memory.c 125 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 *  linux/mm/memory.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 */

/*
 * demand-loading started 01.12.91 - seems it is high on the list of
 * things wanted, and it should be easy to implement. - Linus
 */

/*
 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
 * pages started 02.12.91, seems to work. - Linus.
 *
 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
 * would have taken more than the 6M I have free, but it worked well as
 * far as I could see.
 *
 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
 */

/*
 * Real VM (paging to/from disk) started 18.12.91. Much more work and
 * thought has to go into this. Oh, well..
 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
 *		Found it. Everything seems to work now.
 * 20.12.91  -  Ok, making the swap-device changeable like the root.
 */

/*
 * 05.04.94  -  Multi-page memory management added for v1.1.
Tobin C Harding's avatar
Tobin C Harding committed
33
 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
Linus Torvalds's avatar
Linus Torvalds committed
34 35 36 37 38 39 40 41 42
 *
 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
 *		(Gerhard.Wichert@pdb.siemens.de)
 *
 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
 */

#include <linux/kernel_stat.h>
#include <linux/mm.h>
43
#include <linux/sched/mm.h>
44
#include <linux/sched/coredump.h>
45
#include <linux/sched/numa_balancing.h>
46
#include <linux/sched/task.h>
Linus Torvalds's avatar
Linus Torvalds committed
47 48 49 50 51
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
52
#include <linux/memremap.h>
Hugh Dickins's avatar
Hugh Dickins committed
53
#include <linux/ksm.h>
Linus Torvalds's avatar
Linus Torvalds committed
54
#include <linux/rmap.h>
55
#include <linux/export.h>
56
#include <linux/delayacct.h>
Linus Torvalds's avatar
Linus Torvalds committed
57
#include <linux/init.h>
58
#include <linux/pfn_t.h>
59
#include <linux/writeback.h>
60
#include <linux/memcontrol.h>
Andrea Arcangeli's avatar
Andrea Arcangeli committed
61
#include <linux/mmu_notifier.h>
62 63
#include <linux/swapops.h>
#include <linux/elf.h>
64
#include <linux/gfp.h>
65
#include <linux/migrate.h>
Andy Shevchenko's avatar
Andy Shevchenko committed
66
#include <linux/string.h>
67
#include <linux/dma-debug.h>
68
#include <linux/debugfs.h>
69
#include <linux/userfaultfd_k.h>
70
#include <linux/dax.h>
71
#include <linux/oom.h>
72
#include <linux/numa.h>
Linus Torvalds's avatar
Linus Torvalds committed
73

74
#include <asm/io.h>
75
#include <asm/mmu_context.h>
Linus Torvalds's avatar
Linus Torvalds committed
76
#include <asm/pgalloc.h>
77
#include <linux/uaccess.h>
Linus Torvalds's avatar
Linus Torvalds committed
78 79 80 81
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>

82 83
#include "internal.h"

84
#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
85
#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 87
#endif

88
#ifndef CONFIG_NEED_MULTIPLE_NODES
Linus Torvalds's avatar
Linus Torvalds committed
89 90 91
/* use the per-pgdat data instead for discontigmem - mbligh */
unsigned long max_mapnr;
EXPORT_SYMBOL(max_mapnr);
Tobin C Harding's avatar
Tobin C Harding committed
92 93

struct page *mem_map;
Linus Torvalds's avatar
Linus Torvalds committed
94 95 96 97 98 99 100 101 102 103
EXPORT_SYMBOL(mem_map);
#endif

/*
 * A number of key systems in x86 including ioremap() rely on the assumption
 * that high_memory defines the upper bound on direct map memory, then end
 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 * and ZONE_HIGHMEM.
 */
Tobin C Harding's avatar
Tobin C Harding committed
104
void *high_memory;
Linus Torvalds's avatar
Linus Torvalds committed
105 106
EXPORT_SYMBOL(high_memory);

107 108 109 110 111 112 113 114 115 116 117 118
/*
 * Randomize the address space (stacks, mmaps, brk, etc.).
 *
 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 *   as ancient (libc5 based) binaries can segfault. )
 */
int randomize_va_space __read_mostly =
#ifdef CONFIG_COMPAT_BRK
					1;
#else
					2;
#endif
119 120 121 122

static int __init disable_randmaps(char *s)
{
	randomize_va_space = 0;
123
	return 1;
124 125 126
}
__setup("norandmaps", disable_randmaps);

127
unsigned long zero_pfn __read_mostly;
128 129
EXPORT_SYMBOL(zero_pfn);

Tobin C Harding's avatar
Tobin C Harding committed
130 131
unsigned long highest_memmap_pfn __read_mostly;

Hugh Dickins's avatar
Hugh Dickins committed
132 133 134 135 136 137 138 139 140
/*
 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 */
static int __init init_zero_pfn(void)
{
	zero_pfn = page_to_pfn(ZERO_PAGE(0));
	return 0;
}
core_initcall(init_zero_pfn);
141

KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
142

143 144
#if defined(SPLIT_RSS_COUNTING)

145
void sync_mm_rss(struct mm_struct *mm)
146 147 148 149
{
	int i;

	for (i = 0; i < NR_MM_COUNTERS; i++) {
150 151 152
		if (current->rss_stat.count[i]) {
			add_mm_counter(mm, i, current->rss_stat.count[i]);
			current->rss_stat.count[i] = 0;
153 154
		}
	}
155
	current->rss_stat.events = 0;
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
}

static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
{
	struct task_struct *task = current;

	if (likely(task->mm == mm))
		task->rss_stat.count[member] += val;
	else
		add_mm_counter(mm, member, val);
}
#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)

/* sync counter once per 64 page faults */
#define TASK_RSS_EVENTS_THRESH	(64)
static void check_sync_rss_stat(struct task_struct *task)
{
	if (unlikely(task != current))
		return;
	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
177
		sync_mm_rss(task->mm);
178
}
179
#else /* SPLIT_RSS_COUNTING */
180 181 182 183 184 185 186 187

#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)

static void check_sync_rss_stat(struct task_struct *task)
{
}

188 189
#endif /* SPLIT_RSS_COUNTING */

Linus Torvalds's avatar
Linus Torvalds committed
190 191 192 193
/*
 * Note: this doesn't free the actual pages themselves. That
 * has been handled earlier when unmapping all the memory regions.
 */
194 195
static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
			   unsigned long addr)
Linus Torvalds's avatar
Linus Torvalds committed
196
{
197
	pgtable_t token = pmd_pgtable(*pmd);
198
	pmd_clear(pmd);
199
	pte_free_tlb(tlb, token, addr);
200
	mm_dec_nr_ptes(tlb->mm);
Linus Torvalds's avatar
Linus Torvalds committed
201 202
}

203 204 205
static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				unsigned long addr, unsigned long end,
				unsigned long floor, unsigned long ceiling)
Linus Torvalds's avatar
Linus Torvalds committed
206 207 208
{
	pmd_t *pmd;
	unsigned long next;
209
	unsigned long start;
Linus Torvalds's avatar
Linus Torvalds committed
210

211
	start = addr;
Linus Torvalds's avatar
Linus Torvalds committed
212 213 214 215 216
	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(pmd))
			continue;
217
		free_pte_range(tlb, pmd, addr);
Linus Torvalds's avatar
Linus Torvalds committed
218 219
	} while (pmd++, addr = next, addr != end);

220 221 222 223 224 225 226
	start &= PUD_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PUD_MASK;
		if (!ceiling)
			return;
Linus Torvalds's avatar
Linus Torvalds committed
227
	}
228 229 230 231 232
	if (end - 1 > ceiling - 1)
		return;

	pmd = pmd_offset(pud, start);
	pud_clear(pud);
233
	pmd_free_tlb(tlb, pmd, start);
234
	mm_dec_nr_pmds(tlb->mm);
Linus Torvalds's avatar
Linus Torvalds committed
235 236
}

237
static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
238 239
				unsigned long addr, unsigned long end,
				unsigned long floor, unsigned long ceiling)
Linus Torvalds's avatar
Linus Torvalds committed
240 241 242
{
	pud_t *pud;
	unsigned long next;
243
	unsigned long start;
Linus Torvalds's avatar
Linus Torvalds committed
244

245
	start = addr;
246
	pud = pud_offset(p4d, addr);
Linus Torvalds's avatar
Linus Torvalds committed
247 248 249 250
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(pud))
			continue;
251
		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
Linus Torvalds's avatar
Linus Torvalds committed
252 253
	} while (pud++, addr = next, addr != end);

254 255 256 257 258 259 260 261 262 263 264 265 266 267
	start &= P4D_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= P4D_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pud = pud_offset(p4d, start);
	p4d_clear(p4d);
	pud_free_tlb(tlb, pud, start);
268
	mm_dec_nr_puds(tlb->mm);
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
}

static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
				unsigned long addr, unsigned long end,
				unsigned long floor, unsigned long ceiling)
{
	p4d_t *p4d;
	unsigned long next;
	unsigned long start;

	start = addr;
	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
		if (p4d_none_or_clear_bad(p4d))
			continue;
		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
	} while (p4d++, addr = next, addr != end);

288 289 290 291 292 293 294
	start &= PGDIR_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PGDIR_MASK;
		if (!ceiling)
			return;
Linus Torvalds's avatar
Linus Torvalds committed
295
	}
296 297 298
	if (end - 1 > ceiling - 1)
		return;

299
	p4d = p4d_offset(pgd, start);
300
	pgd_clear(pgd);
301
	p4d_free_tlb(tlb, p4d, start);
Linus Torvalds's avatar
Linus Torvalds committed
302 303 304
}

/*
305
 * This function frees user-level page tables of a process.
Linus Torvalds's avatar
Linus Torvalds committed
306
 */
307
void free_pgd_range(struct mmu_gather *tlb,
308 309
			unsigned long addr, unsigned long end,
			unsigned long floor, unsigned long ceiling)
Linus Torvalds's avatar
Linus Torvalds committed
310 311 312
{
	pgd_t *pgd;
	unsigned long next;
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

	/*
	 * The next few lines have given us lots of grief...
	 *
	 * Why are we testing PMD* at this top level?  Because often
	 * there will be no work to do at all, and we'd prefer not to
	 * go all the way down to the bottom just to discover that.
	 *
	 * Why all these "- 1"s?  Because 0 represents both the bottom
	 * of the address space and the top of it (using -1 for the
	 * top wouldn't help much: the masks would do the wrong thing).
	 * The rule is that addr 0 and floor 0 refer to the bottom of
	 * the address space, but end 0 and ceiling 0 refer to the top
	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
	 * that end 0 case should be mythical).
	 *
	 * Wherever addr is brought up or ceiling brought down, we must
	 * be careful to reject "the opposite 0" before it confuses the
	 * subsequent tests.  But what about where end is brought down
	 * by PMD_SIZE below? no, end can't go down to 0 there.
	 *
	 * Whereas we round start (addr) and ceiling down, by different
	 * masks at different levels, in order to test whether a table
	 * now has no other vmas using it, so can be freed, we don't
	 * bother to round floor or end up - the tests don't need that.
	 */
Linus Torvalds's avatar
Linus Torvalds committed
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
	addr &= PMD_MASK;
	if (addr < floor) {
		addr += PMD_SIZE;
		if (!addr)
			return;
	}
	if (ceiling) {
		ceiling &= PMD_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		end -= PMD_SIZE;
	if (addr > end - 1)
		return;
355 356 357 358
	/*
	 * We add page table cache pages with PAGE_SIZE,
	 * (see pte_free_tlb()), flush the tlb if we need
	 */
359
	tlb_change_page_size(tlb, PAGE_SIZE);
360
	pgd = pgd_offset(tlb->mm, addr);
Linus Torvalds's avatar
Linus Torvalds committed
361 362 363 364
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
365
		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
Linus Torvalds's avatar
Linus Torvalds committed
366
	} while (pgd++, addr = next, addr != end);
367 368
}

369
void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
370
		unsigned long floor, unsigned long ceiling)
371 372 373 374 375
{
	while (vma) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long addr = vma->vm_start;

376
		/*
npiggin@suse.de's avatar
npiggin@suse.de committed
377 378
		 * Hide vma from rmap and truncate_pagecache before freeing
		 * pgtables
379
		 */
380
		unlink_anon_vmas(vma);
381 382
		unlink_file_vma(vma);

383
		if (is_vm_hugetlb_page(vma)) {
384
			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
Tobin C Harding's avatar
Tobin C Harding committed
385
				floor, next ? next->vm_start : ceiling);
386 387 388 389 390
		} else {
			/*
			 * Optimization: gather nearby vmas into one call down
			 */
			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
391
			       && !is_vm_hugetlb_page(next)) {
392 393
				vma = next;
				next = vma->vm_next;
394
				unlink_anon_vmas(vma);
395
				unlink_file_vma(vma);
396 397
			}
			free_pgd_range(tlb, addr, vma->vm_end,
Tobin C Harding's avatar
Tobin C Harding committed
398
				floor, next ? next->vm_start : ceiling);
399
		}
400 401
		vma = next;
	}
Linus Torvalds's avatar
Linus Torvalds committed
402 403
}

404
int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
Linus Torvalds's avatar
Linus Torvalds committed
405
{
406
	spinlock_t *ptl;
407
	pgtable_t new = pte_alloc_one(mm);
408 409 410
	if (!new)
		return -ENOMEM;

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
	/*
	 * Ensure all pte setup (eg. pte page lock and page clearing) are
	 * visible before the pte is made visible to other CPUs by being
	 * put into page tables.
	 *
	 * The other side of the story is the pointer chasing in the page
	 * table walking code (when walking the page table without locking;
	 * ie. most of the time). Fortunately, these data accesses consist
	 * of a chain of data-dependent loads, meaning most CPUs (alpha
	 * being the notable exception) will already guarantee loads are
	 * seen in-order. See the alpha page table accessors for the
	 * smp_read_barrier_depends() barriers in page table walking code.
	 */
	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */

426
	ptl = pmd_lock(mm, pmd);
427
	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
428
		mm_inc_nr_ptes(mm);
Linus Torvalds's avatar
Linus Torvalds committed
429
		pmd_populate(mm, pmd, new);
430
		new = NULL;
431
	}
432
	spin_unlock(ptl);
433 434
	if (new)
		pte_free(mm, new);
435
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
436 437
}

438
int __pte_alloc_kernel(pmd_t *pmd)
Linus Torvalds's avatar
Linus Torvalds committed
439
{
440
	pte_t *new = pte_alloc_one_kernel(&init_mm);
441 442 443
	if (!new)
		return -ENOMEM;

444 445
	smp_wmb(); /* See comment in __pte_alloc */

446
	spin_lock(&init_mm.page_table_lock);
447
	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
448
		pmd_populate_kernel(&init_mm, pmd, new);
449
		new = NULL;
450
	}
451
	spin_unlock(&init_mm.page_table_lock);
452 453
	if (new)
		pte_free_kernel(&init_mm, new);
454
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
455 456
}

KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
457 458 459 460 461 462
static inline void init_rss_vec(int *rss)
{
	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
}

static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
463
{
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
464 465
	int i;

466
	if (current->mm == mm)
467
		sync_mm_rss(mm);
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
468 469 470
	for (i = 0; i < NR_MM_COUNTERS; i++)
		if (rss[i])
			add_mm_counter(mm, i, rss[i]);
471 472
}

473
/*
474 475 476
 * This function is called to print an error when a bad pte
 * is found. For example, we might have a PFN-mapped pte in
 * a region that doesn't allow it.
477 478 479
 *
 * The calling function must still handle the error.
 */
480 481
static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
			  pte_t pte, struct page *page)
482
{
483
	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
484 485
	p4d_t *p4d = p4d_offset(pgd, addr);
	pud_t *pud = pud_offset(p4d, addr);
486 487 488
	pmd_t *pmd = pmd_offset(pud, addr);
	struct address_space *mapping;
	pgoff_t index;
489 490 491 492 493 494 495 496 497 498 499 500 501 502
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			return;
		}
		if (nr_unshown) {
503 504
			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
				 nr_unshown);
505 506 507 508 509 510
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;
511 512 513 514

	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
	index = linear_page_index(vma, addr);

515 516 517
	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
		 current->comm,
		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
518
	if (page)
519
		dump_page(page, "bad pte");
520 521
	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
522
	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
523 524 525 526
		 vma->vm_file,
		 vma->vm_ops ? vma->vm_ops->fault : NULL,
		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
		 mapping ? mapping->a_ops->readpage : NULL);
527
	dump_stack();
528
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
529 530
}

531
/*
532
 * vm_normal_page -- This function gets the "struct page" associated with a pte.
533
 *
534 535 536
 * "Special" mappings do not wish to be associated with a "struct page" (either
 * it doesn't exist, or it exists but they don't want to touch it). In this
 * case, NULL is returned here. "Normal" mappings do have a struct page.
Jared Hulbert's avatar
Jared Hulbert committed
537
 *
538 539 540 541 542 543 544 545
 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 * pte bit, in which case this function is trivial. Secondly, an architecture
 * may not have a spare pte bit, which requires a more complicated scheme,
 * described below.
 *
 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 * special mapping (even if there are underlying and valid "struct pages").
 * COWed pages of a VM_PFNMAP are always normal.
546
 *
Jared Hulbert's avatar
Jared Hulbert committed
547 548
 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
549 550
 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 * mapping will always honor the rule
551 552 553
 *
 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 *
554 555 556 557 558 559
 * And for normal mappings this is false.
 *
 * This restricts such mappings to be a linear translation from virtual address
 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 * as the vma is not a COW mapping; in that case, we know that all ptes are
 * special (because none can have been COWed).
Jared Hulbert's avatar
Jared Hulbert committed
560 561
 *
 *
562
 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
Jared Hulbert's avatar
Jared Hulbert committed
563 564 565 566 567 568 569 570 571
 *
 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 * page" backing, however the difference is that _all_ pages with a struct
 * page (that is, those where pfn_valid is true) are refcounted and considered
 * normal pages by the VM. The disadvantage is that pages are refcounted
 * (which can be slower and simply not an option for some PFNMAP users). The
 * advantage is that we don't have to follow the strict linearity rule of
 * PFNMAP mappings in order to support COWable mappings.
 *
572
 */
573 574
struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
			     pte_t pte, bool with_public_device)
575
{
576
	unsigned long pfn = pte_pfn(pte);
577

578
	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
579
		if (likely(!pte_special(pte)))
580
			goto check_pfn;
581 582
		if (vma->vm_ops && vma->vm_ops->find_special_page)
			return vma->vm_ops->find_special_page(vma, addr);
Hugh Dickins's avatar
Hugh Dickins committed
583 584
		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
			return NULL;
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
		if (is_zero_pfn(pfn))
			return NULL;

		/*
		 * Device public pages are special pages (they are ZONE_DEVICE
		 * pages but different from persistent memory). They behave
		 * allmost like normal pages. The difference is that they are
		 * not on the lru and thus should never be involve with any-
		 * thing that involve lru manipulation (mlock, numa balancing,
		 * ...).
		 *
		 * This is why we still want to return NULL for such page from
		 * vm_normal_page() so that we do not have to special case all
		 * call site of vm_normal_page().
		 */
600
		if (likely(pfn <= highest_memmap_pfn)) {
601 602 603 604 605 606 607 608
			struct page *page = pfn_to_page(pfn);

			if (is_device_public_page(page)) {
				if (with_public_device)
					return page;
				return NULL;
			}
		}
609 610 611 612

		if (pte_devmap(pte))
			return NULL;

