core.c 200 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
/*
2
 *  kernel/sched/core.c
Linus Torvalds's avatar
Linus Torvalds committed
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
Ingo Molnar's avatar
Ingo Molnar committed
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
Linus Torvalds's avatar
Linus Torvalds committed
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
Linus Torvalds's avatar
Linus Torvalds committed
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
Linus Torvalds's avatar
Linus Torvalds committed
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
Linus Torvalds's avatar
Linus Torvalds committed
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
Linus Torvalds's avatar
Linus Torvalds committed
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
Linus Torvalds's avatar
Linus Torvalds committed
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
Linus Torvalds's avatar
Linus Torvalds committed
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
Linus Torvalds's avatar
Linus Torvalds committed
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
Jens Axboe's avatar
Jens Axboe committed
66
#include <linux/pagemap.h>
67
#include <linux/hrtimer.h>
68
#include <linux/tick.h>
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
Al Viro's avatar
Al Viro committed
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
76
#include <linux/compiler.h>
Linus Torvalds's avatar
Linus Torvalds committed
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
Linus Torvalds's avatar
Linus Torvalds committed
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94
{
95 96
	unsigned long delta;
	ktime_t soft, hard, now;
97

98 99 100 101 102 103
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
104

105 106 107 108 109 110 111 112
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

113 114
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115

116
static void update_rq_clock_task(struct rq *rq, s64 delta);
117

118
void update_rq_clock(struct rq *rq)
119
{
120
	s64 delta;
121

122 123 124
	lockdep_assert_held(&rq->lock);

	if (rq->clock_skip_update & RQCF_ACT_SKIP)
125
		return;
126

127
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
128 129
	if (delta < 0)
		return;
130 131
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
132 133
}

134 135 136
/*
 * Debugging: various feature bits
 */
137 138 139 140

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

141
const_debug unsigned int sysctl_sched_features =
142
#include "features.h"
143 144 145 146 147 148 149 150
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

151
static const char * const sched_feat_names[] = {
152
#include "features.h"
153 154 155 156
};

#undef SCHED_FEAT

157
static int sched_feat_show(struct seq_file *m, void *v)
158 159 160
{
	int i;

161
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
162 163 164
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
165
	}
166
	seq_puts(m, "\n");
167

168
	return 0;
169 170
}

171 172
#ifdef HAVE_JUMP_LABEL

173 174
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
175 176 177 178

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

179
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
180 181 182 183 184 185 186
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
187 188
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
189 190 191 192
}

static void sched_feat_enable(int i)
{
193 194
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
195 196 197 198 199 200
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

201
static int sched_feat_set(char *cmp)
202 203
{
	int i;
204
	int neg = 0;
205

Hillf Danton's avatar
Hillf Danton committed
206
	if (strncmp(cmp, "NO_", 3) == 0) {
207 208 209 210
		neg = 1;
		cmp += 3;
	}

211
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
212
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
213
			if (neg) {
214
				sysctl_sched_features &= ~(1UL << i);
215 216
				sched_feat_disable(i);
			} else {
217
				sysctl_sched_features |= (1UL << i);
218 219
				sched_feat_enable(i);
			}
220 221 222 223
			break;
		}
	}

224 225 226 227 228 229 230 231 232 233
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;
234
	struct inode *inode;
235 236 237 238 239 240 241 242 243 244

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

245 246 247
	/* Ensure the static_key remains in a consistent state */
	inode = file_inode(filp);
	mutex_lock(&inode->i_mutex);
248
	i = sched_feat_set(cmp);
249
	mutex_unlock(&inode->i_mutex);
250
	if (i == __SCHED_FEAT_NR)
251 252
		return -EINVAL;

253
	*ppos += cnt;
254 255 256 257

	return cnt;
}

258 259 260 261 262
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

263
static const struct file_operations sched_feat_fops = {
264 265 266 267 268
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
269 270 271 272 273 274 275 276 277 278
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
279
#endif /* CONFIG_SCHED_DEBUG */
280

281 282 283 284 285 286
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

287 288 289 290 291 292 293 294
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

Peter Zijlstra's avatar
Peter Zijlstra committed
295
/*
Peter Zijlstra's avatar
Peter Zijlstra committed
296
 * period over which we measure -rt task cpu usage in us.
Peter Zijlstra's avatar
Peter Zijlstra committed
297 298
 * default: 1s
 */
Peter Zijlstra's avatar
Peter Zijlstra committed
299
unsigned int sysctl_sched_rt_period = 1000000;
Peter Zijlstra's avatar
Peter Zijlstra committed
300

301
__read_mostly int scheduler_running;
302

Peter Zijlstra's avatar
Peter Zijlstra committed
303 304 305 306 307
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
Peter Zijlstra's avatar
Peter Zijlstra committed
308

Linus Torvalds's avatar
Linus Torvalds committed
309
/*
310
 * this_rq_lock - lock this runqueue and disable interrupts.
Linus Torvalds's avatar
Linus Torvalds committed
311
 */
Alexey Dobriyan's avatar
Alexey Dobriyan committed
312
static struct rq *this_rq_lock(void)
Linus Torvalds's avatar
Linus Torvalds committed
313 314
	__acquires(rq->lock)
{
315
	struct rq *rq;
Linus Torvalds's avatar
Linus Torvalds committed
316 317 318

	local_irq_disable();
	rq = this_rq();
319
	raw_spin_lock(&rq->lock);
Linus Torvalds's avatar
Linus Torvalds committed
320 321 322 323

	return rq;
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

345
	raw_spin_lock(&rq->lock);
346
	update_rq_clock(rq);
347
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
348
	raw_spin_unlock(&rq->lock);
349 350 351 352

	return HRTIMER_NORESTART;
}

353
#ifdef CONFIG_SMP
Peter Zijlstra's avatar
Peter Zijlstra committed
354 355 356 357 358 359 360 361 362

static int __hrtick_restart(struct rq *rq)
{
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = hrtimer_get_softexpires(timer);

	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
}

363 364 365 366
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
367
{
368
	struct rq *rq = arg;
369

370
	raw_spin_lock(&rq->lock);
Peter Zijlstra's avatar
Peter Zijlstra committed
371
	__hrtick_restart(rq);
372
	rq->hrtick_csd_pending = 0;
373
	raw_spin_unlock(&rq->lock);
374 375
}

376 377 378 379 380
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
381
void hrtick_start(struct rq *rq, u64 delay)
382
{
383
	struct hrtimer *timer = &rq->hrtick_timer;
384 385 386 387 388 389 390 391 392
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
393

394
	hrtimer_set_expires(timer, time);
395 396

	if (rq == this_rq()) {
Peter Zijlstra's avatar
Peter Zijlstra committed
397
		__hrtick_restart(rq);
398
	} else if (!rq->hrtick_csd_pending) {
399
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
400 401
		rq->hrtick_csd_pending = 1;
	}
402 403 404 405 406 407 408 409 410 411 412 413 414 415
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
416
		hrtick_clear(cpu_rq(cpu));
417 418 419 420 421 422
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

423
static __init void init_hrtick(void)
424 425 426
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
427 428 429 430 431 432
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
433
void hrtick_start(struct rq *rq, u64 delay)
434
{
Wanpeng Li's avatar
Wanpeng Li committed
435 436 437 438 439
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
440
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
441
			HRTIMER_MODE_REL_PINNED, 0);
442
}
443

Andrew Morton's avatar
Andrew Morton committed
444
static inline void init_hrtick(void)
445 446
{
}
447
#endif /* CONFIG_SMP */
448

449
static void init_rq_hrtick(struct rq *rq)
450
{
451 452
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
453

454 455 456 457
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
458

459 460
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
461
}
Andrew Morton's avatar
Andrew Morton committed
462
#else	/* CONFIG_SCHED_HRTICK */
463 464 465 466 467 468 469 470
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

471 472 473
static inline void init_hrtick(void)
{
}
Andrew Morton's avatar
Andrew Morton committed
474
#endif	/* CONFIG_SCHED_HRTICK */
475

476 477 478 479 480 481 482 483 484 485 486 487 488 489
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, val)						\
({	typeof(*(ptr)) __old, __val = *(ptr);				\
 	for (;;) {							\
 		__old = cmpxchg((ptr), __val, __val | (val));		\
 		if (__old == __val)					\
 			break;						\
 		__val = __old;						\
 	}								\
 	__old;								\
})

490
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
491 492 493 494 495 496 497 498 499 500
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

526 527 528 529 530 531
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
532 533 534 535 536 537 538

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
539 540
#endif

541
/*
542
 * resched_curr - mark rq's current task 'to be rescheduled now'.
543 544 545 546 547
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
548
void resched_curr(struct rq *rq)
549
{
550
	struct task_struct *curr = rq->curr;
551 552
	int cpu;

553
	lockdep_assert_held(&rq->lock);
554

555
	if (test_tsk_need_resched(curr))
556 557
		return;

558
	cpu = cpu_of(rq);
559

560
	if (cpu == smp_processor_id()) {
561
		set_tsk_need_resched(curr);
562
		set_preempt_need_resched();
563
		return;
564
	}
565

566
	if (set_nr_and_not_polling(curr))
567
		smp_send_reschedule(cpu);
568 569
	else
		trace_sched_wake_idle_without_ipi(cpu);
570 571
}

572
void resched_cpu(int cpu)
573 574 575 576
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

577
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
578
		return;
579
	resched_curr(rq);
580
	raw_spin_unlock_irqrestore(&rq->lock, flags);
581
}
582

583
#ifdef CONFIG_SMP
584
#ifdef CONFIG_NO_HZ_COMMON
585 586 587 588 589 590 591 592
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
593
int get_nohz_timer_target(int pinned)
594 595 596 597 598
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

599 600 601
	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
		return cpu;

602
	rcu_read_lock();
603
	for_each_domain(cpu, sd) {
604 605 606 607 608 609
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
610
	}
611 612
unlock:
	rcu_read_unlock();
613 614
	return cpu;
}
615 616 617 618 619 620 621 622 623 624
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
625
static void wake_up_idle_cpu(int cpu)
626 627 628 629 630 631
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

632
	if (set_nr_and_not_polling(rq->idle))
633
		smp_send_reschedule(cpu);
634 635
	else
		trace_sched_wake_idle_without_ipi(cpu);
636 637
}

638
static bool wake_up_full_nohz_cpu(int cpu)
639
{
640 641 642 643 644 645
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
646
	if (tick_nohz_full_cpu(cpu)) {
647 648
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
649
			tick_nohz_full_kick_cpu(cpu);
650 651 652 653 654 655 656 657
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
658
	if (!wake_up_full_nohz_cpu(cpu))
659 660 661
		wake_up_idle_cpu(cpu);
}

662
static inline bool got_nohz_idle_kick(void)
663
{
664
	int cpu = smp_processor_id();
665 666 667 668 669 670 671 672 673 674 675 676 677

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
678 679
}

680
#else /* CONFIG_NO_HZ_COMMON */
681

682
static inline bool got_nohz_idle_kick(void)
683
{
684
	return false;
685 686
}

687
#endif /* CONFIG_NO_HZ_COMMON */
688

689 690 691
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
692 693 694 695 696
	/*
	 * More than one running task need preemption.
	 * nr_running update is assumed to be visible
	 * after IPI is sent from wakers.
	 */
697 698
	if (this_rq()->nr_running > 1)
		return false;
699

700
	return true;
701 702
}
#endif /* CONFIG_NO_HZ_FULL */
703

704
void sched_avg_update(struct rq *rq)
705
{
706 707
	s64 period = sched_avg_period();

708
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
709 710 711 712 713 714
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
715 716 717
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
718 719
}

720
#endif /* CONFIG_SMP */
721

722 723
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
724
/*
725 726 727 728
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
729
 */
730
int walk_tg_tree_from(struct task_group *from,
731
			     tg_visitor down, tg_visitor up, void *data)
732 733
{
	struct task_group *parent, *child;
734
	int ret;
735

736 737
	parent = from;

738
down:
739 740
	ret = (*down)(parent, data);
	if (ret)
741
		goto out;
742 743 744 745 746 747 748
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
749
	ret = (*up)(parent, data);
750 751
	if (ret || parent == from)
		goto out;
752 753 754 755 756

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
757
out:
758
	return ret;
759 760
}

761
int tg_nop(struct task_group *tg, void *data)
762
{
763
	return 0;
764
}
765 766
#endif

767 768
static void set_load_weight(struct task_struct *p)
{
769 770 771
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

Ingo Molnar's avatar
Ingo Molnar committed
772 773 774 775
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
776
		load->weight = scale_load(WEIGHT_IDLEPRIO);
777
		load->inv_weight = WMULT_IDLEPRIO;
Ingo Molnar's avatar
Ingo Molnar committed
778 779
		return;
	}
780

781
	load->weight = scale_load(prio_to_weight[prio]);
782
	load->inv_weight = prio_to_wmult[prio];
783 784
}

785
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
786
{
787
	update_rq_clock(rq);
788
	sched_info_queued(rq, p);
789
	p->sched_class->enqueue_task(rq, p, flags);
790 791
}

792
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
793
{
794
	update_rq_clock(rq);
795
	sched_info_dequeued(rq, p);
796
	p->sched_class->dequeue_task(rq, p, flags);
797 798
}

799
void activate_task(struct rq *rq, struct task_struct *p, int flags)
800 801 802 803
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

804
	enqueue_task(rq, p, flags);
805 806
}

807
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
808 809 810 811
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

812
	dequeue_task(rq, p, flags);
813 814
}

815
static void update_rq_clock_task(struct rq *rq, s64 delta)
816
{
817 818 819 820 821 822 823 824
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
825
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
847 848
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
849
	if (static_key_false((&paravirt_steal_rq_enabled))) {
850 851 852 853 854 855 856 857 858 859 860
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

861 862
	rq->clock_task += delta;

863
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
864
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
865 866
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
867 868
}

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

899
/*
Ingo Molnar's avatar
Ingo Molnar committed
900
 * __normal_prio - return the priority that is based on the static prio
901 902 903
 */
static inline int __normal_prio(struct task_struct *p)
{
Ingo Molnar's avatar
Ingo Molnar committed
904
	return p->static_prio;
905 906
}

907 908 909 910 911 912 913
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
914
static inline int normal_prio(struct task_struct *p)
915 916 917
{
	int prio;

918 919 920
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
921 922 923 924 925 926 927 928 929 930 931 932 933
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
934
static int effective_prio(struct task_struct *p)
935 936 937 938 939 940 941 942 943 944 945 946
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

Linus Torvalds's avatar
Linus Torvalds committed
947 948 949
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
950 951
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
Linus Torvalds's avatar
Linus Torvalds committed
952
 */
953
inline int task_curr(const struct task_struct *p)
Linus Torvalds's avatar
Linus Torvalds committed
954 955 956 957
{
	return cpu_curr(task_cpu(p)) == p;
}

958 959 960
/*
 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
 */
961 962
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
963
				       int oldprio)
964 965 966
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
967
			prev_class->switched_from(rq, p);
968
		/* Possble rq->lock 'hole'.  */
969
		p->sched_class->switched_to(rq, p);
970
	} else if (oldprio != p->prio || dl_task(p))
971
		p->sched_class->prio_changed(rq, p, oldprio);
972 973
}

974
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
975 976 977 978 979 980 981 982 983 984
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
985
				resched_curr(rq);
986 987 988 989 990 991 992 993 994
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
995
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
996
		rq_clock_skip_update(rq, true);
997 998
}

Linus Torvalds's avatar
Linus Torvalds committed
999
#ifdef CONFIG_SMP
Ingo Molnar's avatar
Ingo Molnar committed
1000
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
Ingo Molnar's avatar
Ingo Molnar committed
1001
{
1002 1003 1004 1005 1006
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
Peter Zijlstra's avatar
Peter Zijlstra committed
1007
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1008
			!p->on_rq);
1009 1010

#ifdef CONFIG_LOCKDEP
1011 1012 1013 1014 1015
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
1016
	 * see task_group().
1017 1018 1019 1020
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1021 1022 1023
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1024 1025
#endif

1026
	trace_sched_migrate_task(p, new_cpu);
1027

1028
	if (task_cpu(p) != new_cpu) {
1029 1030
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1031
		p->se.nr_migrations++;
1032
		perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1033
	}
Ingo Molnar's avatar
Ingo Molnar committed
1034 1035

	__set_task_cpu(p, new_cpu);
Ingo Molnar's avatar
Ingo Molnar committed
1036 1037
}

1038 1039
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1040
	if (task_on_rq_queued(p)) {
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1074 1075
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	double_rq_lock(src_rq, dst_rq);
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1096 1097
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1120 1121 1122 1123
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1124 1125 1126 1127 1128 1129 1130 1131 1132
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1133
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1134 1135 1136 1137 1138 1139
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

1140
struct migration_arg {
1141
	struct task_struct *task;
Linus Torvalds's avatar
Linus Torvalds committed
1142
	int dest_cpu;
1143
};
Linus Torvalds's avatar
Linus Torvalds committed
1144

1145 1146
static int migration_cpu_stop(void *data);

Linus Torvalds's avatar
Linus Torvalds committed
1147 1148 1149
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
1150 1151 1152 1153 1154 1155 1156
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
Linus Torvalds's avatar
Linus Torvalds committed
1157 1158 1159 1160 1161 1162
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1163
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
Linus Torvalds's avatar
Linus Torvalds committed
1164 1165
{
	unsigned long flags;
1166
	int running, queued;
1167
	unsigned long ncsw;
1168
	struct rq *rq;
Linus Torvalds's avatar
Linus Torvalds committed
1169

1170 1171 1172 1173 1174 1175 1176 1177
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1178

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
1190 1191 1192
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1193
			cpu_relax();
1194
		}
1195

1196 1197 1198 1199 1200 1201
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1202
		trace_sched_wait_task(p);
1203
		running = task_running(rq, p);
1204
		queued = task_on_rq_queued(p);
1205
		ncsw = 0;
1206
		if (!match_state || p->state == match_state)
1207
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1208
		task_rq_unlock(rq, p, &flags);
1209

1210 1211 1212 1213 1214 1215
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1226

1227 1228 1229 1230 1231
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1232
		 * So if it was still runnable (but just not actively
1233 1234 1235
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1236
		if (unlikely(queued)) {
1237 1238 1239 1240
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1241 1242
			continue;
		}
1243

1244 1245 1246 1247 1248 1249 1250
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
1251 1252

	return ncsw;
Linus Torvalds's avatar
Linus Torvalds committed
1253 1254 1255 1256 1257 1258 1259 1260 1261
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
Lucas De Marchi's avatar
Lucas De Marchi committed
1262
 * NOTE: this function doesn't have to take the runqueue lock,
Linus Torvalds's avatar
Linus Torvalds committed
1263 1264 1265 1266 1267
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1268
void kick_process(struct task_struct *p)
Linus Torvalds's avatar
Linus Torvalds committed
1269 1270 1271 1272 1273 1274 1275 1276 1277
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
Rusty Russell's avatar
Rusty Russell committed
1278
EXPORT_SYMBOL_GPL(kick_process);
1279
#endif /* CONFIG_SMP */
Linus Torvalds's avatar
Linus Torvalds committed
1280

1281
#ifdef CONFIG_SMP
1282
/*
1283
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1284
 */
1285 1286
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1287 1288
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1289 1290
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1291

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1309
	}
1310

1311 1312
	for (;;) {
		/* Any allowed, online CPU? */
1313
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1314 1315 1316 1317 1318 1319
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1320

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1347
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1348 1349
					task_pid_nr(p), p->comm, cpu);
		}
1350 1351 1352 1353 1354
	}

	return dest_cpu;
}

1355
/*
1356
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1357
 */
1358
static inline
1359
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1360
{
1361 1362
	if (p->nr_cpus_allowed > 1)
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1374
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
Peter Zijlstra's avatar
Peter Zijlstra committed
1375
		     !cpu_online(cpu)))
1376
		cpu = select_fallback_rq(task_cpu(p), p);
1377 1378

	return cpu;
1379
}
1380 1381 1382 1383 1384 1385

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1386 1387
#endif

1388
static void
1389
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
Tejun Heo's avatar
Tejun Heo committed
1390
{
1391
#ifdef CONFIG_SCHEDSTATS
1392 1393
	struct rq *rq = this_rq();

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1404
		rcu_read_lock();
1405 1406 1407 1408 1409 1410
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1411
		rcu_read_unlock();
1412
	}
1413 1414 1415 1416

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

1417 1418 1419
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
Tejun Heo's avatar
Tejun Heo committed
1420
	schedstat_inc(p, se.statistics.nr_wakeups);
1421 1422

	if (wake_flags & WF_SYNC)
Tejun Heo's avatar
Tejun Heo committed
1423
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1424 1425 1426 1427 1428 1429

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
Tejun Heo's avatar
Tejun Heo committed
1430
	activate_task(rq, p, en_flags);
1431
	p->on_rq = TASK_ON_RQ_QUEUED;
1432 1433 1434 1435

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
Tejun Heo's avatar
Tejun Heo committed
1436 1437
}

1438 1439 1440
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1441
static void
1442
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Tejun Heo's avatar
Tejun Heo committed
1443 1444
{
	check_preempt_curr(rq, p, wake_flags);
1445
	trace_sched_wakeup(p, true);
Tejun Heo's avatar
Tejun Heo committed
1446 1447 1448 1449 1450 1451

