intel_dp.c 170 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/i2c.h>
29
#include <linux/slab.h>
30
#include <linux/export.h>
31 32
#include <linux/notifier.h>
#include <linux/reboot.h>
33
#include <drm/drmP.h>
34
#include <drm/drm_atomic_helper.h>
35 36 37
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_edid.h>
38
#include "intel_drv.h"
39
#include <drm/i915_drm.h>
40 41 42 43
#include "i915_drv.h"

#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)

44 45 46 47 48 49
/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

50
struct dp_link_dpll {
51
	int clock;
52 53 54 55
	struct dpll dpll;
};

static const struct dp_link_dpll gen4_dpll[] = {
56
	{ 162000,
57
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58
	{ 270000,
59 60 61 62
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
63
	{ 162000,
64
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65
	{ 270000,
66 67 68
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

69
static const struct dp_link_dpll vlv_dpll[] = {
70
	{ 162000,
71
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72
	{ 270000,
73 74 75
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

76 77 78 79 80 81 82 83 84 85
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
86
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
87
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
89
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90
	{ 540000,	/* m2_int = 27, m2_fraction = 0 */
91 92
		{ .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
};
93

94 95
static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
				  324000, 432000, 540000 };
96
static const int skl_rates[] = { 162000, 216000, 270000,
97 98
				  324000, 432000, 540000 };
static const int default_rates[] = { 162000, 270000, 540000 };
99

100 101 102 103 104 105 106 107 108
/**
 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
static bool is_edp(struct intel_dp *intel_dp)
{
109 110 111
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 113
}

114
static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115
{
116 117 118
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.base.dev;
119 120
}

121 122
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
123
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 125
}

126
static void intel_dp_link_down(struct intel_dp *intel_dp);
127
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129
static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 131
static void vlv_steal_power_sequencer(struct drm_device *dev,
				      enum pipe pipe);
132

133 134 135 136 137
static unsigned int intel_dp_unused_lane_mask(int lane_count)
{
	return ~((1 << lane_count) - 1) & 0xf;
}

138 139
static int
intel_dp_max_link_bw(struct intel_dp  *intel_dp)
140
{
141
	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
142 143 144 145

	switch (max_link_bw) {
	case DP_LINK_BW_1_62:
	case DP_LINK_BW_2_7:
146
	case DP_LINK_BW_5_4:
147
		break;
148
	default:
149 150
		WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
		     max_link_bw);
151 152 153 154 155 156
		max_link_bw = DP_LINK_BW_1_62;
		break;
	}
	return max_link_bw;
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	u8 source_max, sink_max;

	source_max = 4;
	if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
	    (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
		source_max = 2;

	sink_max = drm_dp_max_lane_count(intel_dp->dpcd);

	return min(source_max, sink_max);
}

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * The units on the numbers in the next two are... bizarre.  Examples will
 * make it clearer; this one parallels an example in the eDP spec.
 *
 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
 *
 *     270000 * 1 * 8 / 10 == 216000
 *
 * The actual data capacity of that configuration is 2.16Gbit/s, so the
 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
 * 119000.  At 18bpp that's 2142000 kilobits per second.
 *
 * Thus the strange-looking division by 10 in intel_dp_link_required, to
 * get the result in decakilobits instead of kilobits.
 */

190
static int
191
intel_dp_link_required(int pixel_clock, int bpp)
192
{
193
	return (pixel_clock * bpp + 9) / 10;
194 195
}

196 197 198 199 200 201
static int
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
	return (max_link_clock * max_lanes * 8) / 10;
}

202
static enum drm_mode_status
203 204 205
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
206
	struct intel_dp *intel_dp = intel_attached_dp(connector);
207 208
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
209 210
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
211

212 213
	if (is_edp(intel_dp) && fixed_mode) {
		if (mode->hdisplay > fixed_mode->hdisplay)
214 215
			return MODE_PANEL;

216
		if (mode->vdisplay > fixed_mode->vdisplay)
217
			return MODE_PANEL;
218 219

		target_clock = fixed_mode->clock;
220 221
	}

222
	max_link_clock = intel_dp_max_link_rate(intel_dp);
223
	max_lanes = intel_dp_max_lane_count(intel_dp);
224 225 226 227 228

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

	if (mode_rate > max_rate)
229
		return MODE_CLOCK_HIGH;
230 231 232 233

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

234 235 236
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

237 238 239
	return MODE_OK;
}

240
uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
241 242 243 244 245 246 247 248 249 250 251
{
	int	i;
	uint32_t v = 0;

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
	return v;
}

252
static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
253 254 255 256 257 258 259 260
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

261 262
static void
intel_dp_init_panel_power_sequencer(struct drm_device *dev,
263
				    struct intel_dp *intel_dp);
264 265
static void
intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
266
					      struct intel_dp *intel_dp);
267

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
static void pps_lock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	enum intel_display_power_domain power_domain;

	/*
	 * See vlv_power_sequencer_reset() why we need
	 * a power domain reference here.
	 */
	power_domain = intel_display_port_power_domain(encoder);
	intel_display_power_get(dev_priv, power_domain);

	mutex_lock(&dev_priv->pps_mutex);
}

static void pps_unlock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	enum intel_display_power_domain power_domain;

	mutex_unlock(&dev_priv->pps_mutex);

	power_domain = intel_display_port_power_domain(encoder);
	intel_display_power_put(dev_priv, power_domain);
}

300 301 302 303 304 305 306
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	enum pipe pipe = intel_dp->pps_pipe;
307 308 309
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
	uint32_t DP;

	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
		 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
		 pipe_name(pipe), port_name(intel_dig_port->port)))
		return;

	DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
		      pipe_name(pipe), port_name(intel_dig_port->port));

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

	if (IS_CHERRYVIEW(dev))
		DP |= DP_PIPE_SELECT_CHV(pipe);
	else if (pipe == PIPE_B)
		DP |= DP_PIPEB_SELECT;

333 334 335 336 337 338
	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
339 340 341 342
	if (!pll_enabled) {
		release_cl_override = IS_CHERRYVIEW(dev) &&
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

343 344
		vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
				 &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
345
	}
346

347 348 349 350 351 352 353 354 355 356 357 358 359 360
	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
	 * to make this power seqeuencer lock onto the port.
	 * Otherwise even VDD force bit won't work.
	 */
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);
361

362
	if (!pll_enabled) {
363
		vlv_force_pll_off(dev, pipe);
364 365 366 367

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
368 369
}

370 371 372 373 374 375
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
376 377
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
378
	enum pipe pipe;
379

380
	lockdep_assert_held(&dev_priv->pps_mutex);
381

382 383 384
	/* We should never land here with regular DP ports */
	WARN_ON(!is_edp(intel_dp));

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
			    base.head) {
		struct intel_dp *tmp;

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

		tmp = enc_to_intel_dp(&encoder->base);

		if (tmp->pps_pipe != INVALID_PIPE)
			pipes &= ~(1 << tmp->pps_pipe);
	}

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
	if (WARN_ON(pipes == 0))
410 411 412
		pipe = PIPE_A;
	else
		pipe = ffs(pipes) - 1;
413

414 415
	vlv_steal_power_sequencer(dev, pipe);
	intel_dp->pps_pipe = pipe;
416 417 418 419 420 421

	DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
		      pipe_name(intel_dp->pps_pipe),
		      port_name(intel_dig_port->port));

	/* init power sequencer on this pipe and port */
422 423
	intel_dp_init_panel_power_sequencer(dev, intel_dp);
	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
424

425 426 427 428 429
	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);
430 431 432 433

	return intel_dp->pps_pipe;
}

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
	return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
	return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}
454

455
static enum pipe
456 457 458
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
459 460
{
	enum pipe pipe;
461 462 463 464

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
		u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
			PANEL_PORT_SELECT_MASK;
465 466 467 468

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

469 470 471
		if (!pipe_check(dev_priv, pipe))
			continue;

472
		return pipe;
473 474
	}

475 476 477 478 479 480 481 482 483 484 485 486 487 488
	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	enum port port = intel_dig_port->port;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
489 490 491 492 493 494 495 496 497 498 499
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);
500 501 502 503 504 505

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
		DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
			      port_name(port));
		return;
506 507
	}

508 509 510
	DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
		      port_name(port), pipe_name(intel_dp->pps_pipe));

511 512
	intel_dp_init_panel_power_sequencer(dev, intel_dp);
	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
513 514
}

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_encoder *encoder;

	if (WARN_ON(!IS_VALLEYVIEW(dev)))
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
		struct intel_dp *intel_dp;

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

		intel_dp = enc_to_intel_dp(&encoder->base);
		intel_dp->pps_pipe = INVALID_PIPE;
	}
542 543 544 545 546 547
}

static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);

548 549 550
	if (IS_BROXTON(dev))
		return BXT_PP_CONTROL(0);
	else if (HAS_PCH_SPLIT(dev))
551 552 553 554 555 556 557 558 559
		return PCH_PP_CONTROL;
	else
		return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
}

static u32 _pp_stat_reg(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);

560 561 562
	if (IS_BROXTON(dev))
		return BXT_PP_STATUS(0);
	else if (HAS_PCH_SPLIT(dev))
563 564 565 566 567
		return PCH_PP_STATUS;
	else
		return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
}

568 569 570 571 572 573 574 575 576 577 578 579 580
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!is_edp(intel_dp) || code != SYS_RESTART)
		return 0;

581
	pps_lock(intel_dp);
582

583
	if (IS_VALLEYVIEW(dev)) {
584
		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
585 586
		u32 pp_ctrl_reg, pp_div_reg;
		u32 pp_div;
587

588 589 590 591 592 593 594 595 596 597 598
		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
		pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
		pp_div = I915_READ(pp_div_reg);
		pp_div &= PP_REFERENCE_DIVIDER_MASK;

		/* 0x1F write to PP_DIV_REG sets max cycle delay */
		I915_WRITE(pp_div_reg, pp_div | 0x1F);
		I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
		msleep(intel_dp->panel_power_cycle_delay);
	}

599
	pps_unlock(intel_dp);
600

601 602 603
	return 0;
}

604
static bool edp_have_panel_power(struct intel_dp *intel_dp)
605
{
606
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
607 608
	struct drm_i915_private *dev_priv = dev->dev_private;

609 610
	lockdep_assert_held(&dev_priv->pps_mutex);

611 612 613 614
	if (IS_VALLEYVIEW(dev) &&
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

615
	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
616 617
}

618
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
619
{
620
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
621 622
	struct drm_i915_private *dev_priv = dev->dev_private;

623 624
	lockdep_assert_held(&dev_priv->pps_mutex);

625 626 627 628
	if (IS_VALLEYVIEW(dev) &&
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

629
	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
630 631
}

632 633 634
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
635
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
636
	struct drm_i915_private *dev_priv = dev->dev_private;
637

638 639
	if (!is_edp(intel_dp))
		return;
640

641
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
642 643
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
644 645
			      I915_READ(_pp_stat_reg(intel_dp)),
			      I915_READ(_pp_ctrl_reg(intel_dp)));
646 647 648
	}
}

649 650 651 652 653 654
static uint32_t
intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
655
	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
656 657 658
	uint32_t status;
	bool done;

659
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
660
	if (has_aux_irq)
661
		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
662
					  msecs_to_jiffies_timeout(10));
663 664 665 666 667 668 669 670 671 672
	else
		done = wait_for_atomic(C, 10) == 0;
	if (!done)
		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
			  has_aux_irq);
#undef C

	return status;
}

673
static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
674
{
675 676
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
677

678 679 680
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
	 * 2MHz.  So, take the hrawclk value and divide by 2 and use that
681
	 */
682 683 684 685 686 687 688
	return index ? 0 : intel_hrawclk(dev) / 2;
}

static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
689
	struct drm_i915_private *dev_priv = dev->dev_private;
690 691 692 693 694

	if (index)
		return 0;

	if (intel_dig_port->port == PORT_A) {
695 696
		return DIV_ROUND_UP(dev_priv->cdclk_freq, 2000);

697 698 699 700 701 702 703 704 705 706 707 708 709 710
	} else {
		return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
	}
}

static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (intel_dig_port->port == PORT_A) {
		if (index)
			return 0;
711
		return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
712 713
	} else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
		/* Workaround for non-ULT HSW */
714 715 716 717 718
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
719
	} else  {
720
		return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
721
	}
722 723
}

724 725 726 727 728
static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
	return index ? 0 : 100;
}

729 730 731 732 733 734 735 736 737 738
static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

739 740 741 742 743 744 745 746 747 748 749 750 751 752
static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
				      bool has_aux_irq,
				      int send_bytes,
				      uint32_t aux_clock_divider)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	uint32_t precharge, timeout;

	if (IS_GEN6(dev))
		precharge = 3;
	else
		precharge = 5;

753
	if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
754 755 756 757 758
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
759
	       DP_AUX_CH_CTL_DONE |
760
	       (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
761
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
762
	       timeout |
763
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
764 765
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
766
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
767 768
}

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				      bool has_aux_irq,
				      int send_bytes,
				      uint32_t unused)
{
	return DP_AUX_CH_CTL_SEND_BUSY |
	       DP_AUX_CH_CTL_DONE |
	       (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
	       DP_AUX_CH_CTL_TIME_OUT_1600us |
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
}

784 785
static int
intel_dp_aux_ch(struct intel_dp *intel_dp,
786
		const uint8_t *send, int send_bytes,
787 788 789 790 791 792
		uint8_t *recv, int recv_size)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
793
	uint32_t aux_clock_divider;
794 795
	int i, ret, recv_bytes;
	uint32_t status;
796
	int try, clock = 0;
797
	bool has_aux_irq = HAS_AUX_IRQ(dev);
798 799
	bool vdd;