613
		print_bad_pte(vma, addr, pte, NULL);
614 615 616
		return NULL;
	}

617
	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
618

Jared Hulbert's avatar
Jared Hulbert committed
619 620 621 622 623 624
	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
		if (vma->vm_flags & VM_MIXEDMAP) {
			if (!pfn_valid(pfn))
				return NULL;
			goto out;
		} else {
625 626
			unsigned long off;
			off = (addr - vma->vm_start) >> PAGE_SHIFT;
Jared Hulbert's avatar
Jared Hulbert committed
627 628 629 630 631
			if (pfn == vma->vm_pgoff + off)
				return NULL;
			if (!is_cow_mapping(vma->vm_flags))
				return NULL;
		}
632 633
	}

634 635
	if (is_zero_pfn(pfn))
		return NULL;
636

637 638 639 640 641
check_pfn:
	if (unlikely(pfn > highest_memmap_pfn)) {
		print_bad_pte(vma, addr, pte, NULL);
		return NULL;
	}
642 643

	/*
644 645
	 * NOTE! We still have PageReserved() pages in the page tables.
	 * eg. VDSO mappings can cause them to exist.
646
	 */
Jared Hulbert's avatar
Jared Hulbert committed
647
out:
648
	return pfn_to_page(pfn);
649 650
}

651 652 653 654 655 656 657 658 659
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
				pmd_t pmd)
{
	unsigned long pfn = pmd_pfn(pmd);

	/*
	 * There is no pmd_special() but there may be special pmds, e.g.
	 * in a direct-access (dax) mapping, so let's just replicate the
660
	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
	 */
	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
		if (vma->vm_flags & VM_MIXEDMAP) {
			if (!pfn_valid(pfn))
				return NULL;
			goto out;
		} else {
			unsigned long off;
			off = (addr - vma->vm_start) >> PAGE_SHIFT;
			if (pfn == vma->vm_pgoff + off)
				return NULL;
			if (!is_cow_mapping(vma->vm_flags))
				return NULL;
		}
	}

677 678
	if (pmd_devmap(pmd))
		return NULL;
679 680 681 682 683 684 685 686 687 688 689 690 691 692
	if (is_zero_pfn(pfn))
		return NULL;
	if (unlikely(pfn > highest_memmap_pfn))
		return NULL;

	/*
	 * NOTE! We still have PageReserved() pages in the page tables.
	 * eg. VDSO mappings can cause them to exist.
	 */
out:
	return pfn_to_page(pfn);
}
#endif

Linus Torvalds's avatar
Linus Torvalds committed
693 694 695 696 697 698
/*
 * copy one vm_area from one task to the other. Assumes the page tables
 * already present in the new task to be cleared in the whole range
 * covered by this vma.
 */

699
static inline unsigned long
Linus Torvalds's avatar
Linus Torvalds committed
700
copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
701
		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
702
		unsigned long addr, int *rss)
Linus Torvalds's avatar
Linus Torvalds committed
703
{
704
	unsigned long vm_flags = vma->vm_flags;
Linus Torvalds's avatar
Linus Torvalds committed
705 706 707 708 709
	pte_t pte = *src_pte;
	struct page *page;

	/* pte contains position in swap or file, so copy. */
	if (unlikely(!pte_present(pte))) {
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
		swp_entry_t entry = pte_to_swp_entry(pte);

		if (likely(!non_swap_entry(entry))) {
			if (swap_duplicate(entry) < 0)
				return entry.val;

			/* make sure dst_mm is on swapoff's mmlist. */
			if (unlikely(list_empty(&dst_mm->mmlist))) {
				spin_lock(&mmlist_lock);
				if (list_empty(&dst_mm->mmlist))
					list_add(&dst_mm->mmlist,
							&src_mm->mmlist);
				spin_unlock(&mmlist_lock);
			}
			rss[MM_SWAPENTS]++;
		} else if (is_migration_entry(entry)) {
			page = migration_entry_to_page(entry);

728
			rss[mm_counter(page)]++;
729 730 731 732 733 734 735 736 737 738 739 740

			if (is_write_migration_entry(entry) &&
					is_cow_mapping(vm_flags)) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&entry);
				pte = swp_entry_to_pte(entry);
				if (pte_swp_soft_dirty(*src_pte))
					pte = pte_swp_mksoft_dirty(pte);
				set_pte_at(src_mm, addr, src_pte, pte);
741
			}
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
		} else if (is_device_private_entry(entry)) {
			page = device_private_entry_to_page(entry);

			/*
			 * Update rss count even for unaddressable pages, as
			 * they should treated just like normal pages in this
			 * respect.
			 *
			 * We will likely want to have some new rss counters
			 * for unaddressable pages, at some point. But for now
			 * keep things as they are.
			 */
			get_page(page);
			rss[mm_counter(page)]++;
			page_dup_rmap(page, false);

			/*
			 * We do not preserve soft-dirty information, because so
			 * far, checkpoint/restore is the only feature that
			 * requires that. And checkpoint/restore does not work
			 * when a device driver is involved (you cannot easily
			 * save and restore device driver state).
			 */
			if (is_write_device_private_entry(entry) &&
			    is_cow_mapping(vm_flags)) {
				make_device_private_entry_read(&entry);
				pte = swp_entry_to_pte(entry);
				set_pte_at(src_mm, addr, src_pte, pte);
			}
Linus Torvalds's avatar
Linus Torvalds committed
771
		}
772
		goto out_set_pte;
Linus Torvalds's avatar
Linus Torvalds committed
773 774 775 776 777 778
	}

	/*
	 * If it's a COW mapping, write protect it both
	 * in the parent and the child
	 */
779
	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
Linus Torvalds's avatar
Linus Torvalds committed
780
		ptep_set_wrprotect(src_mm, addr, src_pte);
781
		pte = pte_wrprotect(pte);
Linus Torvalds's avatar
Linus Torvalds committed
782 783 784 785 786 787 788 789 790
	}

	/*
	 * If it's a shared mapping, mark it clean in
	 * the child
	 */
	if (vm_flags & VM_SHARED)
		pte = pte_mkclean(pte);
	pte = pte_mkold(pte);
791 792 793 794

	page = vm_normal_page(vma, addr, pte);
	if (page) {
		get_page(page);
795
		page_dup_rmap(page, false);
796
		rss[mm_counter(page)]++;
797 798 799 800 801 802 803 804 805 806 807 808 809
	} else if (pte_devmap(pte)) {
		page = pte_page(pte);

		/*
		 * Cache coherent device memory behave like regular page and
		 * not like persistent memory page. For more informations see
		 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
		 */
		if (is_device_public_page(page)) {
			get_page(page);
			page_dup_rmap(page, false);
			rss[mm_counter(page)]++;
		}
810
	}
811 812 813

out_set_pte:
	set_pte_at(dst_mm, addr, dst_pte, pte);
814
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
815 816
}

817
static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
818 819
		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
		   unsigned long addr, unsigned long end)
Linus Torvalds's avatar
Linus Torvalds committed
820
{
821
	pte_t *orig_src_pte, *orig_dst_pte;
Linus Torvalds's avatar
Linus Torvalds committed
822
	pte_t *src_pte, *dst_pte;
823
	spinlock_t *src_ptl, *dst_ptl;
824
	int progress = 0;
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
825
	int rss[NR_MM_COUNTERS];
826
	swp_entry_t entry = (swp_entry_t){0};
Linus Torvalds's avatar
Linus Torvalds committed
827 828

again:
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
829 830
	init_rss_vec(rss);

831
	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
Linus Torvalds's avatar
Linus Torvalds committed
832 833
	if (!dst_pte)
		return -ENOMEM;
834
	src_pte = pte_offset_map(src_pmd, addr);
835
	src_ptl = pte_lockptr(src_mm, src_pmd);
Ingo Molnar's avatar
Ingo Molnar committed
836
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
837 838
	orig_src_pte = src_pte;
	orig_dst_pte = dst_pte;
839
	arch_enter_lazy_mmu_mode();
Linus Torvalds's avatar
Linus Torvalds committed
840 841 842 843 844 845

	do {
		/*
		 * We are holding two locks at this point - either of them
		 * could generate latencies in another task on another CPU.
		 */
846 847 848
		if (progress >= 32) {
			progress = 0;
			if (need_resched() ||
Nick Piggin's avatar
Nick Piggin committed
849
			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
850 851
				break;
		}
Linus Torvalds's avatar
Linus Torvalds committed
852 853 854 855
		if (pte_none(*src_pte)) {
			progress++;
			continue;
		}
856 857 858 859
		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
							vma, addr, rss);
		if (entry.val)
			break;
Linus Torvalds's avatar
Linus Torvalds committed
860 861 862
		progress += 8;
	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);

863
	arch_leave_lazy_mmu_mode();
864
	spin_unlock(src_ptl);
865
	pte_unmap(orig_src_pte);
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
866
	add_mm_rss_vec(dst_mm, rss);
867
	pte_unmap_unlock(orig_dst_pte, dst_ptl);
868
	cond_resched();
869 870 871 872 873 874

	if (entry.val) {
		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
			return -ENOMEM;
		progress = 0;
	}
Linus Torvalds's avatar
Linus Torvalds committed
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
	if (addr != end)
		goto again;
	return 0;
}

static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
		unsigned long addr, unsigned long end)
{
	pmd_t *src_pmd, *dst_pmd;
	unsigned long next;

	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
	if (!dst_pmd)
		return -ENOMEM;
	src_pmd = pmd_offset(src_pud, addr);
	do {
		next = pmd_addr_end(addr, end);
893 894
		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
			|| pmd_devmap(*src_pmd)) {
895
			int err;
896
			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
897 898 899 900 901 902 903 904
			err = copy_huge_pmd(dst_mm, src_mm,
					    dst_pmd, src_pmd, addr, vma);
			if (err == -ENOMEM)
				return -ENOMEM;
			if (!err)
				continue;
			/* fall through */
		}
Linus Torvalds's avatar
Linus Torvalds committed
905 906 907 908 909 910 911 912 913 914
		if (pmd_none_or_clear_bad(src_pmd))
			continue;
		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
	return 0;
}

static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
915
		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
Linus Torvalds's avatar
Linus Torvalds committed
916 917 918 919 920
		unsigned long addr, unsigned long end)
{
	pud_t *src_pud, *dst_pud;
	unsigned long next;

921
	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
Linus Torvalds's avatar
Linus Torvalds committed
922 923
	if (!dst_pud)
		return -ENOMEM;
924
	src_pud = pud_offset(src_p4d, addr);
Linus Torvalds's avatar
Linus Torvalds committed
925 926
	do {
		next = pud_addr_end(addr, end);
927 928 929 930 931 932 933 934 935 936 937 938
		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
			int err;

			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
			err = copy_huge_pud(dst_mm, src_mm,
					    dst_pud, src_pud, addr, vma);
			if (err == -ENOMEM)
				return -ENOMEM;
			if (!err)
				continue;
			/* fall through */
		}
Linus Torvalds's avatar
Linus Torvalds committed
939 940 941 942 943 944 945 946 947
		if (pud_none_or_clear_bad(src_pud))
			continue;
		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_pud++, src_pud++, addr = next, addr != end);
	return 0;
}

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
		unsigned long addr, unsigned long end)
{
	p4d_t *src_p4d, *dst_p4d;
	unsigned long next;

	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
	if (!dst_p4d)
		return -ENOMEM;
	src_p4d = p4d_offset(src_pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
		if (p4d_none_or_clear_bad(src_p4d))
			continue;
		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
	return 0;
}

Linus Torvalds's avatar
Linus Torvalds committed
970 971 972 973 974 975 976
int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		struct vm_area_struct *vma)
{
	pgd_t *src_pgd, *dst_pgd;
	unsigned long next;
	unsigned long addr = vma->vm_start;
	unsigned long end = vma->vm_end;
977
	struct mmu_notifier_range range;
978
	bool is_cow;
Andrea Arcangeli's avatar
Andrea Arcangeli committed
979
	int ret;
Linus Torvalds's avatar
Linus Torvalds committed
980

981 982 983 984 985 986
	/*
	 * Don't copy ptes where a page fault will fill them correctly.
	 * Fork becomes much lighter when there are big shared or private
	 * readonly mappings. The tradeoff is that copy_page_range is more
	 * efficient than faulting.
	 */
987 988 989
	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
			!vma->anon_vma)
		return 0;
990

Linus Torvalds's avatar
Linus Torvalds committed
991 992 993
	if (is_vm_hugetlb_page(vma))
		return copy_hugetlb_page_range(dst_mm, src_mm, vma);

994
	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
995 996 997 998
		/*
		 * We do not free on error cases below as remove_vma
		 * gets called on error from higher level routine
		 */
999
		ret = track_pfn_copy(vma);
1000 1001 1002 1003
		if (ret)
			return ret;
	}

Andrea Arcangeli's avatar
Andrea Arcangeli committed
1004 1005 1006 1007 1008 1009
	/*
	 * We need to invalidate the secondary MMU mappings only when
	 * there could be a permission downgrade on the ptes of the
	 * parent mm. And a permission downgrade will only happen if
	 * is_cow_mapping() returns true.
	 */
1010
	is_cow = is_cow_mapping(vma->vm_flags);
1011 1012

	if (is_cow) {
1013 1014
		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
					0, vma, src_mm, addr, end);
1015 1016
		mmu_notifier_invalidate_range_start(&range);
	}
Andrea Arcangeli's avatar
Andrea Arcangeli committed
1017 1018

	ret = 0;
Linus Torvalds's avatar
Linus Torvalds committed
1019 1020 1021 1022 1023 1024
	dst_pgd = pgd_offset(dst_mm, addr);
	src_pgd = pgd_offset(src_mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(src_pgd))
			continue;
1025
		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
Andrea Arcangeli's avatar
Andrea Arcangeli committed
1026 1027 1028 1029
					    vma, addr, next))) {
			ret = -ENOMEM;
			break;
		}
Linus Torvalds's avatar
Linus Torvalds committed
1030
	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
Andrea Arcangeli's avatar
Andrea Arcangeli committed
1031

1032
	if (is_cow)
1033
		mmu_notifier_invalidate_range_end(&range);
Andrea Arcangeli's avatar
Andrea Arcangeli committed
1034
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
1035 1036
}

1037
static unsigned long zap_pte_range(struct mmu_gather *tlb,
1038
				struct vm_area_struct *vma, pmd_t *pmd,
Linus Torvalds's avatar
Linus Torvalds committed
1039
				unsigned long addr, unsigned long end,
1040
				struct zap_details *details)
Linus Torvalds's avatar
Linus Torvalds committed
1041
{
1042
	struct mm_struct *mm = tlb->mm;
Peter Zijlstra's avatar
Peter Zijlstra committed
1043
	int force_flush = 0;
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
1044
	int rss[NR_MM_COUNTERS];
1045
	spinlock_t *ptl;
1046
	pte_t *start_pte;
1047
	pte_t *pte;
1048
	swp_entry_t entry;
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
1049

1050
	tlb_change_page_size(tlb, PAGE_SIZE);
Peter Zijlstra's avatar
Peter Zijlstra committed
1051
again:
1052
	init_rss_vec(rss);
1053 1054
	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
	pte = start_pte;
1055
	flush_tlb_batched_pending(mm);
1056
	arch_enter_lazy_mmu_mode();
Linus Torvalds's avatar
Linus Torvalds committed
1057 1058
	do {
		pte_t ptent = *pte;
Tobin C Harding's avatar
Tobin C Harding committed
1059
		if (pte_none(ptent))
Linus Torvalds's avatar
Linus Torvalds committed
1060
			continue;
1061

Linus Torvalds's avatar
Linus Torvalds committed
1062
		if (pte_present(ptent)) {
1063
			struct page *page;
1064

1065
			page = _vm_normal_page(vma, addr, ptent, true);
Linus Torvalds's avatar
Linus Torvalds committed
1066 1067 1068 1069 1070 1071 1072
			if (unlikely(details) && page) {
				/*
				 * unmap_shared_mapping_pages() wants to
				 * invalidate cache without truncating:
				 * unmap shared but keep private pages.
				 */
				if (details->check_mapping &&
1073
				    details->check_mapping != page_rmapping(page))
Linus Torvalds's avatar
Linus Torvalds committed
1074 1075
					continue;
			}
1076
			ptent = ptep_get_and_clear_full(mm, addr, pte,
1077
							tlb->fullmm);
Linus Torvalds's avatar
Linus Torvalds committed
1078 1079 1080
			tlb_remove_tlb_entry(tlb, pte, addr);
			if (unlikely(!page))
				continue;
1081 1082

			if (!PageAnon(page)) {
1083 1084
				if (pte_dirty(ptent)) {
					force_flush = 1;
1085
					set_page_dirty(page);
1086
				}
1087
				if (pte_young(ptent) &&
1088
				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1089
					mark_page_accessed(page);
1090
			}
1091
			rss[mm_counter(page)]--;
1092
			page_remove_rmap(page, false);
1093 1094
			if (unlikely(page_mapcount(page) < 0))
				print_bad_pte(vma, addr, ptent, page);
1095
			if (unlikely(__tlb_remove_page(tlb, page))) {
1096
				force_flush = 1;
1097
				addr += PAGE_SIZE;
Peter Zijlstra's avatar
Peter Zijlstra committed
1098
				break;
1099
			}
Linus Torvalds's avatar
Linus Torvalds committed
1100 1101
			continue;
		}
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124

		entry = pte_to_swp_entry(ptent);
		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
			struct page *page = device_private_entry_to_page(entry);

			if (unlikely(details && details->check_mapping)) {
				/*
				 * unmap_shared_mapping_pages() wants to
				 * invalidate cache without truncating:
				 * unmap shared but keep private pages.
				 */
				if (details->check_mapping !=
				    page_rmapping(page))
					continue;
			}

			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
			rss[mm_counter(page)]--;
			page_remove_rmap(page, false);
			put_page(page);
			continue;
		}

1125 1126
		/* If details->check_mapping, we leave swap entries. */
		if (unlikely(details))
Linus Torvalds's avatar
Linus Torvalds committed
1127
			continue;
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
1128

1129 1130 1131 1132 1133
		entry = pte_to_swp_entry(ptent);
		if (!non_swap_entry(entry))
			rss[MM_SWAPENTS]--;
		else if (is_migration_entry(entry)) {
			struct page *page;
1134

1135
			page = migration_entry_to_page(entry);
1136
			rss[mm_counter(page)]--;
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
1137
		}
1138 1139
		if (unlikely(!free_swap_and_cache(entry)))
			print_bad_pte(vma, addr, ptent, NULL);
1140
		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1141
	} while (pte++, addr += PAGE_SIZE, addr != end);
1142

KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
1143
	add_mm_rss_vec(mm, rss);
1144
	arch_leave_lazy_mmu_mode();
1145

1146
	/* Do the actual TLB flush before dropping ptl */
1147
	if (force_flush)
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
		tlb_flush_mmu_tlbonly(tlb);
	pte_unmap_unlock(start_pte, ptl);

	/*
	 * If we forced a TLB flush (either due to running out of
	 * batch buffers or because we needed to flush dirty TLB
	 * entries before releasing the ptl), free the batched
	 * memory too. Restart if we didn't do everything.
	 */
	if (force_flush) {
		force_flush = 0;
1159
		tlb_flush_mmu(tlb);
1160
		if (addr != end)
Peter Zijlstra's avatar
Peter Zijlstra committed
1161 1162 1163
			goto again;
	}