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1452
	if (rq->idle_stamp) {
1453
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1454
		u64 max = 2*rq->max_idle_balance_cost;
Tejun Heo's avatar
Tejun Heo committed
1455

1456 1457 1458
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
Tejun Heo's avatar
Tejun Heo committed
1459
			rq->avg_idle = max;
1460

Tejun Heo's avatar
Tejun Heo committed
1461 1462 1463 1464 1465
		rq->idle_stamp = 0;
	}
#endif
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
1490
	if (task_on_rq_queued(p)) {
1491 1492
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1493 1494 1495 1496 1497 1498 1499 1500
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1501
#ifdef CONFIG_SMP
1502
void sched_ttwu_pending(void)
1503 1504
{
	struct rq *rq = this_rq();
1505 1506
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1507
	unsigned long flags;
1508

1509 1510 1511 1512
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1513

1514 1515 1516
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1517 1518 1519
		ttwu_do_activate(rq, p, 0);
	}

1520
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1521 1522 1523 1524
}

void scheduler_ipi(void)
{
1525 1526 1527 1528 1529
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1530
	preempt_fold_need_resched();
1531

1532
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
1549
	sched_ttwu_pending();
1550 1551 1552 1553

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1554
	if (unlikely(got_nohz_idle_kick())) {
1555
		this_rq()->idle_balance = 1;
1556
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1557
	}
1558
	irq_exit();
1559 1560 1561 1562
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
1563 1564 1565 1566 1567 1568 1569 1570
	struct rq *rq = cpu_rq(cpu);

	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1571
}
1572

1573 1574 1575 1576 1577
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1578 1579 1580 1581
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
1592 1593 1594

out:
	rcu_read_unlock();
1595 1596
}

1597
bool cpus_share_cache(int this_cpu, int that_cpu)
1598 1599 1600
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1601
#endif /* CONFIG_SMP */
1602

1603 1604 1605 1606
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1607
#if defined(CONFIG_SMP)
1608
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1609
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1610 1611 1612 1613 1614
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1615 1616 1617
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
Tejun Heo's avatar
Tejun Heo committed
1618 1619 1620
}

/**
Linus Torvalds's avatar
Linus Torvalds committed
1621
 * try_to_wake_up - wake up a thread
Tejun Heo's avatar
Tejun Heo committed
1622
 * @p: the thread to be awakened
Linus Torvalds's avatar
Linus Torvalds committed
1623
 * @state: the mask of task states that can be woken
Tejun Heo's avatar
Tejun Heo committed
1624
 * @wake_flags: wake modifier flags (WF_*)
Linus Torvalds's avatar
Linus Torvalds committed
1625 1626 1627 1628 1629 1630 1631
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1632
 * Return: %true if @p was woken up, %false if it was already running.
Tejun Heo's avatar
Tejun Heo committed
1633
 * or @state didn't match @p's state.
Linus Torvalds's avatar
Linus Torvalds committed
1634
 */
1635 1636
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
Linus Torvalds's avatar
Linus Torvalds committed
1637 1638
{
	unsigned long flags;
1639
	int cpu, success = 0;
1640

1641 1642 1643 1644 1645 1646 1647
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1648
	raw_spin_lock_irqsave(&p->pi_lock, flags);
Peter Zijlstra's avatar
Peter Zijlstra committed
1649
	if (!(p->state & state))
Linus Torvalds's avatar
Linus Torvalds committed
1650 1651
		goto out;

1652
	success = 1; /* we're going to change ->state */
Linus Torvalds's avatar
Linus Torvalds committed
1653 1654
	cpu = task_cpu(p);

1655 1656
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
Linus Torvalds's avatar
Linus Torvalds committed
1657 1658

#ifdef CONFIG_SMP
Peter Zijlstra's avatar
Peter Zijlstra committed
1659
	/*
1660 1661
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
Peter Zijlstra's avatar
Peter Zijlstra committed
1662
	 */
1663
	while (p->on_cpu)
1664
		cpu_relax();
1665
	/*
1666
	 * Pairs with the smp_wmb() in finish_lock_switch().
1667
	 */
1668
	smp_rmb();
Linus Torvalds's avatar
Linus Torvalds committed
1669

1670
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
Peter Zijlstra's avatar
Peter Zijlstra committed
1671
	p->state = TASK_WAKING;
1672

1673
	if (p->sched_class->task_waking)
1674
		p->sched_class->task_waking(p);
1675

1676
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1677 1678
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1679
		set_task_cpu(p, cpu);
1680
	}
Linus Torvalds's avatar
Linus Torvalds committed
1681 1682
#endif /* CONFIG_SMP */

1683 1684
	ttwu_queue(p, cpu);
stat:
1685
	ttwu_stat(p, cpu, wake_flags);
Linus Torvalds's avatar
Linus Torvalds committed
1686
out:
1687
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
Linus Torvalds's avatar
Linus Torvalds committed
1688 1689 1690 1691

	return success;
}

Tejun Heo's avatar
Tejun Heo committed
1692 1693 1694 1695
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1696
 * Put @p on the run-queue if it's not already there. The caller must
Tejun Heo's avatar
Tejun Heo committed
1697
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1698
 * the current task.
Tejun Heo's avatar
Tejun Heo committed
1699 1700 1701 1702 1703
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1704 1705 1706 1707
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

Tejun Heo's avatar
Tejun Heo committed
1708 1709
	lockdep_assert_held(&rq->lock);

1710 1711 1712 1713 1714 1715
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

Tejun Heo's avatar
Tejun Heo committed
1716
	if (!(p->state & TASK_NORMAL))
1717
		goto out;
Tejun Heo's avatar
Tejun Heo committed
1718

1719
	if (!task_on_rq_queued(p))
1720 1721
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1722
	ttwu_do_wakeup(rq, p, 0);
1723
	ttwu_stat(p, smp_processor_id(), 0);
1724 1725
out:
	raw_spin_unlock(&p->pi_lock);
Tejun Heo's avatar
Tejun Heo committed
1726 1727
}

1728 1729 1730 1731 1732
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
1733 1734 1735
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
1736 1737 1738 1739
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1740
int wake_up_process(struct task_struct *p)
Linus Torvalds's avatar
Linus Torvalds committed
1741
{
1742 1743
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
Linus Torvalds's avatar
Linus Torvalds committed
1744 1745 1746
}
EXPORT_SYMBOL(wake_up_process);

1747
int wake_up_state(struct task_struct *p, unsigned int state)
Linus Torvalds's avatar
Linus Torvalds committed
1748 1749 1750 1751
{
	return try_to_wake_up(p, state, 0);
}

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
1764 1765 1766 1767

	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
	dl_se->dl_yielded = 0;
1768 1769
}

Linus Torvalds's avatar
Linus Torvalds committed
1770 1771 1772
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
Ingo Molnar's avatar
Ingo Molnar committed
1773 1774 1775
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
1776
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
Ingo Molnar's avatar
Ingo Molnar committed
1777
{
Peter Zijlstra's avatar
Peter Zijlstra committed
1778 1779 1780
	p->on_rq			= 0;

	p->se.on_rq			= 0;
Ingo Molnar's avatar
Ingo Molnar committed
1781 1782
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1783
	p->se.prev_sum_exec_runtime	= 0;
1784
	p->se.nr_migrations		= 0;
1785
	p->se.vruntime			= 0;
1786 1787 1788
#ifdef CONFIG_SMP
	p->se.avg.decay_count		= 0;
#endif
Peter Zijlstra's avatar
Peter Zijlstra committed
1789
	INIT_LIST_HEAD(&p->se.group_node);
1790 1791

#ifdef CONFIG_SCHEDSTATS
1792
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1793
#endif
1794

1795
	RB_CLEAR_NODE(&p->dl.rb_node);
1796
	init_dl_task_timer(&p->dl);
1797
	__dl_clear_params(p);
1798

Peter Zijlstra's avatar
Peter Zijlstra committed
1799
	INIT_LIST_HEAD(&p->rt.run_list);
1800

1801 1802 1803
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1804 1805 1806

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1807
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1808 1809 1810
		p->mm->numa_scan_seq = 0;
	}

1811 1812 1813 1814 1815
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

1816 1817
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1818
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1819
	p->numa_work.next = &p->numa_work;
1820
	p->numa_faults = NULL;
1821 1822
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
1823 1824

	p->numa_group = NULL;
1825
#endif /* CONFIG_NUMA_BALANCING */
Ingo Molnar's avatar
Ingo Molnar committed
1826 1827
}

1828
#ifdef CONFIG_NUMA_BALANCING
1829
#ifdef CONFIG_SCHED_DEBUG
1830 1831 1832 1833 1834 1835 1836
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1837 1838 1839 1840 1841 1842
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
Ingo Molnar's avatar
Ingo Molnar committed
1843
}
1844
#endif /* CONFIG_SCHED_DEBUG */
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = numabalancing_enabled;

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
Ingo Molnar's avatar
Ingo Molnar committed
1868 1869 1870 1871

/*
 * fork()/clone()-time setup:
 */
1872
int sched_fork(unsigned long clone_flags, struct task_struct *p)
Ingo Molnar's avatar
Ingo Molnar committed
1873
{
1874
	unsigned long flags;
Ingo Molnar's avatar
Ingo Molnar committed
1875 1876
	int cpu = get_cpu();

1877
	__sched_fork(clone_flags, p);
1878
	/*
1879
	 * We mark the process as running here. This guarantees that
1880 1881 1882
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1883
	p->state = TASK_RUNNING;
Ingo Molnar's avatar
Ingo Molnar committed
1884

1885 1886 1887 1888 1889
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1890 1891 1892 1893
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1894
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1895
			p->policy = SCHED_NORMAL;
1896
			p->static_prio = NICE_TO_PRIO(0);
1897 1898 1899 1900 1901 1902
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1903

1904 1905 1906 1907 1908 1909
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1910

1911 1912 1913 1914 1915 1916
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
1917
		p->sched_class = &fair_sched_class;
1918
	}
1919

1920 1921 1922
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1923 1924 1925 1926 1927 1928 1929
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1930
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1931
	set_task_cpu(p, cpu);
1932
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1933

1934
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
Ingo Molnar's avatar
Ingo Molnar committed
1935
	if (likely(sched_info_on()))
1936
		memset(&p->sched_info, 0, sizeof(p->sched_info));
Linus Torvalds's avatar
Linus Torvalds committed
1937
#endif
1938 1939
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1940
#endif
1941
	init_task_preempt_count(p);
1942
#ifdef CONFIG_SMP
1943
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1944
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1945
#endif
1946

1947
	put_cpu();
1948
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
1949 1950
}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
1970 1971
	rcu_lockdep_assert(rcu_read_lock_sched_held(),
			   "sched RCU must be held");
1972 1973 1974
	return &cpu_rq(i)->rd->dl_bw;
}

1975
static inline int dl_bw_cpus(int i)
1976
{
1977 1978 1979
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

1980 1981
	rcu_lockdep_assert(rcu_read_lock_sched_held(),
			   "sched RCU must be held");
1982 1983 1984 1985
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
1986 1987 1988 1989 1990 1991 1992
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

1993
static inline int dl_bw_cpus(int i)
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2006 2007 2008
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2009 2010 2011 2012 2013 2014
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2015
	u64 period = attr->sched_period ?: attr->sched_deadline;
2016 2017
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2018
	int cpus, err = -1;
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2029
	cpus = dl_bw_cpus(task_cpu(p));
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

Linus Torvalds's avatar
Linus Torvalds committed
2050 2051 2052 2053 2054 2055 2056
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2057
void wake_up_new_task(struct task_struct *p)
Linus Torvalds's avatar
Linus Torvalds committed
2058 2059
{
	unsigned long flags;
Ingo Molnar's avatar
Ingo Molnar committed
2060
	struct rq *rq;
2061

2062
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2063 2064 2065 2066 2067 2068
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2069
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2070 2071
#endif

2072 2073
	/* Initialize new task's runnable average */
	init_task_runnable_average(p);
2074
	rq = __task_rq_lock(p);
2075
	activate_task(rq, p, 0);
2076
	p->on_rq = TASK_ON_RQ_QUEUED;
2077
	trace_sched_wakeup_new(p, true);
Peter Zijlstra's avatar
Peter Zijlstra committed
2078
	check_preempt_curr(rq, p, WF_FORK);
2079
#ifdef CONFIG_SMP
2080 2081
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2082
#endif
2083
	task_rq_unlock(rq, p, &flags);
Linus Torvalds's avatar
Linus Torvalds committed
2084 2085
}

2086 2087 2088
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2089
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2090
 * @notifier: notifier struct to register
2091 2092 2093 2094 2095 2096 2097 2098 2099
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
2100
 * @notifier: notifier struct to unregister
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

2114
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2115 2116 2117 2118 2119 2120 2121 2122 2123
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

2124
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2125 2126 2127
		notifier->ops->sched_out(notifier, next);
}

2128
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2140
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2141

2142 2143 2144
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
2145
 * @prev: the current task that is being switched out
2146 2147 2148 2149 2150 2151 2152 2153 2154
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2155 2156 2157
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2158
{
2159
	trace_sched_switch(prev, next);
2160
	sched_info_switch(rq, prev, next);
2161
	perf_event_task_sched_out(prev, next);
2162
	fire_sched_out_preempt_notifiers(prev, next);
2163 2164 2165 2166
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

Linus Torvalds's avatar
Linus Torvalds committed
2167 2168 2169 2170
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2171 2172 2173 2174
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
Linus Torvalds's avatar
Linus Torvalds committed
2175 2176
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
Ingo Molnar's avatar
Ingo Molnar committed
2177
 * so, we finish that here outside of the runqueue lock. (Doing it
Linus Torvalds's avatar
Linus Torvalds committed
2178 2179
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2180 2181 2182 2183 2184
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
Linus Torvalds's avatar
Linus Torvalds committed
2185
 */
2186
static struct rq *finish_task_switch(struct task_struct *prev)
Linus Torvalds's avatar
Linus Torvalds committed
2187 2188
	__releases(rq->lock)
{
2189
	struct rq *rq = this_rq();
Linus Torvalds's avatar
Linus Torvalds committed
2190
	struct mm_struct *mm = rq->prev_mm;
Oleg Nesterov's avatar
Oleg Nesterov committed
2191
	long prev_state;
Linus Torvalds's avatar
Linus Torvalds committed
2192 2193 2194 2195 2196

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2197
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
Oleg Nesterov's avatar
Oleg Nesterov committed
2198 2199
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2200
	 * The test for TASK_DEAD must occur while the runqueue locks are
Linus Torvalds's avatar
Linus Torvalds committed
2201 2202 2203 2204 2205
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
Oleg Nesterov's avatar
Oleg Nesterov committed
2206
	prev_state = prev->state;
2207
	vtime_task_switch(prev);
2208
	finish_arch_switch(prev);
2209
	perf_event_task_sched_in(prev, current);
2210
	finish_lock_switch(rq, prev);
2211
	finish_arch_post_lock_switch();
Steven Rostedt's avatar
Steven Rostedt committed
2212

2213
	fire_sched_in_preempt_notifiers(current);
Linus Torvalds's avatar
Linus Torvalds committed
2214 2215
	if (mm)
		mmdrop(mm);
2216
	if (unlikely(prev_state == TASK_DEAD)) {
2217 2218 2219
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2220 2221 2222
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
Ingo Molnar's avatar
Ingo Molnar committed
2223
		 */
2224
		kprobe_flush_task(prev);
Linus Torvalds's avatar
Linus Torvalds committed
2225
		put_task_struct(prev);
2226
	}
2227 2228

	tick_nohz_task_switch(current);
2229
	return rq;
Linus Torvalds's avatar
Linus Torvalds committed
2230 2231
}

2232 2233 2234 2235 2236 2237 2238 2239
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2240
		raw_spin_lock_irqsave(&rq->lock, flags);
2241 2242
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2243
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2244 2245 2246 2247 2248 2249

		rq->post_schedule = 0;
	}
}

#else
2250

2251 2252
static inline void post_schedule(struct rq *rq)
{
Linus Torvalds's avatar
Linus Torvalds committed
2253 2254
}

2255 2256
#endif

Linus Torvalds's avatar
Linus Torvalds committed
2257 2258 2259 2260
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2261
asmlinkage __visible void schedule_tail(struct task_struct *prev)
Linus Torvalds's avatar
Linus Torvalds committed
2262 2263
	__releases(rq->lock)
{
2264
	struct rq *rq;
2265

2266 2267
	/* finish_task_switch() drops rq->lock and enables preemtion */
	preempt_disable();
2268
	rq = finish_task_switch(prev);
2269
	post_schedule(rq);
2270
	preempt_enable();
2271

Linus Torvalds's avatar
Linus Torvalds committed
2272
	if (current->set_child_tid)
2273
		put_user(task_pid_vnr(current), current->set_child_tid);
Linus Torvalds's avatar
Linus Torvalds committed
2274 2275 2276
}

/*
2277
 * context_switch - switch to the new MM and the new thread's register state.
Linus Torvalds's avatar
Linus Torvalds committed
2278
 */
2279
static inline struct rq *
2280
context_switch(struct rq *rq, struct task_struct *prev,
2281
	       struct task_struct *next)
Linus Torvalds's avatar
Linus Torvalds committed
2282
{
Ingo Molnar's avatar
Ingo Molnar committed
2283
	struct mm_struct *mm, *oldmm;
Linus Torvalds's avatar
Linus Torvalds committed
2284

2285
	prepare_task_switch(rq, prev, next);
2286

Ingo Molnar's avatar
Ingo Molnar committed
2287 2288
	mm = next->mm;
	oldmm = prev->active_mm;
2289 2290 2291 2292 2293
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2294
	arch_start_context_switch(prev);
2295

2296
	if (!mm) {
Linus Torvalds's avatar
Linus Torvalds committed
2297 2298 2299 2300 2301 2302
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2303
	if (!prev->mm) {
Linus Torvalds's avatar
Linus Torvalds committed
2304 2305 2306
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2307 2308 2309 2310 2311 2312
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2313
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Linus Torvalds's avatar
Linus Torvalds committed
2314

2315
	context_tracking_task_switch(prev, next);
Linus Torvalds's avatar
Linus Torvalds committed
2316 2317
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
Ingo Molnar's avatar
Ingo Molnar committed
2318
	barrier();
2319 2320

	return finish_task_switch(prev);
Linus Torvalds's avatar
Linus Torvalds committed
2321 2322 2323
}

/*
2324
 * nr_running and nr_context_switches:
Linus Torvalds's avatar
Linus Torvalds committed
2325 2326
 *
 * externally visible scheduler statistics: current number of runnable
2327
 * threads, total number of context switches performed since bootup.
Linus Torvalds's avatar
Linus Torvalds committed
2328 2329 2330 2331 2332 2333 2334 2335 2336
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2337
}
Linus Torvalds's avatar
Linus Torvalds committed
2338

2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
/*
 * Check if only the current task is running on the cpu.
 */
bool single_task_running(void)
{
	if (cpu_rq(smp_processor_id())->nr_running == 1)
		return true;
	else
		return false;
}
EXPORT_SYMBOL(single_task_running);

Linus Torvalds's avatar
Linus Torvalds committed
2351
unsigned long long nr_context_switches(void)
2352
{
2353 2354
	int i;
	unsigned long long sum = 0;
2355

2356
	for_each_possible_cpu(i)
Linus Torvalds's avatar
Linus Torvalds committed
2357
		sum += cpu_rq(i)->nr_switches;
2358

Linus Torvalds's avatar
Linus Torvalds committed
2359 2360
	return sum;
}
2361

Linus Torvalds's avatar
Linus Torvalds committed
2362 2363 2364
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2365

2366
	for_each_possible_cpu(i)
Linus Torvalds's avatar
Linus Torvalds committed
2367
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2368

Linus Torvalds's avatar
Linus Torvalds committed
2369 2370
	return sum;
}
2371

2372
unsigned long nr_iowait_cpu(int cpu)
2373
{
2374
	struct rq *this = cpu_rq(cpu);
2375 2376
	return atomic_read(&this->nr_iowait);
}
2377

2378 2379 2380 2381 2382 2383 2384
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
	struct rq *this = this_rq();
	*nr_waiters = atomic_read(&this->nr_iowait);
	*load = this->cpu_load[0];
}

Ingo Molnar's avatar
Ingo Molnar committed
2385
#ifdef CONFIG_SMP
2386

2387
/*
2388 2389
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2390
 */
2391
void sched_exec(void)
2392
{
2393
	struct task_struct *p = current;
Linus Torvalds's avatar
Linus Torvalds committed
2394
	unsigned long flags;
2395
	int dest_cpu;
2396

2397
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2398
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2399 2400
	if (dest_cpu == smp_processor_id())
		goto unlock;
2401

2402
	if (likely(cpu_active(dest_cpu))) {
2403
		struct migration_arg arg = { p, dest_cpu };
2404

2405 2406
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
Linus Torvalds's avatar
Linus Torvalds committed
2407 2408
		return;
	}
2409
unlock:
2410
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
Linus Torvalds's avatar
Linus Torvalds committed
2411
}
Ingo Molnar's avatar
Ingo Molnar committed
2412

Linus Torvalds's avatar
Linus Torvalds committed
2413 2414 2415
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2416
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
Linus Torvalds's avatar
Linus Torvalds committed
2417 2418