800
	pps_lock(intel_dp);
801

802 803 804 805 806 807
	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
808
	vdd = edp_panel_vdd_on(intel_dp);
809 810 811 812 813 814 815 816

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
	pm_qos_update_request(&dev_priv->pm_qos, 0);

	intel_dp_check_edp(intel_dp);
817

818 819
	intel_aux_display_runtime_get(dev_priv);

820 821
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
822
		status = I915_READ_NOTRACE(ch_ctl);
823 824 825 826 827 828
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}

	if (try == 3) {
829 830 831 832 833 834 835 836 837
		static u32 last_status = -1;
		const u32 status = I915_READ(ch_ctl);

		if (status != last_status) {
			WARN(1, "dp_aux_ch not started status 0x%08x\n",
			     status);
			last_status = status;
		}

838 839
		ret = -EBUSY;
		goto out;
840 841
	}

842 843 844 845 846 847
	/* Only 5 data registers! */
	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
		ret = -E2BIG;
		goto out;
	}

848
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
849 850 851 852
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  has_aux_irq,
							  send_bytes,
							  aux_clock_divider);
853

854 855 856 857
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
858
				I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
859 860
					   intel_dp_pack_aux(send + i,
							     send_bytes - i));
861 862

			/* Send the command and wait for it to complete */
863
			I915_WRITE(ch_ctl, send_ctl);
864 865 866 867 868 869 870 871 872 873

			status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);

			/* Clear done status and any errors */
			I915_WRITE(ch_ctl,
				   status |
				   DP_AUX_CH_CTL_DONE |
				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
				   DP_AUX_CH_CTL_RECEIVE_ERROR);

874
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
875
				continue;
876 877 878 879 880 881 882 883

			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
884
				continue;
885
			}
886
			if (status & DP_AUX_CH_CTL_DONE)
887
				goto done;
888
		}
889 890 891
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
892
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
893 894
		ret = -EBUSY;
		goto out;
895 896
	}

897
done:
898 899 900
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
901
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
902
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
903 904
		ret = -EIO;
		goto out;
905
	}
906 907 908

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
909
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
910
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
911 912
		ret = -ETIMEDOUT;
		goto out;
913 914 915 916 917 918 919
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
920

921
	for (i = 0; i < recv_bytes; i += 4)
922
		intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
923
				    recv + i, recv_bytes - i);
924

925 926 927
	ret = recv_bytes;
out:
	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
928
	intel_aux_display_runtime_put(dev_priv);
929

930 931 932
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

933
	pps_unlock(intel_dp);
934

935
	return ret;
936 937
}

938 939
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
940 941
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
942
{
943 944 945
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
	uint8_t txbuf[20], rxbuf[20];
	size_t txsize, rxsize;
946 947
	int ret;

948 949 950
	txbuf[0] = (msg->request << 4) |
		((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
951 952
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
953

954 955 956
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
957
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
958
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
959
		rxsize = 2; /* 0 or 1 data bytes */
960

961 962
		if (WARN_ON(txsize > 20))
			return -E2BIG;
963

964
		memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
965

966 967 968
		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
969

970 971 972 973 974 975 976
			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
977 978
		}
		break;
979

980 981
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
982
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
983
		rxsize = msg->size + 1;
984

985 986
		if (WARN_ON(rxsize > 20))
			return -E2BIG;
987

988 989 990 991 992 993 994 995 996 997 998
		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
999
		}
1000 1001 1002 1003 1004
		break;

	default:
		ret = -EINVAL;
		break;
1005
	}
1006

1007
	return ret;
1008 1009
}

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
static uint32_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
				enum port port)
{
	switch (port) {
	case PORT_B:
	case PORT_C:
	case PORT_D:
		return DP_AUX_CH_CTL(port);
	default:
		MISSING_CASE(port);
		return DP_AUX_CH_CTL(PORT_B);
	}
}

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
static uint32_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
				 enum port port, int index)
{
	switch (port) {
	case PORT_B:
	case PORT_C:
	case PORT_D:
		return DP_AUX_CH_DATA(port, index);
	default:
		MISSING_CASE(port);
		return DP_AUX_CH_DATA(PORT_B, index);
	}
}

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
static uint32_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
				enum port port)
{
	switch (port) {
	case PORT_A:
		return DP_AUX_CH_CTL(port);
	case PORT_B:
	case PORT_C:
	case PORT_D:
		return PCH_DP_AUX_CH_CTL(port);
	default:
		MISSING_CASE(port);
		return DP_AUX_CH_CTL(PORT_A);
	}
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
static uint32_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
				 enum port port, int index)
{
	switch (port) {
	case PORT_A:
		return DP_AUX_CH_DATA(port, index);
	case PORT_B:
	case PORT_C:
	case PORT_D:
		return PCH_DP_AUX_CH_DATA(port, index);
	default:
		MISSING_CASE(port);
		return DP_AUX_CH_DATA(PORT_A, index);
	}
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
/*
 * On SKL we don't have Aux for port E so we rely
 * on VBT to set a proper alternate aux channel.
 */
static enum port skl_porte_aux_port(struct drm_i915_private *dev_priv)
{
	const struct ddi_vbt_port_info *info =
		&dev_priv->vbt.ddi_port_info[PORT_E];

	switch (info->alternate_aux_channel) {
	case DP_AUX_A:
		return PORT_A;
	case DP_AUX_B:
		return PORT_B;
	case DP_AUX_C:
		return PORT_C;
	case DP_AUX_D:
		return PORT_D;
	default:
		MISSING_CASE(info->alternate_aux_channel);
		return PORT_A;
	}
}

static uint32_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
				enum port port)
{
	if (port == PORT_E)
		port = skl_porte_aux_port(dev_priv);

	switch (port) {
	case PORT_A:
	case PORT_B:
	case PORT_C:
	case PORT_D:
		return DP_AUX_CH_CTL(port);
	default:
		MISSING_CASE(port);
		return DP_AUX_CH_CTL(PORT_A);
	}
}

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
static uint32_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
				 enum port port, int index)
{
	if (port == PORT_E)
		port = skl_porte_aux_port(dev_priv);

	switch (port) {
	case PORT_A:
	case PORT_B:
	case PORT_C:
	case PORT_D:
		return DP_AUX_CH_DATA(port, index);
	default:
		MISSING_CASE(port);
		return DP_AUX_CH_DATA(PORT_A, index);
	}
}

static uint32_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
				  enum port port)
{
	if (INTEL_INFO(dev_priv)->gen >= 9)
		return skl_aux_ctl_reg(dev_priv, port);
	else if (HAS_PCH_SPLIT(dev_priv))
		return ilk_aux_ctl_reg(dev_priv, port);
	else
		return g4x_aux_ctl_reg(dev_priv, port);
}

static uint32_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
				   enum port port, int index)
{
	if (INTEL_INFO(dev_priv)->gen >= 9)
		return skl_aux_data_reg(dev_priv, port, index);
	else if (HAS_PCH_SPLIT(dev_priv))
		return ilk_aux_data_reg(dev_priv, port, index);
	else
		return g4x_aux_data_reg(dev_priv, port, index);
}

static void intel_aux_reg_init(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
	enum port port = dp_to_dig_port(intel_dp)->port;
	int i;

	intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
	for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
		intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
}

1163
static void
1164 1165 1166 1167 1168 1169 1170
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	drm_dp_aux_unregister(&intel_dp->aux);
	kfree(intel_dp->aux.name);
}

static int
1171 1172 1173
intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1174 1175
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum port port = intel_dig_port->port;
1176 1177
	int ret;

1178
	intel_aux_reg_init(intel_dp);
1179

1180 1181 1182 1183
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
	if (!intel_dp->aux.name)
		return -ENOMEM;

1184 1185
	intel_dp->aux.dev = dev->dev;
	intel_dp->aux.transfer = intel_dp_aux_transfer;
1186

1187 1188
	DRM_DEBUG_KMS("registering %s bus for %s\n",
		      intel_dp->aux.name,
1189
		      connector->base.kdev->kobj.name);
1190

1191
	ret = drm_dp_aux_register(&intel_dp->aux);
1192
	if (ret < 0) {
1193
		DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1194 1195 1196
			  intel_dp->aux.name, ret);
		kfree(intel_dp->aux.name);
		return ret;
1197
	}
1198

1199 1200 1201 1202
	ret = sysfs_create_link(&connector->base.kdev->kobj,
				&intel_dp->aux.ddc.dev.kobj,
				intel_dp->aux.ddc.dev.kobj.name);
	if (ret < 0) {
1203 1204 1205 1206
		DRM_ERROR("sysfs_create_link() for %s failed (%d)\n",
			  intel_dp->aux.name, ret);
		intel_dp_aux_fini(intel_dp);
		return ret;
1207
	}
1208 1209

	return 0;
1210 1211
}

1212 1213 1214 1215 1216
static void
intel_dp_connector_unregister(struct intel_connector *intel_connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);

1217 1218 1219
	if (!intel_connector->mst_port)
		sysfs_remove_link(&intel_connector->base.kdev->kobj,
				  intel_dp->aux.ddc.dev.kobj.name);
1220 1221 1222
	intel_connector_unregister(intel_connector);
}

1223
static void
1224
skl_edp_set_pll_config(struct intel_crtc_state *pipe_config)
1225 1226 1227
{
	u32 ctrl1;

1228 1229 1230
	memset(&pipe_config->dpll_hw_state, 0,
	       sizeof(pipe_config->dpll_hw_state));

1231 1232 1233 1234 1235
	pipe_config->ddi_pll_sel = SKL_DPLL0;
	pipe_config->dpll_hw_state.cfgcr1 = 0;
	pipe_config->dpll_hw_state.cfgcr2 = 0;

	ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1236
	switch (pipe_config->port_clock / 2) {
1237
	case 81000:
1238
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
1239 1240
					      SKL_DPLL0);
		break;
1241
	case 135000:
1242
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350,
1243 1244
					      SKL_DPLL0);
		break;
1245
	case 270000:
1246
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700,
1247 1248
					      SKL_DPLL0);
		break;
1249
	case 162000:
1250
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620,
1251 1252 1253 1254 1255 1256
					      SKL_DPLL0);
		break;
	/* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
	results in CDCLK change. Need to handle the change of CDCLK by
	disabling pipes and re-enabling them */
	case 108000:
1257
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
1258 1259 1260
					      SKL_DPLL0);
		break;
	case 216000:
1261
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160,
1262 1263 1264
					      SKL_DPLL0);
		break;

1265 1266 1267 1268
	}
	pipe_config->dpll_hw_state.ctrl1 = ctrl1;
}

1269
void
1270
hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config)
1271
{
1272 1273 1274
	memset(&pipe_config->dpll_hw_state, 0,
	       sizeof(pipe_config->dpll_hw_state));

1275 1276
	switch (pipe_config->port_clock / 2) {
	case 81000:
1277 1278
		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
		break;
1279
	case 135000:
1280 1281
		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
		break;
1282
	case 270000:
1283 1284 1285 1286 1287
		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
		break;
	}
}

1288
static int
1289
intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1290
{
1291 1292 1293
	if (intel_dp->num_sink_rates) {
		*sink_rates = intel_dp->sink_rates;
		return intel_dp->num_sink_rates;
1294
	}
1295 1296 1297 1298

	*sink_rates = default_rates;

	return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1299 1300
}

1301
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1302
{
1303 1304 1305
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = dig_port->base.base.dev;

1306
	/* WaDisableHBR2:skl */
1307
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1308 1309 1310 1311 1312 1313 1314 1315 1316
		return false;

	if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
	    (INTEL_INFO(dev)->gen >= 9))
		return true;
	else
		return false;
}

1317
static int
1318
intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1319
{
1320 1321
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = dig_port->base.base.dev;
1322 1323
	int size;

1324 1325
	if (IS_BROXTON(dev)) {
		*source_rates = bxt_rates;
1326
		size = ARRAY_SIZE(bxt_rates);
1327
	} else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1328
		*source_rates = skl_rates;
1329 1330 1331 1332
		size = ARRAY_SIZE(skl_rates);
	} else {
		*source_rates = default_rates;
		size = ARRAY_SIZE(default_rates);
1333
	}
1334

1335
	/* This depends on the fact that 5.4 is last value in the array */
1336
	if (!intel_dp_source_supports_hbr2(intel_dp))
1337
		size--;
1338

1339
	return size;
1340 1341
}

1342 1343
static void
intel_dp_set_clock(struct intel_encoder *encoder,
1344
		   struct intel_crtc_state *pipe_config)
1345 1346
{
	struct drm_device *dev = encoder->base.dev;
1347 1348
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
1349 1350

	if (IS_G4X(dev)) {
1351 1352
		divisor = gen4_dpll;
		count = ARRAY_SIZE(gen4_dpll);
1353
	} else if (HAS_PCH_SPLIT(dev)) {
1354 1355
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
1356 1357 1358
	} else if (IS_CHERRYVIEW(dev)) {
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
1359
	} else if (IS_VALLEYVIEW(dev)) {
1360 1361
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
1362
	}
1363 1364 1365

	if (divisor && count) {
		for (i = 0; i < count; i++) {
1366
			if (pipe_config->port_clock == divisor[i].clock) {
1367 1368 1369 1370 1371
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
1372 1373 1374
	}
}

1375 1376
static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
1377
			   int *common_rates)
1378 1379 1380 1381 1382
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
1383 1384
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
1385
			common_rates[k] = source_rates[i];
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