1164
	return addr;
Linus Torvalds's avatar
Linus Torvalds committed
1165 1166
}

1167
static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1168
				struct vm_area_struct *vma, pud_t *pud,
Linus Torvalds's avatar
Linus Torvalds committed
1169
				unsigned long addr, unsigned long end,
1170
				struct zap_details *details)
Linus Torvalds's avatar
Linus Torvalds committed
1171 1172 1173 1174 1175 1176 1177
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
1178
		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1179
			if (next - addr != HPAGE_PMD_SIZE)
1180
				__split_huge_pmd(vma, pmd, addr, false, NULL);
1181
			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1182
				goto next;
1183 1184
			/* fall through */
		}
1185 1186 1187 1188 1189 1190 1191 1192 1193
		/*
		 * Here there can be other concurrent MADV_DONTNEED or
		 * trans huge page faults running, and if the pmd is
		 * none or trans huge it can change under us. This is
		 * because MADV_DONTNEED holds the mmap_sem in read
		 * mode.
		 */
		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
			goto next;
1194
		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1195
next:
1196 1197
		cond_resched();
	} while (pmd++, addr = next, addr != end);
1198 1199

	return addr;
Linus Torvalds's avatar
Linus Torvalds committed
1200 1201
}

1202
static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1203
				struct vm_area_struct *vma, p4d_t *p4d,
Linus Torvalds's avatar
Linus Torvalds committed
1204
				unsigned long addr, unsigned long end,
1205
				struct zap_details *details)
Linus Torvalds's avatar
Linus Torvalds committed
1206 1207 1208 1209
{
	pud_t *pud;
	unsigned long next;

1210
	pud = pud_offset(p4d, addr);
Linus Torvalds's avatar
Linus Torvalds committed
1211 1212
	do {
		next = pud_addr_end(addr, end);
1213 1214 1215 1216 1217 1218 1219 1220
		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
			if (next - addr != HPAGE_PUD_SIZE) {
				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
				split_huge_pud(vma, pud, addr);
			} else if (zap_huge_pud(tlb, vma, pud, addr))
				goto next;
			/* fall through */
		}
1221
		if (pud_none_or_clear_bad(pud))
Linus Torvalds's avatar
Linus Torvalds committed
1222
			continue;
1223
		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1224 1225
next:
		cond_resched();
1226
	} while (pud++, addr = next, addr != end);
1227 1228

	return addr;
Linus Torvalds's avatar
Linus Torvalds committed
1229 1230
}

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
				struct vm_area_struct *vma, pgd_t *pgd,
				unsigned long addr, unsigned long end,
				struct zap_details *details)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
		if (p4d_none_or_clear_bad(p4d))
			continue;
		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
	} while (p4d++, addr = next, addr != end);

	return addr;
}

1250
void unmap_page_range(struct mmu_gather *tlb,
1251 1252 1253
			     struct vm_area_struct *vma,
			     unsigned long addr, unsigned long end,
			     struct zap_details *details)
Linus Torvalds's avatar
Linus Torvalds committed
1254 1255 1256 1257 1258 1259 1260 1261 1262
{
	pgd_t *pgd;
	unsigned long next;

	BUG_ON(addr >= end);
	tlb_start_vma(tlb, vma);
	pgd = pgd_offset(vma->vm_mm, addr);
	do {
		next = pgd_addr_end(addr, end);
1263
		if (pgd_none_or_clear_bad(pgd))
Linus Torvalds's avatar
Linus Torvalds committed
1264
			continue;
1265
		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1266
	} while (pgd++, addr = next, addr != end);
Linus Torvalds's avatar
Linus Torvalds committed
1267 1268
	tlb_end_vma(tlb, vma);
}
1269

1270 1271 1272

static void unmap_single_vma(struct mmu_gather *tlb,
		struct vm_area_struct *vma, unsigned long start_addr,
1273
		unsigned long end_addr,
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
		struct zap_details *details)
{
	unsigned long start = max(vma->vm_start, start_addr);
	unsigned long end;

	if (start >= vma->vm_end)
		return;
	end = min(vma->vm_end, end_addr);
	if (end <= vma->vm_start)
		return;

1285 1286 1287
	if (vma->vm_file)
		uprobe_munmap(vma, start, end);

1288
	if (unlikely(vma->vm_flags & VM_PFNMAP))
1289
		untrack_pfn(vma, 0, 0);
1290 1291 1292 1293 1294 1295 1296

	if (start != end) {
		if (unlikely(is_vm_hugetlb_page(vma))) {
			/*
			 * It is undesirable to test vma->vm_file as it
			 * should be non-null for valid hugetlb area.
			 * However, vm_file will be NULL in the error
1297
			 * cleanup path of mmap_region. When
1298
			 * hugetlbfs ->mmap method fails,
1299
			 * mmap_region() nullifies vma->vm_file
1300 1301 1302 1303
			 * before calling this function to clean up.
			 * Since no pte has actually been setup, it is
			 * safe to do nothing in this case.
			 */
1304
			if (vma->vm_file) {
1305
				i_mmap_lock_write(vma->vm_file->f_mapping);
1306
				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1307
				i_mmap_unlock_write(vma->vm_file->f_mapping);
1308
			}
1309 1310 1311
		} else
			unmap_page_range(tlb, vma, start, end, details);
	}
Linus Torvalds's avatar
Linus Torvalds committed
1312 1313 1314 1315
}

/**
 * unmap_vmas - unmap a range of memory covered by a list of vma's
1316
 * @tlb: address of the caller's struct mmu_gather
Linus Torvalds's avatar
Linus Torvalds committed
1317 1318 1319 1320
 * @vma: the starting vma
 * @start_addr: virtual address at which to start unmapping
 * @end_addr: virtual address at which to end unmapping
 *
1321
 * Unmap all pages in the vma list.
Linus Torvalds's avatar
Linus Torvalds committed
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
 *
 * Only addresses between `start' and `end' will be unmapped.
 *
 * The VMA list must be sorted in ascending virtual address order.
 *
 * unmap_vmas() assumes that the caller will flush the whole unmapped address
 * range after unmap_vmas() returns.  So the only responsibility here is to
 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
 * drops the lock and schedules.
 */
Al Viro's avatar
Al Viro committed
1332
void unmap_vmas(struct mmu_gather *tlb,
Linus Torvalds's avatar
Linus Torvalds committed
1333
		struct vm_area_struct *vma, unsigned long start_addr,
1334
		unsigned long end_addr)
Linus Torvalds's avatar
Linus Torvalds committed
1335
{
1336
	struct mmu_notifier_range range;
Linus Torvalds's avatar
Linus Torvalds committed
1337

1338 1339
	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
				start_addr, end_addr);
1340
	mmu_notifier_invalidate_range_start(&range);
1341
	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1342
		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1343
	mmu_notifier_invalidate_range_end(&range);
Linus Torvalds's avatar
Linus Torvalds committed
1344 1345 1346 1347 1348
}

/**
 * zap_page_range - remove user pages in a given range
 * @vma: vm_area_struct holding the applicable pages
1349
 * @start: starting address of pages to zap
Linus Torvalds's avatar
Linus Torvalds committed
1350
 * @size: number of bytes to zap
1351 1352
 *
 * Caller must protect the VMA list
Linus Torvalds's avatar
Linus Torvalds committed
1353
 */
1354
void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1355
		unsigned long size)
Linus Torvalds's avatar
Linus Torvalds committed
1356
{
1357
	struct mmu_notifier_range range;
Peter Zijlstra's avatar
Peter Zijlstra committed
1358
	struct mmu_gather tlb;
Linus Torvalds's avatar
Linus Torvalds committed
1359 1360

	lru_add_drain();
1361
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1362
				start, start + size);
1363 1364 1365 1366 1367 1368 1369
	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
	update_hiwater_rss(vma->vm_mm);
	mmu_notifier_invalidate_range_start(&range);
	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
		unmap_single_vma(&tlb, vma, start, range.end, NULL);
	mmu_notifier_invalidate_range_end(&range);
	tlb_finish_mmu(&tlb, start, range.end);
Linus Torvalds's avatar
Linus Torvalds committed
1370 1371
}

1372 1373 1374 1375 1376
/**
 * zap_page_range_single - remove user pages in a given range
 * @vma: vm_area_struct holding the applicable pages
 * @address: starting address of pages to zap
 * @size: number of bytes to zap
1377
 * @details: details of shared cache invalidation
1378 1379
 *
 * The range must fit into one VMA.
Linus Torvalds's avatar
Linus Torvalds committed
1380
 */
1381
static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
Linus Torvalds's avatar
Linus Torvalds committed
1382 1383
		unsigned long size, struct zap_details *details)
{
1384
	struct mmu_notifier_range range;
Peter Zijlstra's avatar
Peter Zijlstra committed
1385
	struct mmu_gather tlb;
Linus Torvalds's avatar
Linus Torvalds committed
1386 1387

	lru_add_drain();
1388
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1389
				address, address + size);
1390 1391 1392 1393 1394 1395
	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
	update_hiwater_rss(vma->vm_mm);
	mmu_notifier_invalidate_range_start(&range);
	unmap_single_vma(&tlb, vma, address, range.end, details);
	mmu_notifier_invalidate_range_end(&range);
	tlb_finish_mmu(&tlb, address, range.end);
Linus Torvalds's avatar
Linus Torvalds committed
1396 1397
}

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
/**
 * zap_vma_ptes - remove ptes mapping the vma
 * @vma: vm_area_struct holding ptes to be zapped
 * @address: starting address of pages to zap
 * @size: number of bytes to zap
 *
 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
 *
 * The entire address range must be fully contained within the vma.
 *
 */
1409
void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1410 1411 1412 1413
		unsigned long size)
{
	if (address < vma->vm_start || address + size > vma->vm_end ||
	    		!(vma->vm_flags & VM_PFNMAP))
1414 1415
		return;

1416
	zap_page_range_single(vma, address, size, NULL);
1417 1418 1419
}
EXPORT_SYMBOL_GPL(zap_vma_ptes);

1420
pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1421
			spinlock_t **ptl)
1422
{
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;

	pgd = pgd_offset(mm, addr);
	p4d = p4d_alloc(mm, pgd, addr);
	if (!p4d)
		return NULL;
	pud = pud_alloc(mm, p4d, addr);
	if (!pud)
		return NULL;
	pmd = pmd_alloc(mm, pud, addr);
	if (!pmd)
		return NULL;

	VM_BUG_ON(pmd_trans_huge(*pmd));
	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1441 1442
}

1443 1444 1445 1446 1447 1448 1449
/*
 * This is the old fallback for page remapping.
 *
 * For historical reasons, it only allows reserved pages. Only
 * old drivers should use this, and they needed to mark their
 * pages reserved for the old functions anyway.
 */
Nick Piggin's avatar
Nick Piggin committed
1450 1451
static int insert_page(struct vm_area_struct *vma, unsigned long addr,
			struct page *page, pgprot_t prot)
1452
{
Nick Piggin's avatar
Nick Piggin committed
1453
	struct mm_struct *mm = vma->vm_mm;
1454
	int retval;
1455
	pte_t *pte;
1456 1457
	spinlock_t *ptl;

1458
	retval = -EINVAL;
1459
	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1460
		goto out;
1461 1462
	retval = -ENOMEM;
	flush_dcache_page(page);
1463
	pte = get_locked_pte(mm, addr, &ptl);
1464
	if (!pte)
1465
		goto out;
1466 1467 1468 1469 1470 1471
	retval = -EBUSY;
	if (!pte_none(*pte))
		goto out_unlock;

	/* Ok, finally just insert the thing.. */
	get_page(page);
1472
	inc_mm_counter_fast(mm, mm_counter_file(page));
1473
	page_add_file_rmap(page, false);
1474 1475 1476
	set_pte_at(mm, addr, pte, mk_pte(page, prot));

	retval = 0;
1477 1478
	pte_unmap_unlock(pte, ptl);
	return retval;
1479 1480 1481 1482 1483 1484
out_unlock:
	pte_unmap_unlock(pte, ptl);
out:
	return retval;
}

1485 1486 1487 1488 1489 1490
/**
 * vm_insert_page - insert single page into user vma
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @page: source kernel page
 *
1491 1492 1493 1494 1495 1496
 * This allows drivers to insert individual pages they've allocated
 * into a user vma.
 *
 * The page has to be a nice clean _individual_ kernel allocation.
 * If you allocate a compound page, you need to have marked it as
 * such (__GFP_COMP), or manually just split the page up yourself
1497
 * (see split_page()).
1498 1499 1500 1501 1502 1503 1504 1505
 *
 * NOTE! Traditionally this was done with "remap_pfn_range()" which
 * took an arbitrary page protection parameter. This doesn't allow
 * that. Your vma protection will have to be set up correctly, which
 * means that if you want a shared writable mapping, you'd better
 * ask for a shared writable mapping!
 *
 * The page does not need to be reserved.
1506 1507 1508 1509 1510
 *
 * Usually this function is called from f_op->mmap() handler
 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
 * Caller must set VM_MIXEDMAP on vma if it wants to call this
 * function from other places, for example from page-fault handler.
1511 1512
 *
 * Return: %0 on success, negative error code otherwise.
1513
 */
Nick Piggin's avatar
Nick Piggin committed
1514 1515
int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
			struct page *page)
1516 1517 1518 1519 1520
{
	if (addr < vma->vm_start || addr >= vma->vm_end)
		return -EFAULT;
	if (!page_count(page))
		return -EINVAL;
1521 1522 1523 1524 1525
	if (!(vma->vm_flags & VM_MIXEDMAP)) {
		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
		BUG_ON(vma->vm_flags & VM_PFNMAP);
		vma->vm_flags |= VM_MIXEDMAP;
	}
Nick Piggin's avatar
Nick Piggin committed
1526
	return insert_page(vma, addr, page, vma->vm_page_prot);
1527
}
1528
EXPORT_SYMBOL(vm_insert_page);
1529

1530
static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1531
			pfn_t pfn, pgprot_t prot, bool mkwrite)
Nick Piggin's avatar
Nick Piggin committed
1532 1533 1534 1535 1536 1537 1538
{
	struct mm_struct *mm = vma->vm_mm;
	pte_t *pte, entry;
	spinlock_t *ptl;

	pte = get_locked_pte(mm, addr, &ptl);
	if (!pte)
1539
		return VM_FAULT_OOM;
1540 1541 1542 1543 1544 1545 1546
	if (!pte_none(*pte)) {
		if (mkwrite) {
			/*
			 * For read faults on private mappings the PFN passed
			 * in may not match the PFN we have mapped if the
			 * mapped PFN is a writeable COW page.  In the mkwrite
			 * case we are creating a writable PTE for a shared
Jan Kara's avatar
Jan Kara committed
1547 1548 1549 1550
			 * mapping and we expect the PFNs to match. If they
			 * don't match, we are likely racing with block
			 * allocation and mapping invalidation so just skip the
			 * update.
1551
			 */
Jan Kara's avatar
Jan Kara committed
1552 1553
			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1554
				goto out_unlock;
Jan Kara's avatar
Jan Kara committed
1555
			}
1556 1557 1558 1559 1560 1561
			entry = pte_mkyoung(*pte);
			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
				update_mmu_cache(vma, addr, pte);
		}
		goto out_unlock;
1562
	}
Nick Piggin's avatar
Nick Piggin committed
1563 1564

	/* Ok, finally just insert the thing.. */
1565 1566 1567 1568
	if (pfn_t_devmap(pfn))
		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
	else
		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1569 1570 1571 1572 1573 1574

	if (mkwrite) {
		entry = pte_mkyoung(entry);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
	}

Nick Piggin's avatar
Nick Piggin committed
1575
	set_pte_at(mm, addr, pte, entry);
1576
	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
Nick Piggin's avatar
Nick Piggin committed
1577 1578 1579

out_unlock:
	pte_unmap_unlock(pte, ptl);
1580
	return VM_FAULT_NOPAGE;
Nick Piggin's avatar
Nick Piggin committed
1581 1582
}

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
/**
 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @pfn: source kernel pfn
 * @pgprot: pgprot flags for the inserted page
 *
 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
 * to override pgprot on a per-page basis.
 *
 * This only makes sense for IO mappings, and it makes no sense for
 * COW mappings.  In general, using multiple vmas is preferable;
1595
 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1596 1597
 * impractical.
 *
1598
 * Context: Process context.  May allocate using %GFP_KERNEL.
1599 1600 1601 1602 1603
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
			unsigned long pfn, pgprot_t pgprot)
{
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	/*
	 * Technically, architectures with pte_special can avoid all these
	 * restrictions (same for remap_pfn_range).  However we would like
	 * consistency in testing and feature parity among all, so we should
	 * try to keep these invariants in place for everybody.
	 */
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	if (!pfn_modify_allowed(pfn, pgprot))
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));

1624
	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1625
			false);
1626 1627
}
EXPORT_SYMBOL(vmf_insert_pfn_prot);
Nick Piggin's avatar
Nick Piggin committed
1628

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
/**
 * vmf_insert_pfn - insert single pfn into user vma
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @pfn: source kernel pfn
 *
 * Similar to vm_insert_page, this allows drivers to insert individual pages
 * they've allocated into a user vma. Same comments apply.
 *
 * This function should only be called from a vm_ops->fault handler, and
 * in that case the handler should return the result of this function.
 *
 * vma cannot be a COW mapping.
 *
 * As this is called only for pages that do not currently exist, we
 * do not need to flush old virtual caches or the TLB.
 *
 * Context: Process context.  May allocate using %GFP_KERNEL.
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
			unsigned long pfn)
{
	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
}
EXPORT_SYMBOL(vmf_insert_pfn);

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
{
	/* these checks mirror the abort conditions in vm_normal_page */
	if (vma->vm_flags & VM_MIXEDMAP)
		return true;
	if (pfn_t_devmap(pfn))
		return true;
	if (pfn_t_special(pfn))
		return true;
	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
		return true;
	return false;
}

1670 1671
static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
		unsigned long addr, pfn_t pfn, bool mkwrite)
Nick Piggin's avatar
Nick Piggin committed
1672
{
1673
	pgprot_t pgprot = vma->vm_page_prot;
1674
	int err;
1675

1676
	BUG_ON(!vm_mixed_ok(vma, pfn));
Nick Piggin's avatar
Nick Piggin committed
1677

Nick Piggin's avatar
Nick Piggin committed
1678
	if (addr < vma->vm_start || addr >= vma->vm_end)
1679
		return VM_FAULT_SIGBUS;
1680 1681

	track_pfn_insert(vma, &pgprot, pfn);
Nick Piggin's avatar
Nick Piggin committed
1682

1683
	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1684
		return VM_FAULT_SIGBUS;
1685

Nick Piggin's avatar
Nick Piggin committed
1686 1687 1688 1689
	/*
	 * If we don't have pte special, then we have to use the pfn_valid()
	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
	 * refcount the page if pfn_valid is true (hence insert_page rather
1690 1691
	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
	 * without pte special, it would there be refcounted as a normal page.
Nick Piggin's avatar
Nick Piggin committed
1692
	 */
1693 1694
	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
Nick Piggin's avatar
Nick Piggin committed
1695 1696
		struct page *page;

1697 1698 1699 1700 1701 1702
		/*
		 * At this point we are committed to insert_page()
		 * regardless of whether the caller specified flags that
		 * result in pfn_t_has_page() == false.
		 */
		page = pfn_to_page(pfn_t_to_pfn(pfn));
1703 1704
		err = insert_page(vma, addr, page, pgprot);
	} else {
1705
		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
Nick Piggin's avatar
Nick Piggin committed
1706
	}
1707

1708 1709 1710 1711 1712 1713
	if (err == -ENOMEM)
		return VM_FAULT_OOM;
	if (err < 0 && err != -EBUSY)
		return VM_FAULT_SIGBUS;

	return VM_FAULT_NOPAGE;
Nick Piggin's avatar
Nick Piggin committed
1714
}
1715 1716 1717 1718 1719 1720

vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
		pfn_t pfn)
{
	return __vm_insert_mixed(vma, addr, pfn, false);
}
1721
EXPORT_SYMBOL(vmf_insert_mixed);
Nick Piggin's avatar
Nick Piggin committed
1722

1723 1724 1725 1726 1727 1728 1729
/*
 *  If the insertion of PTE failed because someone else already added a
 *  different entry in the mean time, we treat that as success as we assume
 *  the same entry was actually inserted.
 */
vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
		unsigned long addr, pfn_t pfn)
1730
{
1731
	return __vm_insert_mixed(vma, addr, pfn, true);
1732
}
1733
EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1734

