clk.c 78.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * Standard functionality for the common clock API.  See Documentation/clk.txt
 */

Stephen Boyd's avatar
Stephen Boyd committed
12
#include <linux/clk.h>
13
#include <linux/clk-provider.h>
14
#include <linux/clk/clk-conf.h>
15 16 17 18 19 20
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/slab.h>
21
#include <linux/of.h>
22
#include <linux/device.h>
23
#include <linux/init.h>
24
#include <linux/sched.h>
25
#include <linux/clkdev.h>
26

27 28
#include "clk.h"

29 30 31
static DEFINE_SPINLOCK(enable_lock);
static DEFINE_MUTEX(prepare_lock);

32 33 34 35 36 37
static struct task_struct *prepare_owner;
static struct task_struct *enable_owner;

static int prepare_refcnt;
static int enable_refcnt;

38 39 40 41
static HLIST_HEAD(clk_root_list);
static HLIST_HEAD(clk_orphan_list);
static LIST_HEAD(clk_notifier_list);

42 43 44 45 46 47 48 49 50 51 52 53 54
/***    private data structures    ***/

struct clk_core {
	const char		*name;
	const struct clk_ops	*ops;
	struct clk_hw		*hw;
	struct module		*owner;
	struct clk_core		*parent;
	const char		**parent_names;
	struct clk_core		**parents;
	u8			num_parents;
	u8			new_parent_index;
	unsigned long		rate;
55
	unsigned long		req_rate;
56 57 58 59
	unsigned long		new_rate;
	struct clk_core		*new_parent;
	struct clk_core		*new_child;
	unsigned long		flags;
60
	bool			orphan;
61 62
	unsigned int		enable_count;
	unsigned int		prepare_count;
63 64
	unsigned long		min_rate;
	unsigned long		max_rate;
65 66 67 68
	unsigned long		accuracy;
	int			phase;
	struct hlist_head	children;
	struct hlist_node	child_node;
69
	struct hlist_head	clks;
70 71 72
	unsigned int		notifier_count;
#ifdef CONFIG_DEBUG_FS
	struct dentry		*dentry;
73
	struct hlist_node	debug_node;
74 75 76 77
#endif
	struct kref		ref;
};

78 79 80
#define CREATE_TRACE_POINTS
#include <trace/events/clk.h>

81 82 83 84
struct clk {
	struct clk_core	*core;
	const char *dev_id;
	const char *con_id;
85 86
	unsigned long min_rate;
	unsigned long max_rate;
87
	struct hlist_node clks_node;
88 89
};

90 91 92
/***           locking             ***/
static void clk_prepare_lock(void)
{
93 94 95 96 97 98 99 100 101 102 103
	if (!mutex_trylock(&prepare_lock)) {
		if (prepare_owner == current) {
			prepare_refcnt++;
			return;
		}
		mutex_lock(&prepare_lock);
	}
	WARN_ON_ONCE(prepare_owner != NULL);
	WARN_ON_ONCE(prepare_refcnt != 0);
	prepare_owner = current;
	prepare_refcnt = 1;
104 105 106 107
}

static void clk_prepare_unlock(void)
{
108 109 110 111 112 113
	WARN_ON_ONCE(prepare_owner != current);
	WARN_ON_ONCE(prepare_refcnt == 0);

	if (--prepare_refcnt)
		return;
	prepare_owner = NULL;
114 115 116 117
	mutex_unlock(&prepare_lock);
}

static unsigned long clk_enable_lock(void)
118
	__acquires(enable_lock)
119 120
{
	unsigned long flags;
121 122 123 124

	if (!spin_trylock_irqsave(&enable_lock, flags)) {
		if (enable_owner == current) {
			enable_refcnt++;
125
			__acquire(enable_lock);
126 127 128 129 130 131 132 133
			return flags;
		}
		spin_lock_irqsave(&enable_lock, flags);
	}
	WARN_ON_ONCE(enable_owner != NULL);
	WARN_ON_ONCE(enable_refcnt != 0);
	enable_owner = current;
	enable_refcnt = 1;
134 135 136 137
	return flags;
}

static void clk_enable_unlock(unsigned long flags)
138
	__releases(enable_lock)
139
{
140 141 142
	WARN_ON_ONCE(enable_owner != current);
	WARN_ON_ONCE(enable_refcnt == 0);

143 144
	if (--enable_refcnt) {
		__release(enable_lock);
145
		return;
146
	}
147
	enable_owner = NULL;
148 149 150
	spin_unlock_irqrestore(&enable_lock, flags);
}

151 152 153 154 155 156 157 158
static bool clk_core_is_prepared(struct clk_core *core)
{
	/*
	 * .is_prepared is optional for clocks that can prepare
	 * fall back to software usage counter if it is missing
	 */
	if (!core->ops->is_prepared)
		return core->prepare_count;
159

160 161
	return core->ops->is_prepared(core->hw);
}
162

163 164 165 166 167 168 169 170
static bool clk_core_is_enabled(struct clk_core *core)
{
	/*
	 * .is_enabled is only mandatory for clocks that gate
	 * fall back to software usage counter if .is_enabled is missing
	 */
	if (!core->ops->is_enabled)
		return core->enable_count;
Sachin Kamat's avatar
Sachin Kamat committed
171

172 173
	return core->ops->is_enabled(core->hw);
}
Sachin Kamat's avatar
Sachin Kamat committed
174

175
static void clk_unprepare_unused_subtree(struct clk_core *core)
176
{
177 178 179 180 181 182 183 184
	struct clk_core *child;

	lockdep_assert_held(&prepare_lock);

	hlist_for_each_entry(child, &core->children, child_node)
		clk_unprepare_unused_subtree(child);

	if (core->prepare_count)
185 186
		return;

187 188 189 190 191 192 193 194 195 196 197
	if (core->flags & CLK_IGNORE_UNUSED)
		return;

	if (clk_core_is_prepared(core)) {
		trace_clk_unprepare(core);
		if (core->ops->unprepare_unused)
			core->ops->unprepare_unused(core->hw);
		else if (core->ops->unprepare)
			core->ops->unprepare(core->hw);
		trace_clk_unprepare_complete(core);
	}
198 199
}

200
static void clk_disable_unused_subtree(struct clk_core *core)
201
{
202
	struct clk_core *child;
203
	unsigned long flags;
204

205
	lockdep_assert_held(&prepare_lock);
206

207 208
	hlist_for_each_entry(child, &core->children, child_node)
		clk_disable_unused_subtree(child);
209

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
	flags = clk_enable_lock();

	if (core->enable_count)
		goto unlock_out;

	if (core->flags & CLK_IGNORE_UNUSED)
		goto unlock_out;

	/*
	 * some gate clocks have special needs during the disable-unused
	 * sequence.  call .disable_unused if available, otherwise fall
	 * back to .disable
	 */
	if (clk_core_is_enabled(core)) {
		trace_clk_disable(core);
		if (core->ops->disable_unused)
			core->ops->disable_unused(core->hw);
		else if (core->ops->disable)
			core->ops->disable(core->hw);
		trace_clk_disable_complete(core);
	}

unlock_out:
	clk_enable_unlock(flags);
234 235
}

236 237
static bool clk_ignore_unused;
static int __init clk_ignore_unused_setup(char *__unused)
238
{
239 240 241 242
	clk_ignore_unused = true;
	return 1;
}
__setup("clk_ignore_unused", clk_ignore_unused_setup);
243

244 245 246 247 248 249 250 251
static int clk_disable_unused(void)
{
	struct clk_core *core;

	if (clk_ignore_unused) {
		pr_warn("clk: Not disabling unused clocks\n");
		return 0;
	}
252

253
	clk_prepare_lock();
254

255 256 257 258 259 260 261 262 263 264 265
	hlist_for_each_entry(core, &clk_root_list, child_node)
		clk_disable_unused_subtree(core);

	hlist_for_each_entry(core, &clk_orphan_list, child_node)
		clk_disable_unused_subtree(core);

	hlist_for_each_entry(core, &clk_root_list, child_node)
		clk_unprepare_unused_subtree(core);

	hlist_for_each_entry(core, &clk_orphan_list, child_node)
		clk_unprepare_unused_subtree(core);
266

267
	clk_prepare_unlock();
268 269 270

	return 0;
}
271
late_initcall_sync(clk_disable_unused);
272

273
/***    helper functions   ***/
274

275
const char *__clk_get_name(const struct clk *clk)
276
{
277
	return !clk ? NULL : clk->core->name;
278
}
279
EXPORT_SYMBOL_GPL(__clk_get_name);
280

281
const char *clk_hw_get_name(const struct clk_hw *hw)
282 283 284 285 286
{
	return hw->core->name;
}
EXPORT_SYMBOL_GPL(clk_hw_get_name);

287 288 289 290 291
struct clk_hw *__clk_get_hw(struct clk *clk)
{
	return !clk ? NULL : clk->core->hw;
}
EXPORT_SYMBOL_GPL(__clk_get_hw);
292

293
unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
294 295 296 297 298
{
	return hw->core->num_parents;
}
EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);

299
struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
300 301 302 303 304
{
	return hw->core->parent ? hw->core->parent->hw : NULL;
}
EXPORT_SYMBOL_GPL(clk_hw_get_parent);

305 306
static struct clk_core *__clk_lookup_subtree(const char *name,
					     struct clk_core *core)
307
{
308
	struct clk_core *child;
309
	struct clk_core *ret;
310

311 312
	if (!strcmp(core->name, name))
		return core;
313

314 315 316 317
	hlist_for_each_entry(child, &core->children, child_node) {
		ret = __clk_lookup_subtree(name, child);
		if (ret)
			return ret;
318 319
	}

320
	return NULL;
321 322
}

323
static struct clk_core *clk_core_lookup(const char *name)
324
{
325 326
	struct clk_core *root_clk;
	struct clk_core *ret;
327

328 329
	if (!name)
		return NULL;
330

331 332 333 334 335
	/* search the 'proper' clk tree first */
	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
		ret = __clk_lookup_subtree(name, root_clk);
		if (ret)
			return ret;
336 337
	}

338 339 340 341 342 343
	/* if not found, then search the orphan tree */
	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
		ret = __clk_lookup_subtree(name, root_clk);
		if (ret)
			return ret;
	}
344

345
	return NULL;
346 347
}

348 349
static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
							 u8 index)
350
{
351 352 353 354 355 356 357 358 359
	if (!core || index >= core->num_parents)
		return NULL;
	else if (!core->parents)
		return clk_core_lookup(core->parent_names[index]);
	else if (!core->parents[index])
		return core->parents[index] =
			clk_core_lookup(core->parent_names[index]);
	else
		return core->parents[index];
360 361
}

362 363
struct clk_hw *
clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
364 365 366 367 368 369 370 371 372
{
	struct clk_core *parent;

	parent = clk_core_get_parent_by_index(hw->core, index);

	return !parent ? NULL : parent->hw;
}
EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);

373 374 375 376
unsigned int __clk_get_enable_count(struct clk *clk)
{
	return !clk ? 0 : clk->core->enable_count;
}
377

378 379 380
static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
{
	unsigned long ret;
381

382 383 384 385
	if (!core) {
		ret = 0;
		goto out;
	}
386

387
	ret = core->rate;
388

389 390
	if (core->flags & CLK_IS_ROOT)
		goto out;
391

392 393
	if (!core->parent)
		ret = 0;
394 395 396 397 398

out:
	return ret;
}

399
unsigned long clk_hw_get_rate(const struct clk_hw *hw)
400 401 402 403 404
{
	return clk_core_get_rate_nolock(hw->core);
}
EXPORT_SYMBOL_GPL(clk_hw_get_rate);

405 406 407 408
static unsigned long __clk_get_accuracy(struct clk_core *core)
{
	if (!core)
		return 0;
409

410
	return core->accuracy;
411 412
}

413
unsigned long __clk_get_flags(struct clk *clk)
414
{
415
	return !clk ? 0 : clk->core->flags;
416
}
417
EXPORT_SYMBOL_GPL(__clk_get_flags);
418

419
unsigned long clk_hw_get_flags(const struct clk_hw *hw)
420 421 422 423 424
{
	return hw->core->flags;
}
EXPORT_SYMBOL_GPL(clk_hw_get_flags);