EXPORT_PER_CPU_SYMBOL(kstat);
2419
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
Linus Torvalds's avatar
Linus Torvalds committed
2420

2421 2422 2423 2424 2425 2426 2427 2428 2429
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
2430
	u64 ns;
2431

2432 2433 2434 2435 2436 2437 2438 2439 2440
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
2441 2442
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2443
	 */
2444
	if (!p->on_cpu || !task_on_rq_queued(p))
2445 2446 2447
		return p->se.sum_exec_runtime;
#endif

2448
	rq = task_rq_lock(p, &flags);
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
2459
	task_rq_unlock(rq, p, &flags);
2460 2461 2462

	return ns;
}
2463

2464 2465 2466 2467 2468 2469 2470 2471
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
Ingo Molnar's avatar
Ingo Molnar committed
2472
	struct task_struct *curr = rq->curr;
2473 2474

	sched_clock_tick();
Ingo Molnar's avatar
Ingo Molnar committed
2475

2476
	raw_spin_lock(&rq->lock);
2477
	update_rq_clock(rq);
Peter Zijlstra's avatar
Peter Zijlstra committed
2478
	curr->sched_class->task_tick(rq, curr, 0);
2479
	update_cpu_load_active(rq);
2480
	raw_spin_unlock(&rq->lock);
2481

2482
	perf_event_task_tick();
2483

2484
#ifdef CONFIG_SMP
2485
	rq->idle_balance = idle_cpu(cpu);
2486
	trigger_load_balance(rq);
2487
#endif
2488
	rq_last_tick_reset(rq);
Linus Torvalds's avatar
Linus Torvalds committed
2489 2490
}

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2502 2503
 *
 * Return: Maximum deferment in nanoseconds.
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
	unsigned long next, now = ACCESS_ONCE(jiffies);

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2515
	return jiffies_to_nsecs(next - now);
Linus Torvalds's avatar
Linus Torvalds committed
2516
}
2517
#endif
Linus Torvalds's avatar
Linus Torvalds committed
2518

2519
notrace unsigned long get_parent_ip(unsigned long addr)
2520 2521 2522 2523 2524 2525 2526 2527
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
Linus Torvalds's avatar
Linus Torvalds committed
2528

2529 2530 2531
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2532
void preempt_count_add(int val)
Linus Torvalds's avatar
Linus Torvalds committed
2533
{
2534
#ifdef CONFIG_DEBUG_PREEMPT
Linus Torvalds's avatar
Linus Torvalds committed
2535 2536 2537
	/*
	 * Underflow?
	 */
2538 2539
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2540
#endif
2541
	__preempt_count_add(val);
2542
#ifdef CONFIG_DEBUG_PREEMPT
Linus Torvalds's avatar
Linus Torvalds committed
2543 2544 2545
	/*
	 * Spinlock count overflowing soon?
	 */
2546 2547
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2548
#endif
2549 2550 2551 2552 2553 2554 2555
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
Linus Torvalds's avatar
Linus Torvalds committed
2556
}
2557
EXPORT_SYMBOL(preempt_count_add);
2558
NOKPROBE_SYMBOL(preempt_count_add);
Linus Torvalds's avatar
Linus Torvalds committed
2559

2560
void preempt_count_sub(int val)
Linus Torvalds's avatar
Linus Torvalds committed
2561
{
2562
#ifdef CONFIG_DEBUG_PREEMPT
Linus Torvalds's avatar
Linus Torvalds committed
2563 2564 2565
	/*
	 * Underflow?
	 */
2566
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2567
		return;
Linus Torvalds's avatar
Linus Torvalds committed
2568 2569 2570
	/*
	 * Is the spinlock portion underflowing?
	 */
2571 2572 2573
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2574
#endif
2575

2576 2577
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2578
	__preempt_count_sub(val);
Linus Torvalds's avatar
Linus Torvalds committed
2579
}
2580
EXPORT_SYMBOL(preempt_count_sub);
2581
NOKPROBE_SYMBOL(preempt_count_sub);
Linus Torvalds's avatar
Linus Torvalds committed
2582 2583 2584 2585

#endif

/*
Ingo Molnar's avatar
Ingo Molnar committed
2586
 * Print scheduling while atomic bug:
Linus Torvalds's avatar
Linus Torvalds committed
2587
 */
Ingo Molnar's avatar
Ingo Molnar committed
2588
static noinline void __schedule_bug(struct task_struct *prev)
Linus Torvalds's avatar
Linus Torvalds committed
2589
{
2590 2591 2592
	if (oops_in_progress)
		return;

2593 2594
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2595

Ingo Molnar's avatar
Ingo Molnar committed
2596
	debug_show_held_locks(prev);
2597
	print_modules();
Ingo Molnar's avatar
Ingo Molnar committed
2598 2599
	if (irqs_disabled())
		print_irqtrace_events(prev);
2600 2601 2602 2603 2604 2605 2606
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
2607
	dump_stack();
2608
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
Ingo Molnar's avatar
Ingo Molnar committed
2609
}
Linus Torvalds's avatar
Linus Torvalds committed
2610

Ingo Molnar's avatar
Ingo Molnar committed
2611 2612 2613 2614 2615
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
2616 2617 2618
#ifdef CONFIG_SCHED_STACK_END_CHECK
	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
#endif
Linus Torvalds's avatar
Linus Torvalds committed
2619
	/*
Ingo Molnar's avatar
Ingo Molnar committed
2620
	 * Test if we are atomic. Since do_exit() needs to call into
2621 2622
	 * schedule() atomically, we ignore that path. Otherwise whine
	 * if we are scheduling when we should not.
Linus Torvalds's avatar
Linus Torvalds committed
2623
	 */
2624
	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
Ingo Molnar's avatar
Ingo Molnar committed
2625
		__schedule_bug(prev);
2626
	rcu_sleep_check();
Ingo Molnar's avatar
Ingo Molnar committed
2627

Linus Torvalds's avatar
Linus Torvalds committed
2628 2629
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2630
	schedstat_inc(this_rq(), sched_count);
Ingo Molnar's avatar
Ingo Molnar committed
2631 2632 2633 2634 2635 2636
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2637
pick_next_task(struct rq *rq, struct task_struct *prev)
Ingo Molnar's avatar
Ingo Molnar committed
2638
{
2639
	const struct sched_class *class = &fair_sched_class;
Ingo Molnar's avatar
Ingo Molnar committed
2640
	struct task_struct *p;
Linus Torvalds's avatar
Linus Torvalds committed
2641 2642

	/*
Ingo Molnar's avatar
Ingo Molnar committed
2643 2644
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
Linus Torvalds's avatar
Linus Torvalds committed
2645
	 */
2646
	if (likely(prev->sched_class == class &&
2647
		   rq->nr_running == rq->cfs.h_nr_running)) {
2648
		p = fair_sched_class.pick_next_task(rq, prev);
2649 2650 2651 2652 2653 2654 2655 2656
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
			p = idle_sched_class.pick_next_task(rq, prev);

		return p;
Linus Torvalds's avatar
Linus Torvalds committed
2657 2658
	}

2659
again:
2660
	for_each_class(class) {
2661
		p = class->pick_next_task(rq, prev);
2662 2663 2664
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
Ingo Molnar's avatar
Ingo Molnar committed
2665
			return p;
2666
		}
Ingo Molnar's avatar
Ingo Molnar committed
2667
	}
2668 2669

	BUG(); /* the idle class will always have a runnable task */
Ingo Molnar's avatar
Ingo Molnar committed
2670
}
Linus Torvalds's avatar
Linus Torvalds committed
2671

Ingo Molnar's avatar
Ingo Molnar committed
2672
/*
2673
 * __schedule() is the main scheduler function.
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
2708 2709 2710 2711
 *
 * WARNING: all callers must re-check need_resched() afterward and reschedule
 * accordingly in case an event triggered the need for rescheduling (such as
 * an interrupt waking up a task) while preemption was disabled in __schedule().
Ingo Molnar's avatar
Ingo Molnar committed
2712
 */
2713
static void __sched __schedule(void)
Ingo Molnar's avatar
Ingo Molnar committed
2714 2715
{
	struct task_struct *prev, *next;
2716
	unsigned long *switch_count;
Ingo Molnar's avatar
Ingo Molnar committed
2717
	struct rq *rq;
2718
	int cpu;
Ingo Molnar's avatar
Ingo Molnar committed
2719

2720
	preempt_disable();
Ingo Molnar's avatar
Ingo Molnar committed
2721 2722
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2723
	rcu_note_context_switch();
Ingo Molnar's avatar
Ingo Molnar committed
2724 2725 2726
	prev = rq->curr;

	schedule_debug(prev);
Linus Torvalds's avatar
Linus Torvalds committed
2727

2728
	if (sched_feat(HRTICK))
Mike Galbraith's avatar
Mike Galbraith committed
2729
		hrtick_clear(rq);
2730

2731 2732 2733 2734 2735 2736
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
2737
	raw_spin_lock_irq(&rq->lock);
Linus Torvalds's avatar
Linus Torvalds committed
2738

2739 2740
	rq->clock_skip_update <<= 1; /* promote REQ to ACT */

2741
	switch_count = &prev->nivcsw;
Linus Torvalds's avatar
Linus Torvalds committed
2742
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
Tejun Heo's avatar
Tejun Heo committed
2743
		if (unlikely(signal_pending_state(prev->state, prev))) {
Linus Torvalds's avatar
Linus Torvalds committed
2744
			prev->state = TASK_RUNNING;
Tejun Heo's avatar
Tejun Heo committed
2745
		} else {
2746 2747 2748
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

Tejun Heo's avatar
Tejun Heo committed
2749
			/*
2750 2751 2752
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
Tejun Heo's avatar
Tejun Heo committed
2753 2754 2755 2756 2757 2758 2759 2760 2761
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
Ingo Molnar's avatar
Ingo Molnar committed
2762
		switch_count = &prev->nvcsw;
Linus Torvalds's avatar
Linus Torvalds committed
2763 2764
	}

2765
	if (task_on_rq_queued(prev))
2766 2767 2768
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
2769
	clear_tsk_need_resched(prev);
2770
	clear_preempt_need_resched();
2771
	rq->clock_skip_update = 0;
Linus Torvalds's avatar
Linus Torvalds committed
2772 2773 2774 2775 2776 2777

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

2778 2779
		rq = context_switch(rq, prev, next); /* unlocks the rq */
		cpu = cpu_of(rq);
Linus Torvalds's avatar
Linus Torvalds committed
2780
	} else
2781
		raw_spin_unlock_irq(&rq->lock);
Linus Torvalds's avatar
Linus Torvalds committed
2782

2783
	post_schedule(rq);
Linus Torvalds's avatar
Linus Torvalds committed
2784

2785
	sched_preempt_enable_no_resched();
Linus Torvalds's avatar
Linus Torvalds committed
2786
}
2787

2788 2789
static inline void sched_submit_work(struct task_struct *tsk)
{
2790
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2791 2792 2793 2794 2795 2796 2797 2798 2799
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

2800
asmlinkage __visible void __sched schedule(void)
2801
{
2802 2803 2804
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2805 2806 2807
	do {
		__schedule();
	} while (need_resched());
2808
}
Linus Torvalds's avatar
Linus Torvalds committed
2809 2810
EXPORT_SYMBOL(schedule);

2811
#ifdef CONFIG_CONTEXT_TRACKING
2812
asmlinkage __visible void __sched schedule_user(void)
2813 2814 2815 2816 2817 2818
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
2819 2820 2821 2822
	 *
	 * NB: There are buggy callers of this function.  Ideally we
	 * should warn if prev_state != IN_USER, but that will trigger
	 * too frequently to make sense yet.
2823
	 */
2824
	enum ctx_state prev_state = exception_enter();
2825
	schedule();
2826
	exception_exit(prev_state);
2827 2828 2829
}
#endif

2830 2831 2832 2833 2834 2835 2836
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2837
	sched_preempt_enable_no_resched();
2838 2839 2840 2841
	schedule();
	preempt_disable();
}

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
static void preempt_schedule_common(void)
{
	do {
		__preempt_count_add(PREEMPT_ACTIVE);
		__schedule();
		__preempt_count_sub(PREEMPT_ACTIVE);

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (need_resched());
}

Linus Torvalds's avatar
Linus Torvalds committed
2857 2858
#ifdef CONFIG_PREEMPT
/*
2859
 * this is the entry point to schedule() from in-kernel preemption
Ingo Molnar's avatar
Ingo Molnar committed
2860
 * off of preempt_enable. Kernel preemptions off return from interrupt
Linus Torvalds's avatar
Linus Torvalds committed
2861 2862
 * occur there and call schedule directly.
 */
2863
asmlinkage __visible void __sched notrace preempt_schedule(void)
Linus Torvalds's avatar
Linus Torvalds committed
2864 2865 2866
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
Ingo Molnar's avatar
Ingo Molnar committed
2867
	 * we do not want to preempt the current task. Just return..
Linus Torvalds's avatar
Linus Torvalds committed
2868
	 */
2869
	if (likely(!preemptible()))
Linus Torvalds's avatar
Linus Torvalds committed
2870 2871
		return;

2872
	preempt_schedule_common();
Linus Torvalds's avatar
Linus Torvalds committed
2873
}
2874
NOKPROBE_SYMBOL(preempt_schedule);
Linus Torvalds's avatar
Linus Torvalds committed
2875
EXPORT_SYMBOL(preempt_schedule);
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916

#ifdef CONFIG_CONTEXT_TRACKING
/**
 * preempt_schedule_context - preempt_schedule called by tracing
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
asmlinkage __visible void __sched notrace preempt_schedule_context(void)
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
		__preempt_count_add(PREEMPT_ACTIVE);
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
		__schedule();
		exception_exit(prev_ctx);

		__preempt_count_sub(PREEMPT_ACTIVE);
		barrier();
	} while (need_resched());
}
EXPORT_SYMBOL_GPL(preempt_schedule_context);
#endif /* CONFIG_CONTEXT_TRACKING */

2917
#endif /* CONFIG_PREEMPT */
Linus Torvalds's avatar
Linus Torvalds committed
2918 2919

/*
2920
 * this is the entry point to schedule() from kernel preemption
Linus Torvalds's avatar
Linus Torvalds committed
2921 2922 2923 2924
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
2925
asmlinkage __visible void __sched preempt_schedule_irq(void)
Linus Torvalds's avatar
Linus Torvalds committed
2926
{
2927
	enum ctx_state prev_state;
2928

2929
	/* Catch callers which need to be fixed */
2930
	BUG_ON(preempt_count() || !irqs_disabled());
Linus Torvalds's avatar
Linus Torvalds committed
2931

2932 2933
	prev_state = exception_enter();

2934
	do {
2935
		__preempt_count_add(PREEMPT_ACTIVE);
2936
		local_irq_enable();
2937
		__schedule();
2938
		local_irq_disable();
2939
		__preempt_count_sub(PREEMPT_ACTIVE);
Linus Torvalds's avatar
Linus Torvalds committed
2940

2941 2942 2943 2944 2945
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2946
	} while (need_resched());
2947 2948

	exception_exit(prev_state);
Linus Torvalds's avatar
Linus Torvalds committed
2949 2950
}

2951
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
Ingo Molnar's avatar
Ingo Molnar committed
2952
			  void *key)
Linus Torvalds's avatar
Linus Torvalds committed
2953
{
2954
	return try_to_wake_up(curr->private, mode, wake_flags);
Linus Torvalds's avatar
Linus Torvalds committed
2955 2956 2957
}
EXPORT_SYMBOL(default_wake_function);

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
2968 2969
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
2970
 */
2971
void rt_mutex_setprio(struct task_struct *p, int prio)
2972
{
2973
	int oldprio, queued, running, enqueue_flag = 0;
2974
	struct rq *rq;
2975
	const struct sched_class *prev_class;
2976

2977
	BUG_ON(prio > MAX_PRIO);
2978

2979
	rq = __task_rq_lock(p);
2980

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

2999
	trace_sched_pi_setprio(p, prio);
3000
	oldprio = p->prio;
3001
	prev_class = p->sched_class;
3002
	queued = task_on_rq_queued(p);
3003
	running = task_current(rq, p);
3004
	if (queued)
3005
		dequeue_task(rq, p, 0);
3006
	if (running)
3007
		put_prev_task(rq, p);
Ingo Molnar's avatar
Ingo Molnar committed
3008

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3019 3020 3021
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3022 3023 3024 3025 3026
			p->dl.dl_boosted = 1;
			p->dl.dl_throttled = 0;
			enqueue_flag = ENQUEUE_REPLENISH;
		} else
			p->dl.dl_boosted = 0;
3027
		p->sched_class = &dl_sched_class;
3028 3029 3030 3031 3032
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
			enqueue_flag = ENQUEUE_HEAD;
Ingo Molnar's avatar
Ingo Molnar committed
3033
		p->sched_class = &rt_sched_class;
3034 3035 3036
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
Ingo Molnar's avatar
Ingo Molnar committed
3037
		p->sched_class = &fair_sched_class;
3038
	}
Ingo Molnar's avatar
Ingo Molnar committed
3039

3040 3041
	p->prio = prio;

3042 3043
	if (running)
		p->sched_class->set_curr_task(rq);
3044
	if (queued)
3045
		enqueue_task(rq, p, enqueue_flag);
3046

3047
	check_class_changed(rq, p, prev_class, oldprio);
3048
out_unlock:
3049
	__task_rq_unlock(rq);
3050 3051
}
#endif
3052

3053
void set_user_nice(struct task_struct *p, long nice)
Linus Torvalds's avatar
Linus Torvalds committed
3054
{
3055
	int old_prio, delta, queued;
Linus Torvalds's avatar
Linus Torvalds committed
3056
	unsigned long flags;
3057
	struct rq *rq;
Linus Torvalds's avatar
Linus Torvalds committed
3058

3059
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
Linus Torvalds's avatar
Linus Torvalds committed
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3070
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
Linus Torvalds's avatar
Linus Torvalds committed
3071
	 */
3072
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
Linus Torvalds's avatar
Linus Torvalds committed
3073 3074 3075
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3076 3077
	queued = task_on_rq_queued(p);
	if (queued)
3078
		dequeue_task(rq, p, 0);
Linus Torvalds's avatar
Linus Torvalds committed
3079 3080

	p->static_prio = NICE_TO_PRIO(nice);
3081
	set_load_weight(p);
3082 3083 3084
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
Linus Torvalds's avatar
Linus Torvalds committed
3085

3086
	if (queued) {
3087
		enqueue_task(rq, p, 0);
Linus Torvalds's avatar
Linus Torvalds committed
3088
		/*
3089 3090
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
Linus Torvalds's avatar
Linus Torvalds committed
3091
		 */
3092
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3093
			resched_curr(rq);
Linus Torvalds's avatar
Linus Torvalds committed
3094 3095
	}
out_unlock:
3096
	task_rq_unlock(rq, p, &flags);
Linus Torvalds's avatar
Linus Torvalds committed
3097 3098 3099
}
EXPORT_SYMBOL(set_user_nice);

3100 3101 3102 3103 3104
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3105
int can_nice(const struct task_struct *p, const int nice)
3106
{
3107
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3108
	int nice_rlim = nice_to_rlimit(nice);
3109

3110
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3111 3112 3113
		capable(CAP_SYS_NICE));
}

Linus Torvalds's avatar
Linus Torvalds committed
3114 3115 3116 3117 3118 3119 3120 3121 3122
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3123
SYSCALL_DEFINE1(nice, int, increment)
Linus Torvalds's avatar
Linus Torvalds committed
3124
{
3125
	long nice, retval;
Linus Torvalds's avatar
Linus Torvalds committed
3126 3127 3128 3129 3130 3131

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3132
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3133
	nice = task_nice(current) + increment;
Linus Torvalds's avatar
Linus Torvalds committed
3134

3135
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3136 3137 3138
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

Linus Torvalds's avatar
Linus Torvalds committed
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3153
 * Return: The priority value as seen by users in /proc.
Linus Torvalds's avatar
Linus Torvalds committed
3154 3155 3156
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3157
int task_prio(const struct task_struct *p)
Linus Torvalds's avatar
Linus Torvalds committed
3158 3159 3160 3161 3162 3163 3164
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3165 3166
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
Linus Torvalds's avatar
Linus Torvalds committed
3167 3168 3169
 */
int idle_cpu(int cpu)
{
Thomas Gleixner's avatar
Thomas Gleixner committed
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
Linus Torvalds's avatar
Linus Torvalds committed
3184 3185 3186 3187 3188
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3189 3190
 *
 * Return: The idle task for the cpu @cpu.
Linus Torvalds's avatar
Linus Torvalds committed
3191
 */
3192
struct task_struct *idle_task(int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
3193 3194 3195 3196 3197 3198 3199
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3200 3201
 *
 * The task of @pid, if found. %NULL otherwise.
Linus Torvalds's avatar
Linus Torvalds committed
3202
 */
Alexey Dobriyan's avatar
Alexey Dobriyan committed
3203
static struct task_struct *find_process_by_pid(pid_t pid)
Linus Torvalds's avatar
Linus Torvalds committed
3204
{
3205
	return pid ? find_task_by_vpid(pid) : current;
Linus Torvalds's avatar
Linus Torvalds committed
3206 3207
}

3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3223
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3224
	dl_se->flags = attr->sched_flags;
3225
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
3246 3247
}