Linus Torvalds's avatar
Linus Torvalds committed
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
/*
 * maps a range of physical memory into the requested pages. the old
 * mappings are removed. any references to nonexistent pages results
 * in null mappings (currently treated as "copy-on-access")
 */
static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pte_t *pte;
1745
	spinlock_t *ptl;
1746
	int err = 0;
Linus Torvalds's avatar
Linus Torvalds committed
1747

1748
	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
Linus Torvalds's avatar
Linus Torvalds committed
1749 1750
	if (!pte)
		return -ENOMEM;
1751
	arch_enter_lazy_mmu_mode();
Linus Torvalds's avatar
Linus Torvalds committed
1752 1753
	do {
		BUG_ON(!pte_none(*pte));
1754 1755 1756 1757
		if (!pfn_modify_allowed(pfn, prot)) {
			err = -EACCES;
			break;
		}
1758
		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
Linus Torvalds's avatar
Linus Torvalds committed
1759 1760
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
1761
	arch_leave_lazy_mmu_mode();
1762
	pte_unmap_unlock(pte - 1, ptl);
1763
	return err;
Linus Torvalds's avatar
Linus Torvalds committed
1764 1765 1766 1767 1768 1769 1770 1771
}

static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pmd_t *pmd;
	unsigned long next;
1772
	int err;
Linus Torvalds's avatar
Linus Torvalds committed
1773 1774 1775 1776 1777

	pfn -= addr >> PAGE_SHIFT;
	pmd = pmd_alloc(mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
1778
	VM_BUG_ON(pmd_trans_huge(*pmd));
Linus Torvalds's avatar
Linus Torvalds committed
1779 1780
	do {
		next = pmd_addr_end(addr, end);
1781 1782 1783 1784
		err = remap_pte_range(mm, pmd, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot);
		if (err)
			return err;
Linus Torvalds's avatar
Linus Torvalds committed
1785 1786 1787 1788
	} while (pmd++, addr = next, addr != end);
	return 0;
}

1789
static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
Linus Torvalds's avatar
Linus Torvalds committed
1790 1791 1792 1793 1794
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pud_t *pud;
	unsigned long next;
1795
	int err;
Linus Torvalds's avatar
Linus Torvalds committed
1796 1797

	pfn -= addr >> PAGE_SHIFT;
1798
	pud = pud_alloc(mm, p4d, addr);
Linus Torvalds's avatar
Linus Torvalds committed
1799 1800 1801 1802
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
1803 1804 1805 1806
		err = remap_pmd_range(mm, pud, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot);
		if (err)
			return err;
Linus Torvalds's avatar
Linus Torvalds committed
1807 1808 1809 1810
	} while (pud++, addr = next, addr != end);
	return 0;
}

1811 1812 1813 1814 1815 1816
static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	p4d_t *p4d;
	unsigned long next;
1817
	int err;
1818 1819 1820 1821 1822 1823 1824

	pfn -= addr >> PAGE_SHIFT;
	p4d = p4d_alloc(mm, pgd, addr);
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
1825 1826 1827 1828
		err = remap_pud_range(mm, p4d, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot);
		if (err)
			return err;
1829 1830 1831 1832
	} while (p4d++, addr = next, addr != end);
	return 0;
}

1833 1834 1835 1836 1837 1838 1839 1840
/**
 * remap_pfn_range - remap kernel memory to userspace
 * @vma: user vma to map to
 * @addr: target user address to start at
 * @pfn: physical address of kernel memory
 * @size: size of map area
 * @prot: page protection flags for this mapping
 *
1841 1842 1843
 * Note: this is only safe if the mm semaphore is held when called.
 *
 * Return: %0 on success, negative error code otherwise.
1844
 */
Linus Torvalds's avatar
Linus Torvalds committed
1845 1846 1847 1848 1849
int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
		    unsigned long pfn, unsigned long size, pgprot_t prot)
{
	pgd_t *pgd;
	unsigned long next;
1850
	unsigned long end = addr + PAGE_ALIGN(size);
Linus Torvalds's avatar
Linus Torvalds committed
1851
	struct mm_struct *mm = vma->vm_mm;
1852
	unsigned long remap_pfn = pfn;
Linus Torvalds's avatar
Linus Torvalds committed
1853 1854 1855 1856 1857 1858 1859
	int err;

	/*
	 * Physically remapped pages are special. Tell the
	 * rest of the world about it:
	 *   VM_IO tells people not to look at these pages
	 *	(accesses can have side effects).
1860 1861 1862
	 *   VM_PFNMAP tells the core MM that the base pages are just
	 *	raw PFN mappings, and do not have a "struct page" associated
	 *	with them.
1863 1864 1865 1866
	 *   VM_DONTEXPAND
	 *      Disable vma merging and expanding with mremap().
	 *   VM_DONTDUMP
	 *      Omit vma from core dump, even when VM_IO turned off.
1867 1868 1869 1870
	 *
	 * There's a horrible special case to handle copy-on-write
	 * behaviour that some programs depend on. We mark the "original"
	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1871
	 * See vm_normal_page() for details.
Linus Torvalds's avatar
Linus Torvalds committed
1872
	 */
1873 1874 1875
	if (is_cow_mapping(vma->vm_flags)) {
		if (addr != vma->vm_start || end != vma->vm_end)
			return -EINVAL;
1876
		vma->vm_pgoff = pfn;
1877 1878
	}

1879
	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1880
	if (err)
1881
		return -EINVAL;
1882

1883
	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
Linus Torvalds's avatar
Linus Torvalds committed
1884 1885 1886 1887 1888 1889 1890

	BUG_ON(addr >= end);
	pfn -= addr >> PAGE_SHIFT;
	pgd = pgd_offset(mm, addr);
	flush_cache_range(vma, addr, end);
	do {
		next = pgd_addr_end(addr, end);
1891
		err = remap_p4d_range(mm, pgd, addr, next,
Linus Torvalds's avatar
Linus Torvalds committed
1892 1893 1894 1895
				pfn + (addr >> PAGE_SHIFT), prot);
		if (err)
			break;
	} while (pgd++, addr = next, addr != end);
1896 1897

	if (err)
1898
		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1899

Linus Torvalds's avatar
Linus Torvalds committed
1900 1901 1902 1903
	return err;
}
EXPORT_SYMBOL(remap_pfn_range);

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
/**
 * vm_iomap_memory - remap memory to userspace
 * @vma: user vma to map to
 * @start: start of area
 * @len: size of area
 *
 * This is a simplified io_remap_pfn_range() for common driver use. The
 * driver just needs to give us the physical memory range to be mapped,
 * we'll figure out the rest from the vma information.
 *
 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
 * whatever write-combining details or similar.
1916 1917
 *
 * Return: %0 on success, negative error code otherwise.
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
 */
int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
{
	unsigned long vm_len, pfn, pages;

	/* Check that the physical memory area passed in looks valid */
	if (start + len < start)
		return -EINVAL;
	/*
	 * You *really* shouldn't map things that aren't page-aligned,
	 * but we've historically allowed it because IO memory might
	 * just have smaller alignment.
	 */
	len += start & ~PAGE_MASK;
	pfn = start >> PAGE_SHIFT;
	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
	if (pfn + pages < pfn)
		return -EINVAL;

	/* We start the mapping 'vm_pgoff' pages into the area */
	if (vma->vm_pgoff > pages)
		return -EINVAL;
	pfn += vma->vm_pgoff;
	pages -= vma->vm_pgoff;

	/* Can we fit all of the mapping? */
	vm_len = vma->vm_end - vma->vm_start;
	if (vm_len >> PAGE_SHIFT > pages)
		return -EINVAL;

	/* Ok, let it rip */
	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
}
EXPORT_SYMBOL(vm_iomap_memory);

1953 1954 1955 1956 1957 1958
static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
				     unsigned long addr, unsigned long end,
				     pte_fn_t fn, void *data)
{
	pte_t *pte;
	int err;
1959
	pgtable_t token;
1960
	spinlock_t *uninitialized_var(ptl);
1961 1962 1963 1964 1965 1966 1967 1968 1969

	pte = (mm == &init_mm) ?
		pte_alloc_kernel(pmd, addr) :
		pte_alloc_map_lock(mm, pmd, addr, &ptl);
	if (!pte)
		return -ENOMEM;

	BUG_ON(pmd_huge(*pmd));

1970 1971
	arch_enter_lazy_mmu_mode();

1972
	token = pmd_pgtable(*pmd);
1973 1974

	do {
1975
		err = fn(pte++, token, addr, data);
1976 1977
		if (err)
			break;
1978
	} while (addr += PAGE_SIZE, addr != end);
1979

1980 1981
	arch_leave_lazy_mmu_mode();

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	if (mm != &init_mm)
		pte_unmap_unlock(pte-1, ptl);
	return err;
}

static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
				     unsigned long addr, unsigned long end,
				     pte_fn_t fn, void *data)
{
	pmd_t *pmd;
	unsigned long next;
	int err;

Andi Kleen's avatar
Andi Kleen committed
1995 1996
	BUG_ON(pud_huge(*pud));

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	pmd = pmd_alloc(mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
		if (err)
			break;
	} while (pmd++, addr = next, addr != end);
	return err;
}

2009
static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2010 2011 2012 2013 2014 2015 2016
				     unsigned long addr, unsigned long end,
				     pte_fn_t fn, void *data)
{
	pud_t *pud;
	unsigned long next;
	int err;

2017
	pud = pud_alloc(mm, p4d, addr);
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
		if (err)
			break;
	} while (pud++, addr = next, addr != end);
	return err;
}

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
				     unsigned long addr, unsigned long end,
				     pte_fn_t fn, void *data)
{
	p4d_t *p4d;
	unsigned long next;
	int err;

	p4d = p4d_alloc(mm, pgd, addr);
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
		if (err)
			break;
	} while (p4d++, addr = next, addr != end);
	return err;
}

2049 2050 2051 2052 2053 2054 2055 2056 2057
/*
 * Scan a region of virtual memory, filling in page tables as necessary
 * and calling a provided function on each leaf page table.
 */
int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
			unsigned long size, pte_fn_t fn, void *data)
{
	pgd_t *pgd;
	unsigned long next;
2058
	unsigned long end = addr + size;
2059 2060
	int err;

2061 2062 2063
	if (WARN_ON(addr >= end))
		return -EINVAL;

2064 2065 2066
	pgd = pgd_offset(mm, addr);
	do {
		next = pgd_addr_end(addr, end);
2067
		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2068 2069 2070
		if (err)
			break;
	} while (pgd++, addr = next, addr != end);
2071

2072 2073 2074 2075
	return err;
}
EXPORT_SYMBOL_GPL(apply_to_page_range);

2076
/*
2077 2078 2079 2080 2081
 * handle_pte_fault chooses page fault handler according to an entry which was
 * read non-atomically.  Before making any commitment, on those architectures
 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
 * parts, do_swap_page must check under lock before unmapping the pte and
 * proceeding (but do_wp_page is only called after already making such a check;
2082
 * and do_anonymous_page can safely check later on).
2083
 */
2084
static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2085 2086 2087 2088 2089
				pte_t *page_table, pte_t orig_pte)
{
	int same = 1;
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
	if (sizeof(pte_t) > sizeof(unsigned long)) {
2090 2091
		spinlock_t *ptl = pte_lockptr(mm, pmd);
		spin_lock(ptl);
2092
		same = pte_same(*page_table, orig_pte);
2093
		spin_unlock(ptl);
2094 2095 2096 2097 2098 2099
	}
#endif
	pte_unmap(page_table);
	return same;
}

2100
static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2101
{
2102 2103
	debug_dma_assert_idle(src);

2104 2105 2106 2107 2108 2109 2110
	/*
	 * If the source page was a PFN mapping, we don't have
	 * a "struct page" for it. We do a best-effort copy by
	 * just copying from the original user address. If that
	 * fails, we just zero-fill it. Live with it.
	 */
	if (unlikely(!src)) {
2111
		void *kaddr = kmap_atomic(dst);
2112 2113 2114 2115 2116 2117 2118 2119 2120
		void __user *uaddr = (void __user *)(va & PAGE_MASK);

		/*
		 * This really shouldn't fail, because the page is there
		 * in the page tables. But it might just be unreadable,
		 * in which case we just give up and fill the result with
		 * zeroes.
		 */
		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2121
			clear_page(kaddr);
2122
		kunmap_atomic(kaddr);
2123
		flush_dcache_page(dst);
Nick Piggin's avatar
Nick Piggin committed
2124 2125
	} else
		copy_user_highpage(dst, src, va, vma);
2126 2127
}

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
{
	struct file *vm_file = vma->vm_file;

	if (vm_file)
		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;

	/*
	 * Special mappings (e.g. VDSO) do not have any file so fake
	 * a default GFP_KERNEL for them.
	 */
	return GFP_KERNEL;
}

2142 2143 2144 2145 2146 2147
/*
 * Notify the address space that the page is about to become writable so that
 * it can prohibit this or wait for the page to get into an appropriate state.
 *
 * We do this without the lock held, so that it can sleep if it needs to.
 */
2148
static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2149
{
2150
	vm_fault_t ret;
2151 2152
	struct page *page = vmf->page;
	unsigned int old_flags = vmf->flags;
2153

2154
	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2155

2156
	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2157 2158
	/* Restore original flags so that caller is not surprised */
	vmf->flags = old_flags;
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
		return ret;
	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
		lock_page(page);
		if (!page->mapping) {
			unlock_page(page);
			return 0; /* retry */
		}
		ret |= VM_FAULT_LOCKED;
	} else
		VM_BUG_ON_PAGE(!PageLocked(page), page);
	return ret;
}

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
/*
 * Handle dirtying of a page in shared file mapping on a write fault.
 *
 * The function expects the page to be locked and unlocks it.
 */
static void fault_dirty_shared_page(struct vm_area_struct *vma,
				    struct page *page)
{
	struct address_space *mapping;
	bool dirtied;
	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;

	dirtied = set_page_dirty(page);
	VM_BUG_ON_PAGE(PageAnon(page), page);
	/*
	 * Take a local copy of the address_space - page.mapping may be zeroed
	 * by truncate after unlock_page().   The address_space itself remains
	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
	 * release semantics to prevent the compiler from undoing this copying.
	 */
	mapping = page_rmapping(page);
	unlock_page(page);

	if ((dirtied || page_mkwrite) && mapping) {
		/*
		 * Some device drivers do not set page.mapping
		 * but still dirty their pages
		 */
		balance_dirty_pages_ratelimited(mapping);
	}

	if (!page_mkwrite)
		file_update_time(vma->vm_file);
}

2208 2209 2210 2211 2212 2213 2214 2215
/*
 * Handle write page faults for pages that can be reused in the current vma
 *
 * This can happen either due to the mapping being with the VM_SHARED flag,
 * or due to us being the last reference standing to the page. In either
 * case, all we need to do here is to mark the page as writable and update
 * any related book-keeping.
 */
2216
static inline void wp_page_reuse(struct vm_fault *vmf)
2217
	__releases(vmf->ptl)
2218
{
2219
	struct vm_area_struct *vma = vmf->vma;
2220
	struct page *page = vmf->page;
2221 2222 2223 2224 2225 2226 2227 2228 2229
	pte_t entry;
	/*
	 * Clear the pages cpupid information as the existing
	 * information potentially belongs to a now completely
	 * unrelated process.
	 */
	if (page)
		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);

2230 2231
	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
	entry = pte_mkyoung(vmf->orig_pte);
2232
	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2233 2234 2235
	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
		update_mmu_cache(vma, vmf->address, vmf->pte);
	pte_unmap_unlock(vmf->pte, vmf->ptl);
2236 2237
}

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
/*
 * Handle the case of a page which we actually need to copy to a new page.
 *
 * Called with mmap_sem locked and the old page referenced, but
 * without the ptl held.
 *
 * High level logic flow:
 *
 * - Allocate a page, copy the content of the old page to the new one.
 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
 * - Take the PTL. If the pte changed, bail out and release the allocated page
 * - If the pte is still the way we remember it, update the page table and all
 *   relevant references. This includes dropping the reference the page-table
 *   held to the old page, as well as updating the rmap.
 * - In any case, unlock the PTL and drop the reference we took to the old page.
 */
2254
static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2255
{
2256
	struct vm_area_struct *vma = vmf->vma;
2257
	struct mm_struct *mm = vma->vm_mm;
2258
	struct page *old_page = vmf->page;
2259 2260 2261 2262
	struct page *new_page = NULL;
	pte_t entry;
	int page_copied = 0;
	struct mem_cgroup *memcg;
2263
	struct mmu_notifier_range range;
2264 2265 2266 2267

	if (unlikely(anon_vma_prepare(vma)))
		goto oom;

2268
	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2269 2270
		new_page = alloc_zeroed_user_highpage_movable(vma,
							      vmf->address);
2271 2272 2273
		if (!new_page)
			goto oom;
	} else {
2274
		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2275
				vmf->address);
2276 2277
		if (!new_page)
			goto oom;
2278
		cow_user_page(new_page, old_page, vmf->address, vma);
2279 2280
	}

2281
	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2282 2283
		goto oom_free_new;

2284 2285
	__SetPageUptodate(new_page);

2286
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2287
				vmf->address & PAGE_MASK,
2288 2289
				(vmf->address & PAGE_MASK) + PAGE_SIZE);
	mmu_notifier_invalidate_range_start(&range);
2290 2291 2292 2293

	/*
	 * Re-check the pte - we dropped the lock
	 */
2294
	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2295
	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2296 2297
		if (old_page) {
			if (!PageAnon(old_page)) {
2298 2299
				dec_mm_counter_fast(mm,
						mm_counter_file(old_page));
2300 2301 2302 2303 2304
				inc_mm_counter_fast(mm, MM_ANONPAGES);
			}
		} else {
			inc_mm_counter_fast(mm, MM_ANONPAGES);
		}
2305
		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2306 2307 2308 2309 2310 2311 2312 2313
		entry = mk_pte(new_page, vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
		/*
		 * Clear the pte entry and flush it first, before updating the
		 * pte with the new entry. This will avoid a race condition
		 * seen in the presence of one thread doing SMC and another
		 * thread doing COW.
		 */
2314 2315
		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2316
		mem_cgroup_commit_charge(new_page, memcg, false, false);
2317 2318 2319 2320 2321 2322
		lru_cache_add_active_or_unevictable(new_page, vma);
		/*
		 * We call the notify macro here because, when using secondary
		 * mmu page tables (such as kvm shadow page tables), we want the
		 * new page to be mapped directly into the secondary page table.
		 */
2323 2324
		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
		update_mmu_cache(vma, vmf->address, vmf->pte);
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
		if (old_page) {
			/*
			 * Only after switching the pte to the new page may
			 * we remove the mapcount here. Otherwise another
			 * process may come and find the rmap count decremented
			 * before the pte is switched to the new page, and
			 * "reuse" the old page writing into it while our pte
			 * here still points into it and can be read by other
			 * threads.
			 *
			 * The critical issue is to order this
			 * page_remove_rmap with the ptp_clear_flush above.
			 * Those stores are ordered by (if nothing else,)
			 * the barrier present in the atomic_add_negative
			 * in page_remove_rmap.
			 *
			 * Then the TLB flush in ptep_clear_flush ensures that
			 * no process can access the old page before the
			 * decremented mapcount is visible. And the old page
			 * cannot be reused until after the decremented
			 * mapcount is visible. So transitively, TLBs to
			 * old page will be flushed before it can be reused.
			 */
2348
			page_remove_rmap(old_page, false);
2349 2350 2351 2352 2353 2354
		}