425
bool clk_hw_is_prepared(const struct clk_hw *hw)
426 427 428 429
{
	return clk_core_is_prepared(hw->core);
}

430 431 432 433 434
bool clk_hw_is_enabled(const struct clk_hw *hw)
{
	return clk_core_is_enabled(hw->core);
}

435
bool __clk_is_enabled(struct clk *clk)
436
{
437 438
	if (!clk)
		return false;
439

440 441 442
	return clk_core_is_enabled(clk->core);
}
EXPORT_SYMBOL_GPL(__clk_is_enabled);
443

444 445 446 447 448
static bool mux_is_better_rate(unsigned long rate, unsigned long now,
			   unsigned long best, unsigned long flags)
{
	if (flags & CLK_MUX_ROUND_CLOSEST)
		return abs(now - rate) < abs(best - rate);
449

450 451
	return now <= rate && now > best;
}
452

453 454
static int
clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
455 456 457
			     unsigned long flags)
{
	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
458 459 460
	int i, num_parents, ret;
	unsigned long best = 0;
	struct clk_rate_request parent_req = *req;
461

462 463 464
	/* if NO_REPARENT flag set, pass through to current parent */
	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
		parent = core->parent;
465 466 467 468 469 470 471 472
		if (core->flags & CLK_SET_RATE_PARENT) {
			ret = __clk_determine_rate(parent ? parent->hw : NULL,
						   &parent_req);
			if (ret)
				return ret;

			best = parent_req.rate;
		} else if (parent) {
473
			best = clk_core_get_rate_nolock(parent);
474
		} else {
475
			best = clk_core_get_rate_nolock(core);
476 477
		}

478 479
		goto out;
	}
480

481 482 483 484 485 486
	/* find the parent that can provide the fastest rate <= rate */
	num_parents = core->num_parents;
	for (i = 0; i < num_parents; i++) {
		parent = clk_core_get_parent_by_index(core, i);
		if (!parent)
			continue;
487 488 489 490 491 492 493 494 495 496 497 498

		if (core->flags & CLK_SET_RATE_PARENT) {
			parent_req = *req;
			ret = __clk_determine_rate(parent->hw, &parent_req);
			if (ret)
				continue;
		} else {
			parent_req.rate = clk_core_get_rate_nolock(parent);
		}

		if (mux_is_better_rate(req->rate, parent_req.rate,
				       best, flags)) {
499
			best_parent = parent;
500
			best = parent_req.rate;
501 502
		}
	}
503

504 505 506
	if (!best_parent)
		return -EINVAL;

507 508
out:
	if (best_parent)
509 510 511
		req->best_parent_hw = best_parent->hw;
	req->best_parent_rate = best;
	req->rate = best;
512

513
	return 0;
514
}
515 516

struct clk *__clk_lookup(const char *name)
517
{
518 519 520
	struct clk_core *core = clk_core_lookup(name);

	return !core ? NULL : core->hw->clk;
521
}
522

523 524 525
static void clk_core_get_boundaries(struct clk_core *core,
				    unsigned long *min_rate,
				    unsigned long *max_rate)
526
{
527
	struct clk *clk_user;
528

529 530
	*min_rate = core->min_rate;
	*max_rate = core->max_rate;
531

532 533
	hlist_for_each_entry(clk_user, &core->clks, clks_node)
		*min_rate = max(*min_rate, clk_user->min_rate);
534

535 536 537
	hlist_for_each_entry(clk_user, &core->clks, clks_node)
		*max_rate = min(*max_rate, clk_user->max_rate);
}
538

539 540 541 542 543 544 545 546
void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
			   unsigned long max_rate)
{
	hw->core->min_rate = min_rate;
	hw->core->max_rate = max_rate;
}
EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);

547 548 549 550 551
/*
 * Helper for finding best parent to provide a given frequency. This can be used
 * directly as a determine_rate callback (e.g. for a mux), or from a more
 * complex clock that may combine a mux with other operations.
 */
552 553
int __clk_mux_determine_rate(struct clk_hw *hw,
			     struct clk_rate_request *req)
554
{
555
	return clk_mux_determine_rate_flags(hw, req, 0);
556
}
557
EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
558

559 560
int __clk_mux_determine_rate_closest(struct clk_hw *hw,
				     struct clk_rate_request *req)
561
{
562
	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
563 564
}
EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
565

566
/***        clk api        ***/
567

568 569
static void clk_core_unprepare(struct clk_core *core)
{
570 571
	lockdep_assert_held(&prepare_lock);

572 573
	if (!core)
		return;
574

575 576
	if (WARN_ON(core->prepare_count == 0))
		return;
577

578 579
	if (--core->prepare_count > 0)
		return;
580

581
	WARN_ON(core->enable_count > 0);
582

583
	trace_clk_unprepare(core);
584

585 586 587 588 589
	if (core->ops->unprepare)
		core->ops->unprepare(core->hw);

	trace_clk_unprepare_complete(core);
	clk_core_unprepare(core->parent);
590 591
}

592 593 594 595 596 597 598 599 600 601 602 603
/**
 * clk_unprepare - undo preparation of a clock source
 * @clk: the clk being unprepared
 *
 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 * if the operation may sleep.  One example is a clk which is accessed over
 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 */
void clk_unprepare(struct clk *clk)
604
{
605 606 607 608 609 610
	if (IS_ERR_OR_NULL(clk))
		return;

	clk_prepare_lock();
	clk_core_unprepare(clk->core);
	clk_prepare_unlock();
611
}
612
EXPORT_SYMBOL_GPL(clk_unprepare);
613

614
static int clk_core_prepare(struct clk_core *core)
615
{
616
	int ret = 0;
617

618 619
	lockdep_assert_held(&prepare_lock);

620
	if (!core)
621 622
		return 0;

623 624 625 626
	if (core->prepare_count == 0) {
		ret = clk_core_prepare(core->parent);
		if (ret)
			return ret;
627

628
		trace_clk_prepare(core);
629

630 631
		if (core->ops->prepare)
			ret = core->ops->prepare(core->hw);
632

633
		trace_clk_prepare_complete(core);
634

635 636 637 638 639
		if (ret) {
			clk_core_unprepare(core->parent);
			return ret;
		}
	}
640

641
	core->prepare_count++;
642 643 644 645

	return 0;
}

646 647 648 649 650 651 652 653 654 655 656 657 658
/**
 * clk_prepare - prepare a clock source
 * @clk: the clk being prepared
 *
 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
 * operation may sleep.  One example is a clk which is accessed over I2c.  In
 * the complex case a clk ungate operation may require a fast and a slow part.
 * It is this reason that clk_prepare and clk_enable are not mutually
 * exclusive.  In fact clk_prepare must be called before clk_enable.
 * Returns 0 on success, -EERROR otherwise.
 */
int clk_prepare(struct clk *clk)
659
{
660
	int ret;
661

662 663
	if (!clk)
		return 0;
664

665 666 667 668 669
	clk_prepare_lock();
	ret = clk_core_prepare(clk->core);
	clk_prepare_unlock();

	return ret;
670
}
671
EXPORT_SYMBOL_GPL(clk_prepare);
672

673
static void clk_core_disable(struct clk_core *core)
674
{
675 676
	lockdep_assert_held(&enable_lock);

677 678
	if (!core)
		return;
679

680 681
	if (WARN_ON(core->enable_count == 0))
		return;
682

683 684
	if (--core->enable_count > 0)
		return;
685

686
	trace_clk_disable(core);
687

688 689
	if (core->ops->disable)
		core->ops->disable(core->hw);
690

691
	trace_clk_disable_complete(core);
692

693
	clk_core_disable(core->parent);
694
}
James Hogan's avatar
James Hogan committed
695

696 697 698 699 700 701 702 703 704 705 706 707 708
/**
 * clk_disable - gate a clock
 * @clk: the clk being gated
 *
 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
 * clk if the operation is fast and will never sleep.  One example is a
 * SoC-internal clk which is controlled via simple register writes.  In the
 * complex case a clk gate operation may require a fast and a slow part.  It is
 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
 * In fact clk_disable must be called before clk_unprepare.
 */
void clk_disable(struct clk *clk)
709
{
710 711 712 713 714 715 716 717
	unsigned long flags;

	if (IS_ERR_OR_NULL(clk))
		return;

	flags = clk_enable_lock();
	clk_core_disable(clk->core);
	clk_enable_unlock(flags);
718
}
719
EXPORT_SYMBOL_GPL(clk_disable);
720

721
static int clk_core_enable(struct clk_core *core)
722
{
723
	int ret = 0;
724

725 726
	lockdep_assert_held(&enable_lock);

727 728
	if (!core)
		return 0;
729

730 731
	if (WARN_ON(core->prepare_count == 0))
		return -ESHUTDOWN;
732

733 734
	if (core->enable_count == 0) {
		ret = clk_core_enable(core->parent);
735

736 737
		if (ret)
			return ret;
738

739
		trace_clk_enable(core);
740

741 742
		if (core->ops->enable)
			ret = core->ops->enable(core->hw);
743

744 745 746 747 748 749 750 751 752 753
		trace_clk_enable_complete(core);

		if (ret) {
			clk_core_disable(core->parent);
			return ret;
		}
	}

	core->enable_count++;
	return 0;
754
}
755

756 757 758 759 760 761 762 763 764 765 766 767 768 769
/**
 * clk_enable - ungate a clock
 * @clk: the clk being ungated
 *
 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
 * if the operation will never sleep.  One example is a SoC-internal clk which
 * is controlled via simple register writes.  In the complex case a clk ungate
 * operation may require a fast and a slow part.  It is this reason that
 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
 * must be called before clk_enable.  Returns 0 on success, -EERROR
 * otherwise.
 */
int clk_enable(struct clk *clk)
770
{
771 772 773 774
	unsigned long flags;
	int ret;

	if (!clk)
775 776
		return 0;

777 778 779
	flags = clk_enable_lock();
	ret = clk_core_enable(clk->core);
	clk_enable_unlock(flags);
780

781
	return ret;
782
}
783
EXPORT_SYMBOL_GPL(clk_enable);
784

785 786
static int clk_core_round_rate_nolock(struct clk_core *core,
				      struct clk_rate_request *req)
787
{
788
	struct clk_core *parent;
789
	long rate;
790 791

	lockdep_assert_held(&prepare_lock);
792

793
	if (!core)
794
		return 0;
795

796
	parent = core->parent;
797 798 799 800 801 802 803
	if (parent) {
		req->best_parent_hw = parent->hw;
		req->best_parent_rate = parent->rate;
	} else {
		req->best_parent_hw = NULL;
		req->best_parent_rate = 0;
	}
804

805
	if (core->ops->determine_rate) {
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
		return core->ops->determine_rate(core->hw, req);
	} else if (core->ops->round_rate) {
		rate = core->ops->round_rate(core->hw, req->rate,
					     &req->best_parent_rate);
		if (rate < 0)
			return rate;

		req->rate = rate;
	} else if (core->flags & CLK_SET_RATE_PARENT) {
		return clk_core_round_rate_nolock(parent, req);
	} else {
		req->rate = core->rate;
	}

	return 0;
821 822
}

823 824 825 826 827 828 829
/**
 * __clk_determine_rate - get the closest rate actually supported by a clock
 * @hw: determine the rate of this clock
 * @rate: target rate
 * @min_rate: returned rate must be greater than this rate
 * @max_rate: returned rate must be less than this rate
 *
830
 * Useful for clk_ops such as .set_rate and .determine_rate.
831
 */
832
int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
833
{
834 835
	if (!hw) {
		req->rate = 0;
836
		return 0;
837
	}
838

839
	return clk_core_round_rate_nolock(hw->core, req);
840
}
841
EXPORT_SYMBOL_GPL(__clk_determine_rate);
842

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
{
	int ret;
	struct clk_rate_request req;

	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
	req.rate = rate;

	ret = clk_core_round_rate_nolock(hw->core, &req);
	if (ret)
		return 0;

	return req.rate;
}
EXPORT_SYMBOL_GPL(clk_hw_round_rate);

