have an old root, because we expect that the most recent change should be a LOG_ROOT_REPLACE. 4. Back in tree_mod_log_oldest_root() we don't have a LOG_ROOT_REPLACE, so we don't set old_root, we simply use our existing extent buffer. 5. Since we're using our existing extent buffer (logical 0) we call tree_mod_log_search(0) in order to get the newest change to start the rewind from, which ends up being the LOG_ROOT_REPLACE at seq 8. 6. Again since we didn't find an old_root we simply clone logical 0 at it's current state. 7. We call tree_mod_log_rewind() with the cloned extent buffer. 8. Set n = btrfs_header_nritems(logical 0), which would be whatever the original nritems was when we COWed the original root, say for this example it's 2. 9. We start from the newest operation and work our way forward, so we see LOG_ROOT_REPLACE which we ignore. 10. Next we see KEY_REMOVE_WHILE_FREEING for slot 0, which triggers the BUG_ON(tm->slot < n), because it expects if we've done this we have a completely empty extent buffer to replay completely. The correct thing would be to find the first LOG_ROOT_REPLACE, and then get the old_root set to logical 8192. In fact making that change fixes this particular problem. However consider the much more complicated case. We have a child node in this tree and the above situation. In the above case we freed one of the child blocks at the seq 3 operation. If this block was also re-allocated and got new tree mod log operations we would have a different problem. btrfs_search_old_slot(orig root) would get down to the logical 0 root that still pointed at that node. However in btrfs_search_old_slot() we call tree_mod_log_rewind(buf) directly. This is not context aware enough to know which operations we should be replaying. If the block was re-allocated multiple times we may only want to replay a range of operations, and determining what that range is isn't possible to determine. We could maybe solve this by keeping track of which root the node belonged to at every tree mod log operation, and then passing this around to make sure we're only replaying operations that relate to the root we're trying to rewind. However there's a simpler way to solve this problem, simply disallow reallocations if we have currently running tree mod log users. We already do this for leaf's, so we're simply expanding this to nodes as well. This is a relatively uncommon occurrence, and the problem is complicated enough I'm worried that we will still have corner cases in the reallocation case. So fix this in the most straightforward way possible. Fixes: bd989ba3 ("Btrfs: add tree modification log functions") CC: stable@vger.kernel.org # 3.3+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
After changes in commit 917f32a2 ("btrfs: give struct btrfs_bio a real end_io handler") the layout of btrfs_bio can be improved. There are two holes and the structure size is 264 bytes on release build. By reordering the iterator we can get rid of the holes and the size is 256 bytes which fits to slabs much better. Final layout: struct btrfs_bio { unsigned int mirror_num; /* 0 4 */ struct bvec_iter iter; /* 4 20 */ u64 file_offset; /* 24 8 */ struct btrfs_device * device; /* 32 8 */ u8 * csum; /* 40 8 */ u8 csum_inline[64]; /* 48 64 */ /* --- cacheline 1 boundary (64 bytes) was 48 bytes ago --- */ btrfs_bio_end_io_t end_io; /* 112 8 */ void * private; /* 120 8 */ /* --- cacheline 2 boundary (128 bytes) --- */ struct work_struct end_io_work; /* 128 32 */ struct bio bio; /* 160 96 */ /* size: 256, cachelines: 4, members: 10 */ }; Fixes: 917f32a2 ("btrfs: give struct btrfs_bio a real end_io handler") Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
Currently if full_stripe_write() failed to allocate the pages for parity, it will call __free_raid_bio() first, then return -ENOMEM. But some caller of full_stripe_write() will also call __free_raid_bio() again, this would cause double freeing. And it's not a logically sound either, normally we should either free the memory at the same level where we allocated it, or let endio to handle everything. So this patch will solve the double freeing by make raid56_parity_write() to handle the error and free the rbio. Just like what we do in raid56_parity_recover(). Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