1398 1399
static int intel_dp_common_rates(struct intel_dp *intel_dp,
				 int *common_rates)
1400 1401 1402 1403 1404
{
	const int *source_rates, *sink_rates;
	int source_len, sink_len;

	sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1405
	source_len = intel_dp_source_rates(intel_dp, &source_rates);
1406 1407 1408

	return intersect_rates(source_rates, source_len,
			       sink_rates, sink_len,
1409
			       common_rates);
1410 1411
}

1412 1413 1414 1415 1416 1417 1418 1419
static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
1420
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
	const int *source_rates, *sink_rates;
1431 1432
	int source_len, sink_len, common_len;
	int common_rates[DP_MAX_SUPPORTED_RATES];
1433 1434 1435 1436 1437
	char str[128]; /* FIXME: too big for stack? */

	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

1438
	source_len = intel_dp_source_rates(intel_dp, &source_rates);
1439 1440 1441 1442 1443 1444 1445
	snprintf_int_array(str, sizeof(str), source_rates, source_len);
	DRM_DEBUG_KMS("source rates: %s\n", str);

	sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
	snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
	DRM_DEBUG_KMS("sink rates: %s\n", str);

1446 1447 1448
	common_len = intel_dp_common_rates(intel_dp, common_rates);
	snprintf_int_array(str, sizeof(str), common_rates, common_len);
	DRM_DEBUG_KMS("common rates: %s\n", str);
1449 1450
}

1451
static int rate_to_index(int find, const int *rates)
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
{
	int i = 0;

	for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
		if (find == rates[i])
			break;

	return i;
}

1462 1463 1464 1465 1466 1467
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
	int rates[DP_MAX_SUPPORTED_RATES] = {};
	int len;

1468
	len = intel_dp_common_rates(intel_dp, rates);
1469 1470 1471 1472 1473 1474
	if (WARN_ON(len <= 0))
		return 162000;

	return rates[rate_to_index(0, rates) - 1];
}

1475 1476
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
1477
	return rate_to_index(rate, intel_dp->sink_rates);
1478 1479
}

1480 1481
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
			   uint8_t *link_bw, uint8_t *rate_select)
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
{
	if (intel_dp->num_sink_rates) {
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

1493
bool
1494
intel_dp_compute_config(struct intel_encoder *encoder,
1495
			struct intel_crtc_state *pipe_config)
1496
{
1497
	struct drm_device *dev = encoder->base.dev;
1498
	struct drm_i915_private *dev_priv = dev->dev_private;
1499
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1500
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1501
	enum port port = dp_to_dig_port(intel_dp)->port;
1502
	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1503
	struct intel_connector *intel_connector = intel_dp->attached_connector;
1504
	int lane_count, clock;
1505
	int min_lane_count = 1;
1506
	int max_lane_count = intel_dp_max_lane_count(intel_dp);
1507
	/* Conveniently, the link BW constants become indices with a shift...*/
1508
	int min_clock = 0;
1509
	int max_clock;
1510
	int bpp, mode_rate;
1511
	int link_avail, link_clock;
1512 1513
	int common_rates[DP_MAX_SUPPORTED_RATES] = {};
	int common_len;
1514
	uint8_t link_bw, rate_select;
1515

1516
	common_len = intel_dp_common_rates(intel_dp, common_rates);
1517 1518

	/* No common link rates between source and sink */
1519
	WARN_ON(common_len <= 0);
1520

1521
	max_clock = common_len - 1;
1522

1523
	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1524 1525
		pipe_config->has_pch_encoder = true;

1526
	pipe_config->has_dp_encoder = true;
1527
	pipe_config->has_drrs = false;
1528
	pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1529

1530 1531 1532
	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
1533 1534 1535

		if (INTEL_INFO(dev)->gen >= 9) {
			int ret;
1536
			ret = skl_update_scaler_crtc(pipe_config);
1537 1538 1539 1540
			if (ret)
				return ret;
		}

1541
		if (HAS_GMCH_DISPLAY(dev))
1542 1543 1544
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
						 intel_connector->panel.fitting_mode);
		else
1545 1546
			intel_pch_panel_fitting(intel_crtc, pipe_config,
						intel_connector->panel.fitting_mode);
1547 1548
	}

1549
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1550 1551
		return false;

1552
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
1553
		      "max bw %d pixel clock %iKHz\n",
1554
		      max_lane_count, common_rates[max_clock],
1555
		      adjusted_mode->crtc_clock);
1556

1557 1558
	/* Walk through all bpp values. Luckily they're all nicely spaced with 2
	 * bpc in between. */
1559
	bpp = pipe_config->pipe_bpp;
1560
	if (is_edp(intel_dp)) {
1561 1562 1563 1564

		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
			(dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp)) {
1565 1566 1567 1568 1569
			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
				      dev_priv->vbt.edp_bpp);
			bpp = dev_priv->vbt.edp_bpp;
		}

1570 1571 1572 1573 1574 1575 1576 1577 1578
		/*
		 * Use the maximum clock and number of lanes the eDP panel
		 * advertizes being capable of. The panels are generally
		 * designed to support only a single clock and lane
		 * configuration, and typically these values correspond to the
		 * native resolution of the panel.
		 */
		min_lane_count = max_lane_count;
		min_clock = max_clock;
1579
	}
1580

1581
	for (; bpp >= 6*3; bpp -= 2*3) {
1582 1583
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
						   bpp);
1584

1585
		for (clock = min_clock; clock <= max_clock; clock++) {
1586 1587 1588 1589
			for (lane_count = min_lane_count;
				lane_count <= max_lane_count;
				lane_count <<= 1) {

1590
				link_clock = common_rates[clock];
1591 1592 1593 1594 1595 1596 1597 1598 1599
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					goto found;
				}
			}
		}
	}
1600

1601
	return false;
1602

1603
found:
1604 1605 1606 1607 1608 1609
	if (intel_dp->color_range_auto) {
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
1610 1611 1612 1613 1614
		pipe_config->limited_color_range =
			bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
	} else {
		pipe_config->limited_color_range =
			intel_dp->limited_color_range;
1615 1616
	}

1617
	pipe_config->lane_count = lane_count;
1618

1619
	pipe_config->pipe_bpp = bpp;
1620
	pipe_config->port_clock = common_rates[clock];
1621

1622 1623 1624 1625 1626
	intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
			      &link_bw, &rate_select);

	DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
		      link_bw, rate_select, pipe_config->lane_count,
1627
		      pipe_config->port_clock, bpp);
1628 1629
	DRM_DEBUG_KMS("DP link bw required %i available %i\n",
		      mode_rate, link_avail);
1630

1631
	intel_link_compute_m_n(bpp, lane_count,
1632 1633
			       adjusted_mode->crtc_clock,
			       pipe_config->port_clock,
1634
			       &pipe_config->dp_m_n);
1635

1636
	if (intel_connector->panel.downclock_mode != NULL &&
1637
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1638
			pipe_config->has_drrs = true;
1639 1640 1641 1642 1643 1644
			intel_link_compute_m_n(bpp, lane_count,
				intel_connector->panel.downclock_mode->clock,
				pipe_config->port_clock,
				&pipe_config->dp_m2_n2);
	}

1645
	if ((IS_SKYLAKE(dev)  || IS_KABYLAKE(dev)) && is_edp(intel_dp))
1646
		skl_edp_set_pll_config(pipe_config);
1647 1648
	else if (IS_BROXTON(dev))
		/* handled in ddi */;
1649
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1650
		hsw_dp_set_ddi_pll_sel(pipe_config);
1651
	else
1652
		intel_dp_set_clock(encoder, pipe_config);
1653

1654
	return true;
1655 1656
}

1657 1658 1659 1660 1661 1662 1663
void intel_dp_set_link_params(struct intel_dp *intel_dp,
			      const struct intel_crtc_state *pipe_config)
{
	intel_dp->link_rate = pipe_config->port_clock;
	intel_dp->lane_count = pipe_config->lane_count;
}

1664
static void intel_dp_prepare(struct intel_encoder *encoder)
1665
{
1666
	struct drm_device *dev = encoder->base.dev;
1667
	struct drm_i915_private *dev_priv = dev->dev_private;
1668
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1669
	enum port port = dp_to_dig_port(intel_dp)->port;
1670
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1671
	const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1672

1673 1674
	intel_dp_set_link_params(intel_dp, crtc->config);

1675
	/*
1676
	 * There are four kinds of DP registers:
1677 1678
	 *
	 * 	IBX PCH
1679 1680
	 * 	SNB CPU
	 *	IVB CPU
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
	 * configuration happens (oddly) in ironlake_pch_enable
	 */
1691

1692 1693 1694 1695
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1696

1697 1698
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1699
	intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
1700

1701
	/* Split out the IBX/CPU vs CPT settings */
1702

1703
	if (IS_GEN7(dev) && port == PORT_A) {
1704 1705 1706 1707 1708 1709
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

1710
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1711 1712
			intel_dp->DP |= DP_ENHANCED_FRAMING;

1713
		intel_dp->DP |= crtc->pipe << 29;
1714
	} else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1715 1716
		u32 trans_dp;

1717
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1718 1719 1720 1721 1722 1723 1724

		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1725
	} else {
1726 1727 1728
		if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
		    crtc->config->limited_color_range)
			intel_dp->DP |= DP_COLOR_RANGE_16_235;
1729 1730 1731 1732 1733 1734 1735

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

1736
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1737 1738
			intel_dp->DP |= DP_ENHANCED_FRAMING;

1739
		if (IS_CHERRYVIEW(dev))
1740
			intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1741 1742
		else if (crtc->pipe == PIPE_B)
			intel_dp->DP |= DP_PIPEB_SELECT;
1743
	}
1744 1745
}

1746 1747
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1748

1749 1750
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
1751

1752 1753
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1754

1755
static void wait_panel_status(struct intel_dp *intel_dp,
1756 1757
				       u32 mask,
				       u32 value)
1758
{
1759
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1760
	struct drm_i915_private *dev_priv = dev->dev_private;
1761 1762
	u32 pp_stat_reg, pp_ctrl_reg;

1763 1764
	lockdep_assert_held(&dev_priv->pps_mutex);

1765 1766
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1767

1768
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1769 1770 1771
			mask, value,
			I915_READ(pp_stat_reg),
			I915_READ(pp_ctrl_reg));
1772

1773
	if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1774
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1775 1776
				I915_READ(pp_stat_reg),
				I915_READ(pp_ctrl_reg));
1777
	}
1778 1779

	DRM_DEBUG_KMS("Wait complete\n");
1780
}
1781

1782
static void wait_panel_on(struct intel_dp *intel_dp)
1783 1784
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
1785
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1786 1787
}

1788
static void wait_panel_off(struct intel_dp *intel_dp)
1789 1790
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
1791
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1792 1793
}

1794
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1795 1796
{
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1797 1798 1799 1800 1801 1802

	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
	wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
				       intel_dp->panel_power_cycle_delay);

1803
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1804 1805
}

1806
static void wait_backlight_on(struct intel_dp *intel_dp)
1807 1808 1809 1810 1811
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

1812
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1813 1814 1815 1816
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
1817

1818 1819 1820 1821
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

1822
static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1823
{
1824 1825 1826
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 control;
1827

1828 1829
	lockdep_assert_held(&dev_priv->pps_mutex);

1830
	control = I915_READ(_pp_ctrl_reg(intel_dp));
1831 1832 1833 1834
	if (!IS_BROXTON(dev)) {
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
1835
	return control;
1836 1837
}

1838 1839 1840 1841 1842
/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
1843
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1844
{
1845
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1846 1847
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1848
	struct drm_i915_private *dev_priv = dev->dev_private;
1849
	enum intel_display_power_domain power_domain;
1850
	u32 pp;
1851
	u32 pp_stat_reg, pp_ctrl_reg;
1852
	bool need_to_disable = !intel_dp->want_panel_vdd;
1853

1854 1855
	lockdep_assert_held(&dev_priv->pps_mutex);

1856
	if (!is_edp(intel_dp))
1857
		return false;
1858

1859
	cancel_delayed_work(&intel_dp->panel_vdd_work);
1860
	intel_dp->want_panel_vdd = true;
1861

1862
	if (edp_have_panel_vdd(intel_dp))
1863
		return need_to_disable;
1864

1865 1866
	power_domain = intel_display_port_power_domain(intel_encoder);
	intel_display_power_get(dev_priv, power_domain);
1867

1868 1869
	DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
		      port_name(intel_dig_port->port));
1870

1871 1872
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
1873

1874
	pp = ironlake_get_pp_control(intel_dp);
1875
	pp |= EDP_FORCE_VDD;
1876

1877 1878
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1879 1880 1881 1882 1883

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1884 1885 1886
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
1887
	if (!edp_have_panel_power(intel_dp)) {
1888 1889
		DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
			      port_name(intel_dig_port->port));
1890 1891
		msleep(intel_dp->panel_power_up_delay);
	}
1892 1893 1894 1895

	return need_to_disable;
}

1896 1897 1898 1899 1900 1901 1902
/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
1903
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1904
{
1905
	bool vdd;
1906

1907 1908 1909
	if (!is_edp(intel_dp))
		return;

1910
	pps_lock(intel_dp);
1911
	vdd = edp_panel_vdd_on(intel_dp);
1912
	pps_unlock(intel_dp);
1913

1914
	I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1915
	     port_name(dp_to_dig_port(intel_dp)->port));
1916 1917
}

1918
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1919
{
1920
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1921
	struct drm_i915_private *dev_priv = dev->dev_private;
1922 1923 1924 1925
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	enum intel_display_power_domain power_domain;
1926
	u32 pp;
1927
	u32 pp_stat_reg, pp_ctrl_reg;
1928