859 860 861 862 863 864 865 866 867 868
/**
 * clk_round_rate - round the given rate for a clk
 * @clk: the clk for which we are rounding a rate
 * @rate: the rate which is to be rounded
 *
 * Takes in a rate as input and rounds it to a rate that the clk can actually
 * use which is then returned.  If clk doesn't support round_rate operation
 * then the parent rate is returned.
 */
long clk_round_rate(struct clk *clk, unsigned long rate)
869
{
870 871
	struct clk_rate_request req;
	int ret;
872

873
	if (!clk)
874
		return 0;
875

876
	clk_prepare_lock();
877 878 879 880 881

	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
	req.rate = rate;

	ret = clk_core_round_rate_nolock(clk->core, &req);
882 883
	clk_prepare_unlock();

884 885 886 887
	if (ret)
		return ret;

	return req.rate;
888
}
889
EXPORT_SYMBOL_GPL(clk_round_rate);
890

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
/**
 * __clk_notify - call clk notifier chain
 * @core: clk that is changing rate
 * @msg: clk notifier type (see include/linux/clk.h)
 * @old_rate: old clk rate
 * @new_rate: new clk rate
 *
 * Triggers a notifier call chain on the clk rate-change notification
 * for 'clk'.  Passes a pointer to the struct clk and the previous
 * and current rates to the notifier callback.  Intended to be called by
 * internal clock code only.  Returns NOTIFY_DONE from the last driver
 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
 * a driver returns that.
 */
static int __clk_notify(struct clk_core *core, unsigned long msg,
		unsigned long old_rate, unsigned long new_rate)
907
{
908 909 910
	struct clk_notifier *cn;
	struct clk_notifier_data cnd;
	int ret = NOTIFY_DONE;
911

912 913
	cnd.old_rate = old_rate;
	cnd.new_rate = new_rate;
914

915 916 917 918 919 920
	list_for_each_entry(cn, &clk_notifier_list, node) {
		if (cn->clk->core == core) {
			cnd.clk = cn->clk;
			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
					&cnd);
		}
921 922
	}

923
	return ret;
924 925
}

926 927 928 929 930 931
/**
 * __clk_recalc_accuracies
 * @core: first clk in the subtree
 *
 * Walks the subtree of clks starting with clk and recalculates accuracies as
 * it goes.  Note that if a clk does not implement the .recalc_accuracy
932
 * callback then it is assumed that the clock will take on the accuracy of its
933 934 935
 * parent.
 */
static void __clk_recalc_accuracies(struct clk_core *core)
936
{
937 938
	unsigned long parent_accuracy = 0;
	struct clk_core *child;
939

940
	lockdep_assert_held(&prepare_lock);
941

942 943
	if (core->parent)
		parent_accuracy = core->parent->accuracy;
944

945 946 947 948 949
	if (core->ops->recalc_accuracy)
		core->accuracy = core->ops->recalc_accuracy(core->hw,
							  parent_accuracy);
	else
		core->accuracy = parent_accuracy;
950

951 952
	hlist_for_each_entry(child, &core->children, child_node)
		__clk_recalc_accuracies(child);
953 954
}

955
static long clk_core_get_accuracy(struct clk_core *core)
956
{
957
	unsigned long accuracy;
958

959 960 961
	clk_prepare_lock();
	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
		__clk_recalc_accuracies(core);
962

963 964
	accuracy = __clk_get_accuracy(core);
	clk_prepare_unlock();
965

966
	return accuracy;
967
}
968

969 970 971 972 973 974 975 976 977 978
/**
 * clk_get_accuracy - return the accuracy of clk
 * @clk: the clk whose accuracy is being returned
 *
 * Simply returns the cached accuracy of the clk, unless
 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
 * issued.
 * If clk is NULL then returns 0.
 */
long clk_get_accuracy(struct clk *clk)
979
{
980 981
	if (!clk)
		return 0;
982

983
	return clk_core_get_accuracy(clk->core);
984
}
985
EXPORT_SYMBOL_GPL(clk_get_accuracy);
986

987 988
static unsigned long clk_recalc(struct clk_core *core,
				unsigned long parent_rate)
989
{
990 991 992
	if (core->ops->recalc_rate)
		return core->ops->recalc_rate(core->hw, parent_rate);
	return parent_rate;
993 994
}

995 996 997 998 999 1000 1001 1002 1003 1004 1005
/**
 * __clk_recalc_rates
 * @core: first clk in the subtree
 * @msg: notification type (see include/linux/clk.h)
 *
 * Walks the subtree of clks starting with clk and recalculates rates as it
 * goes.  Note that if a clk does not implement the .recalc_rate callback then
 * it is assumed that the clock will take on the rate of its parent.
 *
 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
 * if necessary.
1006
 */
1007
static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1008
{
1009 1010 1011
	unsigned long old_rate;
	unsigned long parent_rate = 0;
	struct clk_core *child;
1012

1013
	lockdep_assert_held(&prepare_lock);
1014

1015
	old_rate = core->rate;
1016

1017 1018
	if (core->parent)
		parent_rate = core->parent->rate;
1019

1020
	core->rate = clk_recalc(core, parent_rate);
1021

1022 1023 1024 1025 1026 1027
	/*
	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
	 * & ABORT_RATE_CHANGE notifiers
	 */
	if (core->notifier_count && msg)
		__clk_notify(core, msg, old_rate, core->rate);
1028

1029 1030 1031
	hlist_for_each_entry(child, &core->children, child_node)
		__clk_recalc_rates(child, msg);
}
1032

1033 1034 1035
static unsigned long clk_core_get_rate(struct clk_core *core)
{
	unsigned long rate;
1036

1037
	clk_prepare_lock();
1038

1039 1040 1041 1042 1043 1044 1045
	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
		__clk_recalc_rates(core, 0);

	rate = clk_core_get_rate_nolock(core);
	clk_prepare_unlock();

	return rate;
1046 1047 1048
}

/**
1049 1050
 * clk_get_rate - return the rate of clk
 * @clk: the clk whose rate is being returned
1051
 *
1052 1053 1054
 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
 * is set, which means a recalc_rate will be issued.
 * If clk is NULL then returns 0.
1055
 */
1056
unsigned long clk_get_rate(struct clk *clk)
1057
{
1058 1059
	if (!clk)
		return 0;
1060

1061
	return clk_core_get_rate(clk->core);
1062
}
1063
EXPORT_SYMBOL_GPL(clk_get_rate);
1064

1065 1066
static int clk_fetch_parent_index(struct clk_core *core,
				  struct clk_core *parent)
1067
{
1068
	int i;
1069

1070 1071 1072 1073 1074 1075
	if (!core->parents) {
		core->parents = kcalloc(core->num_parents,
					sizeof(struct clk *), GFP_KERNEL);
		if (!core->parents)
			return -ENOMEM;
	}
1076

1077 1078 1079 1080 1081 1082 1083 1084
	/*
	 * find index of new parent clock using cached parent ptrs,
	 * or if not yet cached, use string name comparison and cache
	 * them now to avoid future calls to clk_core_lookup.
	 */
	for (i = 0; i < core->num_parents; i++) {
		if (core->parents[i] == parent)
			return i;
1085

1086 1087
		if (core->parents[i])
			continue;
1088

1089 1090 1091
		if (!strcmp(core->parent_names[i], parent->name)) {
			core->parents[i] = clk_core_lookup(parent->name);
			return i;
1092 1093 1094
		}
	}

1095
	return -EINVAL;
1096 1097
}

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
/*
 * Update the orphan status of @core and all its children.
 */
static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
{
	struct clk_core *child;

	core->orphan = is_orphan;

	hlist_for_each_entry(child, &core->children, child_node)
		clk_core_update_orphan_status(child, is_orphan);
}

1111
static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1112
{
1113 1114
	bool was_orphan = core->orphan;

1115
	hlist_del(&core->child_node);
1116

1117
	if (new_parent) {
1118 1119
		bool becomes_orphan = new_parent->orphan;

1120 1121 1122
		/* avoid duplicate POST_RATE_CHANGE notifications */
		if (new_parent->new_child == core)
			new_parent->new_child = NULL;
1123

1124
		hlist_add_head(&core->child_node, &new_parent->children);
1125 1126 1127

		if (was_orphan != becomes_orphan)
			clk_core_update_orphan_status(core, becomes_orphan);
1128 1129
	} else {
		hlist_add_head(&core->child_node, &clk_orphan_list);
1130 1131
		if (!was_orphan)
			clk_core_update_orphan_status(core, true);
1132
	}
1133

1134
	core->parent = new_parent;
1135 1136
}

1137 1138
static struct clk_core *__clk_set_parent_before(struct clk_core *core,
					   struct clk_core *parent)
1139 1140
{
	unsigned long flags;
1141
	struct clk_core *old_parent = core->parent;
1142

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	/*
	 * Migrate prepare state between parents and prevent race with
	 * clk_enable().
	 *
	 * If the clock is not prepared, then a race with
	 * clk_enable/disable() is impossible since we already have the
	 * prepare lock (future calls to clk_enable() need to be preceded by
	 * a clk_prepare()).
	 *
	 * If the clock is prepared, migrate the prepared state to the new
	 * parent and also protect against a race with clk_enable() by
	 * forcing the clock and the new parent on.  This ensures that all
	 * future calls to clk_enable() are practically NOPs with respect to
	 * hardware and software states.
	 *
	 * See also: Comment for clk_set_parent() below.
	 */
	if (core->prepare_count) {
		clk_core_prepare(parent);
1162
		flags = clk_enable_lock();
1163 1164
		clk_core_enable(parent);
		clk_core_enable(core);
1165
		clk_enable_unlock(flags);
1166
	}
1167

1168
	/* update the clk tree topology */
1169
	flags = clk_enable_lock();
1170
	clk_reparent(core, parent);
1171
	clk_enable_unlock(flags);
1172 1173

	return old_parent;
1174 1175
}

1176 1177 1178
static void __clk_set_parent_after(struct clk_core *core,
				   struct clk_core *parent,
				   struct clk_core *old_parent)
1179
{
1180 1181
	unsigned long flags;

1182 1183 1184 1185 1186
	/*
	 * Finish the migration of prepare state and undo the changes done
	 * for preventing a race with clk_enable().
	 */
	if (core->prepare_count) {
1187
		flags = clk_enable_lock();
1188 1189
		clk_core_disable(core);
		clk_core_disable(old_parent);
1190
		clk_enable_unlock(flags);
1191 1192 1193
		clk_core_unprepare(old_parent);
	}
}
1194

1195 1196 1197 1198 1199 1200
static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
			    u8 p_index)
{
	unsigned long flags;
	int ret = 0;
	struct clk_core *old_parent;
1201

1202
	old_parent = __clk_set_parent_before(core, parent);
1203

1204
	trace_clk_set_parent(core, parent);
1205

1206 1207 1208
	/* change clock input source */
	if (parent && core->ops->set_parent)
		ret = core->ops->set_parent(core->hw, p_index);
1209

1210
	trace_clk_set_parent_complete(core, parent);
1211

1212 1213 1214 1215
	if (ret) {
		flags = clk_enable_lock();
		clk_reparent(core, old_parent);
		clk_enable_unlock(flags);
1216
		__clk_set_parent_after(core, old_parent, parent);
1217

1218
		return ret;
1219 1220
	}

1221 1222
	__clk_set_parent_after(core, parent, old_parent);

1223 1224 1225 1226
	return 0;
}

/**
1227 1228 1229
 * __clk_speculate_rates
 * @core: first clk in the subtree
 * @parent_rate: the "future" rate of clk's parent
1230
 *
1231 1232 1233 1234 1235 1236 1237 1238
 * Walks the subtree of clks starting with clk, speculating rates as it
 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
 *
 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
 * pre-rate change notifications and returns early if no clks in the
 * subtree have subscribed to the notifications.  Note that if a clk does not
 * implement the .recalc_rate callback then it is assumed that the clock will
 * take on the rate of its parent.
1239
 */
1240 1241
static int __clk_speculate_rates(struct clk_core *core,
				 unsigned long parent_rate)
1242
{
1243 1244 1245
	struct clk_core *child;
	unsigned long new_rate;
	int ret = NOTIFY_DONE;
1246

1247
	lockdep_assert_held(&prepare_lock);
1248

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	new_rate = clk_recalc(core, parent_rate);

	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
	if (core->notifier_count)
		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);

	if (ret & NOTIFY_STOP_MASK) {
		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
				__func__, core->name, ret);
		goto out;
	}

	hlist_for_each_entry(child, &core->children, child_node) {
		ret = __clk_speculate_rates(child, new_rate);
		if (ret & NOTIFY_STOP_MASK)
			break;
	}
1266