In raid56_alloc_missing_rbio(), if we can not determine where the missing device is inside the full stripe, we just BUG_ON(). This is not necessary especially the only caller inside scrub.c is already properly checking the return value, and will treat it as a memory allocation failure. Fix the error handling by: - Add an extra warning for the reason Although personally speaking it may be better to be an ASSERT(). - Properly free the allocated rbio Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
- 14 Oct, 2022 1 commit
-
-
David Sterba authored
We have the new documentation hosted on Read The Docs and content is migrated there from the wiki. Also update http to https and add the tracepoint definition header. Signed-off-by: David Sterba <dsterba@suse.com>
-
- 11 Oct, 2022 7 commits
-
-
Filipe Manana authored
The path cache used during fiemap used to determine the sharedness of extent buffers in a path from a leaf containing a file extent item pointing to our data extent up to the root node of the tree, is meant to be used for a single path. Having a single path is by far the most common case, and therefore worth to optimize for, but it's possible to actually have multiple paths because we have 2 or more leaves. If we have multiple leaves, the 'level' variable keeps getting incremented in each iteration of the while loop at btrfs_is_data_extent_shared(), which means we will treat the second leaf in the 'tmp' ulist as a level 1 node, and so forth. In the worst case this can lead to getting a level greater than or equals to BTRFS_MAX_LEVEL (8), which will trigger a WARN_ON_ONCE() in the functions to lookup from or store in the path cache (lookup_backref_shared_cache() and store_backref_shared_cache()). If the current level never goes beyond 8, due to shared nodes in the paths and a fs tree height smaller than 8, it can still result in incorrectly marking one leaf as shared because some other leaf is shared and is stored one level below that other leaf, as when storing a true sharedness value in the cache results in updating the sharedness to true of all entries in the cache below the current level. Having multiple leaves happens in a case like the following: - We have a file extent item point to data extent at bytenr X, for a file range [0, 1M[ for example; - At this moment we have an extent data ref for the extent, with an offset of 0 and a count of 1; - A write into the middle of the extent happens, file range [64K, 128K) so the file extent item is split into two (at btrfs_drop_extents()): 1) One for file range [0, 64K), with a length (num_bytes field) of 64K and an extent offset of 0; 2) Another one for file range [128K, 1M), with a length of 896K (1M - 128K) and an extent offset of 128K. - At this moment the two file extent items are located in the same leaf; - A new file extent item for the range [64K, 128K), pointing to a new data extent, is inserted in the leaf. This results in a leaf split and now those two file extent items pointing to data extent X end up located in different leaves; - Once delayed refs are run, we still have a single extent data ref item for our data extent at bytenr X, for offset 0, but now with a count of 2 instead of 1; - So during fiemap, at btrfs_is_data_extent_shared(), after we call find_parent_nodes() for the data extent, we get two leaves, since we have two file extent items point to data extent at bytenr X that are located in two different leaves. So skip the use of the path cache when we get more than one leaf. Fixes: 12a824dc ("btrfs: speedup checking for extent sharedness during fiemap") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
During backref walking, when processing a delayed reference with a type of BTRFS_TREE_BLOCK_REF_KEY, we have two bugs there: 1) We are accessing the delayed references extent_op, and its key, without the protection of the delayed ref head's lock; 2) If there's no extent op for the delayed ref head, we end up with an uninitialized key in the stack, variable 'tmp_op_key', and then pass it to add_indirect_ref(), which adds the reference to the indirect refs rb tree. This is wrong, because indirect references should have a NULL key when we don't have access to the key, and in that case they should be added to the indirect_missing_keys rb tree and not to the indirect rb tree. This means that if have