1929
	lockdep_assert_held(&dev_priv->pps_mutex);
1930

1931
	WARN_ON(intel_dp->want_panel_vdd);
1932

1933
	if (!edp_have_panel_vdd(intel_dp))
1934
		return;
1935

1936 1937
	DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
		      port_name(intel_dig_port->port));
1938

1939 1940
	pp = ironlake_get_pp_control(intel_dp);
	pp &= ~EDP_FORCE_VDD;
1941

1942 1943
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);
1944

1945 1946
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
1947

1948 1949 1950
	/* Make sure sequencer is idle before allowing subsequent activity */
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1951

1952 1953
	if ((pp & POWER_TARGET_ON) == 0)
		intel_dp->last_power_cycle = jiffies;
1954

1955 1956
	power_domain = intel_display_port_power_domain(intel_encoder);
	intel_display_power_put(dev_priv, power_domain);
1957
}
1958

1959
static void edp_panel_vdd_work(struct work_struct *__work)
1960 1961 1962 1963
{
	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
						 struct intel_dp, panel_vdd_work);

1964
	pps_lock(intel_dp);
1965 1966
	if (!intel_dp->want_panel_vdd)
		edp_panel_vdd_off_sync(intel_dp);
1967
	pps_unlock(intel_dp);
1968 1969
}

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

1983 1984 1985 1986 1987
/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
1988
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1989
{
1990 1991 1992 1993 1994
	struct drm_i915_private *dev_priv =
		intel_dp_to_dev(intel_dp)->dev_private;

	lockdep_assert_held(&dev_priv->pps_mutex);

1995 1996
	if (!is_edp(intel_dp))
		return;
1997

1998
	I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1999
	     port_name(dp_to_dig_port(intel_dp)->port));
2000

2001 2002
	intel_dp->want_panel_vdd = false;

2003
	if (sync)
2004
		edp_panel_vdd_off_sync(intel_dp);
2005 2006
	else
		edp_panel_vdd_schedule_off(intel_dp);
2007 2008
}

2009
static void edp_panel_on(struct intel_dp *intel_dp)
2010
{
2011
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2012
	struct drm_i915_private *dev_priv = dev->dev_private;
2013
	u32 pp;
2014
	u32 pp_ctrl_reg;
2015

2016 2017
	lockdep_assert_held(&dev_priv->pps_mutex);

2018
	if (!is_edp(intel_dp))
2019
		return;
2020

2021 2022
	DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
		      port_name(dp_to_dig_port(intel_dp)->port));
2023

2024 2025 2026
	if (WARN(edp_have_panel_power(intel_dp),
		 "eDP port %c panel power already on\n",
		 port_name(dp_to_dig_port(intel_dp)->port)))
2027
		return;
2028

2029
	wait_panel_power_cycle(intel_dp);
2030

2031
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2032
	pp = ironlake_get_pp_control(intel_dp);
2033 2034 2035
	if (IS_GEN5(dev)) {
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
2036 2037
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2038
	}
2039

2040
	pp |= POWER_TARGET_ON;
2041 2042 2043
	if (!IS_GEN5(dev))
		pp |= PANEL_POWER_RESET;

2044 2045
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2046

2047
	wait_panel_on(intel_dp);
2048
	intel_dp->last_power_on = jiffies;
2049

2050 2051
	if (IS_GEN5(dev)) {
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2052 2053
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2054
	}
2055
}
2056

2057 2058 2059 2060 2061 2062 2063
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
	if (!is_edp(intel_dp))
		return;

	pps_lock(intel_dp);
	edp_panel_on(intel_dp);
2064
	pps_unlock(intel_dp);
2065 2066
}

2067 2068

static void edp_panel_off(struct intel_dp *intel_dp)
2069
{
2070 2071
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2072
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2073
	struct drm_i915_private *dev_priv = dev->dev_private;
2074
	enum intel_display_power_domain power_domain;
2075
	u32 pp;
2076
	u32 pp_ctrl_reg;
2077

2078 2079
	lockdep_assert_held(&dev_priv->pps_mutex);

2080 2081
	if (!is_edp(intel_dp))
		return;
2082

2083 2084
	DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
		      port_name(dp_to_dig_port(intel_dp)->port));
2085

2086 2087
	WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
	     port_name(dp_to_dig_port(intel_dp)->port));
2088

2089
	pp = ironlake_get_pp_control(intel_dp);
2090 2091
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
2092 2093
	pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
		EDP_BLC_ENABLE);
2094

2095
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2096

2097 2098
	intel_dp->want_panel_vdd = false;

2099 2100
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2101

2102
	intel_dp->last_power_cycle = jiffies;
2103
	wait_panel_off(intel_dp);
2104 2105

	/* We got a reference when we enabled the VDD. */
2106 2107
	power_domain = intel_display_port_power_domain(intel_encoder);
	intel_display_power_put(dev_priv, power_domain);
2108
}
2109

2110 2111 2112 2113
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
	if (!is_edp(intel_dp))
		return;
2114

2115 2116
	pps_lock(intel_dp);
	edp_panel_off(intel_dp);
2117
	pps_unlock(intel_dp);
2118 2119
}

2120 2121
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2122
{
2123 2124
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
2125 2126
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;
2127
	u32 pp_ctrl_reg;
2128

2129 2130 2131 2132 2133 2134
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
2135
	wait_backlight_on(intel_dp);
2136

2137
	pps_lock(intel_dp);
2138

2139
	pp = ironlake_get_pp_control(intel_dp);
2140
	pp |= EDP_BLC_ENABLE;
2141

2142
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2143 2144 2145

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2146

2147
	pps_unlock(intel_dp);
2148 2149
}

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
/* Enable backlight PWM and backlight PP control. */
void intel_edp_backlight_on(struct intel_dp *intel_dp)
{
	if (!is_edp(intel_dp))
		return;

	DRM_DEBUG_KMS("\n");

	intel_panel_enable_backlight(intel_dp->attached_connector);
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2164
{
2165
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2166 2167
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;
2168
	u32 pp_ctrl_reg;
2169

2170 2171 2172
	if (!is_edp(intel_dp))
		return;

2173
	pps_lock(intel_dp);
2174

2175
	pp = ironlake_get_pp_control(intel_dp);
2176
	pp &= ~EDP_BLC_ENABLE;
2177

2178
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2179 2180 2181

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2182

2183
	pps_unlock(intel_dp);
2184 2185

	intel_dp->last_backlight_off = jiffies;
2186
	edp_wait_backlight_off(intel_dp);
2187
}
2188

2189 2190 2191 2192 2193 2194 2195
/* Disable backlight PP control and backlight PWM. */
void intel_edp_backlight_off(struct intel_dp *intel_dp)
{
	if (!is_edp(intel_dp))
		return;

	DRM_DEBUG_KMS("\n");
2196

2197
	_intel_edp_backlight_off(intel_dp);
2198
	intel_panel_disable_backlight(intel_dp->attached_connector);
2199
}
2200

2201 2202 2203 2204 2205 2206 2207 2208
/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2209 2210
	bool is_enabled;

2211
	pps_lock(intel_dp);
2212
	is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2213
	pps_unlock(intel_dp);
2214 2215 2216 2217

	if (is_enabled == enable)
		return;

2218 2219
	DRM_DEBUG_KMS("panel power control backlight %s\n",
		      enable ? "enable" : "disable");
2220 2221 2222 2223 2224 2225 2226

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
static const char *state_string(bool enabled)
{
	return enabled ? "on" : "off";
}

static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;

	I915_STATE_WARN(cur_state != state,
			"DP port %c state assertion failure (expected %s, current %s)\n",
			port_name(dig_port->port),
			state_string(state), state_string(cur_state));
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
			state_string(state), state_string(cur_state));
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

2256
static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2257
{
2258
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2259 2260
	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2261

2262 2263 2264
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);
2265

2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
		      crtc->config->port_clock);

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

	if (crtc->config->port_clock == 162000)
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

	I915_WRITE(DP_A, intel_dp->DP);
	POSTING_READ(DP_A);
	udelay(500);

2280
	intel_dp->DP |= DP_PLL_ENABLE;
2281

2282
	I915_WRITE(DP_A, intel_dp->DP);
2283 2284
	POSTING_READ(DP_A);
	udelay(200);
2285 2286
}

2287
static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2288
{
2289
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2290 2291
	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2292

2293 2294 2295
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);
2296

2297 2298
	DRM_DEBUG_KMS("disabling eDP PLL\n");

2299
	intel_dp->DP &= ~DP_PLL_ENABLE;
2300

2301
	I915_WRITE(DP_A, intel_dp->DP);
2302
	POSTING_READ(DP_A);
2303 2304 2305
	udelay(200);
}

2306
/* If the sink supports it, try to set the power state appropriately */
2307
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2308 2309 2310 2311 2312 2313 2314 2315
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
2316 2317
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
2318 2319 2320 2321 2322 2323
	} else {
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
2324 2325
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
2326 2327 2328 2329 2330
			if (ret == 1)
				break;
			msleep(1);
		}
	}
2331 2332 2333 2334

	if (ret != 1)
		DRM_DEBUG_KMS("failed to %s sink power state\n",
			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2335 2336
}

2337 2338
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
2339
{
2340
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2341
	enum port port = dp_to_dig_port(intel_dp)->port;
2342 2343
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2344 2345 2346 2347
	enum intel_display_power_domain power_domain;
	u32 tmp;

	power_domain = intel_display_port_power_domain(encoder);
2348
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
2349 2350 2351
		return false;

	tmp = I915_READ(intel_dp->output_reg);
2352 2353 2354 2355

	if (!(tmp & DP_PORT_EN))
		return false;

2356
	if (IS_GEN7(dev) && port == PORT_A) {
2357
		*pipe = PORT_TO_PIPE_CPT(tmp);
2358
	} else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2359
		enum pipe p;
2360

2361 2362 2363 2364
		for_each_pipe(dev_priv, p) {
			u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
			if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
				*pipe = p;
2365 2366 2367 2368
				return true;
			}
		}

2369 2370
		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
			      intel_dp->output_reg);
2371 2372 2373 2374
	} else if (IS_CHERRYVIEW(dev)) {
		*pipe = DP_PORT_TO_PIPE_CHV(tmp);
	} else {
		*pipe = PORT_TO_PIPE(tmp);
2375
	}
2376

2377 2378
	return true;
}
2379

2380
static void intel_dp_get_config(struct intel_encoder *encoder,
2381
				struct intel_crtc_state *pipe_config)
2382 2383 2384
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	u32 tmp, flags = 0;
2385 2386 2387 2388
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	enum port port = dp_to_dig_port(intel_dp)->port;
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2389
	int dotclock;
2390

2391
	tmp = I915_READ(intel_dp->output_reg);
2392 2393

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2394

2395
	if (HAS_PCH_CPT(dev) && port != PORT_A) {
2396 2397 2398
		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2399 2400 2401
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
2402

2403
		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2404 2405 2406 2407
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
2408
		if (tmp & DP_SYNC_HS_HIGH)
2409 2410 2411
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
2412

2413
		if (tmp & DP_SYNC_VS_HIGH)
2414 2415 2416 2417
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
2418

2419
	pipe_config->base.adjusted_mode.flags |= flags;
2420

2421 2422 2423 2424
	if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
	    tmp & DP_COLOR_RANGE_16_235)
		pipe_config->limited_color_range = true;

2425 2426
	pipe_config->has_dp_encoder = true;

2427 2428 2429
	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

2430 2431
	intel_dp_get_m_n(crtc, pipe_config);

2432
	if (port == PORT_A) {
2433
		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2434 2435 2436 2437
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
2438 2439 2440 2441 2442 2443 2444

	dotclock = intel_dotclock_calculate(pipe_config->port_clock,
					    &pipe_config->dp_m_n);

	if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
		ironlake_check_encoder_dotclock(pipe_config, dotclock);

2445
	pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2446

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
	if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
	}
2466 2467
}

2468
static void intel_disable_dp(struct intel_encoder *encoder)
2469
{
2470
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2471
	struct drm_device *dev = encoder->base.dev;
2472 2473
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);

2474
	if (crtc->config->has_audio)
2475
		intel_audio_codec_disable(encoder);
2476

2477 2478 2479
	if (HAS_PSR(dev) && !HAS_DDI(dev))
		intel_psr_disable(intel_dp);

2480 2481
	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
2482
	intel_edp_panel_vdd_on(intel_dp);
2483
	intel_edp_backlight_off(intel_dp);
2484
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2485
	intel_edp_panel_off(intel_dp);
2486

2487 2488
	/* disable the port before the pipe on g4x */
	if (INTEL_INFO(dev)->gen < 5)
2489
		intel_dp_link_down(intel_dp);
2490 2491
}

2492
static void ilk_post_disable_dp(struct intel_encoder *encoder)
2493
{
2494
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2495
	enum port port = dp_to_dig_port(intel_dp)->port;
2496

2497
	intel_dp_link_down(intel_dp);
2498 2499

	/* Only ilk+ has port A */
2500 2501
	if (port == PORT_A)
		ironlake_edp_pll_off(intel_dp);
2502 2503 2504 2505 2506 2507 2508
}

static void vlv_post_disable_dp(struct intel_encoder *encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);

	intel_dp_link_down(intel_dp);
2509 2510
}

2511 2512
static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
				     bool reset)
2513
{
2514 2515 2516 2517 2518
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
	enum pipe pipe = crtc->pipe;
	uint32_t val;
2519

2520 2521 2522 2523 2524 2525
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
	if (reset)
		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
	else
		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2526

2527 2528 2529 2530 2531 2532 2533 2534
	if (crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
		if (reset)
			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
		else
			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
	}
2535