1267
out:
1268 1269 1270
	return ret;
}

1271 1272
static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
			     struct clk_core *new_parent, u8 p_index)
1273
{
1274
	struct clk_core *child;
1275

1276 1277 1278 1279 1280 1281 1282
	core->new_rate = new_rate;
	core->new_parent = new_parent;
	core->new_parent_index = p_index;
	/* include clk in new parent's PRE_RATE_CHANGE notifications */
	core->new_child = NULL;
	if (new_parent && new_parent != core->parent)
		new_parent->new_child = core;
1283

1284 1285 1286 1287 1288
	hlist_for_each_entry(child, &core->children, child_node) {
		child->new_rate = clk_recalc(child, new_rate);
		clk_calc_subtree(child, child->new_rate, NULL, 0);
	}
}
1289

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
/*
 * calculate the new rates returning the topmost clock that has to be
 * changed.
 */
static struct clk_core *clk_calc_new_rates(struct clk_core *core,
					   unsigned long rate)
{
	struct clk_core *top = core;
	struct clk_core *old_parent, *parent;
	unsigned long best_parent_rate = 0;
	unsigned long new_rate;
	unsigned long min_rate;
	unsigned long max_rate;
	int p_index = 0;
	long ret;

	/* sanity */
	if (IS_ERR_OR_NULL(core))
		return NULL;

	/* save parent rate, if it exists */
	parent = old_parent = core->parent;
1312
	if (parent)
1313
		best_parent_rate = parent->rate;
1314

1315 1316 1317
	clk_core_get_boundaries(core, &min_rate, &max_rate);

	/* find the closest rate and parent clk/rate */
1318
	if (core->ops->determine_rate) {
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
		struct clk_rate_request req;

		req.rate = rate;
		req.min_rate = min_rate;
		req.max_rate = max_rate;
		if (parent) {
			req.best_parent_hw = parent->hw;
			req.best_parent_rate = parent->rate;
		} else {
			req.best_parent_hw = NULL;
			req.best_parent_rate = 0;
		}

		ret = core->ops->determine_rate(core->hw, &req);
1333 1334
		if (ret < 0)
			return NULL;
1335

1336 1337 1338
		best_parent_rate = req.best_parent_rate;
		new_rate = req.rate;
		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1339 1340
	} else if (core->ops->round_rate) {
		ret = core->ops->round_rate(core->hw, rate,
1341
					    &best_parent_rate);
1342 1343
		if (ret < 0)
			return NULL;
1344

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
		new_rate = ret;
		if (new_rate < min_rate || new_rate > max_rate)
			return NULL;
	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
		/* pass-through clock without adjustable parent */
		core->new_rate = core->rate;
		return NULL;
	} else {
		/* pass-through clock with adjustable parent */
		top = clk_calc_new_rates(parent, rate);
		new_rate = parent->new_rate;
		goto out;
	}
1358

1359 1360 1361 1362 1363 1364 1365
	/* some clocks must be gated to change parent */
	if (parent != old_parent &&
	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
		pr_debug("%s: %s not gated but wants to reparent\n",
			 __func__, core->name);
		return NULL;
	}
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375
	/* try finding the new parent index */
	if (parent && core->num_parents > 1) {
		p_index = clk_fetch_parent_index(core, parent);
		if (p_index < 0) {
			pr_debug("%s: clk %s can not be parent of clk %s\n",
				 __func__, parent->name, core->name);
			return NULL;
		}
	}
1376

1377 1378 1379
	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
	    best_parent_rate != parent->rate)
		top = clk_calc_new_rates(parent, best_parent_rate);
1380

1381 1382
out:
	clk_calc_subtree(core, new_rate, parent, p_index);
1383

1384
	return top;
1385 1386
}

1387 1388 1389 1390
/*
 * Notify about rate changes in a subtree. Always walk down the whole tree
 * so that in case of an error we can walk down the whole tree again and
 * abort the change.
1391
 */
1392 1393
static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
						  unsigned long event)
1394
{
1395
	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1396 1397
	int ret = NOTIFY_DONE;

1398 1399
	if (core->rate == core->new_rate)
		return NULL;
1400

1401 1402 1403 1404
	if (core->notifier_count) {
		ret = __clk_notify(core, event, core->rate, core->new_rate);
		if (ret & NOTIFY_STOP_MASK)
			fail_clk = core;
1405 1406
	}

1407 1408 1409 1410 1411 1412 1413 1414
	hlist_for_each_entry(child, &core->children, child_node) {
		/* Skip children who will be reparented to another clock */
		if (child->new_parent && child->new_parent != core)
			continue;
		tmp_clk = clk_propagate_rate_change(child, event);
		if (tmp_clk)
			fail_clk = tmp_clk;
	}
1415

1416 1417 1418 1419 1420 1421
	/* handle the new child who might not be in core->children yet */
	if (core->new_child) {
		tmp_clk = clk_propagate_rate_change(core->new_child, event);
		if (tmp_clk)
			fail_clk = tmp_clk;
	}
1422

1423
	return fail_clk;
1424 1425
}

1426 1427 1428 1429 1430
/*
 * walk down a subtree and set the new rates notifying the rate
 * change on the way
 */
static void clk_change_rate(struct clk_core *core)
1431
{
1432 1433 1434 1435 1436 1437
	struct clk_core *child;
	struct hlist_node *tmp;
	unsigned long old_rate;
	unsigned long best_parent_rate = 0;
	bool skip_set_rate = false;
	struct clk_core *old_parent;
1438

1439
	old_rate = core->rate;
1440

1441 1442 1443 1444
	if (core->new_parent)
		best_parent_rate = core->new_parent->rate;
	else if (core->parent)
		best_parent_rate = core->parent->rate;
1445

1446 1447 1448
	if (core->new_parent && core->new_parent != core->parent) {
		old_parent = __clk_set_parent_before(core, core->new_parent);
		trace_clk_set_parent(core, core->new_parent);
1449

1450 1451 1452 1453 1454 1455 1456 1457
		if (core->ops->set_rate_and_parent) {
			skip_set_rate = true;
			core->ops->set_rate_and_parent(core->hw, core->new_rate,
					best_parent_rate,
					core->new_parent_index);
		} else if (core->ops->set_parent) {
			core->ops->set_parent(core->hw, core->new_parent_index);
		}
1458

1459 1460 1461
		trace_clk_set_parent_complete(core, core->new_parent);
		__clk_set_parent_after(core, core->new_parent, old_parent);
	}
1462

1463
	trace_clk_set_rate(core, core->new_rate);
1464

1465 1466
	if (!skip_set_rate && core->ops->set_rate)
		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1467

1468
	trace_clk_set_rate_complete(core, core->new_rate);
1469

1470
	core->rate = clk_recalc(core, best_parent_rate);
1471

1472 1473
	if (core->notifier_count && old_rate != core->rate)
		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1474

1475 1476
	if (core->flags & CLK_RECALC_NEW_RATES)
		(void)clk_calc_new_rates(core, core->new_rate);
1477

1478
	/*
1479 1480
	 * Use safe iteration, as change_rate can actually swap parents
	 * for certain clock types.
1481
	 */
1482 1483 1484 1485 1486 1487
	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
		/* Skip children who will be reparented to another clock */
		if (child->new_parent && child->new_parent != core)
			continue;
		clk_change_rate(child);
	}
1488

1489 1490 1491
	/* handle the new child who might not be in core->children yet */
	if (core->new_child)
		clk_change_rate(core->new_child);
1492 1493
}

1494 1495
static int clk_core_set_rate_nolock(struct clk_core *core,
				    unsigned long req_rate)
1496
{
1497 1498 1499
	struct clk_core *top, *fail_clk;
	unsigned long rate = req_rate;
	int ret = 0;
1500

1501 1502
	if (!core)
		return 0;
1503

1504 1505 1506
	/* bail early if nothing to do */
	if (rate == clk_core_get_rate_nolock(core))
		return 0;
1507

1508 1509
	if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
		return -EBUSY;
1510

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
	/* calculate new rates and get the topmost changed clock */
	top = clk_calc_new_rates(core, rate);
	if (!top)
		return -EINVAL;

	/* notify that we are about to change rates */
	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
	if (fail_clk) {
		pr_debug("%s: failed to set %s rate\n", __func__,
				fail_clk->name);
		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
		return -EBUSY;
	}

	/* change the rates */
	clk_change_rate(top);

	core->req_rate = req_rate;

	return ret;
1531
}
1532 1533

/**
1534 1535 1536
 * clk_set_rate - specify a new rate for clk
 * @clk: the clk whose rate is being changed
 * @rate: the new rate for clk
1537
 *
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
 * In the simplest case clk_set_rate will only adjust the rate of clk.
 *
 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
 * propagate up to clk's parent; whether or not this happens depends on the
 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
 * after calling .round_rate then upstream parent propagation is ignored.  If
 * *parent_rate comes back with a new rate for clk's parent then we propagate
 * up to clk's parent and set its rate.  Upward propagation will continue
 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
 * .round_rate stops requesting changes to clk's parent_rate.
 *
 * Rate changes are accomplished via tree traversal that also recalculates the
 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
 *
 * Returns 0 on success, -EERROR otherwise.
1553
 */
1554
int clk_set_rate(struct clk *clk, unsigned long rate)
1555
{
1556 1557
	int ret;

1558 1559 1560
	if (!clk)
		return 0;

1561 1562
	/* prevent racing with updates to the clock topology */
	clk_prepare_lock();
1563

1564
	ret = clk_core_set_rate_nolock(clk->core, rate);
1565

1566
	clk_prepare_unlock();
1567

1568
	return ret;
1569
}
1570
EXPORT_SYMBOL_GPL(clk_set_rate);
1571

1572 1573 1574 1575 1576 1577 1578 1579 1580
/**
 * clk_set_rate_range - set a rate range for a clock source
 * @clk: clock source
 * @min: desired minimum clock rate in Hz, inclusive
 * @max: desired maximum clock rate in Hz, inclusive
 *
 * Returns success (0) or negative errno.
 */
int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1581
{
1582
	int ret = 0;
1583

1584 1585
	if (!clk)
		return 0;
1586

1587 1588 1589 1590 1591
	if (min > max) {
		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
		       __func__, clk->core->name, clk->dev_id, clk->con_id,
		       min, max);
		return -EINVAL;
1592
	}
1593

1594
	clk_prepare_lock();
1595

1596 1597 1598 1599
	if (min != clk->min_rate || max != clk->max_rate) {
		clk->min_rate = min;
		clk->max_rate = max;
		ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1600 1601
	}

1602
	clk_prepare_unlock();
1603

1604
	return ret;
1605
}
1606
EXPORT_SYMBOL_GPL(clk_set_rate_range);
1607

1608 1609 1610 1611 1612 1613 1614 1615
/**
 * clk_set_min_rate - set a minimum clock rate for a clock source
 * @clk: clock source
 * @rate: desired minimum clock rate in Hz, inclusive
 *
 * Returns success (0) or negative errno.
 */
int clk_set_min_rate(struct clk *clk, unsigned long rate)
1616
{
1617 1618 1619 1620
	if (!clk)
		return 0;

	return clk_set_rate_range(clk, rate, clk->max_rate);
1621
}
1622
EXPORT_SYMBOL_GPL(clk_set_min_rate);
1623

1624 1625 1626 1627 1628 1629 1630 1631
/**
 * clk_set_max_rate - set a maximum clock rate for a clock source
 * @clk: clock source
 * @rate: desired maximum clock rate in Hz, inclusive
 *
 * Returns success (0) or negative errno.
 */
int clk_set_max_rate(struct clk *clk, unsigned long rate)
1632
{
1633 1634
	if (!clk)
		return 0;
1635

1636
	return clk_set_rate_range(clk, clk->min_rate, rate);
1637
}
1638
EXPORT_SYMBOL_GPL(clk_set_max_rate);
1639

1640
/**
1641 1642
 * clk_get_parent - return the parent of a clk
 * @clk: the clk whose parent gets returned
1643
 *
1644
 * Simply returns clk->parent.  Returns NULL if clk is NULL.
1645
 */
1646
struct clk *clk_get_parent(struct clk *clk)
1647
{
1648
	struct clk *parent;
1649