BTRFS_TREE_BLOCK_REF_KEY delayed ref resulting from freeing an extent buffer, therefore with a count of -1, it will not cancel out the corresponding reference we have in the extent tree (with a count of 1), since both references end up in different rb trees. When using fiemap, where we often need to check if extents are shared through shared subtrees resulting from snapshots, it means we can incorrectly report an extent as shared when it's no longer shared. However this is temporary because after the transaction is committed the extent is no longer reported as shared, as running the delayed reference results in deleting the tree block reference from the extent tree. Outside the fiemap context, the result is unpredictable, as the key was not initialized but it's used when navigating the rb trees to insert and search for references (prelim_ref_compare()), and we expect all references in the indirect rb tree to have valid keys. The following reproducer triggers the second bug: $ cat test.sh #!/bin/bash DEV=/dev/sdj MNT=/mnt/sdj mkfs.btrfs -f $DEV mount -o compress $DEV $MNT # With a compressed 128M file we get a tree height of 2 (level 1 root). xfs_io -f -c "pwrite -b 1M 0 128M" $MNT/foo btrfs subvolume snapshot $MNT $MNT/snap # Fiemap should output 0x2008 in the flags column. # 0x2000 means shared extent # 0x8 means encoded extent (because it's compressed) echo echo "fiemap after snapshot, range [120M, 120M + 128K):" xfs_io -c "fiemap -v 120M 128K" $MNT/foo echo # Overwrite one extent and fsync to flush delalloc and COW a new path # in the snapshot's tree. # # After this we have a BTRFS_DROP_DELAYED_REF delayed ref of type # BTRFS_TREE_BLOCK_REF_KEY with a count of -1 for every COWed extent # buffer in the path. # # In the extent tree we have inline references of type # BTRFS_TREE_BLOCK_REF_KEY, with a count of 1, for the same extent # buffers, so they should cancel each other, and the extent buffers in # the fs tree should no longer be considered as shared. # echo "Overwriting file range [120M, 120M + 128K)..." xfs_io -c "pwrite -b 128K 120M 128K" $MNT/snap/foo xfs_io -c "fsync" $MNT/snap/foo # Fiemap should output 0x8 in the flags column. The extent in the range # [120M, 120M + 128K) is no longer shared, it's now exclusive to the fs # tree. echo echo "fiemap after overwrite range [120M, 120M + 128K):" xfs_io -c "fiemap -v 120M 128K" $MNT/foo echo umount $MNT Running it before this patch: $ ./test.sh (...) wrote 134217728/134217728 bytes at offset 0 128 MiB, 128 ops; 0.1152 sec (1.085 GiB/sec and 1110.5809 ops/sec) Create a snapshot of '/mnt/sdj' in '/mnt/sdj/snap' fiemap after snapshot, range [120M, 120M + 128K): /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [245760..246015]: 34304..34559 256 0x2008 Overwriting file range [120M, 120M + 128K)... wrote 131072/131072 bytes at offset 125829120 128 KiB, 1 ops; 0.0001 sec (683.060 MiB/sec and 5464.4809 ops/sec) fiemap after overwrite range [120M, 120M + 128K): /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [245760..246015]: 34304..34559 256 0x2008 The extent in the range [120M, 120M + 128K) is still reported as shared (0x2000 bit set) after overwriting that range and flushing delalloc, which is not correct - an entire path was COWed in the snapshot's tree and the extent is now only referenced by the original fs tree. Running it after this patch: $ ./test.sh (...) wrote 134217728/134217728 bytes at offset 0 128 MiB, 128 ops; 0.1198 sec (1.043 GiB/sec and 1068.2067 ops/sec) Create a snapshot of '/mnt/sdj' in '/mnt/sdj/snap' fiemap after snapshot, range [120M, 120M + 128K): /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [245760..246015]: 34304..34559 256 0x2008 Overwriting file range [120M, 120M + 128K)... wrote 131072/131072 bytes at offset 125829120 128 KiB, 1 ops; 0.0001 sec (694.444 MiB/sec and 5555.5556 ops/sec) fiemap after overwrite range [120M, 120M + 128K): /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [245760..246015]: 34304..34559 256 0x8 Now the extent is not reported as shared anymore. So fix this by passing a NULL key pointer to add_indirect_ref() when processing a delayed reference for a tree block if there's no extent op for our delayed ref head with a defined key. Also access the extent op only after locking the delayed ref head's lock. The reproducer will be converted later to a test case for fstests. Fixes: 86d5f994 ("btrfs: convert prelimary reference tracking to use rbtrees") Fixes: a6dbceaf ("btrfs: Remove unused op_key var from add_delayed_refs") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