2536
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2537
	val |= CHV_PCS_REQ_SOFTRESET_EN;
2538 2539 2540 2541
	if (reset)
		val &= ~DPIO_PCS_CLK_SOFT_RESET;
	else
		val |= DPIO_PCS_CLK_SOFT_RESET;
2542
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2543

2544
	if (crtc->config->lane_count > 2) {
2545 2546
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
		val |= CHV_PCS_REQ_SOFTRESET_EN;
2547 2548 2549 2550
		if (reset)
			val &= ~DPIO_PCS_CLK_SOFT_RESET;
		else
			val |= DPIO_PCS_CLK_SOFT_RESET;
2551 2552
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
	}
2553
}
2554

2555 2556 2557 2558 2559
static void chv_post_disable_dp(struct intel_encoder *encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2560

2561 2562 2563 2564 2565 2566
	intel_dp_link_down(intel_dp);

	mutex_lock(&dev_priv->sb_lock);

	/* Assert data lane reset */
	chv_data_lane_soft_reset(encoder, true);
2567

2568
	mutex_unlock(&dev_priv->sb_lock);
2569 2570
}

2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
			 uint32_t *DP,
			 uint8_t dp_train_pat)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	enum port port = intel_dig_port->port;

	if (HAS_DDI(dev)) {
		uint32_t temp = I915_READ(DP_TP_CTL(port));

		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
		else
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;

		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;

			break;
		case DP_TRAINING_PATTERN_1:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
			break;
		case DP_TRAINING_PATTERN_2:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
			break;
		case DP_TRAINING_PATTERN_3:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
			break;
		}
		I915_WRITE(DP_TP_CTL(port), temp);

2607 2608
	} else if ((IS_GEN7(dev) && port == PORT_A) ||
		   (HAS_PCH_CPT(dev) && port != PORT_A)) {
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF_CPT;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		case DP_TRAINING_PATTERN_3:
			DRM_ERROR("DP training pattern 3 not supported\n");
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		}

	} else {
		if (IS_CHERRYVIEW(dev))
			*DP &= ~DP_LINK_TRAIN_MASK_CHV;
		else
			*DP &= ~DP_LINK_TRAIN_MASK;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2;
			break;
		case DP_TRAINING_PATTERN_3:
			if (IS_CHERRYVIEW(dev)) {
				*DP |= DP_LINK_TRAIN_PAT_3_CHV;
			} else {
				DRM_ERROR("DP training pattern 3 not supported\n");
				*DP |= DP_LINK_TRAIN_PAT_2;
			}
			break;
		}
	}
}

static void intel_dp_enable_port(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
	struct drm_i915_private *dev_priv = dev->dev_private;
2659 2660
	struct intel_crtc *crtc =
		to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
2661 2662 2663 2664 2665 2666 2667

	/* enable with pattern 1 (as per spec) */
	_intel_dp_set_link_train(intel_dp, &intel_dp->DP,
				 DP_TRAINING_PATTERN_1);

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
2668 2669 2670 2671 2672 2673 2674 2675

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
2676 2677
	if (crtc->config->has_audio)
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2678 2679 2680

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
2681 2682
}

2683
static void intel_enable_dp(struct intel_encoder *encoder)
2684
{
2685 2686 2687
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2688
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2689
	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2690 2691
	enum port port = dp_to_dig_port(intel_dp)->port;
	enum pipe pipe = crtc->pipe;
2692

2693 2694
	if (WARN_ON(dp_reg & DP_PORT_EN))
		return;
2695

2696 2697 2698 2699 2700
	pps_lock(intel_dp);

	if (IS_VALLEYVIEW(dev))
		vlv_init_panel_power_sequencer(intel_dp);

2701
	intel_dp_enable_port(intel_dp);
2702

2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
	if (port == PORT_A && IS_GEN5(dev_priv)) {
		/*
		 * Underrun reporting for the other pipe was disabled in
		 * g4x_pre_enable_dp(). The eDP PLL and port have now been
		 * enabled, so it's now safe to re-enable underrun reporting.
		 */
		intel_wait_for_vblank_if_active(dev_priv->dev, !pipe);
		intel_set_cpu_fifo_underrun_reporting(dev_priv, !pipe, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, !pipe, true);
	}

2714 2715 2716 2717 2718 2719
	edp_panel_vdd_on(intel_dp);
	edp_panel_on(intel_dp);
	edp_panel_vdd_off(intel_dp, true);

	pps_unlock(intel_dp);

2720 2721 2722 2723 2724 2725
	if (IS_VALLEYVIEW(dev)) {
		unsigned int lane_mask = 0x0;

		if (IS_CHERRYVIEW(dev))
			lane_mask = intel_dp_unused_lane_mask(crtc->config->lane_count);

2726 2727
		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
2728
	}
2729

2730
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2731
	intel_dp_start_link_train(intel_dp);
2732
	intel_dp_stop_link_train(intel_dp);
2733

2734
	if (crtc->config->has_audio) {
2735
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2736
				 pipe_name(pipe));
2737 2738
		intel_audio_codec_enable(encoder);
	}
2739
}
2740

2741 2742
static void g4x_enable_dp(struct intel_encoder *encoder)
{
2743 2744
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);

2745
	intel_enable_dp(encoder);
2746
	intel_edp_backlight_on(intel_dp);
2747
}
2748

2749 2750
static void vlv_enable_dp(struct intel_encoder *encoder)
{
2751 2752
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);

2753
	intel_edp_backlight_on(intel_dp);
2754
	intel_psr_enable(intel_dp);
2755 2756
}

2757
static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2758
{
2759
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2760
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2761 2762
	enum port port = dp_to_dig_port(intel_dp)->port;
	enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
2763

2764 2765
	intel_dp_prepare(encoder);

2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
	if (port == PORT_A && IS_GEN5(dev_priv)) {
		/*
		 * We get FIFO underruns on the other pipe when
		 * enabling the CPU eDP PLL, and when enabling CPU
		 * eDP port. We could potentially avoid the PLL
		 * underrun with a vblank wait just prior to enabling
		 * the PLL, but that doesn't appear to help the port
		 * enable case. Just sweep it all under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, !pipe, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, !pipe, false);
	}

2779
	/* Only ilk+ has port A */
2780
	if (port == PORT_A)
2781 2782 2783
		ironlake_edp_pll_on(intel_dp);
}

2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
	enum pipe pipe = intel_dp->pps_pipe;
	int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);

	edp_panel_vdd_off_sync(intel_dp);

	/*
	 * VLV seems to get confused when multiple power seqeuencers
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
	 * selected in multiple power seqeuencers, but let's clear the
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
	DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
		      pipe_name(pipe), port_name(intel_dig_port->port));
	I915_WRITE(pp_on_reg, 0);
	POSTING_READ(pp_on_reg);

	intel_dp->pps_pipe = INVALID_PIPE;
}

2810 2811 2812 2813 2814 2815 2816 2817
static void vlv_steal_power_sequencer(struct drm_device *dev,
				      enum pipe pipe)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

2818 2819 2820
	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
		return;

2821 2822 2823
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
			    base.head) {
		struct intel_dp *intel_dp;
2824
		enum port port;
2825 2826 2827 2828 2829

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

		intel_dp = enc_to_intel_dp(&encoder->base);
2830
		port = dp_to_dig_port(intel_dp)->port;
2831 2832 2833 2834 2835

		if (intel_dp->pps_pipe != pipe)
			continue;

		DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2836
			      pipe_name(pipe), port_name(port));
2837

2838
		WARN(encoder->base.crtc,
2839 2840
		     "stealing pipe %c power sequencer from active eDP port %c\n",
		     pipe_name(pipe), port_name(port));
2841 2842

		/* make sure vdd is off before we steal it */
2843
		vlv_detach_power_sequencer(intel_dp);
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
	}
}

static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);

	lockdep_assert_held(&dev_priv->pps_mutex);

2857 2858 2859
	if (!is_edp(intel_dp))
		return;

2860 2861 2862 2863 2864 2865 2866 2867 2868
	if (intel_dp->pps_pipe == crtc->pipe)
		return;

	/*
	 * If another power sequencer was being used on this
	 * port previously make sure to turn off vdd there while
	 * we still have control of it.
	 */
	if (intel_dp->pps_pipe != INVALID_PIPE)
2869
		vlv_detach_power_sequencer(intel_dp);
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
	vlv_steal_power_sequencer(dev, crtc->pipe);

	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

	DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
		      pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));

	/* init power sequencer on this pipe and port */
2884 2885
	intel_dp_init_panel_power_sequencer(dev, intel_dp);
	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2886 2887
}

2888
static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2889
{
2890
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2891
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2892
	struct drm_device *dev = encoder->base.dev;
2893
	struct drm_i915_private *dev_priv = dev->dev_private;
2894
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2895
	enum dpio_channel port = vlv_dport_to_channel(dport);
2896 2897
	int pipe = intel_crtc->pipe;
	u32 val;
2898

2899
	mutex_lock(&dev_priv->sb_lock);
2900

2901
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2902 2903 2904 2905 2906 2907
	val = 0;
	if (pipe)
		val |= (1<<21);
	else
		val &= ~(1<<21);
	val |= 0x001000c4;
2908 2909 2910
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2911

2912
	mutex_unlock(&dev_priv->sb_lock);
2913 2914

	intel_enable_dp(encoder);
2915 2916
}

2917
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2918 2919 2920 2921
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2922 2923
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
2924
	enum dpio_channel port = vlv_dport_to_channel(dport);
2925
	int pipe = intel_crtc->pipe;
2926

2927 2928
	intel_dp_prepare(encoder);

2929
	/* Program Tx lane resets to default */
2930
	mutex_lock(&dev_priv->sb_lock);
2931
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2932 2933
			 DPIO_PCS_TX_LANE2_RESET |
			 DPIO_PCS_TX_LANE1_RESET);
2934
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2935 2936 2937 2938 2939 2940
			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
				 DPIO_PCS_CLK_SOFT_RESET);

	/* Fix up inter-pair skew failure */
2941 2942 2943
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2944
	mutex_unlock(&dev_priv->sb_lock);
2945 2946
}

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
static void chv_pre_enable_dp(struct intel_encoder *encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
	enum dpio_channel ch = vlv_dport_to_channel(dport);
	int pipe = intel_crtc->pipe;
2957
	int data, i, stagger;
2958
	u32 val;
2959

2960
	mutex_lock(&dev_priv->sb_lock);
2961

2962 2963 2964 2965 2966
	/* allow hardware to manage TX FIFO reset source */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);

2967 2968 2969 2970 2971
	if (intel_crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
		val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
	}
2972

2973
	/* Program Tx lane latency optimal setting*/
2974
	for (i = 0; i < intel_crtc->config->lane_count; i++) {
2975
		/* Set the upar bit */
2976 2977 2978 2979
		if (intel_crtc->config->lane_count == 1)
			data = 0x0;
		else
			data = (i == 1) ? 0x0 : 0x1;
2980 2981 2982 2983 2984
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
				data << DPIO_UPAR_SHIFT);
	}

	/* Data lane stagger programming */
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
	if (intel_crtc->config->port_clock > 270000)
		stagger = 0x18;
	else if (intel_crtc->config->port_clock > 135000)
		stagger = 0xd;
	else if (intel_crtc->config->port_clock > 67500)
		stagger = 0x7;
	else if (intel_crtc->config->port_clock > 33750)
		stagger = 0x4;
	else
		stagger = 0x2;

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
	val |= DPIO_TX2_STAGGER_MASK(0x1f);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);

3000 3001 3002 3003 3004
	if (intel_crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
		val |= DPIO_TX2_STAGGER_MASK(0x1f);
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
	}
3005 3006 3007 3008 3009 3010 3011 3012

	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
		       DPIO_LANESTAGGER_STRAP(stagger) |
		       DPIO_LANESTAGGER_STRAP_OVRD |
		       DPIO_TX1_STAGGER_MASK(0x1f) |
		       DPIO_TX1_STAGGER_MULT(6) |
		       DPIO_TX2_STAGGER_MULT(0));

3013 3014 3015 3016 3017 3018 3019 3020
	if (intel_crtc->config->lane_count > 2) {
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
			       DPIO_LANESTAGGER_STRAP(stagger) |
			       DPIO_LANESTAGGER_STRAP_OVRD |
			       DPIO_TX1_STAGGER_MASK(0x1f) |
			       DPIO_TX1_STAGGER_MULT(7) |
			       DPIO_TX2_STAGGER_MULT(5));
	}
3021

3022 3023 3024
	/* Deassert data lane reset */
	chv_data_lane_soft_reset(encoder, false);

3025
	mutex_unlock(&dev_priv->sb_lock);
3026 3027

	intel_enable_dp(encoder);
3028 3029 3030 3031 3032 3033

	/* Second common lane will stay alive on its own now */
	if (dport->release_cl2_override) {
		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
		dport->release_cl2_override = false;
	}
3034 3035
}

3036 3037 3038 3039 3040 3041 3042 3043 3044
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
	enum dpio_channel ch = vlv_dport_to_channel(dport);
	enum pipe pipe = intel_crtc->pipe;
3045 3046
	unsigned int lane_mask =
		intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
3047 3048
	u32 val;

3049 3050
	intel_dp_prepare(encoder);

3051 3052 3053 3054 3055 3056 3057 3058
	/*
	 * Must trick the second common lane into life.
	 * Otherwise we can't even access the PLL.
	 */
	if (ch == DPIO_CH0 && pipe == PIPE_B)
		dport->release_cl2_override =
			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);

3059 3060
	chv_phy_powergate_lanes(encoder, true, lane_mask);