1650 1651 1652
	if (!clk)
		return NULL;

1653
	clk_prepare_lock();
1654 1655
	/* TODO: Create a per-user clk and change callers to call clk_put */
	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
1656
	clk_prepare_unlock();
1657

1658 1659 1660
	return parent;
}
EXPORT_SYMBOL_GPL(clk_get_parent);
1661

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
/*
 * .get_parent is mandatory for clocks with multiple possible parents.  It is
 * optional for single-parent clocks.  Always call .get_parent if it is
 * available and WARN if it is missing for multi-parent clocks.
 *
 * For single-parent clocks without .get_parent, first check to see if the
 * .parents array exists, and if so use it to avoid an expensive tree
 * traversal.  If .parents does not exist then walk the tree.
 */
static struct clk_core *__clk_init_parent(struct clk_core *core)
{
	struct clk_core *ret = NULL;
	u8 index;
1675

1676 1677 1678
	/* handle the trivial cases */

	if (!core->num_parents)
1679 1680
		goto out;

1681 1682 1683 1684 1685
	if (core->num_parents == 1) {
		if (IS_ERR_OR_NULL(core->parent))
			core->parent = clk_core_lookup(core->parent_names[0]);
		ret = core->parent;
		goto out;
1686 1687
	}

1688 1689 1690 1691 1692
	if (!core->ops->get_parent) {
		WARN(!core->ops->get_parent,
			"%s: multi-parent clocks must implement .get_parent\n",
			__func__);
		goto out;
1693
	}
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

	/*
	 * Do our best to cache parent clocks in core->parents.  This prevents
	 * unnecessary and expensive lookups.  We don't set core->parent here;
	 * that is done by the calling function.
	 */

	index = core->ops->get_parent(core->hw);

	if (!core->parents)
		core->parents =
			kcalloc(core->num_parents, sizeof(struct clk *),
					GFP_KERNEL);

	ret = clk_core_get_parent_by_index(core, index);

1710 1711 1712 1713
out:
	return ret;
}

1714 1715
static void clk_core_reparent(struct clk_core *core,
				  struct clk_core *new_parent)
1716
{
1717 1718 1719
	clk_reparent(core, new_parent);
	__clk_recalc_accuracies(core);
	__clk_recalc_rates(core, POST_RATE_CHANGE);
1720 1721
}

1722 1723 1724 1725 1726 1727 1728 1729
void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
{
	if (!hw)
		return;

	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
}

1730 1731 1732 1733 1734 1735 1736 1737 1738
/**
 * clk_has_parent - check if a clock is a possible parent for another
 * @clk: clock source
 * @parent: parent clock source
 *
 * This function can be used in drivers that need to check that a clock can be
 * the parent of another without actually changing the parent.
 *
 * Returns true if @parent is a possible parent for @clk, false otherwise.
1739
 */
1740
bool clk_has_parent(struct clk *clk, struct clk *parent)
1741
{
1742 1743
	struct clk_core *core, *parent_core;
	unsigned int i;
1744

1745 1746 1747
	/* NULL clocks should be nops, so return success if either is NULL. */
	if (!clk || !parent)
		return true;
1748

1749 1750
	core = clk->core;
	parent_core = parent->core;
1751

1752 1753 1754
	/* Optimize for the case where the parent is already the parent. */
	if (core->parent == parent_core)
		return true;
1755

1756 1757 1758
	for (i = 0; i < core->num_parents; i++)
		if (strcmp(core->parent_names[i], parent_core->name) == 0)
			return true;
1759

1760 1761 1762
	return false;
}
EXPORT_SYMBOL_GPL(clk_has_parent);
1763

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent)
{
	int ret = 0;
	int p_index = 0;
	unsigned long p_rate = 0;

	if (!core)
		return 0;

	/* prevent racing with updates to the clock topology */
	clk_prepare_lock();

	if (core->parent == parent)
		goto out;

	/* verify ops for for multi-parent clks */
	if ((core->num_parents > 1) && (!core->ops->set_parent)) {
		ret = -ENOSYS;
1782
		goto out;
1783 1784
	}

1785 1786 1787 1788
	/* check that we are allowed to re-parent if the clock is in use */
	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
		ret = -EBUSY;
		goto out;
1789 1790
	}

1791
	/* try finding the new parent index */
1792
	if (parent) {
1793
		p_index = clk_fetch_parent_index(core, parent);
1794
		p_rate = parent->rate;
1795
		if (p_index < 0) {
1796
			pr_debug("%s: clk %s can not be parent of clk %s\n",
1797 1798 1799
					__func__, parent->name, core->name);
			ret = p_index;
			goto out;
1800
		}
1801 1802
	}

1803 1804
	/* propagate PRE_RATE_CHANGE notifications */
	ret = __clk_speculate_rates(core, p_rate);
1805

1806 1807 1808
	/* abort if a driver objects */
	if (ret & NOTIFY_STOP_MASK)
		goto out;
1809

1810 1811
	/* do the re-parent */
	ret = __clk_set_parent(core, parent, p_index);
1812

1813 1814 1815 1816 1817 1818
	/* propagate rate an accuracy recalculation accordingly */
	if (ret) {
		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
	} else {
		__clk_recalc_rates(core, POST_RATE_CHANGE);
		__clk_recalc_accuracies(core);
1819 1820
	}

1821 1822
out:
	clk_prepare_unlock();
1823

1824 1825
	return ret;
}
1826

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
/**
 * clk_set_parent - switch the parent of a mux clk
 * @clk: the mux clk whose input we are switching
 * @parent: the new input to clk
 *
 * Re-parent clk to use parent as its new input source.  If clk is in
 * prepared state, the clk will get enabled for the duration of this call. If
 * that's not acceptable for a specific clk (Eg: the consumer can't handle
 * that, the reparenting is glitchy in hardware, etc), use the
 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
 *
 * After successfully changing clk's parent clk_set_parent will update the
 * clk topology, sysfs topology and propagate rate recalculation via
 * __clk_recalc_rates.
 *
 * Returns 0 on success, -EERROR otherwise.
 */
int clk_set_parent(struct clk *clk, struct clk *parent)
{
	if (!clk)
		return 0;

	return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
1850
}
1851
EXPORT_SYMBOL_GPL(clk_set_parent);
1852

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
/**
 * clk_set_phase - adjust the phase shift of a clock signal
 * @clk: clock signal source
 * @degrees: number of degrees the signal is shifted
 *
 * Shifts the phase of a clock signal by the specified
 * degrees. Returns 0 on success, -EERROR otherwise.
 *
 * This function makes no distinction about the input or reference
 * signal that we adjust the clock signal phase against. For example
 * phase locked-loop clock signal generators we may shift phase with
 * respect to feedback clock signal input, but for other cases the
 * clock phase may be shifted with respect to some other, unspecified
 * signal.
 *
 * Additionally the concept of phase shift does not propagate through
 * the clock tree hierarchy, which sets it apart from clock rates and
 * clock accuracy. A parent clock phase attribute does not have an
 * impact on the phase attribute of a child clock.
1872
 */
1873
int clk_set_phase(struct clk *clk, int degrees)
1874
{
1875
	int ret = -EINVAL;
1876

1877 1878
	if (!clk)
		return 0;
1879

1880 1881 1882 1883
	/* sanity check degrees */
	degrees %= 360;
	if (degrees < 0)
		degrees += 360;
1884

1885
	clk_prepare_lock();
1886

1887
	trace_clk_set_phase(clk->core, degrees);
1888

1889 1890
	if (clk->core->ops->set_phase)
		ret = clk->core->ops->set_phase(clk->core->hw, degrees);
1891

1892
	trace_clk_set_phase_complete(clk->core, degrees);
1893

1894 1895
	if (!ret)
		clk->core->phase = degrees;
1896

1897
	clk_prepare_unlock();
1898

1899 1900 1901
	return ret;
}
EXPORT_SYMBOL_GPL(clk_set_phase);
1902

1903 1904 1905
static int clk_core_get_phase(struct clk_core *core)
{
	int ret;
1906

1907 1908 1909
	clk_prepare_lock();
	ret = core->phase;
	clk_prepare_unlock();
1910

1911
	return ret;
1912 1913
}

1914 1915 1916 1917 1918 1919 1920 1921
/**
 * clk_get_phase - return the phase shift of a clock signal
 * @clk: clock signal source
 *
 * Returns the phase shift of a clock node in degrees, otherwise returns
 * -EERROR.
 */
int clk_get_phase(struct clk *clk)
1922
{
1923
	if (!clk)
1924 1925
		return 0;

1926 1927 1928
	return clk_core_get_phase(clk->core);
}
EXPORT_SYMBOL_GPL(clk_get_phase);
1929

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
/**
 * clk_is_match - check if two clk's point to the same hardware clock
 * @p: clk compared against q
 * @q: clk compared against p
 *
 * Returns true if the two struct clk pointers both point to the same hardware
 * clock node. Put differently, returns true if struct clk *p and struct clk *q
 * share the same struct clk_core object.
 *
 * Returns false otherwise. Note that two NULL clks are treated as matching.
 */
bool clk_is_match(const struct clk *p, const struct clk *q)
{
	/* trivial case: identical struct clk's or both NULL */
	if (p == q)
		return true;
1946

1947 1948 1949 1950
	/* true if clk->core pointers match. Avoid derefing garbage */
	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
		if (p->core == q->core)
			return true;
1951

1952 1953 1954
	return false;
}
EXPORT_SYMBOL_GPL(clk_is_match);
1955

1956
/***        debugfs support        ***/
1957

1958 1959
#ifdef CONFIG_DEBUG_FS
#include <linux/debugfs.h>
1960

1961 1962 1963 1964
static struct dentry *rootdir;
static int inited = 0;
static DEFINE_MUTEX(clk_debug_lock);
static HLIST_HEAD(clk_debug_list);
1965

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
static struct hlist_head *all_lists[] = {
	&clk_root_list,
	&clk_orphan_list,
	NULL,
};

static struct hlist_head *orphan_list[] = {
	&clk_orphan_list,
	NULL,
};

static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
				 int level)
1979
{
1980 1981
	if (!c)
		return;
1982

1983 1984 1985 1986 1987 1988
	seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
		   level * 3 + 1, "",
		   30 - level * 3, c->name,
		   c->enable_count, c->prepare_count, clk_core_get_rate(c),
		   clk_core_get_accuracy(c), clk_core_get_phase(c));
}
1989

1990 1991 1992 1993
static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
				     int level)
{
	struct clk_core *child;
1994

1995 1996
	if (!c)
		return;
1997

1998
	clk_summary_show_one(s, c, level);
1999

2000 2001
	hlist_for_each_entry(child, &c->children, child_node)
		clk_summary_show_subtree(s, child, level + 1);
2002
}
2003

2004
static int clk_summary_show(struct seq_file *s, void *data)
2005
{
2006 2007
	struct clk_core *c;
	struct hlist_head **lists = (struct hlist_head **)s->private;
2008

2009 2010
	seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy   phase\n");
	seq_puts(s, "----------------------------------------------------------------------------------------\n");
2011

2012 2013
	clk_prepare_lock();

2014 2015 2016
	for (; *lists; lists++)
		hlist_for_each_entry(c, *lists, child_node)
			clk_summary_show_subtree(s, c, 0);
2017

2018
	clk_prepare_unlock();
2019

2020
	return 0;
2021
}
2022 2023


2024
static int clk_summary_open(struct inode *inode, struct file *file)
2025
{
2026
	return single_open(file, clk_summary_show, inode->i_private);
2027
}
2028

2029 2030 2031 2032 2033 2034
static const struct file_operations clk_summary_fops = {
	.open		= clk_summary_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};
2035

2036 2037 2038 2039
static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
{
	if (!c)
		return;
2040

2041
	/* This should be JSON format, i.e. elements separated with a comma */
2042 2043 2044
	seq_printf(s, "\"%s\": { ", c->name);
	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2045 2046
	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2047
	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2048 2049
}

2050
static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2051
{
2052
	struct clk_core *child;
2053

2054 2055
	if (!c)
		return;
2056

2057
	clk_dump_one(s, c, level);
2058

2059 2060 2061
	hlist_for_each_entry(child, &c->children, child_node) {
		seq_printf(s, ",");
		clk_dump_subtree(s, child, level + 1);
2062 2063
	}