		/* Free the old page.. */
		new_page = old_page;
		page_copied = 1;
	} else {
2355
		mem_cgroup_cancel_charge(new_page, memcg, false);
2356 2357 2358
	}

	if (new_page)
2359
		put_page(new_page);
2360

2361
	pte_unmap_unlock(vmf->pte, vmf->ptl);
2362 2363 2364 2365
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above ptep_clear_flush_notify() did already call it.
	 */
2366
	mmu_notifier_invalidate_range_only_end(&range);
2367 2368 2369 2370 2371 2372 2373
	if (old_page) {
		/*
		 * Don't let another task, with possibly unlocked vma,
		 * keep the mlocked page.
		 */
		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
			lock_page(old_page);	/* LRU manipulation */
2374 2375
			if (PageMlocked(old_page))
				munlock_vma_page(old_page);
2376 2377
			unlock_page(old_page);
		}
2378
		put_page(old_page);
2379 2380 2381
	}
	return page_copied ? VM_FAULT_WRITE : 0;
oom_free_new:
2382
	put_page(new_page);
2383 2384
oom:
	if (old_page)
2385
		put_page(old_page);
2386 2387 2388
	return VM_FAULT_OOM;
}

2389 2390 2391 2392 2393 2394 2395 2396
/**
 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
 *			  writeable once the page is prepared
 *
 * @vmf: structure describing the fault
 *
 * This function handles all that is needed to finish a write page fault in a
 * shared mapping due to PTE being read-only once the mapped page is prepared.
2397
 * It handles locking of PTE and modifying it.
2398 2399 2400
 *
 * The function expects the page to be locked or other protection against
 * concurrent faults / writeback (such as DAX radix tree locks).
2401 2402 2403
 *
 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
 * we acquired PTE lock.
2404
 */
2405
vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
{
	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
				       &vmf->ptl);
	/*
	 * We might have raced with another page fault while we released the
	 * pte_offset_map_lock.
	 */
	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
		pte_unmap_unlock(vmf->pte, vmf->ptl);
2416
		return VM_FAULT_NOPAGE;
2417 2418
	}
	wp_page_reuse(vmf);
2419
	return 0;
2420 2421
}

2422 2423 2424 2425
/*
 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
 * mapping
 */
2426
static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2427
{
2428
	struct vm_area_struct *vma = vmf->vma;
2429

2430
	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2431
		vm_fault_t ret;
2432

2433
		pte_unmap_unlock(vmf->pte, vmf->ptl);
2434
		vmf->flags |= FAULT_FLAG_MKWRITE;
2435
		ret = vma->vm_ops->pfn_mkwrite(vmf);
2436
		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2437
			return ret;
2438
		return finish_mkwrite_fault(vmf);
2439
	}
2440 2441
	wp_page_reuse(vmf);
	return VM_FAULT_WRITE;
2442 2443
}

2444
static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2445
	__releases(vmf->ptl)
2446
{
2447
	struct vm_area_struct *vma = vmf->vma;
2448

2449
	get_page(vmf->page);
2450 2451

	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2452
		vm_fault_t tmp;
2453

2454
		pte_unmap_unlock(vmf->pte, vmf->ptl);
2455
		tmp = do_page_mkwrite(vmf);
2456 2457
		if (unlikely(!tmp || (tmp &
				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2458
			put_page(vmf->page);
2459 2460
			return tmp;
		}
2461
		tmp = finish_mkwrite_fault(vmf);
2462
		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2463 2464
			unlock_page(vmf->page);
			put_page(vmf->page);
2465
			return tmp;
2466
		}
2467 2468
	} else {
		wp_page_reuse(vmf);
2469
		lock_page(vmf->page);
2470
	}
2471 2472
	fault_dirty_shared_page(vma, vmf->page);
	put_page(vmf->page);
2473

2474
	return VM_FAULT_WRITE;
2475 2476
}

Linus Torvalds's avatar
Linus Torvalds committed
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
/*
 * This routine handles present pages, when users try to write
 * to a shared page. It is done by copying the page to a new address
 * and decrementing the shared-page counter for the old page.
 *
 * Note that this routine assumes that the protection checks have been
 * done by the caller (the low-level page fault routine in most cases).
 * Thus we can safely just mark it writable once we've done any necessary
 * COW.
 *
 * We also mark the page dirty at this point even though the page will
 * change only once the write actually happens. This avoids a few races,
 * and potentially makes it more efficient.
 *
2491 2492 2493
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), with pte both mapped and locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
Linus Torvalds's avatar
Linus Torvalds committed
2494
 */
2495
static vm_fault_t do_wp_page(struct vm_fault *vmf)
2496
	__releases(vmf->ptl)
Linus Torvalds's avatar
Linus Torvalds committed
2497
{
2498
	struct vm_area_struct *vma = vmf->vma;
Linus Torvalds's avatar
Linus Torvalds committed
2499

2500 2501
	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
	if (!vmf->page) {
2502
		/*
2503 2504
		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
		 * VM_PFNMAP VMA.
2505 2506
		 *
		 * We should not cow pages in a shared writeable mapping.
2507
		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2508 2509 2510
		 */
		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
				     (VM_WRITE|VM_SHARED))
2511
			return wp_pfn_shared(vmf);
2512

2513
		pte_unmap_unlock(vmf->pte, vmf->ptl);
2514
		return wp_page_copy(vmf);
2515
	}
Linus Torvalds's avatar
Linus Torvalds committed
2516

2517
	/*
2518 2519
	 * Take out anonymous pages first, anonymous shared vmas are
	 * not dirty accountable.
2520
	 */
2521
	if (PageAnon(vmf->page)) {
2522
		int total_map_swapcount;
2523 2524 2525
		if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
					   page_count(vmf->page) != 1))
			goto copy;
2526 2527
		if (!trylock_page(vmf->page)) {
			get_page(vmf->page);
2528
			pte_unmap_unlock(vmf->pte, vmf->ptl);
2529
			lock_page(vmf->page);
2530 2531
			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
					vmf->address, &vmf->ptl);
2532
			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2533
				unlock_page(vmf->page);
2534
				pte_unmap_unlock(vmf->pte, vmf->ptl);
2535
				put_page(vmf->page);
2536
				return 0;
2537
			}
2538
			put_page(vmf->page);
2539
		}
2540 2541 2542 2543 2544 2545 2546 2547 2548
		if (PageKsm(vmf->page)) {
			bool reused = reuse_ksm_page(vmf->page, vmf->vma,
						     vmf->address);
			unlock_page(vmf->page);
			if (!reused)
				goto copy;
			wp_page_reuse(vmf);
			return VM_FAULT_WRITE;
		}
2549 2550
		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
			if (total_map_swapcount == 1) {
2551 2552 2553 2554 2555 2556 2557
				/*
				 * The page is all ours. Move it to
				 * our anon_vma so the rmap code will
				 * not search our parent or siblings.
				 * Protected against the rmap code by
				 * the page lock.
				 */
2558
				page_move_anon_rmap(vmf->page, vma);
2559
			}
2560
			unlock_page(vmf->page);
2561 2562
			wp_page_reuse(vmf);
			return VM_FAULT_WRITE;
2563
		}
2564
		unlock_page(vmf->page);
2565
	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2566
					(VM_WRITE|VM_SHARED))) {
2567
		return wp_page_shared(vmf);
Linus Torvalds's avatar
Linus Torvalds committed
2568
	}
2569
copy:
Linus Torvalds's avatar
Linus Torvalds committed
2570 2571 2572
	/*
	 * Ok, we need to copy. Oh, well..
	 */
2573
	get_page(vmf->page);
2574

2575
	pte_unmap_unlock(vmf->pte, vmf->ptl);
2576
	return wp_page_copy(vmf);
Linus Torvalds's avatar
Linus Torvalds committed
2577 2578
}

2579
static void unmap_mapping_range_vma(struct vm_area_struct *vma,
Linus Torvalds's avatar
Linus Torvalds committed
2580 2581 2582
		unsigned long start_addr, unsigned long end_addr,
		struct zap_details *details)
{
2583
	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
Linus Torvalds's avatar
Linus Torvalds committed
2584 2585
}

2586
static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
Linus Torvalds's avatar
Linus Torvalds committed
2587 2588 2589 2590 2591
					    struct zap_details *details)
{
	struct vm_area_struct *vma;
	pgoff_t vba, vea, zba, zea;

2592
	vma_interval_tree_foreach(vma, root,
Linus Torvalds's avatar
Linus Torvalds committed
2593 2594 2595
			details->first_index, details->last_index) {

		vba = vma->vm_pgoff;
2596
		vea = vba + vma_pages(vma) - 1;
Linus Torvalds's avatar
Linus Torvalds committed
2597 2598 2599 2600 2601 2602 2603
		zba = details->first_index;
		if (zba < vba)
			zba = vba;
		zea = details->last_index;
		if (zea > vea)
			zea = vea;

2604
		unmap_mapping_range_vma(vma,
Linus Torvalds's avatar
Linus Torvalds committed
2605 2606
			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2607
				details);
Linus Torvalds's avatar
Linus Torvalds committed
2608 2609 2610
	}
}

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
/**
 * unmap_mapping_pages() - Unmap pages from processes.
 * @mapping: The address space containing pages to be unmapped.
 * @start: Index of first page to be unmapped.
 * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
 * @even_cows: Whether to unmap even private COWed pages.
 *
 * Unmap the pages in this address space from any userspace process which
 * has them mmaped.  Generally, you want to remove COWed pages as well when
 * a file is being truncated, but not when invalidating pages from the page
 * cache.
 */
void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
		pgoff_t nr, bool even_cows)
{
	struct zap_details details = { };

	details.check_mapping = even_cows ? NULL : mapping;
	details.first_index = start;
	details.last_index = start + nr - 1;
	if (details.last_index < details.first_index)
		details.last_index = ULONG_MAX;

	i_mmap_lock_write(mapping);
	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
		unmap_mapping_range_tree(&mapping->i_mmap, &details);
	i_mmap_unlock_write(mapping);
}

Linus Torvalds's avatar
Linus Torvalds committed
2640
/**
2641
 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2642
 * address_space corresponding to the specified byte range in the underlying
2643 2644
 * file.
 *
2645
 * @mapping: the address space containing mmaps to be unmapped.
Linus Torvalds's avatar
Linus Torvalds committed
2646 2647
 * @holebegin: byte in first page to unmap, relative to the start of
 * the underlying file.  This will be rounded down to a PAGE_SIZE
npiggin@suse.de's avatar
npiggin@suse.de committed
2648
 * boundary.  Note that this is different from truncate_pagecache(), which
Linus Torvalds's avatar
Linus Torvalds committed
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
 * must keep the partial page.  In contrast, we must get rid of
 * partial pages.
 * @holelen: size of prospective hole in bytes.  This will be rounded
 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
 * end of the file.
 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
 * but 0 when invalidating pagecache, don't throw away private data.
 */
void unmap_mapping_range(struct address_space *mapping,
		loff_t const holebegin, loff_t const holelen, int even_cows)
{
	pgoff_t hba = holebegin >> PAGE_SHIFT;
	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;

	/* Check for overflow. */
	if (sizeof(holelen) > sizeof(hlen)) {
		long long holeend =
			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
		if (holeend & ~(long long)ULONG_MAX)
			hlen = ULONG_MAX - hba + 1;
	}

2671
	unmap_mapping_pages(mapping, hba, hlen, even_cows);
Linus Torvalds's avatar
Linus Torvalds committed
2672 2673 2674 2675
}
EXPORT_SYMBOL(unmap_mapping_range);

/*
2676 2677
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
2678 2679 2680 2681
 * We return with pte unmapped and unlocked.
 *
 * We return with the mmap_sem locked or unlocked in the same cases
 * as does filemap_fault().
Linus Torvalds's avatar
Linus Torvalds committed
2682
 */
2683
vm_fault_t do_swap_page(struct vm_fault *vmf)
Linus Torvalds's avatar
Linus Torvalds committed
2684
{
2685
	struct vm_area_struct *vma = vmf->vma;
2686
	struct page *page = NULL, *swapcache;
2687
	struct mem_cgroup *memcg;
2688
	swp_entry_t entry;
Linus Torvalds's avatar
Linus Torvalds committed
2689
	pte_t pte;
2690
	int locked;
2691
	int exclusive = 0;
2692
	vm_fault_t ret = 0;
Linus Torvalds's avatar
Linus Torvalds committed
2693

2694
	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2695
		goto out;
2696

2697
	entry = pte_to_swp_entry(vmf->orig_pte);
2698 2699
	if (unlikely(non_swap_entry(entry))) {
		if (is_migration_entry(entry)) {
2700 2701
			migration_entry_wait(vma->vm_mm, vmf->pmd,
					     vmf->address);
2702 2703 2704 2705 2706 2707 2708 2709
		} else if (is_device_private_entry(entry)) {
			/*
			 * For un-addressable device memory we call the pgmap
			 * fault handler callback. The callback must migrate
			 * the page back to some CPU accessible page.
			 */
			ret = device_private_entry_fault(vma, vmf->address, entry,
						 vmf->flags, vmf->pmd);
2710 2711 2712
		} else if (is_hwpoison_entry(entry)) {
			ret = VM_FAULT_HWPOISON;
		} else {
2713
			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2714
			ret = VM_FAULT_SIGBUS;
2715
		}
2716 2717
		goto out;
	}
2718 2719


2720
	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2721 2722
	page = lookup_swap_cache(entry, vma, vmf->address);
	swapcache = page;
2723

Linus Torvalds's avatar
Linus Torvalds committed
2724
	if (!page) {
2725 2726
		struct swap_info_struct *si = swp_swap_info(entry);

2727 2728
		if (si->flags & SWP_SYNCHRONOUS_IO &&
				__swap_count(si, entry) == 1) {
2729
			/* skip swapcache */
2730 2731
			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
							vmf->address);
2732 2733 2734 2735 2736 2737 2738
			if (page) {
				__SetPageLocked(page);
				__SetPageSwapBacked(page);
				set_page_private(page, entry.val);
				lru_cache_add_anon(page);
				swap_readpage(page, true);
			}
2739
		} else {
2740 2741
			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
						vmf);
2742
			swapcache = page;
2743 2744
		}

Linus Torvalds's avatar
Linus Torvalds committed
2745 2746
		if (!page) {
			/*
2747 2748
			 * Back out if somebody else faulted in this pte
			 * while we released the pte lock.
Linus Torvalds's avatar
Linus Torvalds committed
2749
			 */
2750 2751
			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
					vmf->address, &vmf->ptl);
2752
			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
Linus Torvalds's avatar
Linus Torvalds committed
2753
				ret = VM_FAULT_OOM;
2754
			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2755
			goto unlock;
Linus Torvalds's avatar
Linus Torvalds committed
2756 2757 2758 2759
		}

		/* Had to read the page from swap area: Major fault */
		ret = VM_FAULT_MAJOR;
2760
		count_vm_event(PGMAJFAULT);
2761
		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2762
	} else if (PageHWPoison(page)) {
2763 2764 2765 2766
		/*
		 * hwpoisoned dirty swapcache pages are kept for killing
		 * owner processes (which may be unknown at hwpoison time)
		 */
2767 2768
		ret = VM_FAULT_HWPOISON;
		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2769
		goto out_release;
Linus Torvalds's avatar
Linus Torvalds committed
2770 2771
	}

2772
	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
Rik van Riel's avatar
Rik van Riel committed
2773

2774
	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2775 2776 2777 2778
	if (!locked) {
		ret |= VM_FAULT_RETRY;
		goto out_release;
	}
2779

2780
	/*
2781 2782 2783 2784
	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
	 * release the swapcache from under us.  The page pin, and pte_same
	 * test below, are not enough to exclude that.  Even if it is still
	 * swapcache, we need to check that the page's swap has not changed.
2785
	 */
2786 2787
	if (unlikely((!PageSwapCache(page) ||
			page_private(page) != entry.val)) && swapcache)
2788 2789
		goto out_page;

2790
	page = ksm_might_need_to_copy(page, vma, vmf->address);
2791 2792 2793 2794
	if (unlikely(!page)) {
		ret = VM_FAULT_OOM;
		page = swapcache;
		goto out_page;
2795 2796
	}

2797 2798
	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
					&memcg, false)) {
2799
		ret = VM_FAULT_OOM;
2800
		goto out_page;
2801 2802
	}

Linus Torvalds's avatar
Linus Torvalds committed
2803
	/*
2804
	 * Back out if somebody else already faulted in this pte.
Linus Torvalds's avatar
Linus Torvalds committed
2805
	 */
2806 2807
	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
			&vmf->ptl);
2808
	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2809 2810 2811 2812 2813
		goto out_nomap;

	if (unlikely(!PageUptodate(page))) {
		ret = VM_FAULT_SIGBUS;
		goto out_nomap;
Linus Torvalds's avatar
Linus Torvalds committed
2814 2815
	}

2816 2817 2818 2819 2820 2821 2822 2823 2824
	/*
	 * The page isn't present yet, go ahead with the fault.
	 *
	 * Be careful about the sequence of operations here.
	 * To get its accounting right, reuse_swap_page() must be called
	 * while the page is counted on swap but not yet in mapcount i.e.
	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
	 * must be called after the swap_free(), or it will never succeed.
	 */
Linus Torvalds's avatar
Linus Torvalds committed
2825

2826 2827
	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
Linus Torvalds's avatar
Linus Torvalds committed
2828
	pte = mk_pte(page, vma->vm_page_prot);
2829
	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
Linus Torvalds's avatar
Linus Torvalds committed
2830
		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2831
		vmf->flags &= ~FAULT_FLAG_WRITE;
2832
		ret |= VM_FAULT_WRITE;
2833
		exclusive = RMAP_EXCLUSIVE;
Linus Torvalds's avatar
Linus Torvalds committed
2834 2835
	}
	flush_icache_page(vma, page);
2836
	if (pte_swp_soft_dirty(vmf->orig_pte))
2837
		pte = pte_mksoft_dirty(pte);
2838
	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2839
	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2840
	vmf->orig_pte = pte;
2841 2842 2843

	/* ksm created a completely new copy */
	if (unlikely(page != swapcache && swapcache)) {
2844
		page_add_new_anon_rmap(page, vma, vmf->address, false);
2845
		mem_cgroup_commit_charge(page, memcg, false, false);
2846
		lru_cache_add_active_or_unevictable(page, vma);
2847 2848 2849 2850
	} else {
		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
		mem_cgroup_commit_charge(page, memcg, true, false);
		activate_page(page);
2851
	}
Linus Torvalds's avatar
Linus Torvalds committed
2852

2853
	swap_free(entry);
2854 2855
	if (mem_cgroup_swap_full(page) ||
	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2856
		try_to_free_swap(page);
2857
	unlock_page(page);
2858
	if (page != swapcache && swapcache) {
2859 2860 2861 2862 2863 2864 2865 2866 2867
		/*
		 * Hold the lock to avoid the swap entry to be reused
		 * until we take the PT lock for the pte_same() check
		 * (to avoid false positives from pte_same). For
		 * further safety release the lock after the swap_free
		 * so that the swap count won't change under a
		 * parallel locked swapcache.
		 */
		unlock_page(swapcache);
2868
		put_page(swapcache);
2869
	}
2870

2871
	if (vmf->flags & FAULT_FLAG_WRITE) {
2872
		ret |= do_wp_page(vmf);
2873 2874
		if (ret & VM_FAULT_ERROR)
			ret &= VM_FAULT_ERROR;
Linus Torvalds's avatar
Linus Torvalds committed
2875 2876 2877 2878
		goto out;
	}

	/* No need to invalidate - it was non-present before */
2879
	update_mmu_cache(vma, vmf->address, vmf->pte);
2880
unlock:
2881
	pte_unmap_unlock(vmf->pte, vmf->ptl);
Linus Torvalds's avatar
Linus Torvalds committed
2882 2883
out:
	return ret;
2884
out_nomap:
2885
	mem_cgroup_cancel_charge(page, memcg, false);
2886
	pte_unmap_unlock(vmf->pte, vmf->ptl);
2887
out_page:
2888
	unlock_page(page);
2889
out_release:
2890
	put_page(page);
2891
	if (page != swapcache && swapcache) {
2892
		unlock_page(swapcache);
2893
		put_page(swapcache);
2894
	}
2895
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
2896 2897 2898
}