3061
	mutex_lock(&dev_priv->sb_lock);
3062

3063 3064 3065
	/* Assert data lane reset */
	chv_data_lane_soft_reset(encoder, true);

3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
	/* program left/right clock distribution */
	if (pipe != PIPE_B) {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
		if (ch == DPIO_CH0)
			val |= CHV_BUFLEFTENA1_FORCE;
		if (ch == DPIO_CH1)
			val |= CHV_BUFRIGHTENA1_FORCE;
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
	} else {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
		if (ch == DPIO_CH0)
			val |= CHV_BUFLEFTENA2_FORCE;
		if (ch == DPIO_CH1)
			val |= CHV_BUFRIGHTENA2_FORCE;
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
	}

3085 3086 3087 3088 3089 3090 3091 3092 3093
	/* program clock channel usage */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
	if (pipe != PIPE_B)
		val &= ~CHV_PCS_USEDCLKCHANNEL;
	else
		val |= CHV_PCS_USEDCLKCHANNEL;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);

3094 3095 3096 3097 3098 3099 3100 3101 3102
	if (intel_crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
		val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
		if (pipe != PIPE_B)
			val &= ~CHV_PCS_USEDCLKCHANNEL;
		else
			val |= CHV_PCS_USEDCLKCHANNEL;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
	}
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115

	/*
	 * This a a bit weird since generally CL
	 * matches the pipe, but here we need to
	 * pick the CL based on the port.
	 */
	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
	if (pipe != PIPE_B)
		val &= ~CHV_CMN_USEDCLKCHANNEL;
	else
		val |= CHV_CMN_USEDCLKCHANNEL;
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);

3116
	mutex_unlock(&dev_priv->sb_lock);
3117 3118
}

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
static void chv_dp_post_pll_disable(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
	u32 val;

	mutex_lock(&dev_priv->sb_lock);

	/* disable left/right clock distribution */
	if (pipe != PIPE_B) {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
	} else {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
	}

	mutex_unlock(&dev_priv->sb_lock);
3139

3140 3141 3142 3143 3144 3145 3146 3147 3148
	/*
	 * Leave the power down bit cleared for at least one
	 * lane so that chv_powergate_phy_ch() will power
	 * on something when the channel is otherwise unused.
	 * When the port is off and the override is removed
	 * the lanes power down anyway, so otherwise it doesn't
	 * really matter what the state of power down bits is
	 * after this.
	 */
3149
	chv_phy_powergate_lanes(encoder, false, 0x0);
3150 3151
}

3152
/*
3153 3154
 * Native read with retry for link status and receiver capability reads for
 * cases where the sink may still be asleep.
3155 3156 3157
 *
 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
 * supposed to retry 3 times per the spec.
3158
 */
3159 3160 3161
static ssize_t
intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
			void *buffer, size_t size)
3162
{
3163 3164
	ssize_t ret;
	int i;
3165

3166 3167 3168 3169 3170 3171 3172
	/*
	 * Sometime we just get the same incorrect byte repeated
	 * over the entire buffer. Doing just one throw away read
	 * initially seems to "solve" it.
	 */
	drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);

3173
	for (i = 0; i < 3; i++) {
3174 3175 3176
		ret = drm_dp_dpcd_read(aux, offset, buffer, size);
		if (ret == size)
			return ret;
3177 3178
		msleep(1);
	}
3179

3180
	return ret;
3181 3182 3183 3184 3185 3186
}

/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
3187
bool
3188
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3189
{
3190 3191 3192 3193
	return intel_dp_dpcd_read_wake(&intel_dp->aux,
				       DP_LANE0_1_STATUS,
				       link_status,
				       DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3194 3195
}

3196
/* These are source-specific values. */
3197
uint8_t
3198
intel_dp_voltage_max(struct intel_dp *intel_dp)
3199
{
3200
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3201
	struct drm_i915_private *dev_priv = dev->dev_private;
3202
	enum port port = dp_to_dig_port(intel_dp)->port;
3203

3204 3205 3206
	if (IS_BROXTON(dev))
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
	else if (INTEL_INFO(dev)->gen >= 9) {
3207
		if (dev_priv->edp_low_vswing && port == PORT_A)
3208
			return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3209
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3210
	} else if (IS_VALLEYVIEW(dev))
3211
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3212
	else if (IS_GEN7(dev) && port == PORT_A)
3213
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3214
	else if (HAS_PCH_CPT(dev) && port != PORT_A)
3215
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3216
	else
3217
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3218 3219
}

3220
uint8_t
3221 3222
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
{
3223
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3224
	enum port port = dp_to_dig_port(intel_dp)->port;
3225

3226 3227 3228 3229 3230 3231 3232 3233
	if (INTEL_INFO(dev)->gen >= 9) {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3234 3235
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3236 3237 3238 3239
		default:
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
		}
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3240
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3241 3242 3243 3244 3245 3246 3247
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3248
		default:
3249
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3250
		}
3251 3252
	} else if (IS_VALLEYVIEW(dev)) {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3253 3254 3255 3256 3257 3258 3259
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3260
		default:
3261
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3262
		}
3263
	} else if (IS_GEN7(dev) && port == PORT_A) {
3264
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3265 3266 3267 3268 3269
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3270
		default:
3271
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3272 3273 3274
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3275 3276 3277 3278 3279 3280 3281
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3282
		default:
3283
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3284
		}
3285 3286 3287
	}
}

3288
static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3289 3290 3291 3292
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3293 3294
	struct intel_crtc *intel_crtc =
		to_intel_crtc(dport->base.base.crtc);
3295 3296 3297
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
	uint8_t train_set = intel_dp->train_set[0];
3298
	enum dpio_channel port = vlv_dport_to_channel(dport);
3299
	int pipe = intel_crtc->pipe;
3300 3301

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3302
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3303 3304
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3305
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3306 3307 3308
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
3309
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3310 3311 3312
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
3313
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3314 3315 3316
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
3317
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3318 3319 3320 3321 3322 3323 3324
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
			return 0;
		}
		break;
3325
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3326 3327
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3328
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3329 3330 3331
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
3332
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3333 3334 3335
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
3336
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3337 3338 3339 3340 3341 3342 3343
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3344
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3345 3346
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3347
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3348 3349 3350
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
3351
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3352 3353 3354 3355 3356 3357 3358
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3359
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3360 3361
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3362
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3374
	mutex_lock(&dev_priv->sb_lock);
3375 3376 3377
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3378
			 uniqtranscale_reg_value);
3379 3380 3381 3382
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3383
	mutex_unlock(&dev_priv->sb_lock);
3384 3385 3386 3387

	return 0;
}

3388 3389 3390 3391 3392 3393
static bool chv_need_uniq_trans_scale(uint8_t train_set)
{
	return (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) == DP_TRAIN_PRE_EMPH_LEVEL_0 &&
		(train_set & DP_TRAIN_VOLTAGE_SWING_MASK) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
}

3394
static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3395 3396 3397 3398 3399
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
	struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3400
	u32 deemph_reg_value, margin_reg_value, val;
3401 3402
	uint8_t train_set = intel_dp->train_set[0];
	enum dpio_channel ch = vlv_dport_to_channel(dport);
3403 3404
	enum pipe pipe = intel_crtc->pipe;
	int i;
3405 3406

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3407
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3408
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3409
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3410 3411 3412
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
3413
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3414 3415 3416
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
3417
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3418 3419 3420
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
3421
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3422 3423 3424 3425 3426 3427 3428 3429
			deemph_reg_value = 128;
			margin_reg_value = 154;
			/* FIXME extra to set for 1200 */
			break;
		default:
			return 0;
		}
		break;
3430
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3431
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3432
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3433 3434 3435
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
3436
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3437 3438 3439
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
3440
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3441 3442 3443 3444 3445 3446 3447
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3448
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3449
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3450
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3451 3452 3453
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
3454
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3455 3456 3457 3458 3459 3460 3461
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3462
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3463
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3464
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3476
	mutex_lock(&dev_priv->sb_lock);
3477 3478

	/* Clear calc init */
3479 3480
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3481 3482
	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3483 3484
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);

3485 3486 3487 3488 3489 3490 3491
	if (intel_crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
		val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
		val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
		val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
	}
3492

3493 3494 3495 3496 3497
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);

3498 3499 3500 3501 3502 3503
	if (intel_crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
		val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
		val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
	}
3504

3505
	/* Program swing deemph */
3506
	for (i = 0; i < intel_crtc->config->lane_count; i++) {
3507 3508 3509 3510 3511
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
	}
3512 3513

	/* Program swing margin */
3514
	for (i = 0; i < intel_crtc->config->lane_count; i++) {
3515
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3516

3517 3518
		val &= ~DPIO_SWING_MARGIN000_MASK;
		val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3519 3520 3521 3522 3523 3524 3525 3526 3527

		/*
		 * Supposedly this value shouldn't matter when unique transition
		 * scale is disabled, but in fact it does matter. Let's just
		 * always program the same value and hope it's OK.
		 */
		val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
		val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;

3528 3529
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
	}
3530

3531 3532 3533 3534 3535 3536
	/*
	 * The document said it needs to set bit 27 for ch0 and bit 26
	 * for ch1. Might be a typo in the doc.
	 * For now, for this unique transition scale selection, set bit
	 * 27 for ch0 and ch1.
	 */
3537
	for (i = 0; i < intel_crtc->config->lane_count; i++) {
3538
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3539
		if (chv_need_uniq_trans_scale(train_set))
3540
			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3541 3542 3543
		else
			val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3544 3545 3546
	}

	/* Start swing calculation */
3547 3548 3549 3550
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);

3551 3552 3553 3554 3555
	if (intel_crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
		val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
	}
3556

3557
	mutex_unlock(&dev_priv->sb_lock);
3558 3559 3560 3561

	return 0;
}

3562
static uint32_t
3563
gen4_signal_levels(uint8_t train_set)
3564
{
3565
	uint32_t	signal_levels = 0;
3566

3567
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3568
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3569 3570 3571
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
3572
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3573 3574
		signal_levels |= DP_VOLTAGE_0_6;
		break;
3575
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3576 3577
		signal_levels |= DP_VOLTAGE_0_8;
		break;
3578
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3579 3580 3581
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
3582
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3583
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3584 3585 3586
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
3587
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3588 3589
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
3590
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3591 3592
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
3593
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3594 3595 3596 3597 3598 3599
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

3600 3601
/* Gen6's DP voltage swing and pre-emphasis control */
static uint32_t
3602
gen6_edp_signal_levels(uint8_t train_set)
3603
{
3604 3605 3606
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3607 3608
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3609
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3610
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3611
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3612 3613
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3614
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3615 3616
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3617
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3618 3619
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3620
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3621
	default:
3622 3623 3624
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3625 3626 3627
	}
}

3628 3629
/* Gen7's DP voltage swing and pre-emphasis control */
static uint32_t
3630
gen7_edp_signal_levels(uint8_t train_set)
3631 3632 3633 3634
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3635
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3636
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
3637
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3638
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3639
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3640 3641
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

3642
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3643
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
3644
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3645 3646
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

3647
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3648
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
3649
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3650 3651 3652 3653 3654 3655 3656 3657 3658
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

3659
void
3660
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3661 3662
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3663
	enum port port = intel_dig_port->port;
3664
	struct drm_device *dev = intel_dig_port->base.base.dev;
3665
	struct drm_i915_private *dev_priv = to_i915(dev);
3666
	uint32_t signal_levels, mask = 0;
3667 3668
	uint8_t train_set = intel_dp->train_set[0];

3669 3670 3671 3672 3673 3674 3675
	if (HAS_DDI(dev)) {
		signal_levels = ddi_signal_levels(intel_dp);

		if (IS_BROXTON(dev))
			signal_levels = 0;
		else
			mask = DDI_BUF_EMP_MASK;
3676
	} else if (IS_CHERRYVIEW(dev)) {
3677
		signal_levels = chv_signal_levels(intel_dp);
3678
	} else if (IS_VALLEYVIEW(dev)) {
3679
		signal_levels = vlv_signal_levels(intel_dp);
3680
	} else if (IS_GEN7(dev) && port == PORT_A) {
3681
		signal_levels = gen7_edp_signal_levels(train_set);
3682
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3683
	} else if (IS_GEN6(dev) && port == PORT_A) {
3684
		signal_levels = gen6_edp_signal_levels(train_set);
3685 3686
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	} else {
3687
		signal_levels = gen4_signal_levels(train_set);
3688 3689 3690
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
	}

3691 3692 3693 3694 3695 3696 3697 3698
	if (mask)
		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);

	DRM_DEBUG_KMS("Using vswing level %d\n",
		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
			DP_TRAIN_PRE_EMPHASIS_SHIFT);
3699

3700
	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3701 3702 3703

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3704 3705
}

3706
void
3707 3708
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
				       uint8_t dp_train_pat)
3709
{
3710
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3711 3712
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
3713

3714
	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3715

3716
	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3717
	POSTING_READ(intel_dp->output_reg);
3718 3719
}

3720
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	enum port port = intel_dig_port->port;
	uint32_t val;

	if (!HAS_DDI(dev))
		return;

	val = I915_READ(DP_TP_CTL(port));
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
	I915_WRITE(DP_TP_CTL(port), val);

	/*
	 * On PORT_A we can have only eDP in SST mode. There the only reason
	 * we need to set idle transmission mode is to work around a HW issue
	 * where we enable the pipe while not in idle link-training mode.
	 * In this case there is requirement to wait for a minimum number of
	 * idle patterns to be sent.
	 */
	if (port == PORT_A)
		return;

	if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
		     1))
		DRM_ERROR("Timed out waiting for DP idle patterns\n");
}