2064
	seq_printf(s, "}");
2065 2066
}

2067
static int clk_dump(struct seq_file *s, void *data)
2068
{
2069 2070 2071
	struct clk_core *c;
	bool first_node = true;
	struct hlist_head **lists = (struct hlist_head **)s->private;
2072

2073
	seq_printf(s, "{");
2074

2075
	clk_prepare_lock();
2076

2077 2078 2079 2080 2081 2082 2083 2084
	for (; *lists; lists++) {
		hlist_for_each_entry(c, *lists, child_node) {
			if (!first_node)
				seq_puts(s, ",");
			first_node = false;
			clk_dump_subtree(s, c, 0);
		}
	}
2085

2086
	clk_prepare_unlock();
2087

2088
	seq_puts(s, "}\n");
2089
	return 0;
2090 2091
}

2092 2093

static int clk_dump_open(struct inode *inode, struct file *file)
2094
{
2095 2096
	return single_open(file, clk_dump, inode->i_private);
}
2097

2098 2099 2100 2101 2102 2103
static const struct file_operations clk_dump_fops = {
	.open		= clk_dump_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};
2104

2105 2106 2107 2108
static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
{
	struct dentry *d;
	int ret = -ENOMEM;
2109

2110 2111
	if (!core || !pdentry) {
		ret = -EINVAL;
2112
		goto out;
2113
	}
2114

2115 2116
	d = debugfs_create_dir(core->name, pdentry);
	if (!d)
2117 2118
		goto out;

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
	core->dentry = d;

	d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry,
			(u32 *)&core->rate);
	if (!d)
		goto err_out;

	d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry,
			(u32 *)&core->accuracy);
	if (!d)
		goto err_out;

	d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry,
			(u32 *)&core->phase);
	if (!d)
		goto err_out;
2135

2136 2137 2138 2139
	d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry,
			(u32 *)&core->flags);
	if (!d)
		goto err_out;
2140

2141 2142 2143 2144
	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry,
			(u32 *)&core->prepare_count);
	if (!d)
		goto err_out;
2145

2146 2147 2148 2149
	d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry,
			(u32 *)&core->enable_count);
	if (!d)
		goto err_out;
2150

2151 2152 2153 2154
	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry,
			(u32 *)&core->notifier_count);
	if (!d)
		goto err_out;
2155

2156 2157 2158 2159
	if (core->ops->debug_init) {
		ret = core->ops->debug_init(core->hw, core->dentry);
		if (ret)
			goto err_out;
2160
	}
2161

2162 2163
	ret = 0;
	goto out;
2164

2165 2166 2167 2168
err_out:
	debugfs_remove_recursive(core->dentry);
	core->dentry = NULL;
out:
2169 2170
	return ret;
}
2171 2172

/**
2173 2174
 * clk_debug_register - add a clk node to the debugfs clk directory
 * @core: the clk being added to the debugfs clk directory
2175
 *
2176 2177
 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
 * initialized.  Otherwise it bails out early since the debugfs clk directory
2178
 * will be created lazily by clk_debug_init as part of a late_initcall.
2179
 */
2180
static int clk_debug_register(struct clk_core *core)
2181
{
2182
	int ret = 0;
2183

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
	mutex_lock(&clk_debug_lock);
	hlist_add_head(&core->debug_node, &clk_debug_list);

	if (!inited)
		goto unlock;

	ret = clk_debug_create_one(core, rootdir);
unlock:
	mutex_unlock(&clk_debug_lock);

	return ret;
2195
}
2196

2197
 /**
2198 2199
 * clk_debug_unregister - remove a clk node from the debugfs clk directory
 * @core: the clk being removed from the debugfs clk directory
2200
 *
2201 2202
 * Dynamically removes a clk and all its child nodes from the
 * debugfs clk directory if clk->dentry points to debugfs created by
2203
 * clk_debug_register in __clk_init.
2204
 */
2205
static void clk_debug_unregister(struct clk_core *core)
2206
{
2207 2208 2209 2210 2211 2212
	mutex_lock(&clk_debug_lock);
	hlist_del_init(&core->debug_node);
	debugfs_remove_recursive(core->dentry);
	core->dentry = NULL;
	mutex_unlock(&clk_debug_lock);
}
2213

2214 2215 2216 2217
struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
				void *data, const struct file_operations *fops)
{
	struct dentry *d = NULL;
2218

2219 2220 2221
	if (hw->core->dentry)
		d = debugfs_create_file(name, mode, hw->core->dentry, data,
					fops);
2222

2223 2224 2225
	return d;
}
EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2226

2227
/**
2228
 * clk_debug_init - lazily populate the debugfs clk directory
2229
 *
2230 2231 2232 2233 2234
 * clks are often initialized very early during boot before memory can be
 * dynamically allocated and well before debugfs is setup. This function
 * populates the debugfs clk directory once at boot-time when we know that
 * debugfs is setup. It should only be called once at boot-time, all other clks
 * added dynamically will be done so with clk_debug_register.
2235 2236 2237 2238 2239
 */
static int __init clk_debug_init(void)
{
	struct clk_core *core;
	struct dentry *d;
2240

2241
	rootdir = debugfs_create_dir("clk", NULL);
2242

2243 2244
	if (!rootdir)
		return -ENOMEM;
2245

2246 2247 2248 2249
	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
				&clk_summary_fops);
	if (!d)
		return -ENOMEM;
2250

2251 2252 2253 2254
	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
				&clk_dump_fops);
	if (!d)
		return -ENOMEM;
2255

2256 2257 2258 2259
	d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
				&orphan_list, &clk_summary_fops);
	if (!d)
		return -ENOMEM;
2260

2261 2262 2263 2264
	d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
				&orphan_list, &clk_dump_fops);
	if (!d)
		return -ENOMEM;
2265

2266 2267 2268
	mutex_lock(&clk_debug_lock);
	hlist_for_each_entry(core, &clk_debug_list, debug_node)
		clk_debug_create_one(core, rootdir);
2269

2270 2271
	inited = 1;
	mutex_unlock(&clk_debug_lock);
2272

2273 2274 2275 2276 2277 2278 2279
	return 0;
}
late_initcall(clk_debug_init);
#else
static inline int clk_debug_register(struct clk_core *core) { return 0; }
static inline void clk_debug_reparent(struct clk_core *core,
				      struct clk_core *new_parent)
2280 2281
{
}
2282
static inline void clk_debug_unregister(struct clk_core *core)
2283 2284
{
}
2285
#endif
2286

2287 2288 2289 2290 2291
/**
 * __clk_init - initialize the data structures in a struct clk
 * @dev:	device initializing this clk, placeholder for now
 * @clk:	clk being initialized
 *
2292
 * Initializes the lists in struct clk_core, queries the hardware for the
2293 2294
 * parent and rate and sets them both.
 */
2295
static int __clk_init(struct device *dev, struct clk *clk_user)
2296
{
2297
	int i, ret = 0;
2298
	struct clk_core *orphan;
2299
	struct hlist_node *tmp2;
2300
	struct clk_core *core;
2301
	unsigned long rate;
2302

2303
	if (!clk_user)
2304
		return -EINVAL;
2305

2306
	core = clk_user->core;
2307

2308
	clk_prepare_lock();
2309 2310

	/* check to see if a clock with this name is already registered */
2311
	if (clk_core_lookup(core->name)) {
2312
		pr_debug("%s: clk %s already initialized\n",
2313
				__func__, core->name);
2314
		ret = -EEXIST;
2315
		goto out;
2316
	}
2317

2318
	/* check that clk_ops are sane.  See Documentation/clk.txt */
2319 2320 2321
	if (core->ops->set_rate &&
	    !((core->ops->round_rate || core->ops->determine_rate) &&
	      core->ops->recalc_rate)) {
2322
		pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2323
				__func__, core->name);
2324
		ret = -EINVAL;
2325 2326 2327
		goto out;
	}

2328
	if (core->ops->set_parent && !core->ops->get_parent) {
2329
		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
2330
				__func__, core->name);
2331
		ret = -EINVAL;
2332 2333 2334
		goto out;
	}

2335 2336
	if (core->ops->set_rate_and_parent &&
			!(core->ops->set_parent && core->ops->set_rate)) {
2337
		pr_warn("%s: %s must implement .set_parent & .set_rate\n",
2338
				__func__, core->name);
2339 2340 2341 2342
		ret = -EINVAL;
		goto out;
	}

2343
	/* throw a WARN if any entries in parent_names are NULL */
2344 2345
	for (i = 0; i < core->num_parents; i++)
		WARN(!core->parent_names[i],
2346
				"%s: invalid NULL in %s's .parent_names\n",
2347
				__func__, core->name);
2348 2349 2350 2351

	/*
	 * Allocate an array of struct clk *'s to avoid unnecessary string
	 * look-ups of clk's possible parents.  This can fail for clocks passed
2352
	 * in to clk_init during early boot; thus any access to core->parents[]
2353 2354 2355
	 * must always check for a NULL pointer and try to populate it if
	 * necessary.
	 *
2356 2357
	 * If core->parents is not NULL we skip this entire block.  This allows
	 * for clock drivers to statically initialize core->parents.
2358
	 */
2359 2360
	if (core->num_parents > 1 && !core->parents) {
		core->parents = kcalloc(core->num_parents, sizeof(struct clk *),
2361
					GFP_KERNEL);
2362
		/*
2363
		 * clk_core_lookup returns NULL for parents that have not been
2364 2365 2366 2367
		 * clk_init'd; thus any access to clk->parents[] must check
		 * for a NULL pointer.  We can always perform lazy lookups for
		 * missing parents later on.
		 */
2368 2369 2370 2371
		if (core->parents)
			for (i = 0; i < core->num_parents; i++)
				core->parents[i] =
					clk_core_lookup(core->parent_names[i]);
2372 2373
	}

2374
	core->parent = __clk_init_parent(core);
2375 2376

	/*
2377
	 * Populate core->parent if parent has already been __clk_init'd.  If
2378 2379 2380 2381 2382 2383 2384 2385
	 * parent has not yet been __clk_init'd then place clk in the orphan
	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
	 * clk list.
	 *
	 * Every time a new clk is clk_init'd then we walk the list of orphan
	 * clocks and re-parent any that are children of the clock currently
	 * being clk_init'd.
	 */
2386
	if (core->parent) {
2387 2388
		hlist_add_head(&core->child_node,
				&core->parent->children);
2389 2390
		core->orphan = core->parent->orphan;
	} else if (core->flags & CLK_IS_ROOT) {
2391
		hlist_add_head(&core->child_node, &clk_root_list);
2392 2393
		core->orphan = false;
	} else {
2394
		hlist_add_head(&core->child_node, &clk_orphan_list);
2395 2396
		core->orphan = true;
	}
2397

2398 2399 2400 2401 2402 2403 2404
	/*
	 * Set clk's accuracy.  The preferred method is to use
	 * .recalc_accuracy. For simple clocks and lazy developers the default
	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
	 * parent (or is orphaned) then accuracy is set to zero (perfect
	 * clock).
	 */
2405 2406 2407 2408 2409
	if (core->ops->recalc_accuracy)
		core->accuracy = core->ops->recalc_accuracy(core->hw,
					__clk_get_accuracy(core->parent));
	else if (core->parent)
		core->accuracy = core->parent->accuracy;
2410
	else
2411
		core->accuracy = 0;
2412

2413 2414 2415 2416 2417
	/*
	 * Set clk's phase.
	 * Since a phase is by definition relative to its parent, just
	 * query the current clock phase, or just assume it's in phase.
	 */
2418 2419
	if (core->ops->get_phase)
		core->phase = core->ops->get_phase(core->hw);
2420
	else
2421
		core->phase = 0;
2422

2423 2424 2425 2426 2427 2428
	/*
	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
	 * simple clocks and lazy developers the default fallback is to use the
	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
	 * then rate is set to zero.
	 */
2429 2430 2431 2432 2433
	if (core->ops->recalc_rate)
		rate = core->ops->recalc_rate(core->hw,
				clk_core_get_rate_nolock(core->parent));
	else if (core->parent)
		rate = core->parent->rate;
2434
	else
2435
		rate = 0;
2436
	core->rate = core->req_rate = rate;
2437 2438 2439 2440 2441