/*
2899 2900 2901
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
Linus Torvalds's avatar
Linus Torvalds committed
2902
 */
2903
static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
Linus Torvalds's avatar
Linus Torvalds committed
2904
{
2905
	struct vm_area_struct *vma = vmf->vma;
2906
	struct mem_cgroup *memcg;
2907
	struct page *page;
2908
	vm_fault_t ret = 0;
Linus Torvalds's avatar
Linus Torvalds committed
2909 2910
	pte_t entry;

2911 2912 2913 2914
	/* File mapping without ->vm_ops ? */
	if (vma->vm_flags & VM_SHARED)
		return VM_FAULT_SIGBUS;

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
	/*
	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
	 * pte_offset_map() on pmds where a huge pmd might be created
	 * from a different thread.
	 *
	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
	 * parallel threads are excluded by other means.
	 *
	 * Here we only have down_read(mmap_sem).
	 */
2925
	if (pte_alloc(vma->vm_mm, vmf->pmd))
2926 2927 2928
		return VM_FAULT_OOM;

	/* See the comment in pte_alloc_one_map() */
2929
	if (unlikely(pmd_trans_unstable(vmf->pmd)))
2930 2931
		return 0;

2932
	/* Use the zero-page for reads */
2933
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2934
			!mm_forbids_zeropage(vma->vm_mm)) {
2935
		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2936
						vma->vm_page_prot));
2937 2938 2939
		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
				vmf->address, &vmf->ptl);
		if (!pte_none(*vmf->pte))
Hugh Dickins's avatar
Hugh Dickins committed
2940
			goto unlock;
2941 2942 2943
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock;
2944 2945
		/* Deliver the page fault to userland, check inside PT lock */
		if (userfaultfd_missing(vma)) {
2946 2947
			pte_unmap_unlock(vmf->pte, vmf->ptl);
			return handle_userfault(vmf, VM_UFFD_MISSING);
2948
		}
Hugh Dickins's avatar
Hugh Dickins committed
2949 2950 2951
		goto setpte;
	}

Nick Piggin's avatar
Nick Piggin committed
2952 2953 2954
	/* Allocate our own private page. */
	if (unlikely(anon_vma_prepare(vma)))
		goto oom;
2955
	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
Nick Piggin's avatar
Nick Piggin committed
2956 2957
	if (!page)
		goto oom;
2958

2959 2960
	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
					false))
2961 2962
		goto oom_free_page;

2963 2964 2965 2966 2967
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceeding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
Nick Piggin's avatar
Nick Piggin committed
2968
	__SetPageUptodate(page);
2969

Nick Piggin's avatar
Nick Piggin committed
2970
	entry = mk_pte(page, vma->vm_page_prot);
Hugh Dickins's avatar
Hugh Dickins committed
2971 2972
	if (vma->vm_flags & VM_WRITE)
		entry = pte_mkwrite(pte_mkdirty(entry));
Linus Torvalds's avatar
Linus Torvalds committed
2973

2974 2975 2976
	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
			&vmf->ptl);
	if (!pte_none(*vmf->pte))
Nick Piggin's avatar
Nick Piggin committed
2977
		goto release;
Hugh Dickins's avatar
Hugh Dickins committed
2978

2979 2980 2981 2982
	ret = check_stable_address_space(vma->vm_mm);
	if (ret)
		goto release;

2983 2984
	/* Deliver the page fault to userland, check inside PT lock */
	if (userfaultfd_missing(vma)) {
2985
		pte_unmap_unlock(vmf->pte, vmf->ptl);
2986
		mem_cgroup_cancel_charge(page, memcg, false);
2987
		put_page(page);
2988
		return handle_userfault(vmf, VM_UFFD_MISSING);
2989 2990
	}

2991
	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2992
	page_add_new_anon_rmap(page, vma, vmf->address, false);
2993
	mem_cgroup_commit_charge(page, memcg, false, false);
2994
	lru_cache_add_active_or_unevictable(page, vma);
Hugh Dickins's avatar
Hugh Dickins committed
2995
setpte:
2996
	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
Linus Torvalds's avatar
Linus Torvalds committed
2997 2998

	/* No need to invalidate - it was non-present before */
2999
	update_mmu_cache(vma, vmf->address, vmf->pte);
3000
unlock:
3001
	pte_unmap_unlock(vmf->pte, vmf->ptl);
3002
	return ret;
3003
release:
3004
	mem_cgroup_cancel_charge(page, memcg, false);
3005
	put_page(page);
3006
	goto unlock;
3007
oom_free_page:
3008
	put_page(page);
3009
oom:
Linus Torvalds's avatar
Linus Torvalds committed
3010 3011 3012
	return VM_FAULT_OOM;
}

3013 3014 3015 3016 3017
/*
 * The mmap_sem must have been held on entry, and may have been
 * released depending on flags and vma->vm_ops->fault() return value.
 * See filemap_fault() and __lock_page_retry().
 */
3018
static vm_fault_t __do_fault(struct vm_fault *vmf)
3019
{
3020
	struct vm_area_struct *vma = vmf->vma;
3021
	vm_fault_t ret;
3022

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
	/*
	 * Preallocate pte before we take page_lock because this might lead to
	 * deadlocks for memcg reclaim which waits for pages under writeback:
	 *				lock_page(A)
	 *				SetPageWriteback(A)
	 *				unlock_page(A)
	 * lock_page(B)
	 *				lock_page(B)
	 * pte_alloc_pne
	 *   shrink_page_list
	 *     wait_on_page_writeback(A)
	 *				SetPageWriteback(B)
	 *				unlock_page(B)
	 *				# flush A, B to clear the writeback
	 */
	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
		if (!vmf->prealloc_pte)
			return VM_FAULT_OOM;
		smp_wmb(); /* See comment in __pte_alloc() */
	}

3045
	ret = vma->vm_ops->fault(vmf);
3046
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3047
			    VM_FAULT_DONE_COW)))
3048
		return ret;
3049

3050
	if (unlikely(PageHWPoison(vmf->page))) {
3051
		if (ret & VM_FAULT_LOCKED)
3052 3053
			unlock_page(vmf->page);
		put_page(vmf->page);
Jan Kara's avatar
Jan Kara committed
3054
		vmf->page = NULL;
3055 3056 3057 3058
		return VM_FAULT_HWPOISON;
	}

	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3059
		lock_page(vmf->page);
3060
	else
3061
		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3062 3063 3064 3065

	return ret;
}

3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
/*
 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
 */
static int pmd_devmap_trans_unstable(pmd_t *pmd)
{
	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
}

3077
static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3078
{
3079
	struct vm_area_struct *vma = vmf->vma;
3080

3081
	if (!pmd_none(*vmf->pmd))
3082
		goto map_pte;
3083 3084 3085 3086
	if (vmf->prealloc_pte) {
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
		if (unlikely(!pmd_none(*vmf->pmd))) {
			spin_unlock(vmf->ptl);
3087 3088 3089
			goto map_pte;
		}

3090
		mm_inc_nr_ptes(vma->vm_mm);
3091 3092
		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
		spin_unlock(vmf->ptl);
3093
		vmf->prealloc_pte = NULL;
3094
	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3095 3096 3097 3098 3099
		return VM_FAULT_OOM;
	}
map_pte:
	/*
	 * If a huge pmd materialized under us just retry later.  Use
3100 3101 3102 3103 3104 3105 3106 3107
	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
	 * running immediately after a huge pmd fault in a different thread of
	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
	 * All we have to ensure is that it is a regular pmd that we can walk
	 * with pte_offset_map() and we can do that through an atomic read in
	 * C, which is what pmd_trans_unstable() provides.
3108
	 */
3109
	if (pmd_devmap_trans_unstable(vmf->pmd))
3110 3111
		return VM_FAULT_NOPAGE;

3112 3113 3114 3115 3116 3117 3118 3119 3120
	/*
	 * At this point we know that our vmf->pmd points to a page of ptes
	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
	 * be valid and we will re-check to make sure the vmf->pte isn't
	 * pte_none() under vmf->ptl protection when we return to
	 * alloc_set_pte().
	 */
3121 3122
	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
			&vmf->ptl);
3123 3124 3125
	return 0;
}

3126
#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139

#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
		unsigned long haddr)
{
	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
		return false;
	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
		return false;
	return true;
}

3140
static void deposit_prealloc_pte(struct vm_fault *vmf)
3141
{
3142
	struct vm_area_struct *vma = vmf->vma;
3143

3144
	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3145 3146 3147 3148
	/*
	 * We are going to consume the prealloc table,
	 * count that as nr_ptes.
	 */
3149
	mm_inc_nr_ptes(vma->vm_mm);
3150
	vmf->prealloc_pte = NULL;
3151 3152
}

3153
static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3154
{
3155 3156 3157
	struct vm_area_struct *vma = vmf->vma;
	bool write = vmf->flags & FAULT_FLAG_WRITE;
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3158
	pmd_t entry;
3159 3160
	int i;
	vm_fault_t ret;
3161 3162 3163 3164 3165 3166 3167

	if (!transhuge_vma_suitable(vma, haddr))
		return VM_FAULT_FALLBACK;

	ret = VM_FAULT_FALLBACK;
	page = compound_head(page);

3168 3169 3170 3171
	/*
	 * Archs like ppc64 need additonal space to store information
	 * related to pte entry. Use the preallocated table for that.
	 */
3172
	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3173
		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3174
		if (!vmf->prealloc_pte)
3175 3176 3177 3178
			return VM_FAULT_OOM;
		smp_wmb(); /* See comment in __pte_alloc() */
	}

3179 3180
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd)))
3181 3182 3183 3184 3185 3186 3187
		goto out;

	for (i = 0; i < HPAGE_PMD_NR; i++)
		flush_icache_page(vma, page + i);

	entry = mk_huge_pmd(page, vma->vm_page_prot);
	if (write)
3188
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3189

3190
	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3191
	page_add_file_rmap(page, true);
3192 3193 3194 3195
	/*
	 * deposit and withdraw with pmd lock held
	 */
	if (arch_needs_pgtable_deposit())
3196
		deposit_prealloc_pte(vmf);
3197

3198
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3199

3200
	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3201 3202 3203

	/* fault is handled */
	ret = 0;
3204
	count_vm_event(THP_FILE_MAPPED);
3205
out:
3206
	spin_unlock(vmf->ptl);
3207 3208 3209
	return ret;
}
#else
3210
static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3211 3212 3213 3214 3215 3216
{
	BUILD_BUG();
	return 0;
}
#endif

3217
/**
3218 3219
 * alloc_set_pte - setup new PTE entry for given page and add reverse page
 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3220
 *
3221
 * @vmf: fault environment
3222
 * @memcg: memcg to charge page (only for private mappings)
3223 3224
 * @page: page to map
 *
3225 3226
 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
 * return.
3227 3228 3229
 *
 * Target users are page handler itself and implementations of
 * vm_ops->map_pages.
3230 3231
 *
 * Return: %0 on success, %VM_FAULT_ code in case of error.
3232
 */
3233
vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3234
		struct page *page)
3235
{
3236 3237
	struct vm_area_struct *vma = vmf->vma;
	bool write = vmf->flags & FAULT_FLAG_WRITE;
3238
	pte_t entry;
3239
	vm_fault_t ret;
3240

3241
	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3242
			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3243 3244 3245
		/* THP on COW? */
		VM_BUG_ON_PAGE(memcg, page);

3246
		ret = do_set_pmd(vmf, page);
3247
		if (ret != VM_FAULT_FALLBACK)
Hugh Dickins's avatar
Hugh Dickins committed
3248
			return ret;
3249
	}
3250

3251 3252
	if (!vmf->pte) {
		ret = pte_alloc_one_map(vmf);
3253
		if (ret)
Hugh Dickins's avatar
Hugh Dickins committed
3254
			return ret;
3255 3256 3257
	}

	/* Re-check under ptl */
Hugh Dickins's avatar
Hugh Dickins committed
3258 3259
	if (unlikely(!pte_none(*vmf->pte)))
		return VM_FAULT_NOPAGE;
3260

3261 3262 3263 3264
	flush_icache_page(vma, page);
	entry = mk_pte(page, vma->vm_page_prot);
	if (write)
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3265 3266
	/* copy-on-write page */
	if (write && !(vma->vm_flags & VM_SHARED)) {
3267
		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3268
		page_add_new_anon_rmap(page, vma, vmf->address, false);
3269 3270
		mem_cgroup_commit_charge(page, memcg, false, false);
		lru_cache_add_active_or_unevictable(page, vma);
3271
	} else {
3272
		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3273
		page_add_file_rmap(page, false);
3274
	}
3275
	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3276 3277

	/* no need to invalidate: a not-present page won't be cached */
3278
	update_mmu_cache(vma, vmf->address, vmf->pte);
3279

Hugh Dickins's avatar
Hugh Dickins committed
3280
	return 0;
3281 3282
}

3283 3284 3285 3286 3287 3288 3289 3290 3291

/**
 * finish_fault - finish page fault once we have prepared the page to fault
 *
 * @vmf: structure describing the fault
 *
 * This function handles all that is needed to finish a page fault once the
 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
 * given page, adds reverse page mapping, handles memcg charges and LRU
3292
 * addition.
3293 3294 3295
 *
 * The function expects the page to be locked and on success it consumes a
 * reference of a page being mapped (for the PTE which maps it).
3296 3297
 *
 * Return: %0 on success, %VM_FAULT_ code in case of error.
3298
 */
3299
vm_fault_t finish_fault(struct vm_fault *vmf)
3300 3301
{
	struct page *page;
3302
	vm_fault_t ret = 0;
3303 3304 3305 3306 3307 3308 3309

	/* Did we COW the page? */
	if ((vmf->flags & FAULT_FLAG_WRITE) &&
	    !(vmf->vma->vm_flags & VM_SHARED))
		page = vmf->cow_page;
	else
		page = vmf->page;
3310 3311 3312 3313 3314 3315 3316 3317 3318

	/*
	 * check even for read faults because we might have lost our CoWed
	 * page
	 */
	if (!(vmf->vma->vm_flags & VM_SHARED))
		ret = check_stable_address_space(vmf->vma->vm_mm);
	if (!ret)
		ret = alloc_set_pte(vmf, vmf->memcg, page);
3319 3320 3321 3322 3323
	if (vmf->pte)
		pte_unmap_unlock(vmf->pte, vmf->ptl);
	return ret;
}

3324 3325
static unsigned long fault_around_bytes __read_mostly =
	rounddown_pow_of_two(65536);
3326 3327 3328

#ifdef CONFIG_DEBUG_FS
static int fault_around_bytes_get(void *data, u64 *val)
3329
{
3330
	*val = fault_around_bytes;
3331 3332 3333
	return 0;
}

3334
/*
3335 3336
 * fault_around_bytes must be rounded down to the nearest page order as it's
 * what do_fault_around() expects to see.
3337
 */
3338
static int fault_around_bytes_set(void *data, u64 val)
3339
{
3340
	if (val / PAGE_SIZE > PTRS_PER_PTE)
3341
		return -EINVAL;
3342 3343 3344 3345
	if (val > PAGE_SIZE)
		fault_around_bytes = rounddown_pow_of_two(val);
	else
		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3346 3347
	return 0;
}
3348
DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3349
		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3350 3351 3352

static int __init fault_around_debugfs(void)
{
3353 3354
	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
				   &fault_around_bytes_fops);
3355 3356 3357 3358
	return 0;
}
late_initcall(fault_around_debugfs);
#endif
3359

3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
/*
 * do_fault_around() tries to map few pages around the fault address. The hope
 * is that the pages will be needed soon and this will lower the number of
 * faults to handle.
 *
 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
 * not ready to be mapped: not up-to-date, locked, etc.
 *
 * This function is called with the page table lock taken. In the split ptlock
 * case the page table lock only protects only those entries which belong to
 * the page table corresponding to the fault address.
 *
 * This function doesn't cross the VMA boundaries, in order to call map_pages()
 * only once.
 *
3375 3376 3377
 * fault_around_bytes defines how many bytes we'll try to map.
 * do_fault_around() expects it to be set to a power of two less than or equal
 * to PTRS_PER_PTE.
3378
 *
3379 3380 3381 3382
 * The virtual address of the area that we map is naturally aligned to
 * fault_around_bytes rounded down to the machine page size
 * (and therefore to page order).  This way it's easier to guarantee
 * that we don't cross page table boundaries.
3383
 */
3384
static vm_fault_t do_fault_around(struct vm_fault *vmf)
3385
{
3386
	unsigned long address = vmf->address, nr_pages, mask;
3387
	pgoff_t start_pgoff = vmf->pgoff;
3388
	pgoff_t end_pgoff;
3389 3390
	int off;
	vm_fault_t ret = 0;
3391

3392
	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3393 3394
	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;

3395 3396
	vmf->address = max(address & mask, vmf->vma->vm_start);
	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3397
	start_pgoff -= off;
3398 3399

	/*
3400 3401
	 *  end_pgoff is either the end of the page table, the end of
	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3402
	 */
3403
	end_pgoff = start_pgoff -
3404
		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3405
		PTRS_PER_PTE - 1;
3406
	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3407
			start_pgoff + nr_pages - 1);
3408

3409
	if (pmd_none(*vmf->pmd)) {
3410
		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3411
		if (!vmf->prealloc_pte)
3412
			goto out;
3413
		smp_wmb(); /* See comment in __pte_alloc() */
3414 3415
	}

3416
	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3417 3418

	/* Huge page is mapped? Page fault is solved */
3419
	if (pmd_trans_huge(*vmf->pmd)) {
3420 3421 3422 3423 3424
		ret = VM_FAULT_NOPAGE;
		goto out;
	}

	/* ->map_pages() haven't done anything useful. Cold page cache? */
3425
	if (!vmf->pte)
3426 3427 3428
		goto out;

	/* check if the page fault is solved */
3429 3430
	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
	if (!pte_none(*vmf->pte))
3431
		ret = VM_FAULT_NOPAGE;
3432
	pte_unmap_unlock(vmf->pte, vmf->ptl);
3433
out:
3434 3435
	vmf->address = address;
	vmf->pte = NULL;
3436
	return ret;
3437 3438
}

3439
static vm_fault_t do_read_fault(struct vm_fault *vmf)
3440
{
3441
	struct vm_area_struct *vma = vmf->vma;
3442
	vm_fault_t ret = 0;
3443 3444 3445 3446 3447 3448

	/*
	 * Let's call ->map_pages() first and use ->fault() as fallback
	 * if page by the offset is not ready to be mapped (cold cache or
	 * something).
	 */
3449
	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3450
		ret = do_fault_around(vmf);
3451 3452
		if (ret)
			return ret;
3453
	}
3454

Jan Kara's avatar
Jan Kara committed
3455
	ret = __do_fault(vmf);
3456 3457 3458
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
		return ret;

3459
	ret |= finish_fault(vmf);
Jan Kara's avatar
Jan Kara committed
3460
	unlock_page(vmf->page);
3461
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
Jan Kara's avatar
Jan Kara committed
3462
		put_page(vmf->page);
3463 3464 3465
	return ret;
}

3466
static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3467
{
3468
	struct vm_area_struct *vma = vmf->vma;
3469
	vm_fault_t ret;
3470 3471 3472 3473

	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;

Jan Kara's avatar
Jan Kara committed
3474 3475
	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
	if (!vmf->cow_page)
3476 3477
		return VM_FAULT_OOM;

3478
	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3479
				&vmf->memcg, false)) {
Jan Kara's avatar
Jan Kara committed
3480
		put_page(vmf->cow_page);
3481 3482 3483
		return VM_FAULT_OOM;
	}