3751
static void
3752
intel_dp_link_down(struct intel_dp *intel_dp)
3753
{
3754
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3755
	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3756
	enum port port = intel_dig_port->port;
3757
	struct drm_device *dev = intel_dig_port->base.base.dev;
3758
	struct drm_i915_private *dev_priv = dev->dev_private;
3759
	uint32_t DP = intel_dp->DP;
3760

3761
	if (WARN_ON(HAS_DDI(dev)))
3762 3763
		return;

3764
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3765 3766
		return;

3767
	DRM_DEBUG_KMS("\n");
3768

3769 3770
	if ((IS_GEN7(dev) && port == PORT_A) ||
	    (HAS_PCH_CPT(dev) && port != PORT_A)) {
3771
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3772
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3773
	} else {
3774 3775 3776 3777
		if (IS_CHERRYVIEW(dev))
			DP &= ~DP_LINK_TRAIN_MASK_CHV;
		else
			DP &= ~DP_LINK_TRAIN_MASK;
3778
		DP |= DP_LINK_TRAIN_PAT_IDLE;
3779
	}
3780
	I915_WRITE(intel_dp->output_reg, DP);
3781
	POSTING_READ(intel_dp->output_reg);
3782

3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
	if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3793 3794 3795 3796 3797 3798 3799
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

3800 3801 3802 3803 3804 3805 3806
		/* always enable with pattern 1 (as per spec) */
		DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
		I915_WRITE(intel_dp->output_reg, DP);
		POSTING_READ(intel_dp->output_reg);

		DP &= ~DP_PORT_EN;
3807
		I915_WRITE(intel_dp->output_reg, DP);
3808
		POSTING_READ(intel_dp->output_reg);
3809 3810 3811 3812

		intel_wait_for_vblank_if_active(dev_priv->dev, PIPE_A);
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3813 3814
	}

3815
	msleep(intel_dp->panel_power_down_delay);
3816 3817

	intel_dp->DP = DP;
3818 3819
}

3820 3821
static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
3822
{
3823 3824 3825
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3826
	uint8_t rev;
3827

3828 3829
	if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
				    sizeof(intel_dp->dpcd)) < 0)
3830
		return false; /* aux transfer failed */
3831

3832
	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3833

3834 3835 3836
	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
		return false; /* DPCD not present */

3837 3838
	/* Check if the panel supports PSR */
	memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3839
	if (is_edp(intel_dp)) {
3840 3841 3842
		intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
					intel_dp->psr_dpcd,
					sizeof(intel_dp->psr_dpcd));
3843 3844
		if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
			dev_priv->psr.sink_support = true;
3845
			DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3846
		}
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861

		if (INTEL_INFO(dev)->gen >= 9 &&
			(intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
			uint8_t frame_sync_cap;

			dev_priv->psr.sink_support = true;
			intel_dp_dpcd_read_wake(&intel_dp->aux,
					DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
					&frame_sync_cap, 1);
			dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
			/* PSR2 needs frame sync as well */
			dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
			DRM_DEBUG_KMS("PSR2 %s on sink",
				dev_priv->psr.psr2_support ? "supported" : "not supported");
		}
3862 3863
	}

3864
	DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
3865
		      yesno(intel_dp_source_supports_hbr2(intel_dp)),
3866
		      yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
3867

3868 3869 3870 3871 3872
	/* Intermediate frequency support */
	if (is_edp(intel_dp) &&
	    (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] &	DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
	    (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
	    (rev >= 0x03)) { /* eDp v1.4 or higher */
3873
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3874 3875
		int i;

3876 3877
		intel_dp_dpcd_read_wake(&intel_dp->aux,
				DP_SUPPORTED_LINK_RATES,
3878 3879
				sink_rates,
				sizeof(sink_rates));
3880

3881 3882
		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);
3883 3884 3885 3886

			if (val == 0)
				break;

3887 3888
			/* Value read is in kHz while drm clock is saved in deca-kHz */
			intel_dp->sink_rates[i] = (val * 200) / 10;
3889
		}
3890
		intel_dp->num_sink_rates = i;
3891
	}
3892 3893 3894

	intel_dp_print_rates(intel_dp);

3895 3896 3897 3898 3899 3900 3901
	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
	      DP_DWN_STRM_PORT_PRESENT))
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

3902 3903 3904
	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
				    intel_dp->downstream_ports,
				    DP_MAX_DOWNSTREAM_PORTS) < 0)
3905 3906 3907
		return false; /* downstream port status fetch failed */

	return true;
3908 3909
}

3910 3911 3912 3913 3914 3915 3916 3917
static void
intel_dp_probe_oui(struct intel_dp *intel_dp)
{
	u8 buf[3];

	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
		return;

3918
	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3919 3920 3921
		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
			      buf[0], buf[1], buf[2]);

3922
	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3923 3924 3925 3926
		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
			      buf[0], buf[1], buf[2]);
}

3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
static bool
intel_dp_probe_mst(struct intel_dp *intel_dp)
{
	u8 buf[1];

	if (!intel_dp->can_mst)
		return false;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
		if (buf[0] & DP_MST_CAP) {
			DRM_DEBUG_KMS("Sink is MST capable\n");
			intel_dp->is_mst = true;
		} else {
			DRM_DEBUG_KMS("Sink is not MST capable\n");
			intel_dp->is_mst = false;
		}
	}

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
	return intel_dp->is_mst;
}

3952
static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3953
{
3954 3955
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
Rodrigo Vivi's avatar
Rodrigo Vivi committed
3956
	u8 buf;
3957
	int ret = 0;
3958

3959 3960
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
		DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3961 3962
		ret = -EIO;
		goto out;
3963 3964
	}

3965
	if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3966
			       buf & ~DP_TEST_SINK_START) < 0) {
3967
		DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3968 3969 3970
		ret = -EIO;
		goto out;
	}
3971

3972
	intel_dp->sink_crc.started = false;
3973
 out:
3974
	hsw_enable_ips(intel_crtc);
3975
	return ret;
3976 3977 3978 3979 3980 3981 3982
}

static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
	u8 buf;
3983 3984
	int ret;

3985
	if (intel_dp->sink_crc.started) {
3986 3987 3988 3989
		ret = intel_dp_sink_crc_stop(intel_dp);
		if (ret)
			return ret;
	}
3990 3991 3992 3993 3994 3995 3996

	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
		return -EIO;

	if (!(buf & DP_TEST_CRC_SUPPORTED))
		return -ENOTTY;

3997 3998
	intel_dp->sink_crc.last_count = buf & DP_TEST_COUNT_MASK;

3999 4000 4001 4002
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
		return -EIO;

	hsw_disable_ips(intel_crtc);
4003

4004
	if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4005 4006 4007
			       buf | DP_TEST_SINK_START) < 0) {
		hsw_enable_ips(intel_crtc);
		return -EIO;
4008 4009
	}

4010
	intel_dp->sink_crc.started = true;
4011 4012 4013 4014 4015 4016 4017 4018 4019
	return 0;
}

int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = dig_port->base.base.dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
	u8 buf;
4020
	int count, ret;
4021
	int attempts = 6;
4022
	bool old_equal_new;
4023 4024 4025 4026 4027

	ret = intel_dp_sink_crc_start(intel_dp);
	if (ret)
		return ret;

Rodrigo Vivi's avatar
Rodrigo Vivi committed
4028
	do {
4029 4030
		intel_wait_for_vblank(dev, intel_crtc->pipe);

4031
		if (drm_dp_dpcd_readb(&intel_dp->aux,
4032 4033
				      DP_TEST_SINK_MISC, &buf) < 0) {
			ret = -EIO;
4034
			goto stop;
4035
		}
4036
		count = buf & DP_TEST_COUNT_MASK;
4037

4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
		/*
		 * Count might be reset during the loop. In this case
		 * last known count needs to be reset as well.
		 */
		if (count == 0)
			intel_dp->sink_crc.last_count = 0;

		if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
			ret = -EIO;
			goto stop;
		}
4049 4050 4051 4052 4053 4054

		old_equal_new = (count == intel_dp->sink_crc.last_count &&
				 !memcmp(intel_dp->sink_crc.last_crc, crc,
					 6 * sizeof(u8)));

	} while (--attempts && (count == 0 || old_equal_new));
4055 4056 4057

	intel_dp->sink_crc.last_count = buf & DP_TEST_COUNT_MASK;
	memcpy(intel_dp->sink_crc.last_crc, crc, 6 * sizeof(u8));
Rodrigo Vivi's avatar
Rodrigo Vivi committed
4058 4059

	if (attempts == 0) {
4060 4061 4062 4063 4064 4065 4066
		if (old_equal_new) {
			DRM_DEBUG_KMS("Unreliable Sink CRC counter: Current returned CRC is identical to the previous one\n");
		} else {
			DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
			ret = -ETIMEDOUT;
			goto stop;
		}
Rodrigo Vivi's avatar
Rodrigo Vivi committed
4067
	}
4068

4069
stop:
4070
	intel_dp_sink_crc_stop(intel_dp);
4071
	return ret;
4072 4073
}

4074 4075 4076
static bool
intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
4077 4078 4079
	return intel_dp_dpcd_read_wake(&intel_dp->aux,
				       DP_DEVICE_SERVICE_IRQ_VECTOR,
				       sink_irq_vector, 1) == 1;
4080 4081
}

4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
	int ret;

	ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
					     DP_SINK_COUNT_ESI,
					     sink_irq_vector, 14);
	if (ret != 14)
		return false;

	return true;
}

4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
{
	uint8_t test_result = DP_TEST_ACK;
	return test_result;
}

static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
{
	uint8_t test_result = DP_TEST_NAK;
	return test_result;
}

static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4109
{
4110
	uint8_t test_result = DP_TEST_NAK;
4111 4112 4113 4114
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
4115
	    connector->edid_corrupt ||
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
				      intel_dp->aux.i2c_nack_count,
				      intel_dp->aux.i2c_defer_count);
		intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
	} else {
4131 4132 4133 4134 4135 4136 4137
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

4138 4139
		if (!drm_dp_dpcd_write(&intel_dp->aux,
					DP_TEST_EDID_CHECKSUM,
4140
					&block->checksum,
4141
					1))
4142 4143 4144 4145 4146 4147 4148 4149 4150
			DRM_DEBUG_KMS("Failed to write EDID checksum\n");

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
		intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
	}

	/* Set test active flag here so userspace doesn't interrupt things */
	intel_dp->compliance_test_active = 1;

4151 4152 4153 4154
	return test_result;
}

static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4155
{
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
	uint8_t test_result = DP_TEST_NAK;
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
	uint8_t response = DP_TEST_NAK;
	uint8_t rxdata = 0;
	int status = 0;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
	if (status <= 0) {
		DRM_DEBUG_KMS("Could not read test request from sink\n");
		goto update_status;
	}

	switch (rxdata) {
	case DP_TEST_LINK_TRAINING:
		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
		intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
		intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
		DRM_DEBUG_KMS("EDID test requested\n");
		intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
		intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
		DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
		break;
	}

update_status:
	status = drm_dp_dpcd_write(&intel_dp->aux,
				   DP_TEST_RESPONSE,
				   &response, 1);
	if (status <= 0)
		DRM_DEBUG_KMS("Could not write test response to sink\n");
4204 4205
}

4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
	bool bret;

	if (intel_dp->is_mst) {
		u8 esi[16] = { 0 };
		int ret = 0;
		int retry;
		bool handled;
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
		if (bret == true) {

			/* check link status - esi[10] = 0x200c */
4221
			if (intel_dp->active_mst_links &&
4222
			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4223 4224 4225 4226 4227
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
				intel_dp_start_link_train(intel_dp);
				intel_dp_stop_link_train(intel_dp);
			}

4228
			DRM_DEBUG_KMS("got esi %3ph\n", esi);
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);

			if (handled) {
				for (retry = 0; retry < 3; retry++) {
					int wret;
					wret = drm_dp_dpcd_write(&intel_dp->aux,
								 DP_SINK_COUNT_ESI+1,
								 &esi[1], 3);
					if (wret == 3) {
						break;
					}
				}

				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
				if (bret == true) {
4244
					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
					goto go_again;
				}
			} else
				ret = 0;

			return ret;
		} else {
			struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
			/* send a hotplug event */
			drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
		}
	}
	return -EINVAL;
}

4263 4264 4265 4266 4267 4268 4269 4270
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
 */
4271
static void
4272
intel_dp_check_link_status(struct intel_dp *intel_dp)
4273
{
4274
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
4275
	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4276
	u8 sink_irq_vector;
4277
	u8 link_status[DP_LINK_STATUS_SIZE];
4278

4279 4280
	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));

4281 4282 4283 4284 4285 4286 4287 4288
	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
	intel_dp->compliance_test_active = 0;
	intel_dp->compliance_test_type = 0;
	intel_dp->compliance_test_data = 0;

4289
	if (!intel_encoder->base.crtc)
4290 4291
		return;

4292 4293 4294
	if (!to_intel_crtc(intel_encoder->base.crtc)->active)
		return;

4295
	/* Try to read receiver status if the link appears to be up */
4296
	if (!intel_dp_get_link_status(intel_dp, link_status)) {
4297 4298 4299
		return;
	}

4300
	/* Now read the DPCD to see if it's actually running */
4301
	if (!intel_dp_get_dpcd(intel_dp)) {
4302 4303 4304
		return;
	}

4305 4306 4307 4308
	/* Try to read the source of the interrupt */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
		/* Clear interrupt source */
4309 4310 4311
		drm_dp_dpcd_writeb(&intel_dp->aux,
				   DP_DEVICE_SERVICE_IRQ_VECTOR,
				   sink_irq_vector);
4312 4313