	/*
	 * walk the list of orphan clocks and reparent any that are children of
	 * this clock
	 */
2442
	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2443
		if (orphan->num_parents && orphan->ops->get_parent) {
2444
			i = orphan->ops->get_parent(orphan->hw);
2445 2446
			if (i >= 0 && i < orphan->num_parents &&
			    !strcmp(core->name, orphan->parent_names[i]))
2447
				clk_core_reparent(orphan, core);
2448 2449 2450
			continue;
		}

2451
		for (i = 0; i < orphan->num_parents; i++)
2452 2453
			if (!strcmp(core->name, orphan->parent_names[i])) {
				clk_core_reparent(orphan, core);
2454 2455
				break;
			}
2456
	 }
2457 2458 2459 2460 2461 2462 2463

	/*
	 * optional platform-specific magic
	 *
	 * The .init callback is not used by any of the basic clock types, but
	 * exists for weird hardware that must perform initialization magic.
	 * Please consider other ways of solving initialization problems before
Peter Meerwald's avatar
Peter Meerwald committed
2464
	 * using this callback, as its use is discouraged.
2465
	 */
2466 2467
	if (core->ops->init)
		core->ops->init(core->hw);
2468

2469
	kref_init(&core->ref);
2470
out:
2471
	clk_prepare_unlock();
2472

2473
	if (!ret)
2474
		clk_debug_register(core);
2475

2476
	return ret;
2477 2478
}

2479 2480
struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
			     const char *con_id)
2481 2482 2483
{
	struct clk *clk;

2484 2485 2486
	/* This is to allow this function to be chained to others */
	if (!hw || IS_ERR(hw))
		return (struct clk *) hw;
2487

2488 2489 2490 2491 2492 2493 2494
	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
	if (!clk)
		return ERR_PTR(-ENOMEM);

	clk->core = hw->core;
	clk->dev_id = dev_id;
	clk->con_id = con_id;
2495 2496 2497
	clk->max_rate = ULONG_MAX;

	clk_prepare_lock();
2498
	hlist_add_head(&clk->clks_node, &hw->core->clks);
2499
	clk_prepare_unlock();
2500 2501 2502

	return clk;
}
2503

2504
void __clk_free_clk(struct clk *clk)
2505 2506
{
	clk_prepare_lock();
2507
	hlist_del(&clk->clks_node);
2508 2509 2510 2511
	clk_prepare_unlock();

	kfree(clk);
}
2512

2513 2514 2515 2516 2517 2518 2519
/**
 * clk_register - allocate a new clock, register it and return an opaque cookie
 * @dev: device that is registering this clock
 * @hw: link to hardware-specific clock data
 *
 * clk_register is the primary interface for populating the clock tree with new
 * clock nodes.  It returns a pointer to the newly allocated struct clk which
2520
 * cannot be dereferenced by driver code but may be used in conjunction with the
2521 2522 2523 2524
 * rest of the clock API.  In the event of an error clk_register will return an
 * error code; drivers must test for an error code after calling clk_register.
 */
struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2525
{
2526
	int i, ret;
2527
	struct clk_core *core;
2528

2529 2530
	core = kzalloc(sizeof(*core), GFP_KERNEL);
	if (!core) {
2531 2532 2533
		ret = -ENOMEM;
		goto fail_out;
	}
2534

2535 2536
	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
	if (!core->name) {
2537 2538 2539
		ret = -ENOMEM;
		goto fail_name;
	}
2540
	core->ops = hw->init->ops;
2541
	if (dev && dev->driver)
2542 2543 2544 2545
		core->owner = dev->driver->owner;
	core->hw = hw;
	core->flags = hw->init->flags;
	core->num_parents = hw->init->num_parents;
2546 2547
	core->min_rate = 0;
	core->max_rate = ULONG_MAX;
2548
	hw->core = core;
2549

2550
	/* allocate local copy in case parent_names is __initdata */
2551
	core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2552
					GFP_KERNEL);
2553

2554
	if (!core->parent_names) {
2555 2556 2557 2558 2559 2560
		ret = -ENOMEM;
		goto fail_parent_names;
	}


	/* copy each string name in case parent_names is __initdata */
2561 2562
	for (i = 0; i < core->num_parents; i++) {
		core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2563
						GFP_KERNEL);
2564
		if (!core->parent_names[i]) {
2565 2566 2567 2568 2569
			ret = -ENOMEM;
			goto fail_parent_names_copy;
		}
	}

2570
	INIT_HLIST_HEAD(&core->clks);
2571

2572 2573 2574 2575 2576 2577 2578
	hw->clk = __clk_create_clk(hw, NULL, NULL);
	if (IS_ERR(hw->clk)) {
		ret = PTR_ERR(hw->clk);
		goto fail_parent_names_copy;
	}

	ret = __clk_init(dev, hw->clk);
2579
	if (!ret)
2580
		return hw->clk;
2581

2582
	__clk_free_clk(hw->clk);
2583
	hw->clk = NULL;
2584

2585 2586
fail_parent_names_copy:
	while (--i >= 0)
2587 2588
		kfree_const(core->parent_names[i]);
	kfree(core->parent_names);
2589
fail_parent_names:
2590
	kfree_const(core->name);
2591
fail_name:
2592
	kfree(core);
2593 2594
fail_out:
	return ERR_PTR(ret);
2595 2596 2597
}
EXPORT_SYMBOL_GPL(clk_register);

2598
/* Free memory allocated for a clock. */
2599 2600
static void __clk_release(struct kref *ref)
{
2601 2602
	struct clk_core *core = container_of(ref, struct clk_core, ref);
	int i = core->num_parents;
2603

2604 2605
	lockdep_assert_held(&prepare_lock);

2606
	kfree(core->parents);
2607
	while (--i >= 0)
2608
		kfree_const(core->parent_names[i]);
2609

2610 2611 2612
	kfree(core->parent_names);
	kfree_const(core->name);
	kfree(core);
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
}

/*
 * Empty clk_ops for unregistered clocks. These are used temporarily
 * after clk_unregister() was called on a clock and until last clock
 * consumer calls clk_put() and the struct clk object is freed.
 */
static int clk_nodrv_prepare_enable(struct clk_hw *hw)
{
	return -ENXIO;
}

static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
{
	WARN_ON_ONCE(1);
}

static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
					unsigned long parent_rate)
{
	return -ENXIO;
}

static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
{
	return -ENXIO;
}

static const struct clk_ops clk_nodrv_ops = {
	.enable		= clk_nodrv_prepare_enable,
	.disable	= clk_nodrv_disable_unprepare,
	.prepare	= clk_nodrv_prepare_enable,
	.unprepare	= clk_nodrv_disable_unprepare,
	.set_rate	= clk_nodrv_set_rate,
	.set_parent	= clk_nodrv_set_parent,
};

2650 2651 2652 2653
/**
 * clk_unregister - unregister a currently registered clock
 * @clk: clock to unregister
 */
2654 2655 2656 2657
void clk_unregister(struct clk *clk)
{
	unsigned long flags;

2658 2659 2660
	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
		return;

2661
	clk_debug_unregister(clk->core);
2662 2663 2664

	clk_prepare_lock();

2665 2666 2667
	if (clk->core->ops == &clk_nodrv_ops) {
		pr_err("%s: unregistered clock: %s\n", __func__,
		       clk->core->name);
2668
		return;
2669 2670 2671 2672 2673 2674
	}
	/*
	 * Assign empty clock ops for consumers that might still hold
	 * a reference to this clock.
	 */
	flags = clk_enable_lock();
2675
	clk->core->ops = &clk_nodrv_ops;
2676 2677
	clk_enable_unlock(flags);

2678 2679
	if (!hlist_empty(&clk->core->children)) {
		struct clk_core *child;
2680
		struct hlist_node *t;
2681 2682

		/* Reparent all children to the orphan list. */
2683 2684 2685
		hlist_for_each_entry_safe(child, t, &clk->core->children,
					  child_node)
			clk_core_set_parent(child, NULL);
2686 2687
	}

2688
	hlist_del_init(&clk->core->child_node);
2689

2690
	if (clk->core->prepare_count)
2691
		pr_warn("%s: unregistering prepared clock: %s\n",
2692 2693
					__func__, clk->core->name);
	kref_put(&clk->core->ref, __clk_release);
2694

2695 2696
	clk_prepare_unlock();
}
2697 2698
EXPORT_SYMBOL_GPL(clk_unregister);

2699 2700
static void devm_clk_release(struct device *dev, void *res)
{
2701
	clk_unregister(*(struct clk **)res);
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
}

/**
 * devm_clk_register - resource managed clk_register()
 * @dev: device that is registering this clock
 * @hw: link to hardware-specific clock data
 *
 * Managed clk_register(). Clocks returned from this function are
 * automatically clk_unregister()ed on driver detach. See clk_register() for
 * more information.
 */
struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
{
	struct clk *clk;
2716
	struct clk **clkp;
2717

2718 2719
	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
	if (!clkp)
2720 2721
		return ERR_PTR(-ENOMEM);

2722 2723 2724 2725
	clk = clk_register(dev, hw);
	if (!IS_ERR(clk)) {
		*clkp = clk;
		devres_add(dev, clkp);
2726
	} else {
2727
		devres_free(clkp);
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
	}

	return clk;
}
EXPORT_SYMBOL_GPL(devm_clk_register);

static int devm_clk_match(struct device *dev, void *res, void *data)
{
	struct clk *c = res;
	if (WARN_ON(!c))
		return 0;
	return c == data;
}

/**
 * devm_clk_unregister - resource managed clk_unregister()
 * @clk: clock to unregister
 *
 * Deallocate a clock allocated with devm_clk_register(). Normally
 * this function will not need to be called and the resource management
 * code will ensure that the resource is freed.
 */
void devm_clk_unregister(struct device *dev, struct clk *clk)
{
	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
}
EXPORT_SYMBOL_GPL(devm_clk_unregister);

2756 2757 2758 2759 2760
/*
 * clkdev helpers
 */
int __clk_get(struct clk *clk)
{
2761 2762 2763 2764
	struct clk_core *core = !clk ? NULL : clk->core;

	if (core) {
		if (!try_module_get(core->owner))
2765
			return 0;
2766

2767
		kref_get(&core->ref);
2768
	}
2769 2770 2771 2772 2773
	return 1;
}

void __clk_put(struct clk *clk)
{
2774 2775
	struct module *owner;

2776
	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2777 2778
		return;

2779
	clk_prepare_lock();
2780

2781
	hlist_del(&clk->clks_node);
2782 2783 2784 2785
	if (clk->min_rate > clk->core->req_rate ||
	    clk->max_rate < clk->core->req_rate)
		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);

2786 2787 2788
	owner = clk->core->owner;
	kref_put(&clk->core->ref, __clk_release);

2789 2790
	clk_prepare_unlock();

2791
	module_put(owner);
2792 2793

	kfree(clk);
2794 2795
}

2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
/***        clk rate change notifiers        ***/

/**
 * clk_notifier_register - add a clk rate change notifier
 * @clk: struct clk * to watch
 * @nb: struct notifier_block * with callback info
 *
 * Request notification when clk's rate changes.  This uses an SRCU
 * notifier because we want it to block and notifier unregistrations are
 * uncommon.  The callbacks associated with the notifier must not
 * re-enter into the clk framework by calling any top-level clk APIs;
 * this will cause a nested prepare_lock mutex.
 *
2809 2810 2811
 * In all notification cases cases (pre, post and abort rate change) the
 * original clock rate is passed to the callback via struct
 * clk_notifier_data.old_rate and the new frequency is passed via struct
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
 * clk_notifier_data.new_rate.
 *
 * clk_notifier_register() must be called from non-atomic context.
 * Returns -EINVAL if called with null arguments, -ENOMEM upon
 * allocation failure; otherwise, passes along the return value of
 * srcu_notifier_chain_register().
 */
int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
{
	struct clk_notifier *cn;
	int ret = -ENOMEM;

	if (!clk || !nb)
		return -EINVAL;

2827
	clk_prepare_lock();
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847

	/* search the list of notifiers for this clk */
	list_for_each_entry(cn, &clk_notifier_list, node)
		if (cn->clk == clk)
			break;