Jan Kara's avatar
Jan Kara committed
3484
	ret = __do_fault(vmf);
3485 3486
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
		goto uncharge_out;
3487 3488
	if (ret & VM_FAULT_DONE_COW)
		return ret;
3489

3490
	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
Jan Kara's avatar
Jan Kara committed
3491
	__SetPageUptodate(vmf->cow_page);
3492

3493
	ret |= finish_fault(vmf);
3494 3495
	unlock_page(vmf->page);
	put_page(vmf->page);
3496 3497
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
		goto uncharge_out;
3498 3499
	return ret;
uncharge_out:
3500
	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
Jan Kara's avatar
Jan Kara committed
3501
	put_page(vmf->cow_page);
3502 3503 3504
	return ret;
}

3505
static vm_fault_t do_shared_fault(struct vm_fault *vmf)
Linus Torvalds's avatar
Linus Torvalds committed
3506
{
3507
	struct vm_area_struct *vma = vmf->vma;
3508
	vm_fault_t ret, tmp;
3509

Jan Kara's avatar
Jan Kara committed
3510
	ret = __do_fault(vmf);
3511
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3512
		return ret;
Linus Torvalds's avatar
Linus Torvalds committed
3513 3514

	/*
3515 3516
	 * Check if the backing address space wants to know that the page is
	 * about to become writable
Linus Torvalds's avatar
Linus Torvalds committed
3517
	 */
3518
	if (vma->vm_ops->page_mkwrite) {
Jan Kara's avatar
Jan Kara committed
3519
		unlock_page(vmf->page);
3520
		tmp = do_page_mkwrite(vmf);
3521 3522
		if (unlikely(!tmp ||
				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
Jan Kara's avatar
Jan Kara committed
3523
			put_page(vmf->page);
3524
			return tmp;
3525
		}
3526 3527
	}

3528
	ret |= finish_fault(vmf);
3529 3530
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
					VM_FAULT_RETRY))) {
Jan Kara's avatar
Jan Kara committed
3531 3532
		unlock_page(vmf->page);
		put_page(vmf->page);
3533
		return ret;
Linus Torvalds's avatar
Linus Torvalds committed
3534
	}
Nick Piggin's avatar
Nick Piggin committed
3535

3536
	fault_dirty_shared_page(vma, vmf->page);
3537
	return ret;
3538
}
3539

3540 3541 3542 3543 3544
/*
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults).
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
3545 3546
 * If mmap_sem is released, vma may become invalid (for example
 * by other thread calling munmap()).
3547
 */
3548
static vm_fault_t do_fault(struct vm_fault *vmf)
3549
{
3550
	struct vm_area_struct *vma = vmf->vma;
3551
	struct mm_struct *vm_mm = vma->vm_mm;
3552
	vm_fault_t ret;
3553

3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
	/*
	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
	 */
	if (!vma->vm_ops->fault) {
		/*
		 * If we find a migration pmd entry or a none pmd entry, which
		 * should never happen, return SIGBUS
		 */
		if (unlikely(!pmd_present(*vmf->pmd)))
			ret = VM_FAULT_SIGBUS;
		else {
			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
						       vmf->pmd,
						       vmf->address,
						       &vmf->ptl);
			/*
			 * Make sure this is not a temporary clearing of pte
			 * by holding ptl and checking again. A R/M/W update
			 * of pte involves: take ptl, clearing the pte so that
			 * we don't have concurrent modification by hardware
			 * followed by an update.
			 */
			if (unlikely(pte_none(*vmf->pte)))
				ret = VM_FAULT_SIGBUS;
			else
				ret = VM_FAULT_NOPAGE;

			pte_unmap_unlock(vmf->pte, vmf->ptl);
		}
	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
Hugh Dickins's avatar
Hugh Dickins committed
3584 3585 3586 3587 3588 3589 3590 3591
		ret = do_read_fault(vmf);
	else if (!(vma->vm_flags & VM_SHARED))
		ret = do_cow_fault(vmf);
	else
		ret = do_shared_fault(vmf);

	/* preallocated pagetable is unused: free it */
	if (vmf->prealloc_pte) {
3592
		pte_free(vm_mm, vmf->prealloc_pte);
3593
		vmf->prealloc_pte = NULL;
Hugh Dickins's avatar
Hugh Dickins committed
3594 3595
	}
	return ret;
3596 3597
}

3598
static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3599 3600
				unsigned long addr, int page_nid,
				int *flags)
3601 3602 3603 3604
{
	get_page(page);

	count_vm_numa_event(NUMA_HINT_FAULTS);
3605
	if (page_nid == numa_node_id()) {
3606
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3607 3608
		*flags |= TNF_FAULT_LOCAL;
	}
3609 3610 3611 3612

	return mpol_misplaced(page, vma, addr);
}

3613
static vm_fault_t do_numa_page(struct vm_fault *vmf)
3614
{
3615
	struct vm_area_struct *vma = vmf->vma;
3616
	struct page *page = NULL;
3617
	int page_nid = NUMA_NO_NODE;
3618
	int last_cpupid;
3619
	int target_nid;
3620
	bool migrated = false;
3621
	pte_t pte, old_pte;
3622
	bool was_writable = pte_savedwrite(vmf->orig_pte);
3623
	int flags = 0;
3624 3625

	/*
Tobin C Harding's avatar
Tobin C Harding committed
3626 3627 3628 3629
	 * The "pte" at this point cannot be used safely without
	 * validation through pte_unmap_same(). It's of NUMA type but
	 * the pfn may be screwed if the read is non atomic.
	 */
3630 3631
	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
	spin_lock(vmf->ptl);
3632
	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3633
		pte_unmap_unlock(vmf->pte, vmf->ptl);
3634 3635 3636
		goto out;
	}

3637 3638 3639 3640
	/*
	 * Make it present again, Depending on how arch implementes non
	 * accessible ptes, some can allow access by kernel mode.
	 */
3641 3642
	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
	pte = pte_modify(old_pte, vma->vm_page_prot);
3643
	pte = pte_mkyoung(pte);
3644 3645
	if (was_writable)
		pte = pte_mkwrite(pte);
3646
	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3647
	update_mmu_cache(vma, vmf->address, vmf->pte);
3648

3649
	page = vm_normal_page(vma, vmf->address, pte);
3650
	if (!page) {
3651
		pte_unmap_unlock(vmf->pte, vmf->ptl);
3652 3653 3654
		return 0;
	}

3655 3656
	/* TODO: handle PTE-mapped THP */
	if (PageCompound(page)) {
3657
		pte_unmap_unlock(vmf->pte, vmf->ptl);
3658 3659 3660
		return 0;
	}

3661
	/*
3662 3663 3664 3665 3666 3667
	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
	 * much anyway since they can be in shared cache state. This misses
	 * the case where a mapping is writable but the process never writes
	 * to it but pte_write gets cleared during protection updates and
	 * pte_dirty has unpredictable behaviour between PTE scan updates,
	 * background writeback, dirty balancing and application behaviour.
3668
	 */
3669
	if (!pte_write(pte))
3670 3671
		flags |= TNF_NO_GROUP;

3672 3673 3674 3675 3676 3677 3678
	/*
	 * Flag if the page is shared between multiple address spaces. This
	 * is later used when determining whether to group tasks together
	 */
	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
		flags |= TNF_SHARED;

3679
	last_cpupid = page_cpupid_last(page);
3680
	page_nid = page_to_nid(page);
3681
	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3682
			&flags);
3683
	pte_unmap_unlock(vmf->pte, vmf->ptl);
3684
	if (target_nid == NUMA_NO_NODE) {
3685 3686 3687 3688 3689
		put_page(page);
		goto out;
	}

	/* Migrate to the requested node */
3690
	migrated = migrate_misplaced_page(page, vma, target_nid);
3691
	if (migrated) {
3692
		page_nid = target_nid;
3693
		flags |= TNF_MIGRATED;
3694 3695
	} else
		flags |= TNF_MIGRATE_FAIL;
3696 3697

out:
3698
	if (page_nid != NUMA_NO_NODE)
3699
		task_numa_fault(last_cpupid, page_nid, 1, flags);
3700 3701 3702
	return 0;
}

3703
static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3704
{
3705
	if (vma_is_anonymous(vmf->vma))
3706
		return do_huge_pmd_anonymous_page(vmf);
3707
	if (vmf->vma->vm_ops->huge_fault)
3708
		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3709 3710 3711
	return VM_FAULT_FALLBACK;
}

3712
/* `inline' is required to avoid gcc 4.1.2 build error */
3713
static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3714
{
3715 3716
	if (vma_is_anonymous(vmf->vma))
		return do_huge_pmd_wp_page(vmf, orig_pmd);
3717
	if (vmf->vma->vm_ops->huge_fault)
3718
		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3719 3720

	/* COW handled on pte level: split pmd */
3721 3722
	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3723

3724 3725 3726
	return VM_FAULT_FALLBACK;
}

3727 3728 3729 3730 3731
static inline bool vma_is_accessible(struct vm_area_struct *vma)
{
	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
}

3732
static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3733 3734 3735 3736 3737 3738
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	/* No support for anonymous transparent PUD pages yet */
	if (vma_is_anonymous(vmf->vma))
		return VM_FAULT_FALLBACK;
	if (vmf->vma->vm_ops->huge_fault)
3739
		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3740 3741 3742 3743
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
	return VM_FAULT_FALLBACK;
}

3744
static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3745 3746 3747 3748 3749 3750
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	/* No support for anonymous transparent PUD pages yet */
	if (vma_is_anonymous(vmf->vma))
		return VM_FAULT_FALLBACK;
	if (vmf->vma->vm_ops->huge_fault)
3751
		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3752 3753 3754 3755
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
	return VM_FAULT_FALLBACK;
}

Linus Torvalds's avatar
Linus Torvalds committed
3756 3757 3758 3759 3760 3761 3762 3763 3764
/*
 * These routines also need to handle stuff like marking pages dirty
 * and/or accessed for architectures that don't do it in hardware (most
 * RISC architectures).  The early dirtying is also good on the i386.
 *
 * There is also a hook called "update_mmu_cache()" that architectures
 * with external mmu caches can use to update those (ie the Sparc or
 * PowerPC hashed page tables that act as extended TLBs).
 *
3765 3766
 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
 * concurrent faults).
3767
 *
3768 3769
 * The mmap_sem may have been released depending on flags and our return value.
 * See filemap_fault() and __lock_page_or_retry().
Linus Torvalds's avatar
Linus Torvalds committed
3770
 */
3771
static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
Linus Torvalds's avatar
Linus Torvalds committed
3772 3773 3774
{
	pte_t entry;

3775
	if (unlikely(pmd_none(*vmf->pmd))) {
3776 3777 3778 3779 3780 3781
		/*
		 * Leave __pte_alloc() until later: because vm_ops->fault may
		 * want to allocate huge page, and if we expose page table
		 * for an instant, it will be difficult to retract from
		 * concurrent faults and from rmap lookups.
		 */
3782
		vmf->pte = NULL;
3783 3784
	} else {
		/* See comment in pte_alloc_one_map() */
3785
		if (pmd_devmap_trans_unstable(vmf->pmd))
3786 3787 3788 3789 3790 3791 3792
			return 0;
		/*
		 * A regular pmd is established and it can't morph into a huge
		 * pmd from under us anymore at this point because we hold the
		 * mmap_sem read mode and khugepaged takes it in write mode.
		 * So now it's safe to run pte_offset_map().
		 */
3793
		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3794
		vmf->orig_pte = *vmf->pte;
3795 3796 3797 3798

		/*
		 * some architectures can have larger ptes than wordsize,
		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3799 3800 3801
		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
		 * accesses.  The code below just needs a consistent view
		 * for the ifs and we later double check anyway with the
3802 3803 3804
		 * ptl lock held. So here a barrier will do.
		 */
		barrier();
3805
		if (pte_none(vmf->orig_pte)) {
3806 3807
			pte_unmap(vmf->pte);
			vmf->pte = NULL;
3808
		}
Linus Torvalds's avatar
Linus Torvalds committed
3809 3810
	}

3811 3812 3813
	if (!vmf->pte) {
		if (vma_is_anonymous(vmf->vma))
			return do_anonymous_page(vmf);
3814
		else
3815
			return do_fault(vmf);
3816 3817
	}

3818 3819
	if (!pte_present(vmf->orig_pte))
		return do_swap_page(vmf);
3820

3821 3822
	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
		return do_numa_page(vmf);
3823

3824 3825
	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
	spin_lock(vmf->ptl);
3826
	entry = vmf->orig_pte;
3827
	if (unlikely(!pte_same(*vmf->pte, entry)))
3828
		goto unlock;
3829
	if (vmf->flags & FAULT_FLAG_WRITE) {
3830
		if (!pte_write(entry))
3831
			return do_wp_page(vmf);
Linus Torvalds's avatar
Linus Torvalds committed
3832 3833 3834
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
3835 3836 3837
	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
				vmf->flags & FAULT_FLAG_WRITE)) {
		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3838 3839 3840 3841 3842 3843 3844
	} else {
		/*
		 * This is needed only for protection faults but the arch code
		 * is not yet telling us if this is a protection fault or not.
		 * This still avoids useless tlb flushes for .text page faults
		 * with threads.
		 */
3845 3846
		if (vmf->flags & FAULT_FLAG_WRITE)
			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3847
	}
3848
unlock:
3849
	pte_unmap_unlock(vmf->pte, vmf->ptl);
Nick Piggin's avatar
Nick Piggin committed
3850
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
3851 3852 3853 3854
}

/*
 * By the time we get here, we already hold the mm semaphore
3855 3856 3857
 *
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
Linus Torvalds's avatar
Linus Torvalds committed
3858
 */
3859 3860
static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
		unsigned long address, unsigned int flags)
Linus Torvalds's avatar
Linus Torvalds committed
3861
{
3862
	struct vm_fault vmf = {
3863
		.vma = vma,
3864
		.address = address & PAGE_MASK,
3865
		.flags = flags,
3866
		.pgoff = linear_page_index(vma, address),
3867
		.gfp_mask = __get_fault_gfp_mask(vma),
3868
	};
3869
	unsigned int dirty = flags & FAULT_FLAG_WRITE;
3870
	struct mm_struct *mm = vma->vm_mm;
Linus Torvalds's avatar
Linus Torvalds committed
3871
	pgd_t *pgd;
3872
	p4d_t *p4d;
3873
	vm_fault_t ret;
Linus Torvalds's avatar
Linus Torvalds committed
3874 3875

	pgd = pgd_offset(mm, address);
3876 3877 3878
	p4d = p4d_alloc(mm, pgd, address);
	if (!p4d)
		return VM_FAULT_OOM;
3879

3880
	vmf.pud = pud_alloc(mm, p4d, address);
3881
	if (!vmf.pud)
3882
		return VM_FAULT_OOM;
3883
	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
		ret = create_huge_pud(&vmf);
		if (!(ret & VM_FAULT_FALLBACK))
			return ret;
	} else {
		pud_t orig_pud = *vmf.pud;

		barrier();
		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {

			/* NUMA case for anonymous PUDs would go here */

3895
			if (dirty && !pud_write(orig_pud)) {
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
				ret = wp_huge_pud(&vmf, orig_pud);
				if (!(ret & VM_FAULT_FALLBACK))
					return ret;
			} else {
				huge_pud_set_accessed(&vmf, orig_pud);
				return 0;
			}
		}
	}

	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3907
	if (!vmf.pmd)
3908
		return VM_FAULT_OOM;
3909
	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3910
		ret = create_huge_pmd(&vmf);
3911 3912
		if (!(ret & VM_FAULT_FALLBACK))
			return ret;
3913
	} else {
3914
		pmd_t orig_pmd = *vmf.pmd;
3915

3916
		barrier();
3917 3918 3919 3920 3921 3922 3923
		if (unlikely(is_swap_pmd(orig_pmd))) {
			VM_BUG_ON(thp_migration_supported() &&
					  !is_pmd_migration_entry(orig_pmd));
			if (is_pmd_migration_entry(orig_pmd))
				pmd_migration_entry_wait(mm, vmf.pmd);
			return 0;
		}
3924
		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3925
			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3926
				return do_huge_pmd_numa_page(&vmf, orig_pmd);
3927

3928
			if (dirty && !pmd_write(orig_pmd)) {
3929
				ret = wp_huge_pmd(&vmf, orig_pmd);
3930 3931
				if (!(ret & VM_FAULT_FALLBACK))
					return ret;
3932
			} else {
3933
				huge_pmd_set_accessed(&vmf, orig_pmd);
3934
				return 0;
3935
			}
3936 3937 3938
		}
	}

3939
	return handle_pte_fault(&vmf);
Linus Torvalds's avatar
Linus Torvalds committed
3940 3941
}

3942 3943 3944 3945 3946 3947
/*
 * By the time we get here, we already hold the mm semaphore
 *
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
 */
3948
vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3949
		unsigned int flags)
3950
{
3951
	vm_fault_t ret;
3952 3953 3954 3955

	__set_current_state(TASK_RUNNING);

	count_vm_event(PGFAULT);
3956
	count_memcg_event_mm(vma->vm_mm, PGFAULT);
3957 3958 3959 3960

	/* do counter updates before entering really critical section. */
	check_sync_rss_stat(current);

3961 3962 3963 3964 3965
	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
					    flags & FAULT_FLAG_INSTRUCTION,
					    flags & FAULT_FLAG_REMOTE))
		return VM_FAULT_SIGSEGV;

3966 3967 3968 3969 3970
	/*
	 * Enable the memcg OOM handling for faults triggered in user
	 * space.  Kernel faults are handled more gracefully.
	 */
	if (flags & FAULT_FLAG_USER)
3971
		mem_cgroup_enter_user_fault();
3972

3973 3974 3975 3976
	if (unlikely(is_vm_hugetlb_page(vma)))
		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
	else
		ret = __handle_mm_fault(vma, address, flags);
3977

3978
	if (flags & FAULT_FLAG_USER) {
3979
		mem_cgroup_exit_user_fault();
Tobin C Harding's avatar
Tobin C Harding committed
3980 3981 3982 3983 3984 3985 3986 3987
		/*
		 * The task may have entered a memcg OOM situation but
		 * if the allocation error was handled gracefully (no
		 * VM_FAULT_OOM), there is no need to kill anything.
		 * Just clean up the OOM state peacefully.
		 */
		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
			mem_cgroup_oom_synchronize(false);
3988
	}
3989

3990 3991
	return ret;
}
3992
EXPORT_SYMBOL_GPL(handle_mm_fault);
3993

3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
#ifndef __PAGETABLE_P4D_FOLDED
/*
 * Allocate p4d page table.
 * We've already handled the fast-path in-line.
 */
int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
{
	p4d_t *new = p4d_alloc_one(mm, address);
	if (!new)
		return -ENOMEM;

	smp_wmb(); /* See comment in __pte_alloc */

	spin_lock(&mm->page_table_lock);
	if (pgd_present(*pgd))		/* Another has populated it */
		p4d_free(mm, new);
	else
		pgd_populate(mm, pgd, new);
	spin_unlock(&mm->page_table_lock);
	return 0;
}
#endif /* __PAGETABLE_P4D_FOLDED */

Linus Torvalds's avatar
Linus Torvalds committed
4017 4018 4019
#ifndef __PAGETABLE_PUD_FOLDED
/*
 * Allocate page upper directory.
4020
 * We've already handled the fast-path in-line.
Linus Torvalds's avatar
Linus Torvalds committed
4021
 */
4022
int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
Linus Torvalds's avatar
Linus Torvalds committed
4023
{
4024 4025
	pud_t *new = pud_alloc_one(mm, address);
	if (!new)
4026
		return -ENOMEM;
Linus Torvalds's avatar
Linus Torvalds committed
4027