3248 3249 3250 3251 3252 3253
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3254 3255
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
Linus Torvalds's avatar
Linus Torvalds committed
3256
{
3257 3258
	int policy = attr->sched_policy;

3259
	if (policy == SETPARAM_POLICY)
3260 3261
		policy = p->policy;

Linus Torvalds's avatar
Linus Torvalds committed
3262
	p->policy = policy;
3263

3264 3265
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3266
	else if (fair_policy(policy))
3267 3268
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3269 3270 3271 3272 3273 3274
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3275
	p->normal_prio = normal_prio(p);
3276 3277
	set_load_weight(p);
}
3278

3279 3280 3281 3282 3283
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
			   const struct sched_attr *attr)
{
	__setscheduler_params(p, attr);
3284

3285 3286 3287 3288 3289 3290
	/*
	 * If we get here, there was no pi waiters boosting the
	 * task. It is safe to use the normal prio.
	 */
	p->prio = normal_prio(p);

3291 3292 3293
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3294 3295 3296
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
Linus Torvalds's avatar
Linus Torvalds committed
3297
}
3298 3299 3300 3301 3302 3303 3304 3305 3306

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3307
	attr->sched_period = dl_se->dl_period;
3308 3309 3310 3311 3312 3313
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3314
 * than the runtime, as well as the period of being zero or
3315
 * greater than deadline. Furthermore, we have to be sure that
3316 3317 3318 3319
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3320 3321 3322 3323
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3350 3351
}

3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3362 3363
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3364 3365 3366 3367
	rcu_read_unlock();
	return match;
}

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
static bool dl_param_changed(struct task_struct *p,
		const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

3382 3383 3384
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
				bool user)
Linus Torvalds's avatar
Linus Torvalds committed
3385
{
3386 3387
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3388
	int retval, oldprio, oldpolicy = -1, queued, running;
3389
	int policy = attr->sched_policy;
Linus Torvalds's avatar
Linus Torvalds committed
3390
	unsigned long flags;
3391
	const struct sched_class *prev_class;
3392
	struct rq *rq;
3393
	int reset_on_fork;
Linus Torvalds's avatar
Linus Torvalds committed
3394

3395 3396
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
Linus Torvalds's avatar
Linus Torvalds committed
3397 3398
recheck:
	/* double check policy once rq lock held */
3399 3400
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
Linus Torvalds's avatar
Linus Torvalds committed
3401
		policy = oldpolicy = p->policy;
3402
	} else {
3403
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3404

3405 3406
		if (policy != SCHED_DEADLINE &&
				policy != SCHED_FIFO && policy != SCHED_RR &&
3407 3408 3409 3410 3411
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

3412 3413 3414
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

Linus Torvalds's avatar
Linus Torvalds committed
3415 3416
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
Ingo Molnar's avatar
Ingo Molnar committed
3417 3418
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
Linus Torvalds's avatar
Linus Torvalds committed
3419
	 */
3420
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3421
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
Linus Torvalds's avatar
Linus Torvalds committed
3422
		return -EINVAL;
3423 3424
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
Linus Torvalds's avatar
Linus Torvalds committed
3425 3426
		return -EINVAL;

3427 3428 3429
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3430
	if (user && !capable(CAP_SYS_NICE)) {
3431
		if (fair_policy(policy)) {
3432
			if (attr->sched_nice < task_nice(p) &&
3433
			    !can_nice(p, attr->sched_nice))
3434 3435 3436
				return -EPERM;
		}

3437
		if (rt_policy(policy)) {
3438 3439
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3440 3441 3442 3443 3444 3445

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3446 3447
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3448 3449
				return -EPERM;
		}
3450

3451 3452 3453 3454 3455 3456 3457 3458 3459
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

Ingo Molnar's avatar
Ingo Molnar committed
3460
		/*
3461 3462
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
Ingo Molnar's avatar
Ingo Molnar committed
3463
		 */
3464
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3465
			if (!can_nice(p, task_nice(p)))
3466 3467
				return -EPERM;
		}
3468

3469
		/* can't change other user's priorities */
3470
		if (!check_same_owner(p))
3471
			return -EPERM;
3472 3473 3474 3475

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3476
	}
Linus Torvalds's avatar
Linus Torvalds committed
3477

3478
	if (user) {
3479
		retval = security_task_setscheduler(p);
3480 3481 3482 3483
		if (retval)
			return retval;
	}

3484 3485 3486
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3487
	 *
Lucas De Marchi's avatar
Lucas De Marchi committed
3488
	 * To be able to change p->policy safely, the appropriate
Linus Torvalds's avatar
Linus Torvalds committed
3489 3490
	 * runqueue lock must be held.
	 */
3491
	rq = task_rq_lock(p, &flags);
3492

3493 3494 3495 3496
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3497
		task_rq_unlock(rq, p, &flags);
3498 3499 3500
		return -EINVAL;
	}

3501
	/*
3502 3503
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3504
	 */
3505
	if (unlikely(policy == p->policy)) {
3506
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3507 3508 3509
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3510
		if (dl_policy(policy) && dl_param_changed(p, attr))
3511
			goto change;
3512

3513
		p->sched_reset_on_fork = reset_on_fork;
3514
		task_rq_unlock(rq, p, &flags);
3515 3516
		return 0;
	}
3517
change:
3518

3519
	if (user) {
3520
#ifdef CONFIG_RT_GROUP_SCHED
3521 3522 3523 3524 3525
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3526 3527
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3528
			task_rq_unlock(rq, p, &flags);
3529 3530 3531
			return -EPERM;
		}
#endif
3532 3533 3534 3535 3536 3537 3538 3539 3540
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3541 3542
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3543 3544 3545 3546 3547 3548
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3549

Linus Torvalds's avatar
Linus Torvalds committed
3550 3551 3552
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3553
		task_rq_unlock(rq, p, &flags);
Linus Torvalds's avatar
Linus Torvalds committed
3554 3555
		goto recheck;
	}
3556 3557 3558 3559 3560 3561

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3562
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3563 3564 3565 3566
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

	/*
	 * Special case for priority boosted tasks.
	 *
	 * If the new priority is lower or equal (user space view)
	 * than the current (boosted) priority, we just store the new
	 * normal parameters and do not touch the scheduler class and
	 * the runqueue. This will be done when the task deboost
	 * itself.
	 */
	if (rt_mutex_check_prio(p, newprio)) {
		__setscheduler_params(p, attr);
		task_rq_unlock(rq, p, &flags);
		return 0;
	}

3585
	queued = task_on_rq_queued(p);
3586
	running = task_current(rq, p);
3587
	if (queued)
3588
		dequeue_task(rq, p, 0);
3589
	if (running)
3590
		put_prev_task(rq, p);
3591

3592
	prev_class = p->sched_class;
3593
	__setscheduler(rq, p, attr);
3594

3595 3596
	if (running)
		p->sched_class->set_curr_task(rq);
3597
	if (queued) {
3598 3599 3600 3601 3602 3603
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
	}
3604

3605
	check_class_changed(rq, p, prev_class, oldprio);
3606
	task_rq_unlock(rq, p, &flags);
3607

3608 3609
	rt_mutex_adjust_pi(p);

Linus Torvalds's avatar
Linus Torvalds committed
3610 3611
	return 0;
}
3612

3613 3614 3615 3616 3617 3618 3619 3620 3621
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

3622 3623
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3624 3625 3626 3627 3628 3629 3630
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

	return __sched_setscheduler(p, &attr, check);
}
3631 3632 3633 3634 3635 3636
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3637 3638
 * Return: 0 on success. An error code otherwise.
 *
3639 3640 3641
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3642
		       const struct sched_param *param)
3643
{
3644
	return _sched_setscheduler(p, policy, param, true);
3645
}
Linus Torvalds's avatar
Linus Torvalds committed
3646 3647
EXPORT_SYMBOL_GPL(sched_setscheduler);

3648 3649 3650 3651 3652 3653
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, true);
}
EXPORT_SYMBOL_GPL(sched_setattr);

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
3664 3665
 *
 * Return: 0 on success. An error code otherwise.
3666 3667
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3668
			       const struct sched_param *param)
3669
{
3670
	return _sched_setscheduler(p, policy, param, false);
3671 3672
}

Ingo Molnar's avatar
Ingo Molnar committed
3673 3674
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
Linus Torvalds's avatar
Linus Torvalds committed
3675 3676 3677
{
	struct sched_param lparam;
	struct task_struct *p;
3678
	int retval;
Linus Torvalds's avatar
Linus Torvalds committed
3679 3680 3681 3682 3683

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3684 3685 3686

	rcu_read_lock();
	retval = -ESRCH;
Linus Torvalds's avatar
Linus Torvalds committed
3687
	p = find_process_by_pid(pid);
3688 3689 3690
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3691

Linus Torvalds's avatar
Linus Torvalds committed
3692 3693 3694
	return retval;
}

3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
3757
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3758

3759
	return 0;
3760 3761 3762

err_size:
	put_user(sizeof(*attr), &uattr->size);
3763
	return -E2BIG;
3764 3765
}

Linus Torvalds's avatar
Linus Torvalds committed
3766 3767 3768 3769 3770
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
3771 3772
 *
 * Return: 0 on success. An error code otherwise.
Linus Torvalds's avatar
Linus Torvalds committed
3773
 */
3774 3775
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
Linus Torvalds's avatar
Linus Torvalds committed
3776
{
3777 3778 3779 3780
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

Linus Torvalds's avatar
Linus Torvalds committed
3781 3782 3783 3784 3785 3786 3787
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
3788 3789
 *
 * Return: 0 on success. An error code otherwise.
Linus Torvalds's avatar
Linus Torvalds committed
3790
 */
3791
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
Linus Torvalds's avatar
Linus Torvalds committed
3792
{
3793
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
Linus Torvalds's avatar
Linus Torvalds committed
3794 3795
}

3796 3797 3798
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
3799
 * @uattr: structure containing the extended parameters.
3800
 * @flags: for future extension.
3801
 */
3802 3803
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
3804 3805 3806 3807 3808
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

3809
	if (!uattr || pid < 0 || flags)
3810 3811
		return -EINVAL;

3812 3813 3814
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
3815

3816
	if ((int)attr.sched_policy < 0)
3817
		return -EINVAL;
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

Linus Torvalds's avatar
Linus Torvalds committed
3829 3830 3831
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
3832 3833 3834
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
Linus Torvalds's avatar
Linus Torvalds committed
3835
 */
3836
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
Linus Torvalds's avatar
Linus Torvalds committed
3837
{
3838
	struct task_struct *p;
3839
	int retval;
Linus Torvalds's avatar
Linus Torvalds committed
3840 3841

	if (pid < 0)
3842
		return -EINVAL;
Linus Torvalds's avatar
Linus Torvalds committed
3843 3844

	retval = -ESRCH;
3845
	rcu_read_lock();
Linus Torvalds's avatar
Linus Torvalds committed
3846 3847 3848 3849
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3850 3851
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
Linus Torvalds's avatar
Linus Torvalds committed
3852
	}
3853
	rcu_read_unlock();
Linus Torvalds's avatar
Linus Torvalds committed
3854 3855 3856 3857
	return retval;
}

/**
3858
 * sys_sched_getparam - get the RT priority of a thread
Linus Torvalds's avatar
Linus Torvalds committed
3859 3860
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
3861 3862 3863
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
Linus Torvalds's avatar
Linus Torvalds committed
3864
 */
3865
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
Linus Torvalds's avatar
Linus Torvalds committed
3866
{
3867
	struct sched_param lp = { .sched_priority = 0 };
3868
	struct task_struct *p;
3869
	int retval;
Linus Torvalds's avatar
Linus Torvalds committed
3870 3871

	if (!param || pid < 0)
3872
		return -EINVAL;
Linus Torvalds's avatar
Linus Torvalds committed
3873

3874
	rcu_read_lock();
Linus Torvalds's avatar
Linus Torvalds committed
3875 3876 3877 3878 3879 3880 3881 3882 3883
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3884 3885
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
3886
	rcu_read_unlock();
Linus Torvalds's avatar
Linus Torvalds committed
3887 3888 3889 3890 3891 3892 3893 3894 3895

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3896
	rcu_read_unlock();
Linus Torvalds's avatar
Linus Torvalds committed
3897 3898 3899
	return retval;
}

3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
3923
				return -EFBIG;
3924 3925 3926 3927 3928
		}

		attr->size = usize;
	}

3929
	ret = copy_to_user(uattr, attr, attr->size);
3930 3931 3932
	if (ret)
		return -EFAULT;

3933
	return 0;
3934 3935 3936
}

/**
3937
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3938
 * @pid: the pid in question.
3939
 * @uattr: structure containing the extended parameters.
3940
 * @size: sizeof(attr) for fwd/bwd comp.
3941
 * @flags: for future extension.
3942
 */
3943 3944
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
3945 3946 3947 3948 3949 3950 3951 3952
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3953
	    size < SCHED_ATTR_SIZE_VER0 || flags)
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
3967 3968
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3969 3970 3971
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
3972 3973
		attr.sched_priority = p->rt_priority;
	else
3974
		attr.sched_nice = task_nice(p);
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

3986
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
Linus Torvalds's avatar
Linus Torvalds committed
3987
{
3988
	cpumask_var_t cpus_allowed, new_mask;
3989 3990
	struct task_struct *p;
	int retval;
Linus Torvalds's avatar
Linus Torvalds committed
3991

3992
	rcu_read_lock();
Linus Torvalds's avatar
Linus Torvalds committed
3993 3994 3995

	p = find_process_by_pid(pid);
	if (!p) {
3996
		rcu_read_unlock();
Linus Torvalds's avatar
Linus Torvalds committed
3997 3998 3999
		return -ESRCH;
	}

4000
	/* Prevent p going away */
Linus Torvalds's avatar
Linus Torvalds committed
4001
	get_task_struct(p);
4002
	rcu_read_unlock();
Linus Torvalds's avatar
Linus Torvalds committed
4003

4004 4005 4006 4007
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4008 4009 4010 4011 4012 4013 4014 4015
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
Linus Torvalds's avatar
Linus Torvalds committed
4016
	retval = -EPERM;
4017 4018 4019 4020
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4021
			goto out_free_new_mask;
4022 4023 4024
		}
		rcu_read_unlock();
	}
Linus Torvalds's avatar
Linus Torvalds committed
4025

4026
	retval = security_task_setscheduler(p);
4027
	if (retval)
4028
		goto out_free_new_mask;
4029

4030 4031 4032 4033

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4034 4035 4036 4037 4038 4039 4040
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4041 4042 4043
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4044
			retval = -EBUSY;
4045
			rcu_read_unlock();
4046
			goto out_free_new_mask;
4047
		}
4048
		rcu_read_unlock();
4049 4050
	}
#endif
Peter Zijlstra's avatar
Peter Zijlstra committed
4051
again:
4052
	retval = set_cpus_allowed_ptr(p, new_mask);
Linus Torvalds's avatar
Linus Torvalds committed
4053

Paul Menage's avatar
Paul Menage committed
4054
	if (!retval) {
4055 4056
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
Paul Menage's avatar
Paul Menage committed
4057 4058 4059 4060 4061
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4062
			cpumask_copy(new_mask, cpus_allowed);
Paul Menage's avatar
Paul Menage committed
4063 4064 4065
			goto again;
		}
	}
4066
out_free_new_mask:
4067 4068 4069 4070
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
Linus Torvalds's avatar
Linus Torvalds committed
4071 4072 4073 4074 4075
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4076
			     struct cpumask *new_mask)
Linus Torvalds's avatar
Linus Torvalds committed
4077
{
4078 4079 4080 4081 4082
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

Linus Torvalds's avatar
Linus Torvalds committed
4083 4084 4085 4086 4087 4088 4089 4090
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4091 4092
 *
 * Return: 0 on success. An error code otherwise.
Linus Torvalds's avatar
Linus Torvalds committed
4093
 */
4094 4095
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
Linus Torvalds's avatar
Linus Torvalds committed
4096
{
4097
	cpumask_var_t new_mask;
Linus Torvalds's avatar
Linus Torvalds committed
4098 4099
	int retval;

4100 4101
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
Linus Torvalds's avatar
Linus Torvalds committed
4102

4103 4104 4105 4106 4107
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
Linus Torvalds's avatar
Linus Torvalds committed
4108 4109
}

4110
long sched_getaffinity(pid_t pid, struct cpumask *mask)
Linus Torvalds's avatar
Linus Torvalds committed
4111
{
4112
	struct task_struct *p;
4113
	unsigned long flags;
Linus Torvalds's avatar
Linus Torvalds committed
4114 4115
	int retval;

4116
	rcu_read_lock();
Linus Torvalds's avatar
Linus Torvalds committed
4117 4118 4119 4120 4121 4122

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4123 4124 4125 4126
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4127
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4128
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4129
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
Linus Torvalds's avatar
Linus Torvalds committed
4130 4131

out_unlock:
4132
	rcu_read_unlock();
Linus Torvalds's avatar
Linus Torvalds committed
4133

4134
	return retval;
Linus Torvalds's avatar
Linus Torvalds committed
4135 4136 4137 4138 4139 4140 4141
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4142 4143
 *
 * Return: 0 on success. An error code otherwise.
Linus Torvalds's avatar
Linus Torvalds committed
4144
 */
4145 4146
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
Linus Torvalds's avatar
Linus Torvalds committed
4147 4148
{
	int ret;
4149
	cpumask_var_t mask;
Linus Torvalds's avatar
Linus Torvalds committed
4150

4151
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4152 4153
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
Linus Torvalds's avatar
Linus Torvalds committed
4154 4155
		return -EINVAL;

4156 4157
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
Linus Torvalds's avatar
Linus Torvalds committed
4158

4159 4160
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4161
		size_t retlen = min_t(size_t, len, cpumask_size());
4162 4163

		if (copy_to_user(user_mask_ptr, mask, retlen))
4164 4165
			ret = -EFAULT;
		else
4166
			ret = retlen;
4167 4168
	}
	free_cpumask_var(mask);
Linus Torvalds's avatar
Linus Torvalds committed
4169

4170
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
4171 4172 4173 4174 4175
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
Ingo Molnar's avatar
Ingo Molnar committed
4176 4177
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4178 4179
 *
 * Return: 0.
Linus Torvalds's avatar
Linus Torvalds committed
4180
 */
4181
SYSCALL_DEFINE0(sched_yield)
Linus Torvalds's avatar
Linus Torvalds committed
4182
{
4183
	struct rq *rq = this_rq_lock();
Linus Torvalds's avatar
Linus Torvalds committed
4184

4185
	schedstat_inc(rq, yld_count);
4186
	current->sched_class->yield_task(rq);
Linus Torvalds's avatar
Linus Torvalds committed
4187 4188 4189 4190 4191 4192

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4193
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4194
	do_raw_spin_unlock(&rq->lock);
4195
	sched_preempt_enable_no_resched();
Linus Torvalds's avatar
Linus Torvalds committed
4196 4197 4198 4199 4200 4201

	schedule();

	return 0;
}

4202
int __sched _cond_resched(void)
Linus Torvalds's avatar
Linus Torvalds committed
4203
{
4204
	if (should_resched()) {
4205
		preempt_schedule_common();
Linus Torvalds's avatar
Linus Torvalds committed
4206 4207 4208 4209
		return 1;
	}
	return 0;
}
4210
EXPORT_SYMBOL(_cond_resched);
Linus Torvalds's avatar
Linus Torvalds committed
4211 4212

/*
4213
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
Linus Torvalds's avatar
Linus Torvalds committed
4214 4215
 * call schedule, and on return reacquire the lock.
 *
Ingo Molnar's avatar
Ingo Molnar committed
4216
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
Linus Torvalds's avatar
Linus Torvalds committed
4217 4218 4219
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4220
int __cond_resched_lock(spinlock_t *lock)
Linus Torvalds's avatar
Linus Torvalds committed
4221
{
4222
	int resched = should_resched();
Jan Kara's avatar
Jan Kara committed
4223 4224
	int ret = 0;

4225 4226
	lockdep_assert_held(lock);

4227
	if (spin_needbreak(lock) || resched) {
Linus Torvalds's avatar
Linus Torvalds committed
4228
		spin_unlock(lock);
4229
		if (resched)
4230
			preempt_schedule_common();
Nick Piggin's avatar
Nick Piggin committed
4231 4232
		else
			cpu_relax();
Jan Kara's avatar
Jan Kara committed
4233
		ret = 1;
Linus Torvalds's avatar
Linus Torvalds committed
4234 4235
		spin_lock(lock);
	}
Jan Kara's avatar
Jan Kara committed
4236
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
4237
}
4238
EXPORT_SYMBOL(__cond_resched_lock);
Linus Torvalds's avatar
Linus Torvalds committed
4239

4240
int __sched __cond_resched_softirq(void)
Linus Torvalds's avatar
Linus Torvalds committed
4241 4242 4243
{
	BUG_ON(!in_softirq());

4244
	if (should_resched()) {
4245
		local_bh_enable();
4246
		preempt_schedule_common();
Linus Torvalds's avatar
Linus Torvalds committed
4247 4248 4249 4250 4251
		local_bh_disable();
		return 1;
	}
	return 0;
}
4252
EXPORT_SYMBOL(__cond_resched_softirq);
Linus Torvalds's avatar
Linus Torvalds committed
4253 4254 4255 4256