When processing delayed data references during backref walking and we are using a share context (we are being called through fiemap), whenever we find a delayed data reference for an inode different from the one we are interested in, then we immediately exit and consider the data extent as shared. This is wrong, because: 1) This might be a DROP reference that will cancel out a reference in the extent tree; 2) Even if it's an ADD reference, it may be followed by a DROP reference that cancels it out. In either case we should not exit immediately. Fix this by never exiting when we find a delayed data reference for another inode - instead add the reference and if it does not cancel out other delayed reference, we will exit early when we call extent_is_shared() after processing all delayed references. If we find a drop reference, then signal the code that processes references from the extent tree (add_inline_refs() and add_keyed_refs()) to not exit immediately if it finds there a reference for another inode, since we have delayed drop references that may cancel it out. In this later case we exit once we don't have references in the rb trees that cancel out each other and have two references for different inodes. Example reproducer for case 1): $ cat test-1.sh #!/bin/bash DEV=/dev/sdj MNT=/mnt/sdj mkfs.btrfs -f $DEV mount $DEV $MNT xfs_io -f -c "pwrite 0 64K" $MNT/foo cp --reflink=always $MNT/foo $MNT/bar echo echo "fiemap after cloning:" xfs_io -c "fiemap -v" $MNT/foo rm -f $MNT/bar echo echo "fiemap after removing file bar:" xfs_io -c "fiemap -v" $MNT/foo umount $MNT Running it before this patch, the extent is still listed as shared, it has the flag 0x2000 (FIEMAP_EXTENT_SHARED) set: $ ./test-1.sh fiemap after cloning: /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..127]: 26624..26751 128 0x2001 fiemap after removing file bar: /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..127]: 26624..26751 128 0x2001 Example reproducer for case 2): $ cat test-2.sh #!/bin/bash DEV=/dev/sdj MNT=/mnt/sdj mkfs.btrfs -f $DEV mount $DEV $MNT xfs_io -f -c "pwrite 0 64K" $MNT/foo cp --reflink=always $MNT/foo $MNT/bar # Flush delayed references to the extent tree and commit current # transaction. sync echo echo "fiemap after cloning:" xfs_io -c "fiemap -v" $MNT/foo rm -f $MNT/bar echo echo "fiemap after removing file bar:" xfs_io -c "fiemap -v" $MNT/foo umount $MNT Running it before this patch, the extent is still listed as shared, it has the flag 0x2000 (FIEMAP_EXTENT_SHARED) set: $ ./test-2.sh fiemap after cloning: /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..127]: 26624..26751 128 0x2001 fiemap after removing file bar: /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..127]: 26624..26751 128 0x2001 After this patch, after deleting bar in both tests, the extent is not reported with the 0x2000 flag anymore, it gets only the flag 0x1 (which is FIEMAP_EXTENT_LAST): $ ./test-1.sh fiemap after cloning: /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..127]: 26624..26751 128 0x2001 fiemap after removing file bar: /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..127]: 26624..26751 128 0x1 $ ./test-2.sh fiemap after cloning: /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..127]: 26624..26751 128 0x2001 fiemap after removing file bar: /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..127]: 26624..26751 128 0x1 These tests will later be converted to a test case for fstests. Fixes: dc046b10 ("Btrfs: make fiemap not blow when you have lots of snapshots") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
There are two comments in btrfs_cache_block_group that I left when resolving conflict between commits ced8ecf0 "btrfs: fix space cache corruption and potential double allocations" and 527c490f "btrfs: delete btrfs_wait_space_cache_v1_finished". The former reworked the caching logic to wait until the caching ends in btrfs_cache_block_group while the latter only open coded the waiting. Both removed btrfs_wait_space_cache_v1_finished, the correct code is with the waiting and returning error. Thus the conflict resolution was OK. Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