4028 4029
	smp_wmb(); /* See comment in __pte_alloc */

4030
	spin_lock(&mm->page_table_lock);
4031
#ifndef __ARCH_HAS_5LEVEL_HACK
4032 4033
	if (!p4d_present(*p4d)) {
		mm_inc_nr_puds(mm);
4034
		p4d_populate(mm, p4d, new);
4035
	} else	/* Another has populated it */
4036
		pud_free(mm, new);
4037 4038 4039
#else
	if (!pgd_present(*p4d)) {
		mm_inc_nr_puds(mm);
4040
		pgd_populate(mm, p4d, new);
4041 4042
	} else	/* Another has populated it */
		pud_free(mm, new);
4043
#endif /* __ARCH_HAS_5LEVEL_HACK */
4044
	spin_unlock(&mm->page_table_lock);
4045
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
4046 4047 4048 4049 4050 4051
}
#endif /* __PAGETABLE_PUD_FOLDED */

#ifndef __PAGETABLE_PMD_FOLDED
/*
 * Allocate page middle directory.
4052
 * We've already handled the fast-path in-line.
Linus Torvalds's avatar
Linus Torvalds committed
4053
 */
4054
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
Linus Torvalds's avatar
Linus Torvalds committed
4055
{
4056
	spinlock_t *ptl;
4057 4058
	pmd_t *new = pmd_alloc_one(mm, address);
	if (!new)
4059
		return -ENOMEM;
Linus Torvalds's avatar
Linus Torvalds committed
4060

4061 4062
	smp_wmb(); /* See comment in __pte_alloc */

4063
	ptl = pud_lock(mm, pud);
Linus Torvalds's avatar
Linus Torvalds committed
4064
#ifndef __ARCH_HAS_4LEVEL_HACK
4065 4066
	if (!pud_present(*pud)) {
		mm_inc_nr_pmds(mm);
4067
		pud_populate(mm, pud, new);
4068
	} else	/* Another has populated it */
4069
		pmd_free(mm, new);
4070 4071 4072
#else
	if (!pgd_present(*pud)) {
		mm_inc_nr_pmds(mm);
4073
		pgd_populate(mm, pud, new);
4074 4075
	} else /* Another has populated it */
		pmd_free(mm, new);
Linus Torvalds's avatar
Linus Torvalds committed
4076
#endif /* __ARCH_HAS_4LEVEL_HACK */
4077
	spin_unlock(ptl);
4078
	return 0;
4079
}
Linus Torvalds's avatar
Linus Torvalds committed
4080 4081
#endif /* __PAGETABLE_PMD_FOLDED */

Ross Zwisler's avatar
Ross Zwisler committed
4082
static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4083
			    struct mmu_notifier_range *range,
4084
			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
Johannes Weiner's avatar
Johannes Weiner committed
4085 4086
{
	pgd_t *pgd;
4087
	p4d_t *p4d;
Johannes Weiner's avatar
Johannes Weiner committed
4088 4089 4090 4091 4092 4093 4094 4095
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep;

	pgd = pgd_offset(mm, address);
	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		goto out;

4096 4097 4098 4099 4100
	p4d = p4d_offset(pgd, address);
	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
		goto out;

	pud = pud_offset(p4d, address);
Johannes Weiner's avatar
Johannes Weiner committed
4101 4102 4103 4104
	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
		goto out;

	pmd = pmd_offset(pud, address);
4105
	VM_BUG_ON(pmd_trans_huge(*pmd));
Johannes Weiner's avatar
Johannes Weiner committed
4106

Ross Zwisler's avatar
Ross Zwisler committed
4107 4108 4109 4110
	if (pmd_huge(*pmd)) {
		if (!pmdpp)
			goto out;

4111
		if (range) {
4112
			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4113 4114
						NULL, mm, address & PMD_MASK,
						(address & PMD_MASK) + PMD_SIZE);
4115
			mmu_notifier_invalidate_range_start(range);
4116
		}
Ross Zwisler's avatar
Ross Zwisler committed
4117 4118 4119 4120 4121 4122
		*ptlp = pmd_lock(mm, pmd);
		if (pmd_huge(*pmd)) {
			*pmdpp = pmd;
			return 0;
		}
		spin_unlock(*ptlp);
4123 4124
		if (range)
			mmu_notifier_invalidate_range_end(range);
Ross Zwisler's avatar
Ross Zwisler committed
4125 4126 4127
	}

	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
Johannes Weiner's avatar
Johannes Weiner committed
4128 4129
		goto out;

4130
	if (range) {
4131
		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4132 4133
					address & PAGE_MASK,
					(address & PAGE_MASK) + PAGE_SIZE);
4134
		mmu_notifier_invalidate_range_start(range);
4135
	}
Johannes Weiner's avatar
Johannes Weiner committed
4136 4137 4138 4139 4140 4141 4142
	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
	if (!pte_present(*ptep))
		goto unlock;
	*ptepp = ptep;
	return 0;
unlock:
	pte_unmap_unlock(ptep, *ptlp);
4143 4144
	if (range)
		mmu_notifier_invalidate_range_end(range);
Johannes Weiner's avatar
Johannes Weiner committed
4145 4146 4147 4148
out:
	return -EINVAL;
}

4149 4150
static inline int follow_pte(struct mm_struct *mm, unsigned long address,
			     pte_t **ptepp, spinlock_t **ptlp)
4151 4152 4153 4154 4155
{
	int res;

	/* (void) is needed to make gcc happy */
	(void) __cond_lock(*ptlp,
4156
			   !(res = __follow_pte_pmd(mm, address, NULL,
4157
						    ptepp, NULL, ptlp)));
Ross Zwisler's avatar
Ross Zwisler committed
4158 4159 4160 4161
	return res;
}

int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4162 4163
		   struct mmu_notifier_range *range,
		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
Ross Zwisler's avatar
Ross Zwisler committed
4164 4165 4166 4167 4168
{
	int res;

	/* (void) is needed to make gcc happy */
	(void) __cond_lock(*ptlp,
4169
			   !(res = __follow_pte_pmd(mm, address, range,
4170
						    ptepp, pmdpp, ptlp)));
4171 4172
	return res;
}
Ross Zwisler's avatar
Ross Zwisler committed
4173
EXPORT_SYMBOL(follow_pte_pmd);
4174

Johannes Weiner's avatar
Johannes Weiner committed
4175 4176 4177 4178 4179 4180 4181 4182
/**
 * follow_pfn - look up PFN at a user virtual address
 * @vma: memory mapping
 * @address: user virtual address
 * @pfn: location to store found PFN
 *
 * Only IO mappings and raw PFN mappings are allowed.
 *
4183
 * Return: zero and the pfn at @pfn on success, -ve otherwise.
Johannes Weiner's avatar
Johannes Weiner committed
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
 */
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
	unsigned long *pfn)
{
	int ret = -EINVAL;
	spinlock_t *ptl;
	pte_t *ptep;

	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
		return ret;

	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
	if (ret)
		return ret;
	*pfn = pte_pfn(*ptep);
	pte_unmap_unlock(ptep, ptl);
	return 0;
}
EXPORT_SYMBOL(follow_pfn);

4204
#ifdef CONFIG_HAVE_IOREMAP_PROT
4205 4206 4207
int follow_phys(struct vm_area_struct *vma,
		unsigned long address, unsigned int flags,
		unsigned long *prot, resource_size_t *phys)
4208
{
4209
	int ret = -EINVAL;
4210 4211 4212
	pte_t *ptep, pte;
	spinlock_t *ptl;

4213 4214
	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
		goto out;
4215

4216
	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4217
		goto out;
4218
	pte = *ptep;
4219

4220
	if ((flags & FOLL_WRITE) && !pte_write(pte))
4221 4222 4223
		goto unlock;

	*prot = pgprot_val(pte_pgprot(pte));
4224
	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4225

4226
	ret = 0;
4227 4228 4229
unlock:
	pte_unmap_unlock(ptep, ptl);
out:
4230
	return ret;
4231 4232 4233 4234 4235 4236 4237
}

int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
			void *buf, int len, int write)
{
	resource_size_t phys_addr;
	unsigned long prot = 0;
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
4238
	void __iomem *maddr;
4239 4240
	int offset = addr & (PAGE_SIZE-1);

4241
	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4242 4243
		return -EINVAL;

4244
	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4245 4246 4247
	if (!maddr)
		return -ENOMEM;

4248 4249 4250 4251 4252 4253 4254 4255
	if (write)
		memcpy_toio(maddr + offset, buf, len);
	else
		memcpy_fromio(buf, maddr + offset, len);
	iounmap(maddr);

	return len;
}
4256
EXPORT_SYMBOL_GPL(generic_access_phys);
4257 4258
#endif

4259
/*
4260 4261
 * Access another process' address space as given in mm.  If non-NULL, use the
 * given task for page fault accounting.
4262
 */
4263
int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4264
		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4265 4266 4267
{
	struct vm_area_struct *vma;
	void *old_buf = buf;
4268
	int write = gup_flags & FOLL_WRITE;
4269 4270

	down_read(&mm->mmap_sem);
Simon Arlott's avatar
Simon Arlott committed
4271
	/* ignore errors, just check how much was successfully transferred */
4272 4273 4274
	while (len) {
		int bytes, ret, offset;
		void *maddr;
4275
		struct page *page = NULL;
4276

4277
		ret = get_user_pages_remote(tsk, mm, addr, 1,
4278
				gup_flags, &page, &vma, NULL);
4279
		if (ret <= 0) {
4280 4281 4282
#ifndef CONFIG_HAVE_IOREMAP_PROT
			break;
#else
4283 4284 4285 4286 4287
			/*
			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
			 * we can access using slightly different code.
			 */
			vma = find_vma(mm, addr);
4288
			if (!vma || vma->vm_start > addr)
4289 4290 4291 4292 4293 4294 4295
				break;
			if (vma->vm_ops && vma->vm_ops->access)
				ret = vma->vm_ops->access(vma, addr, buf,
							  len, write);
			if (ret <= 0)
				break;
			bytes = ret;
4296
#endif
4297
		} else {
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
			bytes = len;
			offset = addr & (PAGE_SIZE-1);
			if (bytes > PAGE_SIZE-offset)
				bytes = PAGE_SIZE-offset;

			maddr = kmap(page);
			if (write) {
				copy_to_user_page(vma, page, addr,
						  maddr + offset, buf, bytes);
				set_page_dirty_lock(page);
			} else {
				copy_from_user_page(vma, page, addr,
						    buf, maddr + offset, bytes);
			}
			kunmap(page);
4313
			put_page(page);
4314 4315 4316 4317 4318 4319 4320 4321 4322
		}
		len -= bytes;
		buf += bytes;
		addr += bytes;
	}
	up_read(&mm->mmap_sem);

	return buf - old_buf;
}
4323

4324
/**
4325
 * access_remote_vm - access another process' address space
4326 4327 4328 4329
 * @mm:		the mm_struct of the target address space
 * @addr:	start address to access
 * @buf:	source or destination buffer
 * @len:	number of bytes to transfer
4330
 * @gup_flags:	flags modifying lookup behaviour
4331 4332
 *
 * The caller must hold a reference on @mm.
4333 4334
 *
 * Return: number of bytes copied from source to destination.
4335 4336
 */
int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4337
		void *buf, int len, unsigned int gup_flags)
4338
{
4339
	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4340 4341
}

4342 4343 4344 4345 4346 4347
/*
 * Access another process' address space.
 * Source/target buffer must be kernel space,
 * Do not walk the page table directly, use get_user_pages
 */
int access_process_vm(struct task_struct *tsk, unsigned long addr,
4348
		void *buf, int len, unsigned int gup_flags)
4349 4350 4351 4352 4353 4354 4355 4356
{
	struct mm_struct *mm;
	int ret;

	mm = get_task_mm(tsk);
	if (!mm)
		return 0;

4357
	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4358

4359 4360 4361 4362
	mmput(mm);

	return ret;
}
4363
EXPORT_SYMBOL_GPL(access_process_vm);
4364

4365 4366 4367 4368 4369 4370 4371 4372
/*
 * Print the name of a VMA.
 */
void print_vma_addr(char *prefix, unsigned long ip)
{
	struct mm_struct *mm = current->mm;
	struct vm_area_struct *vma;

4373
	/*
4374
	 * we might be running from an atomic context so we cannot sleep
4375
	 */
4376
	if (!down_read_trylock(&mm->mmap_sem))
4377 4378
		return;

4379 4380 4381
	vma = find_vma(mm, ip);
	if (vma && vma->vm_file) {
		struct file *f = vma->vm_file;
4382
		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4383
		if (buf) {
Andy Shevchenko's avatar
Andy Shevchenko committed
4384
			char *p;
4385

4386
			p = file_path(f, buf, PAGE_SIZE);
4387 4388
			if (IS_ERR(p))
				p = "?";
Andy Shevchenko's avatar
Andy Shevchenko committed
4389
			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4390 4391 4392 4393 4394
					vma->vm_start,
					vma->vm_end - vma->vm_start);
			free_page((unsigned long)buf);
		}
	}
4395
	up_read(&mm->mmap_sem);
4396
}
4397

4398
#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4399
void __might_fault(const char *file, int line)
4400
{
4401 4402 4403 4404 4405 4406
	/*
	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
	 * holding the mmap_sem, this is safe because kernel memory doesn't
	 * get paged out, therefore we'll never actually fault, and the
	 * below annotations will generate false positives.
	 */
Al Viro's avatar
Al Viro committed
4407
	if (uaccess_kernel())
4408
		return;
4409
	if (pagefault_disabled())
4410
		return;
4411 4412
	__might_sleep(file, line, 0);
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4413
	if (current->mm)
4414
		might_lock_read(&current->mm->mmap_sem);
4415
#endif
4416
}
4417
EXPORT_SYMBOL(__might_fault);
4418
#endif
Andrea Arcangeli's avatar
Andrea Arcangeli committed
4419 4420

#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4421 4422 4423 4424 4425 4426 4427 4428 4429
/*
 * Process all subpages of the specified huge page with the specified
 * operation.  The target subpage will be processed last to keep its
 * cache lines hot.
 */
static inline void process_huge_page(
	unsigned long addr_hint, unsigned int pages_per_huge_page,
	void (*process_subpage)(unsigned long addr, int idx, void *arg),
	void *arg)
Andrea Arcangeli's avatar
Andrea Arcangeli committed
4430
{
4431 4432 4433
	int i, n, base, l;
	unsigned long addr = addr_hint &
		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
Andrea Arcangeli's avatar
Andrea Arcangeli committed
4434

4435
	/* Process target subpage last to keep its cache lines hot */
Andrea Arcangeli's avatar
Andrea Arcangeli committed
4436
	might_sleep();
4437 4438
	n = (addr_hint - addr) / PAGE_SIZE;
	if (2 * n <= pages_per_huge_page) {
4439
		/* If target subpage in first half of huge page */
4440 4441
		base = 0;
		l = n;
4442
		/* Process subpages at the end of huge page */
4443 4444
		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
			cond_resched();
4445
			process_subpage(addr + i * PAGE_SIZE, i, arg);
4446 4447
		}
	} else {
4448
		/* If target subpage in second half of huge page */
4449 4450
		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
		l = pages_per_huge_page - n;
4451
		/* Process subpages at the begin of huge page */
4452 4453
		for (i = 0; i < base; i++) {
			cond_resched();
4454
			process_subpage(addr + i * PAGE_SIZE, i, arg);
4455 4456 4457
		}
	}
	/*
4458 4459
	 * Process remaining subpages in left-right-left-right pattern
	 * towards the target subpage
4460 4461 4462 4463 4464 4465
	 */
	for (i = 0; i < l; i++) {
		int left_idx = base + i;
		int right_idx = base + 2 * l - 1 - i;

		cond_resched();
4466
		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
Andrea Arcangeli's avatar
Andrea Arcangeli committed
4467
		cond_resched();
4468
		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
Andrea Arcangeli's avatar
Andrea Arcangeli committed
4469 4470 4471
	}
}

4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
static void clear_gigantic_page(struct page *page,
				unsigned long addr,
				unsigned int pages_per_huge_page)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < pages_per_huge_page;
	     i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}

static void clear_subpage(unsigned long addr, int idx, void *arg)
{
	struct page *page = arg;

	clear_user_highpage(page + idx, addr);
}

void clear_huge_page(struct page *page,
		     unsigned long addr_hint, unsigned int pages_per_huge_page)
{
	unsigned long addr = addr_hint &
		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);

	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
		clear_gigantic_page(page, addr, pages_per_huge_page);
		return;
	}

	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
}

Andrea Arcangeli's avatar
Andrea Arcangeli committed
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
static void copy_user_gigantic_page(struct page *dst, struct page *src,
				    unsigned long addr,
				    struct vm_area_struct *vma,
				    unsigned int pages_per_huge_page)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page; ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
struct copy_subpage_arg {
	struct page *dst;
	struct page *src;
	struct vm_area_struct *vma;
};

static void copy_subpage(unsigned long addr, int idx, void *arg)
{
	struct copy_subpage_arg *copy_arg = arg;

	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
			   addr, copy_arg->vma);
}

Andrea Arcangeli's avatar
Andrea Arcangeli committed
4541
void copy_user_huge_page(struct page *dst, struct page *src,
4542
			 unsigned long addr_hint, struct vm_area_struct *vma,
Andrea Arcangeli's avatar
Andrea Arcangeli committed
4543 4544
			 unsigned int pages_per_huge_page)
{
4545 4546 4547 4548 4549 4550 4551
	unsigned long addr = addr_hint &
		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
	struct copy_subpage_arg arg = {
		.dst = dst,
		.src = src,
		.vma = vma,
	};
Andrea Arcangeli's avatar
Andrea Arcangeli committed
4552 4553 4554 4555 4556 4557 4558

	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
		copy_user_gigantic_page(dst, src, addr, vma,
					pages_per_huge_page);
		return;
	}

4559
	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
Andrea Arcangeli's avatar
Andrea Arcangeli committed
4560
}
4561 4562 4563

long copy_huge_page_from_user(struct page *dst_page,
				const void __user *usr_src,
4564 4565
				unsigned int pages_per_huge_page,
				bool allow_pagefault)
4566 4567 4568 4569 4570 4571 4572
{
	void *src = (void *)usr_src;
	void *page_kaddr;
	unsigned long i, rc = 0;
	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;

	for (i = 0; i < pages_per_huge_page; i++) {
4573 4574 4575 4576
		if (allow_pagefault)
			page_kaddr = kmap(dst_page + i);
		else
			page_kaddr = kmap_atomic(dst_page + i);
4577 4578 4579
		rc = copy_from_user(page_kaddr,
				(const void __user *)(src + i * PAGE_SIZE),
				PAGE_SIZE);
4580 4581 4582 4583
		if (allow_pagefault)
			kunmap(dst_page + i);
		else
			kunmap_atomic(page_kaddr);
4584 4585 4586 4587 4588 4589 4590 4591 4592

		ret_val -= (PAGE_SIZE - rc);
		if (rc)
			break;

		cond_resched();
	}
	return ret_val;
}
Andrea Arcangeli's avatar
Andrea Arcangeli committed
4593
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4594

4595
#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4596 4597 4598 4599 4600 4601 4602 4603 4604

static struct kmem_cache *page_ptl_cachep;

void __init ptlock_cache_init(void)
{
	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
			SLAB_PANIC, NULL);
}

4605
bool ptlock_alloc(struct page *page)
4606 4607 4608
{
	spinlock_t *ptl;

4609
	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4610 4611
	if (!ptl)
		return false;
4612
	page->ptl = ptl;
4613 4614 4615
	return true;
}

4616
void ptlock_free(struct page *page)
4617
{
4618
	kmem_cache_free(page_ptl_cachep, page->ptl);
4619 4620
}
#endif