/**
 * yield - yield the current processor to other threads.
 *
Peter Zijlstra's avatar
Peter Zijlstra committed
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
Linus Torvalds's avatar
Linus Torvalds committed
4275 4276 4277 4278 4279 4280 4281 4282
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4283 4284 4285 4286
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
4287 4288
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4289 4290 4291 4292
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4293
 * Return:
4294 4295 4296
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4297
 */
4298
int __sched yield_to(struct task_struct *p, bool preempt)
4299 4300 4301 4302
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4303
	int yielded = 0;
4304 4305 4306 4307 4308 4309

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4310 4311 4312 4313 4314 4315 4316 4317 4318
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4319
	double_rq_lock(rq, p_rq);
4320
	if (task_rq(p) != p_rq) {
4321 4322 4323 4324 4325
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4326
		goto out_unlock;
4327 4328

	if (curr->sched_class != p->sched_class)
4329
		goto out_unlock;
4330 4331

	if (task_running(p_rq, p) || p->state)
4332
		goto out_unlock;
4333 4334

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4335
	if (yielded) {
4336
		schedstat_inc(rq, yld_count);
4337 4338 4339 4340 4341
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4342
			resched_curr(p_rq);
4343
	}
4344

4345
out_unlock:
4346
	double_rq_unlock(rq, p_rq);
4347
out_irq:
4348 4349
	local_irq_restore(flags);

4350
	if (yielded > 0)
4351 4352 4353 4354 4355 4356
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

Linus Torvalds's avatar
Linus Torvalds committed
4357
/*
Ingo Molnar's avatar
Ingo Molnar committed
4358
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
Linus Torvalds's avatar
Linus Torvalds committed
4359 4360 4361 4362
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4363
	struct rq *rq = raw_rq();
Linus Torvalds's avatar
Linus Torvalds committed
4364

4365
	delayacct_blkio_start();
Linus Torvalds's avatar
Linus Torvalds committed
4366
	atomic_inc(&rq->nr_iowait);
4367
	blk_flush_plug(current);
4368
	current->in_iowait = 1;
Linus Torvalds's avatar
Linus Torvalds committed
4369
	schedule();
4370
	current->in_iowait = 0;
Linus Torvalds's avatar
Linus Torvalds committed
4371
	atomic_dec(&rq->nr_iowait);
4372
	delayacct_blkio_end();
Linus Torvalds's avatar
Linus Torvalds committed
4373 4374 4375 4376 4377
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4378
	struct rq *rq = raw_rq();
Linus Torvalds's avatar
Linus Torvalds committed
4379 4380
	long ret;

4381
	delayacct_blkio_start();
Linus Torvalds's avatar
Linus Torvalds committed
4382
	atomic_inc(&rq->nr_iowait);
4383
	blk_flush_plug(current);
4384
	current->in_iowait = 1;
Linus Torvalds's avatar
Linus Torvalds committed
4385
	ret = schedule_timeout(timeout);
4386
	current->in_iowait = 0;
Linus Torvalds's avatar
Linus Torvalds committed
4387
	atomic_dec(&rq->nr_iowait);
4388
	delayacct_blkio_end();
Linus Torvalds's avatar
Linus Torvalds committed
4389 4390 4391 4392 4393 4394 4395
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4396 4397 4398
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
Linus Torvalds's avatar
Linus Torvalds committed
4399
 */
4400
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
Linus Torvalds's avatar
Linus Torvalds committed
4401 4402 4403 4404 4405 4406 4407 4408
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4409
	case SCHED_DEADLINE:
Linus Torvalds's avatar
Linus Torvalds committed
4410
	case SCHED_NORMAL:
4411
	case SCHED_BATCH:
Ingo Molnar's avatar
Ingo Molnar committed
4412
	case SCHED_IDLE:
Linus Torvalds's avatar
Linus Torvalds committed
4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4423 4424 4425
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
Linus Torvalds's avatar
Linus Torvalds committed
4426
 */
4427
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
Linus Torvalds's avatar
Linus Torvalds committed
4428 4429 4430 4431 4432 4433 4434 4435
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4436
	case SCHED_DEADLINE:
Linus Torvalds's avatar
Linus Torvalds committed
4437
	case SCHED_NORMAL:
4438
	case SCHED_BATCH:
Ingo Molnar's avatar
Ingo Molnar committed
4439
	case SCHED_IDLE:
Linus Torvalds's avatar
Linus Torvalds committed
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4452 4453 4454
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
Linus Torvalds's avatar
Linus Torvalds committed
4455
 */
4456
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4457
		struct timespec __user *, interval)
Linus Torvalds's avatar
Linus Torvalds committed
4458
{
4459
	struct task_struct *p;
Dmitry Adamushko's avatar
Dmitry Adamushko committed
4460
	unsigned int time_slice;
4461 4462
	unsigned long flags;
	struct rq *rq;
4463
	int retval;
Linus Torvalds's avatar
Linus Torvalds committed
4464 4465 4466
	struct timespec t;

	if (pid < 0)
4467
		return -EINVAL;
Linus Torvalds's avatar
Linus Torvalds committed
4468 4469

	retval = -ESRCH;
4470
	rcu_read_lock();
Linus Torvalds's avatar
Linus Torvalds committed
4471 4472 4473 4474 4475 4476 4477 4478
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4479
	rq = task_rq_lock(p, &flags);
4480 4481 4482
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4483
	task_rq_unlock(rq, p, &flags);
Dmitry Adamushko's avatar
Dmitry Adamushko committed
4484

4485
	rcu_read_unlock();
Dmitry Adamushko's avatar
Dmitry Adamushko committed
4486
	jiffies_to_timespec(time_slice, &t);
Linus Torvalds's avatar
Linus Torvalds committed
4487 4488
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4489

Linus Torvalds's avatar
Linus Torvalds committed
4490
out_unlock:
4491
	rcu_read_unlock();
Linus Torvalds's avatar
Linus Torvalds committed
4492 4493 4494
	return retval;
}

4495
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4496

4497
void sched_show_task(struct task_struct *p)
Linus Torvalds's avatar
Linus Torvalds committed
4498 4499
{
	unsigned long free = 0;
4500
	int ppid;
4501
	unsigned long state = p->state;
Linus Torvalds's avatar
Linus Torvalds committed
4502

4503 4504
	if (state)
		state = __ffs(state) + 1;
4505
	printk(KERN_INFO "%-15.15s %c", p->comm,
4506
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4507
#if BITS_PER_LONG == 32
Linus Torvalds's avatar
Linus Torvalds committed
4508
	if (state == TASK_RUNNING)
4509
		printk(KERN_CONT " running  ");
Linus Torvalds's avatar
Linus Torvalds committed
4510
	else
4511
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
Linus Torvalds's avatar
Linus Torvalds committed
4512 4513
#else
	if (state == TASK_RUNNING)
4514
		printk(KERN_CONT "  running task    ");
Linus Torvalds's avatar
Linus Torvalds committed
4515
	else
4516
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
Linus Torvalds's avatar
Linus Torvalds committed
4517 4518
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4519
	free = stack_not_used(p);
Linus Torvalds's avatar
Linus Torvalds committed
4520
#endif
4521
	ppid = 0;
4522
	rcu_read_lock();
4523 4524
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4525
	rcu_read_unlock();
4526
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4527
		task_pid_nr(p), ppid,
4528
		(unsigned long)task_thread_info(p)->flags);
Linus Torvalds's avatar
Linus Torvalds committed
4529

4530
	print_worker_info(KERN_INFO, p);
4531
	show_stack(p, NULL);
Linus Torvalds's avatar
Linus Torvalds committed
4532 4533
}

4534
void show_state_filter(unsigned long state_filter)
Linus Torvalds's avatar
Linus Torvalds committed
4535
{
4536
	struct task_struct *g, *p;
Linus Torvalds's avatar
Linus Torvalds committed
4537

4538
#if BITS_PER_LONG == 32
4539 4540
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
Linus Torvalds's avatar
Linus Torvalds committed
4541
#else
4542 4543
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
Linus Torvalds's avatar
Linus Torvalds committed
4544
#endif
4545
	rcu_read_lock();
4546
	for_each_process_thread(g, p) {
Linus Torvalds's avatar
Linus Torvalds committed
4547 4548
		/*
		 * reset the NMI-timeout, listing all files on a slow
Lucas De Marchi's avatar
Lucas De Marchi committed
4549
		 * console might take a lot of time:
Linus Torvalds's avatar
Linus Torvalds committed
4550 4551
		 */
		touch_nmi_watchdog();
4552
		if (!state_filter || (p->state & state_filter))
4553
			sched_show_task(p);
4554
	}
Linus Torvalds's avatar
Linus Torvalds committed
4555

4556 4557
	touch_all_softlockup_watchdogs();

Ingo Molnar's avatar
Ingo Molnar committed
4558 4559 4560
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4561
	rcu_read_unlock();
4562 4563 4564
	/*
	 * Only show locks if all tasks are dumped:
	 */
4565
	if (!state_filter)
4566
		debug_show_all_locks();
Linus Torvalds's avatar
Linus Torvalds committed
4567 4568
}

4569
void init_idle_bootup_task(struct task_struct *idle)
4570
{
Ingo Molnar's avatar
Ingo Molnar committed
4571
	idle->sched_class = &idle_sched_class;
4572 4573
}

4574 4575 4576 4577 4578 4579 4580 4581
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4582
void init_idle(struct task_struct *idle, int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
4583
{
4584
	struct rq *rq = cpu_rq(cpu);
Linus Torvalds's avatar
Linus Torvalds committed
4585 4586
	unsigned long flags;

4587
	raw_spin_lock_irqsave(&rq->lock, flags);
4588

4589
	__sched_fork(0, idle);
4590
	idle->state = TASK_RUNNING;
Ingo Molnar's avatar
Ingo Molnar committed
4591 4592
	idle->se.exec_start = sched_clock();

4593
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
Ingo Molnar's avatar
Ingo Molnar committed
4605
	__set_task_cpu(idle, cpu);
4606
	rcu_read_unlock();
Linus Torvalds's avatar
Linus Torvalds committed
4607 4608

	rq->curr = rq->idle = idle;
4609
	idle->on_rq = TASK_ON_RQ_QUEUED;
4610 4611
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4612
#endif
4613
	raw_spin_unlock_irqrestore(&rq->lock, flags);
Linus Torvalds's avatar
Linus Torvalds committed
4614 4615

	/* Set the preempt count _outside_ the spinlocks! */
4616
	init_idle_preempt_count(idle, cpu);
4617

Ingo Molnar's avatar
Ingo Molnar committed
4618 4619 4620 4621
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4622
	ftrace_graph_init_idle_task(idle, cpu);
4623
	vtime_init_idle(idle, cpu);
4624 4625 4626
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
4627 4628
}

4629 4630 4631 4632 4633 4634 4635
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

4636 4637 4638
	if (!cpumask_weight(cur))
		return ret;

4639
	rcu_read_lock_sched();
4640 4641 4642 4643 4644 4645 4646 4647
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4648
	rcu_read_unlock_sched();
4649 4650 4651 4652

	return ret;
}

4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
	 * to a new cpuset; we don't want to change their cpu
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
4677
		struct dl_bw *dl_b;
4678 4679 4680 4681
		bool overflow;
		int cpus;
		unsigned long flags;

4682 4683
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4699
		rcu_read_unlock_sched();
4700 4701 4702 4703 4704 4705 4706

	}
#endif
out:
	return ret;
}

Linus Torvalds's avatar
Linus Torvalds committed
4707
#ifdef CONFIG_SMP
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
{
	struct rq *rq = task_rq(p);

	lockdep_assert_held(&rq->lock);

	dequeue_task(rq, p, 0);
	p->on_rq = TASK_ON_RQ_MIGRATING;
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	p->on_rq = TASK_ON_RQ_QUEUED;
	enqueue_task(rq, p, 0);
	check_preempt_curr(rq, p, 0);

	return rq;
}

4735 4736
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
4737
	if (p->sched_class->set_cpus_allowed)
4738
		p->sched_class->set_cpus_allowed(p, new_mask);
4739 4740

	cpumask_copy(&p->cpus_allowed, new_mask);
4741
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4742 4743
}

Linus Torvalds's avatar
Linus Torvalds committed
4744 4745 4746
/*
 * This is how migration works:
 *
4747 4748 4749 4750 4751 4752
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
Linus Torvalds's avatar
Linus Torvalds committed
4753
 *    it and puts it into the right queue.
4754 4755
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
Linus Torvalds's avatar
Linus Torvalds committed
4756 4757 4758 4759 4760 4761 4762 4763
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
Ingo Molnar's avatar
Ingo Molnar committed
4764
 * task must not exit() & deallocate itself prematurely. The
Linus Torvalds's avatar
Linus Torvalds committed
4765 4766
 * call is not atomic; no spinlocks may be held.
 */
4767
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
Linus Torvalds's avatar
Linus Torvalds committed
4768 4769
{
	unsigned long flags;
4770
	struct rq *rq;
4771
	unsigned int dest_cpu;
4772
	int ret = 0;
Linus Torvalds's avatar
Linus Torvalds committed
4773 4774

	rq = task_rq_lock(p, &flags);
4775

4776 4777 4778
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4779
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
Linus Torvalds's avatar
Linus Torvalds committed
4780 4781 4782 4783
		ret = -EINVAL;
		goto out;
	}

4784
	do_set_cpus_allowed(p, new_mask);
4785

Linus Torvalds's avatar
Linus Torvalds committed
4786
	/* Can the task run on the task's current CPU? If so, we're done */
4787
	if (cpumask_test_cpu(task_cpu(p), new_mask))
Linus Torvalds's avatar
Linus Torvalds committed
4788 4789
		goto out;

4790
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4791
	if (task_running(rq, p) || p->state == TASK_WAKING) {
4792
		struct migration_arg arg = { p, dest_cpu };
Linus Torvalds's avatar
Linus Torvalds committed
4793
		/* Need help from migration thread: drop lock and wait. */
4794
		task_rq_unlock(rq, p, &flags);
4795
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
Linus Torvalds's avatar
Linus Torvalds committed
4796 4797
		tlb_migrate_finish(p->mm);
		return 0;
4798 4799
	} else if (task_on_rq_queued(p))
		rq = move_queued_task(p, dest_cpu);
Linus Torvalds's avatar
Linus Torvalds committed
4800
out:
4801
	task_rq_unlock(rq, p, &flags);
4802

Linus Torvalds's avatar
Linus Torvalds committed
4803 4804
	return ret;
}
4805
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
Linus Torvalds's avatar
Linus Torvalds committed
4806 4807

/*
Ingo Molnar's avatar
Ingo Molnar committed
4808
 * Move (not current) task off this cpu, onto dest cpu. We're doing
Linus Torvalds's avatar
Linus Torvalds committed
4809 4810 4811 4812 4813 4814
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4815 4816
 *
 * Returns non-zero if task was successfully migrated.
Linus Torvalds's avatar
Linus Torvalds committed
4817
 */
4818
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
Linus Torvalds's avatar
Linus Torvalds committed
4819
{
4820
	struct rq *rq;
4821
	int ret = 0;
Linus Torvalds's avatar
Linus Torvalds committed
4822

4823
	if (unlikely(!cpu_active(dest_cpu)))
4824
		return ret;
Linus Torvalds's avatar
Linus Torvalds committed
4825

4826
	rq = cpu_rq(src_cpu);
Linus Torvalds's avatar
Linus Torvalds committed
4827

4828
	raw_spin_lock(&p->pi_lock);
4829
	raw_spin_lock(&rq->lock);
Linus Torvalds's avatar
Linus Torvalds committed
4830 4831
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
4832
		goto done;
4833

Linus Torvalds's avatar
Linus Torvalds committed
4834
	/* Affinity changed (again). */
4835
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4836
		goto fail;
Linus Torvalds's avatar
Linus Torvalds committed
4837

4838 4839 4840 4841
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
4842 4843
	if (task_on_rq_queued(p))
		rq = move_queued_task(p, dest_cpu);
4844
done:
4845
	ret = 1;
4846
fail:
4847
	raw_spin_unlock(&rq->lock);
4848
	raw_spin_unlock(&p->pi_lock);
4849
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
4850 4851
}

4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

4867
	trace_sched_move_numa(p, curr_cpu, target_cpu);
4868 4869
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
4870 4871 4872 4873 4874 4875 4876 4877 4878

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
4879
	bool queued, running;
4880 4881

	rq = task_rq_lock(p, &flags);
4882
	queued = task_on_rq_queued(p);
4883 4884
	running = task_current(rq, p);

4885
	if (queued)
4886 4887
		dequeue_task(rq, p, 0);
	if (running)
4888
		put_prev_task(rq, p);
4889 4890 4891 4892 4893

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
4894
	if (queued)
4895 4896 4897
		enqueue_task(rq, p, 0);
	task_rq_unlock(rq, p, &flags);
}
4898 4899
#endif

Linus Torvalds's avatar
Linus Torvalds committed
4900
/*
4901 4902 4903
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
Linus Torvalds's avatar
Linus Torvalds committed
4904
 */
4905
static int migration_cpu_stop(void *data)
Linus Torvalds's avatar
Linus Torvalds committed
4906
{
4907
	struct migration_arg *arg = data;
4908

4909 4910 4911 4912
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4913
	local_irq_disable();
Lai Jiangshan's avatar
Lai Jiangshan committed
4914 4915 4916 4917 4918 4919
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
4920
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4921
	local_irq_enable();
Linus Torvalds's avatar
Linus Torvalds committed
4922
	return 0;
4923 4924
}

Linus Torvalds's avatar
Linus Torvalds committed
4925
#ifdef CONFIG_HOTPLUG_CPU
4926

4927
/*
4928 4929
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4930
 */
4931
void idle_task_exit(void)
Linus Torvalds's avatar
Linus Torvalds committed
4932
{
4933
	struct mm_struct *mm = current->active_mm;
4934

4935
	BUG_ON(cpu_online(smp_processor_id()));
4936

4937
	if (mm != &init_mm) {
4938
		switch_mm(mm, &init_mm, current);
4939 4940
		finish_arch_post_lock_switch();
	}
4941
	mmdrop(mm);
Linus Torvalds's avatar
Linus Torvalds committed
4942 4943 4944
}

/*
4945 4946 4947 4948 4949
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
Linus Torvalds's avatar
Linus Torvalds committed
4950
 */
4951
static void calc_load_migrate(struct rq *rq)
Linus Torvalds's avatar
Linus Torvalds committed
4952
{
4953 4954 4955
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
Linus Torvalds's avatar
Linus Torvalds committed
4956 4957
}

4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

4974
/*
4975 4976 4977 4978 4979 4980
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
Linus Torvalds's avatar
Linus Torvalds committed
4981
 */
4982
static void migrate_tasks(unsigned int dead_cpu)
Linus Torvalds's avatar
Linus Torvalds committed
4983
{
4984
	struct rq *rq = cpu_rq(dead_cpu);
4985 4986
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
Linus Torvalds's avatar
Linus Torvalds committed
4987 4988

	/*
4989 4990 4991 4992 4993 4994 4995
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
Linus Torvalds's avatar
Linus Torvalds committed
4996
	 */
4997
	rq->stop = NULL;
4998

4999 5000 5001 5002 5003 5004 5005
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

Ingo Molnar's avatar
Ingo Molnar committed
5006
	for ( ; ; ) {
5007 5008 5009 5010 5011
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
Ingo Molnar's avatar
Ingo Molnar committed
5012
			break;
5013

5014
		next = pick_next_task(rq, &fake_task);
5015
		BUG_ON(!next);
Dmitry Adamushko's avatar
Dmitry Adamushko committed
5016
		next->sched_class->put_prev_task(rq, next);
5017

5018 5019 5020 5021 5022 5023 5024
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
Linus Torvalds's avatar
Linus Torvalds committed
5025
	}
5026

5027
	rq->stop = stop;
5028
}
5029

Linus Torvalds's avatar
Linus Torvalds committed
5030 5031
#endif /* CONFIG_HOTPLUG_CPU */

5032 5033 5034
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5035 5036
	{
		.procname	= "sched_domain",
5037
		.mode		= 0555,
5038
	},
5039
	{}
5040 5041 5042
};

static struct ctl_table sd_ctl_root[] = {
5043 5044
	{
		.procname	= "kernel",
5045
		.mode		= 0555,
5046 5047
		.child		= sd_ctl_dir,
	},
5048
	{}
5049 5050 5051 5052 5053
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5054
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5055 5056 5057 5058

	return entry;
}

5059 5060
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5061
	struct ctl_table *entry;
5062

5063 5064 5065
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
Ingo Molnar's avatar
Ingo Molnar committed
5066
	 * will always be set. In the lowest directory the names are
5067 5068 5069
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5070 5071
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5072 5073 5074
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5075 5076 5077 5078 5079

	kfree(*tablep);
	*tablep = NULL;
}

5080
static int min_load_idx = 0;
5081
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5082

5083
static void
5084
set_table_entry(struct ctl_table *entry,
5085
		const char *procname, void *data, int maxlen,
5086 5087
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
5088 5089 5090 5091 5092 5093
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
5094 5095 5096 5097 5098

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
5099 5100 5101 5102 5103
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5104
	struct ctl_table *table = sd_alloc_ctl_entry(14);
5105