	/* if clk wasn't in the notifier list, allocate new clk_notifier */
	if (cn->clk != clk) {
		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
		if (!cn)
			goto out;

		cn->clk = clk;
		srcu_init_notifier_head(&cn->notifier_head);

		list_add(&cn->node, &clk_notifier_list);
	}

	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);

2848
	clk->core->notifier_count++;
2849 2850

out:
2851
	clk_prepare_unlock();
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875

	return ret;
}
EXPORT_SYMBOL_GPL(clk_notifier_register);

/**
 * clk_notifier_unregister - remove a clk rate change notifier
 * @clk: struct clk *
 * @nb: struct notifier_block * with callback info
 *
 * Request no further notification for changes to 'clk' and frees memory
 * allocated in clk_notifier_register.
 *
 * Returns -EINVAL if called with null arguments; otherwise, passes
 * along the return value of srcu_notifier_chain_unregister().
 */
int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
{
	struct clk_notifier *cn = NULL;
	int ret = -EINVAL;

	if (!clk || !nb)
		return -EINVAL;

2876
	clk_prepare_lock();
2877 2878 2879 2880 2881 2882 2883 2884

	list_for_each_entry(cn, &clk_notifier_list, node)
		if (cn->clk == clk)
			break;

	if (cn->clk == clk) {
		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);

2885
		clk->core->notifier_count--;
2886 2887 2888 2889

		/* XXX the notifier code should handle this better */
		if (!cn->notifier_head.head) {
			srcu_cleanup_notifier_head(&cn->notifier_head);
2890
			list_del(&cn->node);
2891 2892 2893 2894 2895 2896 2897
			kfree(cn);
		}

	} else {
		ret = -ENOENT;
	}

2898
	clk_prepare_unlock();
2899 2900 2901 2902

	return ret;
}
EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920

#ifdef CONFIG_OF
/**
 * struct of_clk_provider - Clock provider registration structure
 * @link: Entry in global list of clock providers
 * @node: Pointer to device tree node of clock provider
 * @get: Get clock callback.  Returns NULL or a struct clk for the
 *       given clock specifier
 * @data: context pointer to be passed into @get callback
 */
struct of_clk_provider {
	struct list_head link;

	struct device_node *node;
	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
	void *data;
};

2921 2922 2923
static const struct of_device_id __clk_of_table_sentinel
	__used __section(__clk_of_table_end);

2924
static LIST_HEAD(of_clk_providers);
2925 2926
static DEFINE_MUTEX(of_clk_mutex);

2927 2928 2929 2930 2931 2932 2933
struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
				     void *data)
{
	return data;
}
EXPORT_SYMBOL_GPL(of_clk_src_simple_get);

2934 2935 2936 2937 2938 2939
struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
{
	struct clk_onecell_data *clk_data = data;
	unsigned int idx = clkspec->args[0];

	if (idx >= clk_data->clk_num) {
2940
		pr_err("%s: invalid clock index %u\n", __func__, idx);
2941 2942 2943 2944 2945 2946 2947
		return ERR_PTR(-EINVAL);
	}

	return clk_data->clks[idx];
}
EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);

2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
/**
 * of_clk_add_provider() - Register a clock provider for a node
 * @np: Device node pointer associated with clock provider
 * @clk_src_get: callback for decoding clock
 * @data: context pointer for @clk_src_get callback.
 */
int of_clk_add_provider(struct device_node *np,
			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
						   void *data),
			void *data)
{
	struct of_clk_provider *cp;
2960
	int ret;
2961 2962 2963 2964 2965 2966 2967 2968 2969

	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
	if (!cp)
		return -ENOMEM;

	cp->node = of_node_get(np);
	cp->data = data;
	cp->get = clk_src_get;

2970
	mutex_lock(&of_clk_mutex);
2971
	list_add(&cp->link, &of_clk_providers);
2972
	mutex_unlock(&of_clk_mutex);
2973 2974
	pr_debug("Added clock from %s\n", np->full_name);

2975 2976 2977 2978 2979
	ret = of_clk_set_defaults(np, true);
	if (ret < 0)
		of_clk_del_provider(np);

	return ret;
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
}
EXPORT_SYMBOL_GPL(of_clk_add_provider);

/**
 * of_clk_del_provider() - Remove a previously registered clock provider
 * @np: Device node pointer associated with clock provider
 */
void of_clk_del_provider(struct device_node *np)
{
	struct of_clk_provider *cp;

2991
	mutex_lock(&of_clk_mutex);
2992 2993 2994 2995 2996 2997 2998 2999
	list_for_each_entry(cp, &of_clk_providers, link) {
		if (cp->node == np) {
			list_del(&cp->link);
			of_node_put(cp->node);
			kfree(cp);
			break;
		}
	}
3000
	mutex_unlock(&of_clk_mutex);
3001 3002 3003
}
EXPORT_SYMBOL_GPL(of_clk_del_provider);

3004 3005
struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
				       const char *dev_id, const char *con_id)
3006 3007
{
	struct of_clk_provider *provider;
3008
	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3009

3010 3011 3012
	if (!clkspec)
		return ERR_PTR(-EINVAL);

3013
	/* Check if we have such a provider in our array */
3014
	mutex_lock(&of_clk_mutex);
3015 3016 3017
	list_for_each_entry(provider, &of_clk_providers, link) {
		if (provider->node == clkspec->np)
			clk = provider->get(clkspec, provider->data);
3018 3019 3020 3021 3022 3023 3024 3025 3026
		if (!IS_ERR(clk)) {
			clk = __clk_create_clk(__clk_get_hw(clk), dev_id,
					       con_id);

			if (!IS_ERR(clk) && !__clk_get(clk)) {
				__clk_free_clk(clk);
				clk = ERR_PTR(-ENOENT);
			}

3027
			break;
3028
		}
3029
	}
3030
	mutex_unlock(&of_clk_mutex);
3031 3032 3033 3034

	return clk;
}

3035 3036 3037 3038 3039 3040 3041 3042
/**
 * of_clk_get_from_provider() - Lookup a clock from a clock provider
 * @clkspec: pointer to a clock specifier data structure
 *
 * This function looks up a struct clk from the registered list of clock
 * providers, an input is a clock specifier data structure as returned
 * from the of_parse_phandle_with_args() function call.
 */
3043 3044
struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
{
3045
	return __of_clk_get_from_provider(clkspec, NULL, __func__);
3046 3047
}

3048 3049 3050 3051 3052 3053
int of_clk_get_parent_count(struct device_node *np)
{
	return of_count_phandle_with_args(np, "clocks", "#clock-cells");
}
EXPORT_SYMBOL_GPL(of_clk_get_parent_count);

3054 3055 3056
const char *of_clk_get_parent_name(struct device_node *np, int index)
{
	struct of_phandle_args clkspec;
Ben Dooks's avatar
Ben Dooks committed
3057
	struct property *prop;
3058
	const char *clk_name;
Ben Dooks's avatar
Ben Dooks committed
3059 3060
	const __be32 *vp;
	u32 pv;
3061
	int rc;
Ben Dooks's avatar
Ben Dooks committed
3062
	int count;
3063
	struct clk *clk;
3064 3065 3066 3067 3068 3069

	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
					&clkspec);
	if (rc)
		return NULL;

Ben Dooks's avatar
Ben Dooks committed
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
	index = clkspec.args_count ? clkspec.args[0] : 0;
	count = 0;

	/* if there is an indices property, use it to transfer the index
	 * specified into an array offset for the clock-output-names property.
	 */
	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
		if (index == pv) {
			index = count;
			break;
		}
		count++;
	}

3084
	if (of_property_read_string_index(clkspec.np, "clock-output-names",
Ben Dooks's avatar
Ben Dooks committed
3085
					  index,
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
					  &clk_name) < 0) {
		/*
		 * Best effort to get the name if the clock has been
		 * registered with the framework. If the clock isn't
		 * registered, we return the node name as the name of
		 * the clock as long as #clock-cells = 0.
		 */
		clk = of_clk_get_from_provider(&clkspec);
		if (IS_ERR(clk)) {
			if (clkspec.args_count == 0)
				clk_name = clkspec.np->name;
			else
				clk_name = NULL;
		} else {
			clk_name = __clk_get_name(clk);
			clk_put(clk);
		}
	}

3105 3106 3107 3108 3109 3110

	of_node_put(clkspec.np);
	return clk_name;
}
EXPORT_SYMBOL_GPL(of_clk_get_parent_name);

3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
/**
 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
 * number of parents
 * @np: Device node pointer associated with clock provider
 * @parents: pointer to char array that hold the parents' names
 * @size: size of the @parents array
 *
 * Return: number of parents for the clock node.
 */
int of_clk_parent_fill(struct device_node *np, const char **parents,
		       unsigned int size)
{
	unsigned int i = 0;

	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
		i++;

	return i;
}
EXPORT_SYMBOL_GPL(of_clk_parent_fill);

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
struct clock_provider {
	of_clk_init_cb_t clk_init_cb;
	struct device_node *np;
	struct list_head node;
};

/*
 * This function looks for a parent clock. If there is one, then it
 * checks that the provider for this parent clock was initialized, in
 * this case the parent clock will be ready.
 */
static int parent_ready(struct device_node *np)
{
	int i = 0;

	while (true) {
		struct clk *clk = of_clk_get(np, i);

		/* this parent is ready we can check the next one */
		if (!IS_ERR(clk)) {
			clk_put(clk);
			i++;
			continue;
		}

		/* at least one parent is not ready, we exit now */
		if (PTR_ERR(clk) == -EPROBE_DEFER)
			return 0;

		/*
		 * Here we make assumption that the device tree is
		 * written correctly. So an error means that there is
		 * no more parent. As we didn't exit yet, then the
		 * previous parent are ready. If there is no clock
		 * parent, no need to wait for them, then we can
		 * consider their absence as being ready
		 */
		return 1;
	}
}

3173 3174 3175 3176
/**
 * of_clk_init() - Scan and init clock providers from the DT
 * @matches: array of compatible values and init functions for providers.
 *
3177
 * This function scans the device tree for matching clock providers
3178
 * and calls their initialization functions. It also does it by trying
3179
 * to follow the dependencies.
3180 3181 3182
 */
void __init of_clk_init(const struct of_device_id *matches)
{
3183
	const struct of_device_id *match;
3184
	struct device_node *np;
3185 3186 3187
	struct clock_provider *clk_provider, *next;
	bool is_init_done;
	bool force = false;
3188
	LIST_HEAD(clk_provider_list);
3189

3190
	if (!matches)
3191
		matches = &__clk_of_table;
3192

3193
	/* First prepare the list of the clocks providers */
3194
	for_each_matching_node_and_match(np, matches, &match) {
3195 3196 3197 3198 3199 3200 3201
		struct clock_provider *parent;

		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
		if (!parent) {
			list_for_each_entry_safe(clk_provider, next,
						 &clk_provider_list, node) {
				list_del(&clk_provider->node);
3202
				of_node_put(clk_provider->np);
3203 3204
				kfree(clk_provider);
			}
3205
			of_node_put(np);
3206 3207
			return;
		}
3208 3209

		parent->clk_init_cb = match->data;
3210
		parent->np = of_node_get(np);
3211
		list_add_tail(&parent->node, &clk_provider_list);
3212 3213 3214 3215 3216 3217 3218
	}

	while (!list_empty(&clk_provider_list)) {
		is_init_done = false;
		list_for_each_entry_safe(clk_provider, next,
					&clk_provider_list, node) {
			if (force || parent_ready(clk_provider->np)) {
3219

3220
				clk_provider->clk_init_cb(clk_provider->np);
3221 3222
				of_clk_set_defaults(clk_provider->np, true);

3223
				list_del(&clk_provider->node);
3224
				of_node_put(clk_provider->np);
3225 3226 3227 3228 3229 3230
				kfree(clk_provider);
				is_init_done = true;
			}
		}

		/*
3231
		 * We didn't manage to initialize any of the
3232 3233 3234 3235 3236 3237
		 * remaining providers during the last loop, so now we
		 * initialize all the remaining ones unconditionally
		 * in case the clock parent was not mandatory
		 */
		if (!is_init_done)
			force = true;
3238 3239 3240
	}
}
#endif