In production we hit the following deadlock task 1 task 2 task 3 ------ ------ ------ fiemap(file) falloc(file) fsync(file) write(0, 1MiB) btrfs_commit_transaction() wait_on(!pending_ordered) lock(512MiB, 1GiB) start_transaction wait_on_transaction lock(0, 1GiB) wait_extent_bit(512MiB) task 4 ------ finish_ordered_extent(0, 1MiB) lock(0, 1MiB) **DEADLOCK** This occurs because when task 1 does it's lock, it locks everything from 0-512MiB, and then waits for the 512MiB chunk to unlock. task 2 will never unlock because it's waiting on the transaction commit to happen, the transaction commit is waiting for the outstanding ordered extents, and then the ordered extent thread is blocked waiting on the 0-1MiB range to unlock. To fix this we have to clear anything we've locked so far, wait for the extent_state that we contended on, and then try to re-lock the entire range again. CC: stable@vger.kernel.org # 5.15+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
For a protocol and command compatibility we have a helper that hasn't been updated for v3 yet. We use it for verity so update where necessary. Fixes: 38622010 ("btrfs: send: add support for fs-verity") Signed-off-by: David Sterba <dsterba@suse.com>
-
Boris Burkov authored
We haven't finalized send stream v3 yet, so gate the send stream version behind CONFIG_BTRFS_DEBUG as we want some way to test it. The original verity send did not check the protocol version, so add that actual protection as well. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
-
- 07 Oct, 2022 1 commit
-
-
Filipe Manana authored
When looking the stored result for a cached path node, if the stored result is valid and has a value of true, we must update all the nodes for all levels below it with a result of true as well. This is necessary when moving from one leaf in the fs tree to the next one, as well as when moving from a node at any level to the next node at the same level. Currently this logic is missing as it was somehow forgotten by a recent patch with the subject: "btrfs: speedup checking for extent sharedness during fiemap". This adds the missing logic, which is the counter part to what we do when adding a shared node to the cache at store_backref_shared_cache(). Fixes: 12a824dc ("btrfs: speedup checking for extent sharedness during fiemap") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
- 29 Sep, 2022 4 commits
-
-
Tetsuo Handa authored
syzbot is reporting uninit-value in btrfs_clean_tree_block() [1], for commit bc877d28 ("btrfs: Deduplicate extent_buffer init code") missed that btrfs_set_header_generation() in btrfs_init_new_buffer() must not be moved to after clean_tree_block() because clean_tree_block() is calling btrfs_header_generation() since commit 55c69072 ("Btrfs: Fix extent_buffer usage when nodesize != leafsize"). Since memzero_extent_buffer() will reset "struct btrfs_header" part, we can't move btrfs_set_header_generation() to before memzero_extent_buffer(). Just re-add btrfs_set_header_generation() before btrfs_clean_tree_block(). Link: https://syzkaller.appspot.com/bug?extid=fba8e2116a12609b6c59 [1] Reported-by: syzbot <syzbot+fba8e2116a12609b6c59@syzkaller.appspotmail.com> Fixes: bc877d28 ("btrfs: Deduplicate extent_buffer init code") CC: stable@vger.kernel.org # 4.19+ Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
Currently when dropping extent maps for a file range, through btrfs_drop_extent_map_range(), we do the following non-optimal things: 1) We lookup for extent maps one by one, always starting the search from the root of the extent map tree. This is not efficient if we have multiple extent maps in the range; 2) We check on every iteration if we have the 'split' and 'split2' spare extent maps in case we need to split an extent map that intersects our range but also crosses its boundaries (to the left, to the right or both cases). If our target range is for example: [2M, 8M) And we have 3 extents maps in the range: [1M, 3M) [3M, 6M) [6M, 10M[ The on the first iteration we allocate two extent maps for 'split' and 'split2', and use the 'split' to split the first extent map, so after the split we set 'split' to 'split2' and then set 'split2' to NULL. On the second iteration, we don't need to split the second extent map, but because 