5106 5107 5108
	if (table == NULL)
		return NULL;

5109
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5110
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5111
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5112
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5113
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5114
		sizeof(int), 0644, proc_dointvec_minmax, true);
5115
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5116
		sizeof(int), 0644, proc_dointvec_minmax, true);
5117
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5118
		sizeof(int), 0644, proc_dointvec_minmax, true);
5119
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5120
		sizeof(int), 0644, proc_dointvec_minmax, true);
5121
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5122
		sizeof(int), 0644, proc_dointvec_minmax, true);
5123
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5124
		sizeof(int), 0644, proc_dointvec_minmax, false);
5125
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5126
		sizeof(int), 0644, proc_dointvec_minmax, false);
5127
	set_table_entry(&table[9], "cache_nice_tries",
5128
		&sd->cache_nice_tries,
5129
		sizeof(int), 0644, proc_dointvec_minmax, false);
5130
	set_table_entry(&table[10], "flags", &sd->flags,
5131
		sizeof(int), 0644, proc_dointvec_minmax, false);
5132 5133 5134 5135
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
5136
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5137
	/* &table[13] is terminator */
5138 5139 5140 5141

	return table;
}

5142
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5143 5144 5145 5146 5147 5148 5149 5150 5151
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5152 5153
	if (table == NULL)
		return NULL;
5154 5155 5156 5157 5158

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5159
		entry->mode = 0555;
5160 5161 5162 5163 5164 5165 5166 5167
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5168
static void register_sched_domain_sysctl(void)
5169
{
5170
	int i, cpu_num = num_possible_cpus();
5171 5172 5173
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5174 5175 5176
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5177 5178 5179
	if (entry == NULL)
		return;

5180
	for_each_possible_cpu(i) {
5181 5182
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5183
		entry->mode = 0555;
5184
		entry->child = sd_alloc_ctl_cpu_table(i);
5185
		entry++;
5186
	}
5187 5188

	WARN_ON(sd_sysctl_header);
5189 5190
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5191

5192
/* may be called multiple times per register */
5193 5194
static void unregister_sched_domain_sysctl(void)
{
5195 5196
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5197
	sd_sysctl_header = NULL;
5198 5199
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5200
}
5201
#else
5202 5203 5204 5205
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5206 5207 5208 5209
{
}
#endif

5210 5211 5212 5213 5214
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5215
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5235
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5236 5237 5238 5239
		rq->online = 0;
	}
}

Linus Torvalds's avatar
Linus Torvalds committed
5240 5241 5242 5243
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5244
static int
5245
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
Linus Torvalds's avatar
Linus Torvalds committed
5246
{
5247
	int cpu = (long)hcpu;
Linus Torvalds's avatar
Linus Torvalds committed
5248
	unsigned long flags;
5249
	struct rq *rq = cpu_rq(cpu);
Linus Torvalds's avatar
Linus Torvalds committed
5250

5251
	switch (action & ~CPU_TASKS_FROZEN) {
5252

Linus Torvalds's avatar
Linus Torvalds committed
5253
	case CPU_UP_PREPARE:
5254
		rq->calc_load_update = calc_load_update;
Linus Torvalds's avatar
Linus Torvalds committed
5255
		break;
5256

Linus Torvalds's avatar
Linus Torvalds committed
5257
	case CPU_ONLINE:
5258
		/* Update our root-domain */
5259
		raw_spin_lock_irqsave(&rq->lock, flags);
5260
		if (rq->rd) {
5261
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5262 5263

			set_rq_online(rq);
5264
		}
5265
		raw_spin_unlock_irqrestore(&rq->lock, flags);
Linus Torvalds's avatar
Linus Torvalds committed
5266
		break;
5267

Linus Torvalds's avatar
Linus Torvalds committed
5268
#ifdef CONFIG_HOTPLUG_CPU
5269
	case CPU_DYING:
5270
		sched_ttwu_pending();
5271
		/* Update our root-domain */
5272
		raw_spin_lock_irqsave(&rq->lock, flags);
5273
		if (rq->rd) {
5274
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5275
			set_rq_offline(rq);
5276
		}
5277 5278
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5279
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5280
		break;
5281

5282
	case CPU_DEAD:
5283
		calc_load_migrate(rq);
5284
		break;
Linus Torvalds's avatar
Linus Torvalds committed
5285 5286
#endif
	}
5287 5288 5289

	update_max_interval();

Linus Torvalds's avatar
Linus Torvalds committed
5290 5291 5292
	return NOTIFY_OK;
}

5293 5294 5295
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5296
 * the notifier in the perf_event subsystem, though.
Linus Torvalds's avatar
Linus Torvalds committed
5297
 */
5298
static struct notifier_block migration_notifier = {
Linus Torvalds's avatar
Linus Torvalds committed
5299
	.notifier_call = migration_call,
5300
	.priority = CPU_PRI_MIGRATION,
Linus Torvalds's avatar
Linus Torvalds committed
5301 5302
};

5303 5304 5305 5306 5307 5308 5309
static void __cpuinit set_cpu_rq_start_time(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
	rq->age_stamp = sched_clock_cpu(cpu);
}

5310
static int sched_cpu_active(struct notifier_block *nfb,
5311 5312 5313
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5314 5315 5316
	case CPU_STARTING:
		set_cpu_rq_start_time();
		return NOTIFY_OK;
5317 5318 5319 5320 5321 5322 5323 5324
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5325
static int sched_cpu_inactive(struct notifier_block *nfb,
5326 5327
					unsigned long action, void *hcpu)
{
5328 5329
	unsigned long flags;
	long cpu = (long)hcpu;
5330
	struct dl_bw *dl_b;
5331

5332 5333
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5334 5335 5336 5337 5338 5339 5340
		set_cpu_active(cpu, false);

		/* explicitly allow suspend */
		if (!(action & CPU_TASKS_FROZEN)) {
			bool overflow;
			int cpus;

5341 5342 5343
			rcu_read_lock_sched();
			dl_b = dl_bw_of(cpu);

5344 5345 5346 5347 5348
			raw_spin_lock_irqsave(&dl_b->lock, flags);
			cpus = dl_bw_cpus(cpu);
			overflow = __dl_overflow(dl_b, cpus, 0, 0);
			raw_spin_unlock_irqrestore(&dl_b->lock, flags);

5349 5350
			rcu_read_unlock_sched();

5351 5352 5353
			if (overflow)
				return notifier_from_errno(-EBUSY);
		}
5354 5355
		return NOTIFY_OK;
	}
5356 5357

	return NOTIFY_DONE;
5358 5359
}

5360
static int __init migration_init(void)
Linus Torvalds's avatar
Linus Torvalds committed
5361 5362
{
	void *cpu = (void *)(long)smp_processor_id();
5363
	int err;
5364

5365
	/* Initialize migration for the boot CPU */
5366 5367
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
Linus Torvalds's avatar
Linus Torvalds committed
5368 5369
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5370

5371 5372 5373 5374
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5375
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
5376
}
5377
early_initcall(migration_init);
Linus Torvalds's avatar
Linus Torvalds committed
5378 5379 5380
#endif

#ifdef CONFIG_SMP
5381

5382 5383
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5384
#ifdef CONFIG_SCHED_DEBUG
5385

5386
static __read_mostly int sched_debug_enabled;
5387

5388
static int __init sched_debug_setup(char *str)
5389
{
5390
	sched_debug_enabled = 1;
5391 5392 5393

	return 0;
}
5394 5395 5396 5397 5398 5399
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5400

5401
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5402
				  struct cpumask *groupmask)
Linus Torvalds's avatar
Linus Torvalds committed
5403
{
5404
	struct sched_group *group = sd->groups;
5405
	char str[256];
Linus Torvalds's avatar
Linus Torvalds committed
5406

Rusty Russell's avatar
Rusty Russell committed
5407
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5408
	cpumask_clear(groupmask);
5409 5410 5411 5412

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
5413
		printk("does not load-balance\n");
5414
		if (sd->parent)
5415 5416
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
5417
		return -1;
Nick Piggin's avatar
Nick Piggin committed
5418 5419
	}

5420
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5421

5422
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5423 5424
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
5425
	}
5426
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5427 5428
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
5429
	}
Linus Torvalds's avatar
Linus Torvalds committed
5430

5431
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
Linus Torvalds's avatar
Linus Torvalds committed
5432
	do {
5433
		if (!group) {
5434 5435
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
Linus Torvalds's avatar
Linus Torvalds committed
5436 5437 5438
			break;
		}

5439
		/*
5440 5441
		 * Even though we initialize ->capacity to something semi-sane,
		 * we leave capacity_orig unset. This allows us to detect if
5442 5443
		 * domain iteration is still funny without causing /0 traps.
		 */
5444
		if (!group->sgc->capacity_orig) {
5445
			printk(KERN_CONT "\n");
5446
			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5447 5448
			break;
		}
Linus Torvalds's avatar
Linus Torvalds committed
5449

5450
		if (!cpumask_weight(sched_group_cpus(group))) {
5451 5452
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
5453 5454
			break;
		}
Linus Torvalds's avatar
Linus Torvalds committed
5455

5456 5457
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5458 5459
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
5460 5461
			break;
		}
Linus Torvalds's avatar
Linus Torvalds committed
5462

5463
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
Linus Torvalds's avatar
Linus Torvalds committed
5464

Rusty Russell's avatar
Rusty Russell committed
5465
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5466

5467
		printk(KERN_CONT " %s", str);
5468
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5469 5470
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5471
		}
Linus Torvalds's avatar
Linus Torvalds committed
5472

5473 5474
		group = group->next;
	} while (group != sd->groups);
5475
	printk(KERN_CONT "\n");
Linus Torvalds's avatar
Linus Torvalds committed
5476

5477
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5478
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
Linus Torvalds's avatar
Linus Torvalds committed
5479

5480 5481
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5482 5483
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
5484 5485
	return 0;
}
Linus Torvalds's avatar
Linus Torvalds committed
5486

5487 5488 5489
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
Linus Torvalds's avatar
Linus Torvalds committed
5490

5491
	if (!sched_debug_enabled)
5492 5493
		return;

5494 5495 5496 5497
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
Linus Torvalds's avatar
Linus Torvalds committed
5498

5499 5500 5501
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5502
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5503
			break;
Linus Torvalds's avatar
Linus Torvalds committed
5504 5505
		level++;
		sd = sd->parent;
5506
		if (!sd)
5507 5508
			break;
	}
Linus Torvalds's avatar
Linus Torvalds committed
5509
}
5510
#else /* !CONFIG_SCHED_DEBUG */
5511
# define sched_domain_debug(sd, cpu) do { } while (0)
5512 5513 5514 5515
static inline bool sched_debug(void)
{
	return false;
}
5516
#endif /* CONFIG_SCHED_DEBUG */
Linus Torvalds's avatar
Linus Torvalds committed
5517

5518
static int sd_degenerate(struct sched_domain *sd)
5519
{
5520
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5521 5522 5523 5524 5525 5526
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5527
			 SD_BALANCE_EXEC |
5528
			 SD_SHARE_CPUCAPACITY |
5529 5530
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5531 5532 5533 5534 5535
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5536
	if (sd->flags & (SD_WAKE_AFFINE))
5537 5538 5539 5540 5541
		return 0;

	return 1;
}

5542 5543
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5544 5545 5546 5547 5548 5549
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5550
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5551 5552 5553 5554 5555 5556 5557
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5558
				SD_BALANCE_EXEC |
5559
				SD_SHARE_CPUCAPACITY |
5560
				SD_SHARE_PKG_RESOURCES |
5561 5562
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5563 5564
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5565 5566 5567 5568 5569 5570 5571
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5572
static void free_rootdomain(struct rcu_head *rcu)
5573
{
5574
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5575

5576
	cpupri_cleanup(&rd->cpupri);
5577
	cpudl_cleanup(&rd->cpudl);
5578
	free_cpumask_var(rd->dlo_mask);
5579 5580 5581 5582 5583 5584
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

5585 5586
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
Ingo Molnar's avatar
Ingo Molnar committed
5587
	struct root_domain *old_rd = NULL;
5588 5589
	unsigned long flags;

5590
	raw_spin_lock_irqsave(&rq->lock, flags);
5591 5592

	if (rq->rd) {
Ingo Molnar's avatar
Ingo Molnar committed
5593
		old_rd = rq->rd;
5594

5595
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5596
			set_rq_offline(rq);
5597

5598
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5599

Ingo Molnar's avatar
Ingo Molnar committed
5600
		/*
5601
		 * If we dont want to free the old_rd yet then
Ingo Molnar's avatar
Ingo Molnar committed
5602 5603 5604 5605 5606
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
5607 5608 5609 5610 5611
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5612
	cpumask_set_cpu(rq->cpu, rd->span);
5613
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5614
		set_rq_online(rq);
5615

5616
	raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnar's avatar
Ingo Molnar committed
5617 5618

	if (old_rd)
5619
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5620 5621
}

5622
static int init_rootdomain(struct root_domain *rd)
5623 5624 5625
{
	memset(rd, 0, sizeof(*rd));

5626
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5627
		goto out;
5628
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5629
		goto free_span;
5630
	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5631
		goto free_online;
5632 5633
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;
5634

5635
	init_dl_bw(&rd->dl_bw);
5636 5637
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5638

5639
	if (cpupri_init(&rd->cpupri) != 0)
5640
		goto free_rto_mask;
5641
	return 0;
5642

5643 5644
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5645 5646
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5647 5648 5649 5650
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5651
out:
5652
	return -ENOMEM;
5653 5654
}

5655 5656 5657 5658 5659 5660
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

5661 5662
static void init_defrootdomain(void)
{
5663
	init_rootdomain(&def_root_domain);
5664

5665 5666 5667
	atomic_set(&def_root_domain.refcount, 1);
}

5668
static struct root_domain *alloc_rootdomain(void)
5669 5670 5671 5672 5673 5674 5675
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5676
	if (init_rootdomain(rd) != 0) {
5677 5678 5679
		kfree(rd);
		return NULL;
	}
5680 5681 5682 5683

	return rd;
}

5684
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5685 5686 5687 5688 5689 5690 5691 5692 5693 5694
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5695 5696
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5697 5698 5699 5700 5701 5702

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5703 5704 5705
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5706 5707 5708 5709 5710 5711 5712 5713

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5714
		kfree(sd->groups->sgc);
5715
		kfree(sd->groups);
5716
	}
5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5731 5732 5733 5734 5735 5736 5737
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5738
 * two cpus are in the same cache domain, see cpus_share_cache().
5739 5740
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5741
DEFINE_PER_CPU(int, sd_llc_size);
5742
DEFINE_PER_CPU(int, sd_llc_id);
5743
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5744 5745
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5746 5747 5748 5749

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5750
	struct sched_domain *busy_sd = NULL;
5751
	int id = cpu;
5752
	int size = 1;
5753 5754

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5755
	if (sd) {
5756
		id = cpumask_first(sched_domain_span(sd));
5757
		size = cpumask_weight(sched_domain_span(sd));
5758
		busy_sd = sd->parent; /* sd_busy */
5759
	}
5760
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5761 5762

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5763
	per_cpu(sd_llc_size, cpu) = size;
5764
	per_cpu(sd_llc_id, cpu) = id;
5765 5766 5767

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5768 5769 5770

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5771 5772
}

Linus Torvalds's avatar
Linus Torvalds committed
5773
/*
Ingo Molnar's avatar
Ingo Molnar committed
5774
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
Linus Torvalds's avatar
Linus Torvalds committed
5775 5776
 * hold the hotplug lock.
 */
Ingo Molnar's avatar
Ingo Molnar committed
5777 5778
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
5779
{
5780
	struct rq *rq = cpu_rq(cpu);
5781 5782 5783
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5784
	for (tmp = sd; tmp; ) {
5785 5786 5787
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5788

5789
		if (sd_parent_degenerate(tmp, parent)) {
5790
			tmp->parent = parent->parent;
5791 5792
			if (parent->parent)
				parent->parent->child = tmp;
5793 5794 5795 5796 5797 5798 5799
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5800
			destroy_sched_domain(parent, cpu);
5801 5802
		} else
			tmp = tmp->parent;
5803 5804
	}

5805
	if (sd && sd_degenerate(sd)) {
5806
		tmp = sd;
5807
		sd = sd->parent;
5808
		destroy_sched_domain(tmp, cpu);
5809 5810 5811
		if (sd)
			sd->child = NULL;
	}
Linus Torvalds's avatar
Linus Torvalds committed
5812

5813
	sched_domain_debug(sd, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
5814

5815
	rq_attach_root(rq, rd);
5816
	tmp = rq->sd;
Nick Piggin's avatar
Nick Piggin committed
5817
	rcu_assign_pointer(rq->sd, sd);
5818
	destroy_sched_domains(tmp, cpu);
5819 5820

	update_top_cache_domain(cpu);
Linus Torvalds's avatar
Linus Torvalds committed
5821 5822 5823
}

/* cpus with isolated domains */
5824
static cpumask_var_t cpu_isolated_map;
Linus Torvalds's avatar
Linus Torvalds committed
5825 5826 5827 5828

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
5829
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
Rusty Russell's avatar
Rusty Russell committed
5830
	cpulist_parse(str, cpu_isolated_map);
Linus Torvalds's avatar
Linus Torvalds committed
5831 5832 5833
	return 1;
}

Ingo Molnar's avatar
Ingo Molnar committed
5834
__setup("isolcpus=", isolated_cpu_setup);
Linus Torvalds's avatar
Linus Torvalds committed
5835

5836
struct s_data {
5837
	struct sched_domain ** __percpu sd;
5838 5839 5840
	struct root_domain	*rd;
};

5841 5842
enum s_alloc {
	sa_rootdomain,
5843
	sa_sd,
5844
	sa_sd_storage,
5845 5846 5847
	sa_none,
};

Peter Zijlstra's avatar
Peter Zijlstra committed
5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5886 5887 5888 5889 5890 5891 5892
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
5893
	struct sched_domain *sibling;
5894 5895 5896 5897 5898 5899 5900 5901 5902 5903
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

5904
		sibling = *per_cpu_ptr(sdd->sd, i);
Peter Zijlstra's avatar
Peter Zijlstra committed
5905 5906

		/* See the comment near build_group_mask(). */
5907
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
Peter Zijlstra's avatar
Peter Zijlstra committed
5908 5909
			continue;

5910
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5911
				GFP_KERNEL, cpu_to_node(cpu));
5912 5913 5914 5915 5916

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
5917 5918 5919
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
5920 5921 5922 5923
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

5924 5925
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
Peter Zijlstra's avatar
Peter Zijlstra committed
5926 5927
			build_group_mask(sd, sg);

5928
		/*
5929
		 * Initialize sgc->capacity such that even if we mess up the
5930 5931 5932
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
5933
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5934
		sg->sgc->capacity_orig = sg->sgc->capacity;
5935

Peter Zijlstra's avatar
Peter Zijlstra committed
5936 5937 5938 5939 5940
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
Peter Zijlstra's avatar
Peter Zijlstra committed
5941
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
Peter Zijlstra's avatar
Peter Zijlstra committed
5942
		    group_balance_cpu(sg) == cpu)
5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5962
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
Linus Torvalds's avatar
Linus Torvalds committed
5963
{
5964 5965
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
Linus Torvalds's avatar
Linus Torvalds committed
5966

5967 5968
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5969

5970
	if (sg) {
5971
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5972 5973
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5974
	}
5975 5976

	return cpu;
5977 5978
}

5979
/*
5980 5981
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
5982
 * and ->cpu_capacity to 0.
5983 5984
 *
 * Assumes the sched_domain tree is fully constructed
5985
 */
5986 5987
static int
build_sched_groups(struct sched_domain *sd, int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
5988
{
5989 5990 5991
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5992
	struct cpumask *covered;
5993
	int i;
5994

5995 5996 5997
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

5998
	if (cpu != cpumask_first(span))
5999 6000
		return 0;

6001 6002 6003
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6004
	cpumask_clear(covered);
6005

6006 6007
	for_each_cpu(i, span) {
		struct sched_group *sg;
6008
		int group, j;
6009

6010 6011
		if (cpumask_test_cpu(i, covered))
			continue;
6012

6013
		group = get_group(i, sdd, &sg);
Peter Zijlstra's avatar
Peter Zijlstra committed
6014
		cpumask_setall(sched_group_mask(sg));
6015

6016 6017 6018
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6019

6020 6021 6022
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6023

6024 6025 6026 6027 6028 6029 6030
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6031 6032

	return 0;
6033
}
6034

6035
/*
6036
 * Initialize sched groups cpu_capacity.
6037
 *
6038
 * cpu_capacity indicates the capacity of sched group, which is used while
6039
 * distributing the load between different sched groups in a sched domain.
6040 6041 6042 6043
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
6044
 */
6045
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6046
{
6047
	struct sched_group *sg = sd->groups;
6048

6049
	WARN_ON(!sg);
6050 6051 6052 6053 6054

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6055

Peter Zijlstra's avatar
Peter Zijlstra committed
6056
	if (cpu != group_balance_cpu(sg))
6057
		return;
6058

6059 6060
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6061 6062
}

6063 6064 6065 6066 6067
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6068
static int default_relax_domain_level = -1;
6069
int sched_domain_level_max;
6070 6071 6072

static int __init setup_relax_domain_level(char *str)
{
6073 6074
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6075

6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6094
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6095 6096
	} else {
		/* turn on idle balance on this domain */
6097
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6098 6099 6100
	}
}

6101 6102 6103
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6104 6105 6106 6107 6108
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6109 6110
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6111 6112
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6113
	case sa_sd_storage:
6114
		__sdt_free(cpu_map); /* fall through */
6115 6116 6117 6118
	case sa_none:
		break;
	}
}
6119

6120 6121 6122
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6123 6124
	memset(d, 0, sizeof(*d));

6125 6126
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6127 6128 6129
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6130
	d->rd = alloc_rootdomain();
6131
	if (!d->rd)
6132
		return sa_sd;
6133 6134
	return sa_rootdomain;
}
6135

6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6148
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6149
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6150

6151 6152
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6153 6154
}

6155 6156
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
6157
enum numa_topology_type sched_numa_topology_type;
6158
static int *sched_domains_numa_distance;
6159
int sched_max_numa_distance;
6160 6161
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6162
#endif
6163

6164 6165 6166
/*
 * SD_flags allowed in topology descriptions.
 *
6167
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6168 6169
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
6170
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6171 6172 6173 6174 6175
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6176
	(SD_SHARE_CPUCAPACITY |		\
6177 6178
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6179 6180
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6181 6182

static struct sched_domain *
6183
sd_init(struct sched_domain_topology_level *tl, int cpu)
6184 6185
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6202 6203 6204 6205 6206

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6207
		.imbalance_pct		= 125,
6208 6209 6210 6211

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6212 6213 6214 6215 6216 6217
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6218 6219
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6220
					| 0*SD_BALANCE_WAKE
6221
					| 1*SD_WAKE_AFFINE
6222
					| 0*SD_SHARE_CPUCAPACITY
6223
					| 0*SD_SHARE_PKG_RESOURCES
6224
					| 0*SD_SERIALIZE
6225
					| 0*SD_PREFER_SIBLING
6226 6227
					| 0*SD_NUMA
					| sd_flags
6228
					,
6229

6230 6231
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6232
		.smt_gain		= 0,
6233 6234
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6235 6236 6237
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6238 6239 6240
	};

	/*
6241
	 * Convert topological properties into behaviour.
6242
	 */
6243

6244
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6275 6276 6277 6278

	return sd;
}

6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

struct sched_domain_topology_level *sched_domain_topology = default_topology;

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6305 6306 6307 6308 6309
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

6331
bool find_numa_distance(int distance)
6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395
/*
 * A system can have three types of NUMA topology:
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 *
 * The difference between a glueless mesh topology and a backplane
 * topology lies in whether communication between not directly
 * connected nodes goes through intermediary nodes (where programs
 * could run), or through backplane controllers. This affects
 * placement of programs.
 *
 * The type of topology can be discerned with the following tests:
 * - If the maximum distance between any nodes is 1 hop, the system
 *   is directly connected.
 * - If for two nodes A and B, located N > 1 hops away from each other,
 *   there is an intermediary node C, which is < N hops away from both
 *   nodes A and B, the system is a glueless mesh.
 */
static void init_numa_topology_type(void)
{
	int a, b, c, n;

	n = sched_max_numa_distance;

	if (n <= 1)
		sched_numa_topology_type = NUMA_DIRECT;

	for_each_online_node(a) {
		for_each_online_node(b) {
			/* Find two nodes furthest removed from each other. */
			if (node_distance(a, b) < n)
				continue;

			/* Is there an intermediary node between a and b? */
			for_each_online_node(c) {
				if (node_distance(a, c) < n &&
				    node_distance(b, c) < n) {
					sched_numa_topology_type =
							NUMA_GLUELESS_MESH;
					return;
				}
			}

			sched_numa_topology_type = NUMA_BACKPLANE;
			return;
		}
	}
}

6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6441
		}
6442 6443 6444 6445 6446 6447

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6448
	}
6449 6450 6451 6452

	if (!level)
		return;

6453 6454 6455 6456
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
6457
	 * The sched_domains_numa_distance[] array includes the actual distance
6458 6459 6460
	 * numbers.
	 */

6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6487
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6488 6489 6490 6491 6492 6493
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6494
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6495 6496 6497 6498 6499 6500 6501
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6502 6503 6504
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6505
	tl = kzalloc((i + level + 1) *
6506 6507 6508 6509 6510 6511 6512
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6513 6514
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6515 6516 6517 6518 6519 6520 6521

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6522
			.sd_flags = cpu_numa_flags,
6523 6524
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6525
			SD_INIT_NAME(NUMA)
6526 6527 6528 6529
		};
	}

	sched_domain_topology = tl;
6530 6531

	sched_domains_numa_levels = level;
6532
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6533 6534

	init_numa_topology_type();
6535
}
6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6583 6584 6585 6586 6587
}
#else
static inline void sched_init_numa(void)
{
}
6588 6589 6590 6591 6592 6593 6594

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6595 6596
#endif /* CONFIG_NUMA */

6597 6598 6599 6600 6601
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6602
	for_each_sd_topology(tl) {
6603 6604 6605 6606 6607 6608 6609 6610 6611 6612
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6613 6614
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6615 6616
			return -ENOMEM;

6617 6618 6619
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6620
			struct sched_group_capacity *sgc;
6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6634 6635
			sg->next = sg;

6636
			*per_cpu_ptr(sdd->sg, j) = sg;
6637

6638
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6639
					GFP_KERNEL, cpu_to_node(j));
6640
			if (!sgc)
6641 6642
				return -ENOMEM;

6643
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6655
	for_each_sd_topology(tl) {
6656 6657 6658
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6670 6671
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6672 6673
		}
		free_percpu(sdd->sd);
6674
		sdd->sd = NULL;
6675
		free_percpu(sdd->sg);
6676
		sdd->sg = NULL;
6677 6678
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6679 6680 6681
	}
}

6682
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6683 6684
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6685
{
6686
	struct sched_domain *sd = sd_init(tl, cpu);
6687
	if (!sd)
6688
		return child;
6689 6690

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6691 6692 6693
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6694
		child->parent = sd;
6695
		sd->child = child;
6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

6710
	}
6711
	set_domain_attribute(sd, attr);
6712 6713 6714 6715

	return sd;
}

6716 6717 6718 6719
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6720 6721
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6722
{
6723
	enum s_alloc alloc_state;
6724
	struct sched_domain *sd;
6725
	struct s_data d;
6726
	int i, ret = -ENOMEM;
6727

6728 6729 6730
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6731

6732
	/* Set up domains for cpus specified by the cpu_map. */
6733
	for_each_cpu(i, cpu_map) {
6734 6735
		struct sched_domain_topology_level *tl;

6736
		sd = NULL;
6737
		for_each_sd_topology(tl) {
6738
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6739 6740
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6741 6742
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6743 6744
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6745
		}
6746 6747 6748 6749 6750 6751
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6752 6753 6754 6755 6756 6757 6758
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6759
		}
6760
	}
6761

6762
	/* Calculate CPU capacity for physical packages and nodes */
6763 6764 6765
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6766

6767 6768
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6769
			init_sched_groups_capacity(i, sd);
6770
		}
6771
	}
6772

Linus Torvalds's avatar
Linus Torvalds committed
6773
	/* Attach the domains */
6774
	rcu_read_lock();
6775
	for_each_cpu(i, cpu_map) {
6776
		sd = *per_cpu_ptr(d.sd, i);
6777
		cpu_attach_domain(sd, d.rd, i);
Linus Torvalds's avatar
Linus Torvalds committed
6778
	}
6779
	rcu_read_unlock();
6780

6781
	ret = 0;
6782
error:
6783
	__free_domain_allocs(&d, alloc_state, cpu_map);
6784
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
6785
}
6786

6787
static cpumask_var_t *doms_cur;	/* current sched domains */
6788
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
Ingo Molnar's avatar
Ingo Molnar committed
6789 6790
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
6791 6792 6793

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6794 6795
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
6796
 */
6797
static cpumask_var_t fallback_doms;
6798

6799 6800 6801 6802 6803
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6804
int __weak arch_update_cpu_topology(void)
6805
{
6806
	return 0;
6807 6808
}

6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6834
/*
Ingo Molnar's avatar
Ingo Molnar committed
6835
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6836 6837
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6838
 */
6839
static int init_sched_domains(const struct cpumask *cpu_map)
6840
{
6841 6842
	int err;

6843
	arch_update_cpu_topology();
6844
	ndoms_cur = 1;
6845
	doms_cur = alloc_sched_domains(ndoms_cur);
6846
	if (!doms_cur)
6847 6848
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6849
	err = build_sched_domains(doms_cur[0], NULL);
6850
	register_sched_domain_sysctl();
6851 6852

	return err;
6853 6854 6855 6856 6857 6858
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6859
static void detach_destroy_domains(const struct cpumask *cpu_map)
6860 6861 6862
{
	int i;

6863
	rcu_read_lock();
6864
	for_each_cpu(i, cpu_map)
6865
		cpu_attach_domain(NULL, &def_root_domain, i);
6866
	rcu_read_unlock();
6867 6868
}

6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

6885 6886
/*
 * Partition sched domains as specified by the 'ndoms_new'
Ingo Molnar's avatar
Ingo Molnar committed
6887
 * cpumasks in the array doms_new[] of cpumasks. This compares
6888 6889 6890
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6891
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
Ingo Molnar's avatar
Ingo Molnar committed
6892 6893 6894
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
6895 6896 6897
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6898 6899 6900 6901 6902 6903
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
6904
 *
6905
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6906 6907
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6908
 *
6909 6910
 * Call with hotplug lock held
 */
6911
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6912
			     struct sched_domain_attr *dattr_new)
6913
{
6914
	int i, j, n;
6915
	int new_topology;
6916

6917
	mutex_lock(&sched_domains_mutex);
6918

6919 6920 6921
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6922 6923 6924
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6925
	n = doms_new ? ndoms_new : 0;
6926 6927 6928

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6929
		for (j = 0; j < n && !new_topology; j++) {
6930
			if (cpumask_equal(doms_cur[i], doms_new[j])
6931
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6932 6933 6934
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6935
		detach_destroy_domains(doms_cur[i]);
6936 6937 6938 6939
match1:
		;
	}

6940
	n = ndoms_cur;
6941
	if (doms_new == NULL) {
6942
		n = 0;
6943
		doms_new = &fallback_doms;
6944
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6945
		WARN_ON_ONCE(dattr_new);
6946 6947
	}

6948 6949
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6950
		for (j = 0; j < n && !new_topology; j++) {
6951
			if (cpumask_equal(doms_new[i], doms_cur[j])
6952
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6953 6954 6955
				goto match2;
		}
		/* no match - add a new doms_new */
6956
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6957 6958 6959 6960 6961
match2:
		;
	}

	/* Remember the new sched domains */
6962 6963
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6964
	kfree(dattr_cur);	/* kfree(NULL) is safe */
6965
	doms_cur = doms_new;
6966
	dattr_cur = dattr_new;
6967
	ndoms_cur = ndoms_new;
6968 6969

	register_sched_domain_sysctl();
6970

6971
	mutex_unlock(&sched_domains_mutex);
6972 6973
}

6974 6975
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

Linus Torvalds's avatar
Linus Torvalds committed
6976
/*
6977 6978 6979
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6980 6981 6982
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
Linus Torvalds's avatar
Linus Torvalds committed
6983
 */
6984 6985
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6986
{
6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

7009
	case CPU_ONLINE:
7010
	case CPU_DOWN_FAILED:
7011
		cpuset_update_active_cpus(true);
7012
		break;
7013 7014 7015
	default:
		return NOTIFY_DONE;
	}
7016
	return NOTIFY_OK;
7017
}
7018

7019 7020
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7021
{
7022
	switch (action) {
7023
	case CPU_DOWN_PREPARE:
7024
		cpuset_update_active_cpus(false);
7025 7026 7027 7028 7029
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
7030 7031 7032
	default:
		return NOTIFY_DONE;
	}
7033
	return NOTIFY_OK;
7034 7035
}

Linus Torvalds's avatar
Linus Torvalds committed
7036 7037
void __init sched_init_smp(void)
{
7038 7039 7040
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7041
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7042

7043 7044
	sched_init_numa();

7045 7046 7047 7048 7049
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
7050
	mutex_lock(&sched_domains_mutex);
7051
	init_sched_domains(cpu_active_mask);
7052 7053 7054
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7055
	mutex_unlock(&sched_domains_mutex);
7056

7057
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7058 7059
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7060

7061
	init_hrtick();
7062 7063

	/* Move init over to a non-isolated CPU */
7064
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7065
		BUG();
7066
	sched_init_granularity();
7067
	free_cpumask_var(non_isolated_cpus);
7068

7069
	init_sched_rt_class();
7070
	init_sched_dl_class();
Linus Torvalds's avatar
Linus Torvalds committed
7071 7072 7073 7074
}
#else
void __init sched_init_smp(void)
{
7075
	sched_init_granularity();
Linus Torvalds's avatar
Linus Torvalds committed
7076 7077 7078
}
#endif /* CONFIG_SMP */

7079 7080
const_debug unsigned int sysctl_timer_migration = 1;

Linus Torvalds's avatar
Linus Torvalds committed
7081 7082 7083 7084 7085 7086 7087
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7088
#ifdef CONFIG_CGROUP_SCHED
7089 7090 7091 7092
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
7093
struct task_group root_task_group;
7094
LIST_HEAD(task_groups);
7095
#endif
Peter Zijlstra's avatar
Peter Zijlstra committed
7096

7097
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra's avatar
Peter Zijlstra committed
7098

Linus Torvalds's avatar
Linus Torvalds committed
7099 7100
void __init sched_init(void)
{
Ingo Molnar's avatar
Ingo Molnar committed
7101
	int i, j;
7102 7103 7104 7105 7106 7107 7108 7109 7110
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
7111
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7112 7113

#ifdef CONFIG_FAIR_GROUP_SCHED
7114
		root_task_group.se = (struct sched_entity **)ptr;
7115 7116
		ptr += nr_cpu_ids * sizeof(void **);

7117
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7118
		ptr += nr_cpu_ids * sizeof(void **);
7119

7120
#endif /* CONFIG_FAIR_GROUP_SCHED */
7121
#ifdef CONFIG_RT_GROUP_SCHED
7122
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7123 7124
		ptr += nr_cpu_ids * sizeof(void **);

7125
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7126 7127
		ptr += nr_cpu_ids * sizeof(void **);

7128
#endif /* CONFIG_RT_GROUP_SCHED */
7129
	}
7130
#ifdef CONFIG_CPUMASK_OFFSTACK
7131 7132 7133
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7134
	}
7135
#endif /* CONFIG_CPUMASK_OFFSTACK */
Ingo Molnar's avatar
Ingo Molnar committed
7136

7137 7138 7139
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7140
			global_rt_period(), global_rt_runtime());
7141

7142 7143 7144 7145
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7146
#ifdef CONFIG_RT_GROUP_SCHED
7147
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7148
			global_rt_period(), global_rt_runtime());
7149
#endif /* CONFIG_RT_GROUP_SCHED */
7150

Dhaval Giani's avatar
Dhaval Giani committed
7151
#ifdef CONFIG_CGROUP_SCHED
7152 7153
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7154
	INIT_LIST_HEAD(&root_task_group.siblings);
7155
	autogroup_init(&init_task);
7156

Dhaval Giani's avatar
Dhaval Giani committed
7157
#endif /* CONFIG_CGROUP_SCHED */
Peter Zijlstra's avatar
Peter Zijlstra committed
7158

7159
	for_each_possible_cpu(i) {
7160
		struct rq *rq;
Linus Torvalds's avatar
Linus Torvalds committed
7161 7162

		rq = cpu_rq(i);
7163
		raw_spin_lock_init(&rq->lock);
Nick Piggin's avatar
Nick Piggin committed
7164
		rq->nr_running = 0;
7165 7166
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7167
		init_cfs_rq(&rq->cfs);
Peter Zijlstra's avatar
Peter Zijlstra committed
7168
		init_rt_rq(&rq->rt, rq);
7169
		init_dl_rq(&rq->dl, rq);
Ingo Molnar's avatar
Ingo Molnar committed
7170
#ifdef CONFIG_FAIR_GROUP_SCHED
7171
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
Peter Zijlstra's avatar
Peter Zijlstra committed
7172
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
Dhaval Giani's avatar
Dhaval Giani committed
7173
		/*
7174
		 * How much cpu bandwidth does root_task_group get?
Dhaval Giani's avatar
Dhaval Giani committed
7175 7176 7177 7178
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7179
		 * root_task_group and its child task-groups in a fair manner,
Dhaval Giani's avatar
Dhaval Giani committed
7180 7181 7182
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7183
		 * In other words, if root_task_group has 10 tasks of weight
Dhaval Giani's avatar
Dhaval Giani committed
7184 7185 7186
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7187
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
Dhaval Giani's avatar
Dhaval Giani committed
7188
		 *
7189 7190
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
Dhaval Giani's avatar
Dhaval Giani committed
7191
		 */
7192
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7193
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
Dhaval Giani's avatar
Dhaval Giani committed
7194 7195 7196
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7197
#ifdef CONFIG_RT_GROUP_SCHED
7198
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
Ingo Molnar's avatar
Ingo Molnar committed
7199
#endif
Linus Torvalds's avatar
Linus Torvalds committed
7200

Ingo Molnar's avatar
Ingo Molnar committed
7201 7202
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7203 7204 7205

		rq->last_load_update_tick = jiffies;

Linus Torvalds's avatar
Linus Torvalds committed
7206
#ifdef CONFIG_SMP
Nick Piggin's avatar
Nick Piggin committed
7207
		rq->sd = NULL;
7208
		rq->rd = NULL;
7209
		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7210
		rq->post_schedule = 0;
Linus Torvalds's avatar
Linus Torvalds committed
7211
		rq->active_balance = 0;
Ingo Molnar's avatar
Ingo Molnar committed
7212
		rq->next_balance = jiffies;
Linus Torvalds's avatar
Linus Torvalds committed
7213
		rq->push_cpu = 0;
7214
		rq->cpu = i;
7215
		rq->online = 0;
7216 7217
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7218
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7219 7220 7221

		INIT_LIST_HEAD(&rq->cfs_tasks);

7222
		rq_attach_root(rq, &def_root_domain);
7223
#ifdef CONFIG_NO_HZ_COMMON
7224
		rq->nohz_flags = 0;
7225
#endif
7226 7227 7228
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
Linus Torvalds's avatar
Linus Torvalds committed
7229
#endif
7230
		init_rq_hrtick(rq);
Linus Torvalds's avatar
Linus Torvalds committed
7231 7232 7233
		atomic_set(&rq->nr_iowait, 0);
	}

7234
	set_load_weight(&init_task);
7235

7236 7237 7238 7239
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

Linus Torvalds's avatar
Linus Torvalds committed
7240 7241 7242 7243 7244 7245
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

7246 7247 7248 7249 7250
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;

Linus Torvalds's avatar
Linus Torvalds committed
7251 7252 7253 7254 7255 7256 7257
	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7258 7259 7260

	calc_load_update = jiffies + LOAD_FREQ;

7261
#ifdef CONFIG_SMP
7262
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7263 7264 7265
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7266
	idle_thread_set_boot_cpu();
7267
	set_cpu_rq_start_time();
7268 7269
#endif
	init_sched_fair_class();
7270

7271
	scheduler_running = 1;
Linus Torvalds's avatar
Linus Torvalds committed
7272 7273
}

7274
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7275 7276
static inline int preempt_count_equals(int preempt_offset)
{
7277
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7278

Arnd Bergmann's avatar
Arnd Bergmann committed
7279
	return (nested == preempt_offset);
7280 7281
}

7282
void __might_sleep(const char *file, int line, int preempt_offset)
Linus Torvalds's avatar
Linus Torvalds committed
7283
{
Peter Zijlstra's avatar
Peter Zijlstra committed
7284 7285 7286 7287 7288
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
7289
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
Peter Zijlstra's avatar
Peter Zijlstra committed
7290 7291 7292 7293
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
7294
			(void *)current->task_state_change);
Peter Zijlstra's avatar
Peter Zijlstra committed
7295

7296 7297 7298 7299 7300
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
Linus Torvalds's avatar
Linus Torvalds committed
7301 7302 7303
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7304
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7305 7306
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7307
	    system_state != SYSTEM_RUNNING || oops_in_progress)
7308 7309 7310 7311 7312
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

7313 7314 7315 7316 7317 7318 7319
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
7320

7321 7322 7323
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

7324 7325 7326
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7327 7328 7329 7330 7331 7332 7333
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
7334
	dump_stack();
Linus Torvalds's avatar
Linus Torvalds committed
7335
}
7336
EXPORT_SYMBOL(___might_sleep);
Linus Torvalds's avatar
Linus Torvalds committed
7337 7338 7339
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7340 7341
static void normalize_task(struct rq *rq, struct task_struct *p)
{
7342
	const struct sched_class *prev_class = p->sched_class;
7343 7344 7345
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
7346
	int old_prio = p->prio;
7347
	int queued;
7348