'split2' is now NULL, we allocate a new extent map for 'split2'. On the third iteration we need to split the third extent map, so we use the extent map pointed by 'split'. So we ended up allocating 3 extent maps for splitting, but all we needed was 2 extent maps. We never need to allocate more than 2, because extent maps that need to be split are always the first one and the last one in the target range. Improve on this by: 1) Using rb_next() to move on to the next extent map. This results in iterating over less nodes of the tree and it does not require comparing the ranges of nodes to our start/end offset; 2) Allocate the 2 extent maps for splitting before entering the loop and never allocate more than 2. In practice it's very rare to have the combination of both extent map allocations fail, since we have a dedicated slab for extent maps, and also have the need to split two extent maps. This patch is part of a patchset comprised of the following patches: btrfs: fix missed extent on fsync after dropping extent maps btrfs: move btrfs_drop_extent_cache() to extent_map.c btrfs: use extent_map_end() at btrfs_drop_extent_map_range() btrfs: use cond_resched_rwlock_write() during inode eviction btrfs: move open coded extent map tree deletion out of inode eviction btrfs: add helper to replace extent map range with a new extent map btrfs: remove the refcount warning/check at free_extent_map() btrfs: remove unnecessary extent map initializations btrfs: assert tree is locked when clearing extent map from logging btrfs: remove unnecessary NULL pointer checks when searching extent maps btrfs: remove unnecessary next extent map search btrfs: avoid pointless extent map tree search when flushing delalloc btrfs: drop extent map range more efficiently And the following fio test was done before and after applying the whole patchset, on a non-debug kernel (Debian's default kernel config) on a 12 cores Intel box with 64G of ram: $ cat test.sh #!/bin/bash DEV=/dev/nvme0n1 MNT=/mnt/nvme0n1 MOUNT_OPTIONS="-o ssd" MKFS_OPTIONS="-R free-space-tree -O no-holes" cat <<EOF > /tmp/fio-job.ini [writers] rw=randwrite fsync=8 fallocate=none group_reporting=1 direct=0 bssplit=4k/20:8k/20:16k/20:32k/10:64k/10:128k/5:256k/5:512k/5:1m/5 ioengine=psync filesize=2G runtime=300 time_based directory=$MNT numjobs=8 thread EOF echo performance | \ tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor echo echo "Using config:" echo cat /tmp/fio-job.ini echo umount $MNT &> /dev/null mkfs.btrfs -f $MKFS_OPTIONS $DEV mount $MOUNT_OPTIONS $DEV $MNT fio /tmp/fio-job.ini umount $MNT Result before applying the patchset: WRITE: bw=197MiB/s (206MB/s), 197MiB/s-197MiB/s (206MB/s-206MB/s), io=57.7GiB (61.9GB), run=300188-300188msec Result after applying the patchset: WRITE: bw=203MiB/s (213MB/s), 203MiB/s-203MiB/s (213MB/s-213MB/s), io=59.5GiB (63.9GB), run=300019-300019msec Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
When flushing delalloc, in COW mode at cow_file_range(), before entering the loop that allocates extents and creates ordered extents, we do a call to btrfs_drop_extent_map_range() for the whole range. This is pointless because in the loop we call create_io_em(), which will also call btrfs_drop_extent_map_range() before inserting the new extent map. So remove that call at cow_file_range() not only because it is not needed, but also because it will make the btrfs_drop_extent_map_range() calls made from create_io_em() waste time searching the extent map tree, and that tree can be large for files with many extents. It also makes us waste time at btrfs_drop_extent_map_range() allocating and freeing the split extent maps for nothing. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
At __tree_search(), and its single caller __lookup_extent_mapping(), there is no point in finding the next extent map that starts after the search offset if we were able to find the previous extent map that ends before our search offset, because __lookup_extent_mapping() ignores the next acceptable extent map if we were able to find the previous one. So just return immediately if we were able to find the previous extent map, therefore avoiding wasting time iterating the tree looking for the next extent map which will not be used by __lookup_extent_mapping(). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-