7349 7350
	queued = task_on_rq_queued(p);
	if (queued)
7351
		dequeue_task(rq, p, 0);
7352
	__setscheduler(rq, p, &attr);
7353
	if (queued) {
7354
		enqueue_task(rq, p, 0);
7355
		resched_curr(rq);
7356
	}
7357 7358

	check_class_changed(rq, p, prev_class, old_prio);
7359 7360
}

Linus Torvalds's avatar
Linus Torvalds committed
7361 7362
void normalize_rt_tasks(void)
{
7363
	struct task_struct *g, *p;
Linus Torvalds's avatar
Linus Torvalds committed
7364
	unsigned long flags;
7365
	struct rq *rq;
Linus Torvalds's avatar
Linus Torvalds committed
7366

7367
	read_lock(&tasklist_lock);
7368
	for_each_process_thread(g, p) {
7369 7370 7371
		/*
		 * Only normalize user tasks:
		 */
7372
		if (p->flags & PF_KTHREAD)
7373 7374
			continue;

7375 7376
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7377 7378 7379
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
7380
#endif
Ingo Molnar's avatar
Ingo Molnar committed
7381

7382
		if (!dl_task(p) && !rt_task(p)) {
Ingo Molnar's avatar
Ingo Molnar committed
7383 7384 7385 7386
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7387
			if (task_nice(p) < 0)
Ingo Molnar's avatar
Ingo Molnar committed
7388
				set_user_nice(p, 0);
Linus Torvalds's avatar
Linus Torvalds committed
7389
			continue;
Ingo Molnar's avatar
Ingo Molnar committed
7390
		}
Linus Torvalds's avatar
Linus Torvalds committed
7391

7392
		rq = task_rq_lock(p, &flags);
7393
		normalize_task(rq, p);
7394
		task_rq_unlock(rq, p, &flags);
7395
	}
7396
	read_unlock(&tasklist_lock);
Linus Torvalds's avatar
Linus Torvalds committed
7397 7398 7399
}

#endif /* CONFIG_MAGIC_SYSRQ */
7400

7401
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7402
/*
7403
 * These functions are only useful for the IA64 MCA handling, or kdb.
7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7417 7418
 *
 * Return: The current task for @cpu.
7419
 */
7420
struct task_struct *curr_task(int cpu)
7421 7422 7423 7424
{
	return cpu_curr(cpu);
}

7425 7426 7427
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7428 7429 7430 7431 7432 7433
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
Ingo Molnar's avatar
Ingo Molnar committed
7434 7435
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7436 7437 7438 7439 7440 7441 7442
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7443
void set_curr_task(int cpu, struct task_struct *p)
7444 7445 7446 7447 7448
{
	cpu_curr(cpu) = p;
}

#endif
7449

Dhaval Giani's avatar
Dhaval Giani committed
7450
#ifdef CONFIG_CGROUP_SCHED
7451 7452 7453
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7454 7455 7456 7457
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7458
	autogroup_free(tg);
7459 7460 7461 7462
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7463
struct task_group *sched_create_group(struct task_group *parent)
7464 7465 7466 7467 7468 7469 7470
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7471
	if (!alloc_fair_sched_group(tg, parent))
7472 7473
		goto err;

7474
	if (!alloc_rt_sched_group(tg, parent))
7475 7476
		goto err;

7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7488
	spin_lock_irqsave(&task_group_lock, flags);
Peter Zijlstra's avatar
Peter Zijlstra committed
7489
	list_add_rcu(&tg->list, &task_groups);
Peter Zijlstra's avatar
Peter Zijlstra committed
7490 7491 7492 7493 7494

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7495
	list_add_rcu(&tg->siblings, &parent->children);
7496
	spin_unlock_irqrestore(&task_group_lock, flags);
7497 7498
}

7499
/* rcu callback to free various structures associated with a task group */
Peter Zijlstra's avatar
Peter Zijlstra committed
7500
static void free_sched_group_rcu(struct rcu_head *rhp)
7501 7502
{
	/* now it should be safe to free those cfs_rqs */
Peter Zijlstra's avatar
Peter Zijlstra committed
7503
	free_sched_group(container_of(rhp, struct task_group, rcu));
7504 7505
}

7506
/* Destroy runqueue etc associated with a task group */
7507
void sched_destroy_group(struct task_group *tg)
7508 7509 7510 7511 7512 7513
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
7514
{
7515
	unsigned long flags;
7516
	int i;
7517

7518 7519
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7520
		unregister_fair_sched_group(tg, i);
7521 7522

	spin_lock_irqsave(&task_group_lock, flags);
Peter Zijlstra's avatar
Peter Zijlstra committed
7523
	list_del_rcu(&tg->list);
Peter Zijlstra's avatar
Peter Zijlstra committed
7524
	list_del_rcu(&tg->siblings);
7525
	spin_unlock_irqrestore(&task_group_lock, flags);
7526 7527
}

7528
/* change task's runqueue when it moves between groups.
Ingo Molnar's avatar
Ingo Molnar committed
7529 7530 7531
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7532 7533
 */
void sched_move_task(struct task_struct *tsk)
7534
{
7535
	struct task_group *tg;
7536
	int queued, running;
7537 7538 7539 7540 7541
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7542
	running = task_current(rq, tsk);
7543
	queued = task_on_rq_queued(tsk);
7544

7545
	if (queued)
7546
		dequeue_task(rq, tsk, 0);
7547
	if (unlikely(running))
7548
		put_prev_task(rq, tsk);
7549

7550 7551 7552 7553 7554 7555
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7556 7557 7558 7559
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

Peter Zijlstra's avatar
Peter Zijlstra committed
7560
#ifdef CONFIG_FAIR_GROUP_SCHED
7561
	if (tsk->sched_class->task_move_group)
7562
		tsk->sched_class->task_move_group(tsk, queued);
7563
	else
Peter Zijlstra's avatar
Peter Zijlstra committed
7564
#endif
7565
		set_task_rq(tsk, task_cpu(tsk));
Peter Zijlstra's avatar
Peter Zijlstra committed
7566

7567 7568
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
7569
	if (queued)
7570
		enqueue_task(rq, tsk, 0);
7571

7572
	task_rq_unlock(rq, tsk, &flags);
7573
}
Dhaval Giani's avatar
Dhaval Giani committed
7574
#endif /* CONFIG_CGROUP_SCHED */
7575

7576 7577 7578 7579 7580
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
Peter Zijlstra's avatar
Peter Zijlstra committed
7581

Peter Zijlstra's avatar
Peter Zijlstra committed
7582 7583
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7584
{
Peter Zijlstra's avatar
Peter Zijlstra committed
7585
	struct task_struct *g, *p;
7586

7587
	for_each_process_thread(g, p) {
7588
		if (rt_task(p) && task_group(p) == tg)
Peter Zijlstra's avatar
Peter Zijlstra committed
7589
			return 1;
7590
	}
7591

Peter Zijlstra's avatar
Peter Zijlstra committed
7592 7593
	return 0;
}
7594

Peter Zijlstra's avatar
Peter Zijlstra committed
7595 7596 7597 7598 7599
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7600

7601
static int tg_rt_schedulable(struct task_group *tg, void *data)
Peter Zijlstra's avatar
Peter Zijlstra committed
7602 7603 7604 7605 7606
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7607

Peter Zijlstra's avatar
Peter Zijlstra committed
7608 7609
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7610

Peter Zijlstra's avatar
Peter Zijlstra committed
7611 7612 7613
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7614 7615
	}

7616 7617 7618 7619 7620
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
Peter Zijlstra's avatar
Peter Zijlstra committed
7621

7622 7623 7624
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
Peter Zijlstra's avatar
Peter Zijlstra committed
7625 7626
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
Peter Zijlstra's avatar
Peter Zijlstra committed
7627

Peter Zijlstra's avatar
Peter Zijlstra committed
7628
	total = to_ratio(period, runtime);
Peter Zijlstra's avatar
Peter Zijlstra committed
7629

7630 7631 7632 7633 7634
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
Peter Zijlstra's avatar
Peter Zijlstra committed
7635

7636 7637 7638
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
Peter Zijlstra's avatar
Peter Zijlstra committed
7639 7640 7641
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
Peter Zijlstra's avatar
Peter Zijlstra committed
7642

Peter Zijlstra's avatar
Peter Zijlstra committed
7643 7644 7645 7646
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
Peter Zijlstra's avatar
Peter Zijlstra committed
7647

Peter Zijlstra's avatar
Peter Zijlstra committed
7648
		sum += to_ratio(period, runtime);
Peter Zijlstra's avatar
Peter Zijlstra committed
7649
	}
Peter Zijlstra's avatar
Peter Zijlstra committed
7650

Peter Zijlstra's avatar
Peter Zijlstra committed
7651 7652 7653 7654
	if (sum > total)
		return -EINVAL;

	return 0;
Peter Zijlstra's avatar
Peter Zijlstra committed
7655 7656
}

Peter Zijlstra's avatar
Peter Zijlstra committed
7657
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7658
{
7659 7660
	int ret;

Peter Zijlstra's avatar
Peter Zijlstra committed
7661 7662 7663 7664 7665 7666
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7667 7668 7669 7670 7671
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7672 7673
}

7674
static int tg_set_rt_bandwidth(struct task_group *tg,
7675
		u64 rt_period, u64 rt_runtime)
Peter Zijlstra's avatar
Peter Zijlstra committed
7676
{
7677
	int i, err = 0;
Peter Zijlstra's avatar
Peter Zijlstra committed
7678 7679

	mutex_lock(&rt_constraints_mutex);
7680
	read_lock(&tasklist_lock);
Peter Zijlstra's avatar
Peter Zijlstra committed
7681 7682
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
Peter Zijlstra's avatar
Peter Zijlstra committed
7683
		goto unlock;
7684

7685
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7686 7687
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
7688 7689 7690 7691

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7692
		raw_spin_lock(&rt_rq->rt_runtime_lock);
7693
		rt_rq->rt_runtime = rt_runtime;
7694
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7695
	}
7696
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
Peter Zijlstra's avatar
Peter Zijlstra committed
7697
unlock:
7698
	read_unlock(&tasklist_lock);
Peter Zijlstra's avatar
Peter Zijlstra committed
7699 7700 7701
	mutex_unlock(&rt_constraints_mutex);

	return err;
Peter Zijlstra's avatar
Peter Zijlstra committed
7702 7703
}

7704
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7705 7706 7707 7708 7709 7710 7711 7712
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7713
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7714 7715
}

7716
static long sched_group_rt_runtime(struct task_group *tg)
Peter Zijlstra's avatar
Peter Zijlstra committed
7717 7718 7719
{
	u64 rt_runtime_us;

7720
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
Peter Zijlstra's avatar
Peter Zijlstra committed
7721 7722
		return -1;

7723
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
Peter Zijlstra's avatar
Peter Zijlstra committed
7724 7725 7726
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7727

7728
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7729 7730 7731 7732 7733 7734
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7735 7736 7737
	if (rt_period == 0)
		return -EINVAL;

7738
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7739 7740
}

7741
static long sched_group_rt_period(struct task_group *tg)
7742 7743 7744 7745 7746 7747 7748
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7749
#endif /* CONFIG_RT_GROUP_SCHED */
7750

7751
#ifdef CONFIG_RT_GROUP_SCHED
7752 7753 7754 7755 7756
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
Peter Zijlstra's avatar
Peter Zijlstra committed
7757
	read_lock(&tasklist_lock);
7758
	ret = __rt_schedulable(NULL, 0, 0);
Peter Zijlstra's avatar
Peter Zijlstra committed
7759
	read_unlock(&tasklist_lock);
7760 7761 7762 7763
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7764

7765
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7766 7767 7768 7769 7770 7771 7772 7773
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7774
#else /* !CONFIG_RT_GROUP_SCHED */
7775 7776
static int sched_rt_global_constraints(void)
{
7777
	unsigned long flags;
7778
	int i, ret = 0;
7779

7780
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7781 7782 7783
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7784
		raw_spin_lock(&rt_rq->rt_runtime_lock);
7785
		rt_rq->rt_runtime = global_rt_runtime();
7786
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7787
	}
7788
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7789

7790
	return ret;
7791
}
7792
#endif /* CONFIG_RT_GROUP_SCHED */
7793

7794 7795
static int sched_dl_global_constraints(void)
{
7796 7797
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
7798
	u64 new_bw = to_ratio(period, runtime);
7799
	struct dl_bw *dl_b;
7800
	int cpu, ret = 0;
7801
	unsigned long flags;
7802 7803 7804 7805 7806 7807 7808 7809 7810 7811

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
7812
	for_each_possible_cpu(cpu) {
7813 7814
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7815

7816
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7817 7818
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
7819
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7820

7821 7822
		rcu_read_unlock_sched();

7823 7824
		if (ret)
			break;
7825 7826
	}

7827
	return ret;
7828 7829
}

7830
static void sched_dl_do_global(void)
7831
{
7832
	u64 new_bw = -1;
7833
	struct dl_bw *dl_b;
7834
	int cpu;
7835
	unsigned long flags;
7836

7837 7838 7839 7840 7841 7842 7843 7844 7845 7846
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
7847 7848
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7849

7850
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7851
		dl_b->bw = new_bw;
7852
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7853 7854

		rcu_read_unlock_sched();
7855
	}
7856 7857 7858 7859 7860 7861 7862
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7863 7864
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7865 7866 7867 7868 7869 7870 7871 7872 7873
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7874 7875
}

7876
int sched_rt_handler(struct ctl_table *table, int write,
7877
		void __user *buffer, size_t *lenp,
7878 7879 7880 7881
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
7882
	int ret;
7883 7884 7885 7886 7887

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7888
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7889 7890

	if (!ret && write) {
7891 7892 7893 7894
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

7895
		ret = sched_rt_global_constraints();
7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909
		if (ret)
			goto undo;

		ret = sched_dl_global_constraints();
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
7910 7911 7912 7913 7914
	}
	mutex_unlock(&mutex);

	return ret;
}
7915

7916
int sched_rr_handler(struct ctl_table *table, int write,
7917 7918 7919 7920 7921 7922 7923 7924
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7925 7926
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
7927
	if (!ret && write) {
7928 7929
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7930 7931 7932 7933 7934
	}
	mutex_unlock(&mutex);
	return ret;
}

7935
#ifdef CONFIG_CGROUP_SCHED
7936

7937
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7938
{
7939
	return css ? container_of(css, struct task_group, css) : NULL;
7940 7941
}

7942 7943
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7944
{
7945 7946
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
7947

7948
	if (!parent) {
7949
		/* This is early initialization for the top cgroup */
7950
		return &root_task_group.css;
7951 7952
	}

7953
	tg = sched_create_group(parent);
7954 7955 7956 7957 7958 7959
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7960
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7961
{
7962
	struct task_group *tg = css_tg(css);
Tejun Heo's avatar
Tejun Heo committed
7963
	struct task_group *parent = css_tg(css->parent);
7964

Tejun Heo's avatar
Tejun Heo committed
7965 7966
	if (parent)
		sched_online_group(tg, parent);
7967 7968 7969
	return 0;
}

7970
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7971
{
7972
	struct task_group *tg = css_tg(css);
7973 7974 7975 7976

	sched_destroy_group(tg);
}

7977
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7978
{
7979
	struct task_group *tg = css_tg(css);
7980 7981 7982 7983

	sched_offline_group(tg);
}

7984 7985 7986 7987 7988
static void cpu_cgroup_fork(struct task_struct *task)
{
	sched_move_task(task);
}

7989
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7990
				 struct cgroup_taskset *tset)
7991
{
7992 7993
	struct task_struct *task;

7994
	cgroup_taskset_for_each(task, tset) {
7995
#ifdef CONFIG_RT_GROUP_SCHED
7996
		if (!sched_rt_can_attach(css_tg(css), task))
7997
			return -EINVAL;
7998
#else
7999 8000 8001
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
8002
#endif
8003
	}
8004 8005
	return 0;
}
8006

8007
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8008
			      struct cgroup_taskset *tset)
8009
{
8010 8011
	struct task_struct *task;

8012
	cgroup_taskset_for_each(task, tset)
8013
		sched_move_task(task);
8014 8015
}

8016 8017 8018
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

8031
#ifdef CONFIG_FAIR_GROUP_SCHED
8032 8033
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
8034
{
8035
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8036 8037
}

8038 8039
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
8040
{
8041
	struct task_group *tg = css_tg(css);
8042

8043
	return (u64) scale_load_down(tg->shares);
8044
}
8045 8046

#ifdef CONFIG_CFS_BANDWIDTH
8047 8048
static DEFINE_MUTEX(cfs_constraints_mutex);

8049 8050 8051
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

8052 8053
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

8054 8055
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
8056
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8057
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

8078 8079 8080 8081 8082
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
8083 8084 8085 8086 8087
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

8088
	runtime_enabled = quota != RUNTIME_INF;
8089
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8090 8091 8092 8093 8094 8095
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
8096 8097 8098
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
8099

Paul Turner's avatar
Paul Turner committed
8100
	__refill_cfs_bandwidth_runtime(cfs_b);
8101 8102 8103
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
8104
		__start_cfs_bandwidth(cfs_b, true);
8105
	}
8106 8107
	raw_spin_unlock_irq(&cfs_b->lock);

8108
	for_each_online_cpu(i) {
8109
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8110
		struct rq *rq = cfs_rq->rq;
8111 8112

		raw_spin_lock_irq(&rq->lock);
8113
		cfs_rq->runtime_enabled = runtime_enabled;
8114
		cfs_rq->runtime_remaining = 0;
8115

8116
		if (cfs_rq->throttled)
8117
			unthrottle_cfs_rq(cfs_rq);
8118 8119
		raw_spin_unlock_irq(&rq->lock);
	}
8120 8121
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
8122 8123
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
8124
	put_online_cpus();
8125

8126
	return ret;
8127 8128 8129 8130 8131 8132
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

8133
	period = ktime_to_ns(tg->cfs_bandwidth.period);
8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

8146
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8147 8148
		return -1;

8149
	quota_us = tg->cfs_bandwidth.quota;
8150 8151 8152 8153 8154 8155 8156 8157 8158 8159
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8160
	quota = tg->cfs_bandwidth.quota;
8161 8162 8163 8164 8165 8166 8167 8168

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8169
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8170 8171 8172 8173 8174
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8175 8176
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8177
{
8178
	return tg_get_cfs_quota(css_tg(css));
8179 8180
}

8181 8182
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8183
{
8184
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8185 8186
}

8187 8188
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8189
{
8190
	return tg_get_cfs_period(css_tg(css));
8191 8192
}

8193 8194
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8195
{
8196
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8197 8198
}

8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8231
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8232 8233 8234 8235 8236
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8237
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8238 8239

		quota = normalize_cfs_quota(tg, d);
8240
		parent_quota = parent_b->hierarchical_quota;
8241 8242 8243 8244 8245 8246 8247 8248 8249 8250

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8251
	cfs_b->hierarchical_quota = quota;
8252 8253 8254 8255 8256 8257

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8258
	int ret;
8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8270 8271 8272 8273 8274
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8275
}
8276

8277
static int cpu_stats_show(struct seq_file *sf, void *v)
8278
{
8279
	struct task_group *tg = css_tg(seq_css(sf));
8280
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8281

8282 8283 8284
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8285 8286 8287

	return 0;
}
8288
#endif /* CONFIG_CFS_BANDWIDTH */
8289
#endif /* CONFIG_FAIR_GROUP_SCHED */
8290

8291
#ifdef CONFIG_RT_GROUP_SCHED
8292 8293
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
Peter Zijlstra's avatar
Peter Zijlstra committed
8294
{
8295
	return sched_group_set_rt_runtime(css_tg(css), val);
Peter Zijlstra's avatar
Peter Zijlstra committed
8296 8297
}

8298 8299
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
Peter Zijlstra's avatar
Peter Zijlstra committed
8300
{
8301
	return sched_group_rt_runtime(css_tg(css));
Peter Zijlstra's avatar
Peter Zijlstra committed
8302
}
8303

8304 8305
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8306
{
8307
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8308 8309
}

8310 8311
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8312
{
8313
	return sched_group_rt_period(css_tg(css));
8314
}
8315
#endif /* CONFIG_RT_GROUP_SCHED */
Peter Zijlstra's avatar
Peter Zijlstra committed
8316

8317
static struct cftype cpu_files[] = {
8318
#ifdef CONFIG_FAIR_GROUP_SCHED
8319 8320
	{
		.name = "shares",
8321 8322
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8323
	},
8324
#endif
8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8336 8337
	{
		.name = "stat",
8338
		.seq_show = cpu_stats_show,
8339
	},
8340
#endif
8341
#ifdef CONFIG_RT_GROUP_SCHED
Peter Zijlstra's avatar
Peter Zijlstra committed
8342
	{
Peter Zijlstra's avatar
Peter Zijlstra committed
8343
		.name = "rt_runtime_us",
8344 8345
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
Peter Zijlstra's avatar
Peter Zijlstra committed
8346
	},
8347 8348
	{
		.name = "rt_period_us",
8349 8350
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8351
	},
8352
#endif
8353
	{ }	/* terminate */
8354 8355
};

8356
struct cgroup_subsys cpu_cgrp_subsys = {
8357 8358
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8359 8360
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8361
	.fork		= cpu_cgroup_fork,
8362 8363
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8364
	.exit		= cpu_cgroup_exit,
8365
	.legacy_cftypes	= cpu_files,
8366 8367 8368
	.early_init	= 1,
};

8369
#endif	/* CONFIG_CGROUP_SCHED */
8370

8371 8372 8373 8374 8375
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}