		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4314
			DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4315 4316 4317 4318
		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
	}

4319 4320 4321
	/* if link training is requested we should perform it always */
	if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
		(!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
4322
		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4323
			      intel_encoder->base.name);
4324
		intel_dp_start_link_train(intel_dp);
4325
		intel_dp_stop_link_train(intel_dp);
4326
	}
4327 4328
}

4329
/* XXX this is probably wrong for multiple downstream ports */
4330
static enum drm_connector_status
4331
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4332
{
4333 4334 4335 4336 4337 4338 4339 4340
	uint8_t *dpcd = intel_dp->dpcd;
	uint8_t type;

	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

	/* if there's no downstream port, we're done */
	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4341
		return connector_status_connected;
4342 4343

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
4344 4345
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4346
		uint8_t reg;
4347 4348 4349

		if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
					    &reg, 1) < 0)
4350
			return connector_status_unknown;
4351

4352 4353
		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
					      : connector_status_disconnected;
4354 4355 4356
	}

	/* If no HPD, poke DDC gently */
4357
	if (drm_probe_ddc(&intel_dp->aux.ddc))
4358
		return connector_status_connected;
4359 4360

	/* Well we tried, say unknown for unreliable port types */
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
4373 4374 4375

	/* Anything else is out of spec, warn and ignore */
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4376
	return connector_status_disconnected;
4377 4378
}

4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
	enum drm_connector_status status;

	status = intel_panel_detect(dev);
	if (status == connector_status_unknown)
		status = connector_status_connected;

	return status;
}

4392 4393
static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
				       struct intel_digital_port *port)
4394
{
4395
	u32 bit;
4396

4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
	switch (port->port) {
	case PORT_A:
		return true;
	case PORT_B:
		bit = SDE_PORTB_HOTPLUG;
		break;
	case PORT_C:
		bit = SDE_PORTC_HOTPLUG;
		break;
	case PORT_D:
		bit = SDE_PORTD_HOTPLUG;
		break;
	default:
		MISSING_CASE(port->port);
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
				       struct intel_digital_port *port)
{
	u32 bit;

	switch (port->port) {
	case PORT_A:
		return true;
	case PORT_B:
		bit = SDE_PORTB_HOTPLUG_CPT;
		break;
	case PORT_C:
		bit = SDE_PORTC_HOTPLUG_CPT;
		break;
	case PORT_D:
		bit = SDE_PORTD_HOTPLUG_CPT;
		break;
4434 4435 4436
	case PORT_E:
		bit = SDE_PORTE_HOTPLUG_SPT;
		break;
4437 4438 4439
	default:
		MISSING_CASE(port->port);
		return false;
4440
	}
4441

4442
	return I915_READ(SDEISR) & bit;
4443 4444
}

4445
static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4446
				       struct intel_digital_port *port)
4447
{
4448
	u32 bit;
4449

4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
	switch (port->port) {
	case PORT_B:
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
	case PORT_C:
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
	case PORT_D:
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
		MISSING_CASE(port->port);
		return false;
	}

	return I915_READ(PORT_HOTPLUG_STAT) & bit;
}

static bool vlv_digital_port_connected(struct drm_i915_private *dev_priv,
				       struct intel_digital_port *port)
{
	u32 bit;

	switch (port->port) {
	case PORT_B:
		bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
		break;
	case PORT_C:
		bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
		break;
	case PORT_D:
		bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
		break;
	default:
		MISSING_CASE(port->port);
		return false;
4486 4487
	}

4488
	return I915_READ(PORT_HOTPLUG_STAT) & bit;
4489 4490
}

4491
static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4492
				       struct intel_digital_port *intel_dig_port)
4493
{
4494 4495
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	enum port port;
4496 4497
	u32 bit;

4498 4499
	intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
	switch (port) {
4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
	case PORT_A:
		bit = BXT_DE_PORT_HP_DDIA;
		break;
	case PORT_B:
		bit = BXT_DE_PORT_HP_DDIB;
		break;
	case PORT_C:
		bit = BXT_DE_PORT_HP_DDIC;
		break;
	default:
4510
		MISSING_CASE(port);
4511 4512 4513 4514 4515 4516
		return false;
	}

	return I915_READ(GEN8_DE_PORT_ISR) & bit;
}

4517 4518 4519 4520 4521 4522 4523
/*
 * intel_digital_port_connected - is the specified port connected?
 * @dev_priv: i915 private structure
 * @port: the port to test
 *
 * Return %true if @port is connected, %false otherwise.
 */
4524
bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4525 4526
					 struct intel_digital_port *port)
{
4527
	if (HAS_PCH_IBX(dev_priv))
4528
		return ibx_digital_port_connected(dev_priv, port);
4529 4530
	if (HAS_PCH_SPLIT(dev_priv))
		return cpt_digital_port_connected(dev_priv, port);
4531 4532
	else if (IS_BROXTON(dev_priv))
		return bxt_digital_port_connected(dev_priv, port);
4533 4534
	else if (IS_VALLEYVIEW(dev_priv))
		return vlv_digital_port_connected(dev_priv, port);
4535 4536 4537 4538
	else
		return g4x_digital_port_connected(dev_priv, port);
}

4539 4540 4541 4542 4543 4544 4545
static enum drm_connector_status
ironlake_dp_detect(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

4546
	if (!intel_digital_port_connected(dev_priv, intel_dig_port))
4547 4548 4549 4550 4551
		return connector_status_disconnected;

	return intel_dp_detect_dpcd(intel_dp);
}

4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
static enum drm_connector_status
g4x_dp_detect(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	/* Can't disconnect eDP, but you can close the lid... */
	if (is_edp(intel_dp)) {
		enum drm_connector_status status;

		status = intel_panel_detect(dev);
		if (status == connector_status_unknown)
			status = connector_status_connected;
		return status;
	}

4568
	if (!intel_digital_port_connected(dev->dev_private, intel_dig_port))
4569 4570
		return connector_status_disconnected;

4571
	return intel_dp_detect_dpcd(intel_dp);
4572 4573
}

4574
static struct edid *
4575
intel_dp_get_edid(struct intel_dp *intel_dp)
4576
{
4577
	struct intel_connector *intel_connector = intel_dp->attached_connector;
4578

4579 4580 4581 4582
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
4583 4584
			return NULL;

4585
		return drm_edid_duplicate(intel_connector->edid);
4586 4587 4588 4589
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}
4590

4591 4592 4593 4594 4595
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;
4596

4597 4598 4599 4600 4601 4602 4603
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

	if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
		intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
	else
		intel_dp->has_audio = drm_detect_monitor_audio(edid);
4604 4605
}

4606 4607
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
4608
{
4609
	struct intel_connector *intel_connector = intel_dp->attached_connector;
4610

4611 4612
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;
4613

4614 4615
	intel_dp->has_audio = false;
}
4616

4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
static enum intel_display_power_domain
intel_dp_power_get(struct intel_dp *dp)
{
	struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
	enum intel_display_power_domain power_domain;

	power_domain = intel_display_port_power_domain(encoder);
	intel_display_power_get(to_i915(encoder->base.dev), power_domain);

	return power_domain;
}
4628

4629 4630 4631 4632 4633 4634
static void
intel_dp_power_put(struct intel_dp *dp,
		   enum intel_display_power_domain power_domain)
{
	struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
	intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4635 4636
}

4637 4638 4639 4640
static enum drm_connector_status
intel_dp_detect(struct drm_connector *connector, bool force)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
4641 4642
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4643
	struct drm_device *dev = connector->dev;
4644
	enum drm_connector_status status;
4645
	enum intel_display_power_domain power_domain;
4646
	bool ret;
4647
	u8 sink_irq_vector;
4648

4649
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4650
		      connector->base.id, connector->name);
4651
	intel_dp_unset_edid(intel_dp);
4652

4653 4654 4655 4656
	if (intel_dp->is_mst) {
		/* MST devices are disconnected from a monitor POV */
		if (intel_encoder->type != INTEL_OUTPUT_EDP)
			intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4657
		return connector_status_disconnected;
4658 4659
	}

4660
	power_domain = intel_dp_power_get(intel_dp);
4661

4662 4663 4664 4665
	/* Can't disconnect eDP, but you can close the lid... */
	if (is_edp(intel_dp))
		status = edp_detect(intel_dp);
	else if (HAS_PCH_SPLIT(dev))
4666 4667 4668
		status = ironlake_dp_detect(intel_dp);
	else
		status = g4x_dp_detect(intel_dp);
4669 4670 4671 4672 4673
	if (status != connector_status_connected) {
		intel_dp->compliance_test_active = 0;
		intel_dp->compliance_test_type = 0;
		intel_dp->compliance_test_data = 0;

4674
		goto out;
4675
	}
4676

4677 4678
	intel_dp_probe_oui(intel_dp);

4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
	ret = intel_dp_probe_mst(intel_dp);
	if (ret) {
		/* if we are in MST mode then this connector
		   won't appear connected or have anything with EDID on it */
		if (intel_encoder->type != INTEL_OUTPUT_EDP)
			intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
		status = connector_status_disconnected;
		goto out;
	}

4689 4690 4691 4692 4693 4694 4695 4696
	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

4697
	intel_dp_set_edid(intel_dp);
4698

4699 4700
	if (intel_encoder->type != INTEL_OUTPUT_EDP)
		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4701 4702
	status = connector_status_connected;

4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
	/* Try to read the source of the interrupt */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
		/* Clear interrupt source */
		drm_dp_dpcd_writeb(&intel_dp->aux,
				   DP_DEVICE_SERVICE_IRQ_VECTOR,
				   sink_irq_vector);

		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
			intel_dp_handle_test_request(intel_dp);
		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
	}

4717
out:
4718
	intel_dp_power_put(intel_dp, power_domain);
4719
	return status;
4720 4721
}

4722 4723
static void
intel_dp_force(struct drm_connector *connector)
4724
{
4725
	struct intel_dp *intel_dp = intel_attached_dp(connector);
4726
	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4727
	enum intel_display_power_domain power_domain;
4728

4729 4730 4731
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
	intel_dp_unset_edid(intel_dp);
4732

4733 4734
	if (connector->status != connector_status_connected)
		return;
4735

4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
	power_domain = intel_dp_power_get(intel_dp);

	intel_dp_set_edid(intel_dp);

	intel_dp_power_put(intel_dp, power_domain);

	if (intel_encoder->type != INTEL_OUTPUT_EDP)
		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}
4757

4758
	/* if eDP has no EDID, fall back to fixed mode */
4759 4760
	if (is_edp(intel_attached_dp(connector)) &&
	    intel_connector->panel.fixed_mode) {
4761
		struct drm_display_mode *mode;
4762 4763

		mode = drm_mode_duplicate(connector->dev,
4764
					  intel_connector->panel.fixed_mode);
4765
		if (mode) {
4766 4767 4768 4769
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
4770

4771
	return 0;
4772 4773
}

4774 4775 4776 4777
static bool
intel_dp_detect_audio(struct drm_connector *connector)
{
	bool has_audio = false;
4778
	struct edid *edid;
4779

4780 4781
	edid = to_intel_connector(connector)->detect_edid;
	if (edid)
4782
		has_audio = drm_detect_monitor_audio(edid);
4783

4784 4785 4786
	return has_audio;
}

4787 4788 4789 4790 4791
static int
intel_dp_set_property(struct drm_connector *connector,
		      struct drm_property *property,
		      uint64_t val)
{
4792
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
4793
	struct intel_connector *intel_connector = to_intel_connector(connector);
4794 4795
	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4796 4797
	int ret;

4798
	ret = drm_object_property_set_value(&connector->base, property, val);
4799 4800 4801
	if (ret)
		return ret;

4802
	if (property == dev_priv->force_audio_property) {
4803 4804 4805 4806
		int i = val;
		bool has_audio;

		if (i == intel_dp->force_audio)
4807 4808
			return 0;

4809
		intel_dp->force_audio = i;
4810

4811
		if (i == HDMI_AUDIO_AUTO)
4812 4813
			has_audio = intel_dp_detect_audio(connector);
		else
4814
			has_audio = (i == HDMI_AUDIO_ON);
4815 4816

		if (has_audio == intel_dp->has_audio)
4817 4818
			return 0;

4819
		intel_dp->has_audio = has_audio;
4820 4821 4822
		goto done;
	}

4823
	if (property == dev_priv->broadcast_rgb_property) {
4824
		bool old_auto = intel_dp->color_range_auto;
4825
		bool old_range = intel_dp->limited_color_range;
4826

4827 4828 4829 4830 4831 4832
		switch (val) {
		case INTEL_BROADCAST_RGB_AUTO:
			intel_dp->color_range_auto = true;
			break;
		case INTEL_BROADCAST_RGB_FULL:
			intel_dp->color_range_auto = false;
4833
			intel_dp->limited_color_range = false;
4834 4835 4836
			break;
		case INTEL_BROADCAST_RGB_LIMITED:
			intel_dp->color_range_auto = false;
4837
			intel_dp->limited_color_range = true;
4838 4839 4840 4841
			break;
		default:
			return -EINVAL;
		}
4842 4843

		if (old_auto == intel_dp->color_range_auto &&
4844
		    old_range == intel_dp->limited_color_range)
4845 4846
			return 0;

4847 4848 4849
		goto done;
	}

4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
	if (is_edp(intel_dp) &&
	    property == connector->dev->mode_config.scaling_mode_property) {
		if (val == DRM_MODE_SCALE_NONE) {
			DRM_DEBUG_KMS("no scaling not supported\n");
			return -EINVAL;
		}

		if (intel_connector->panel.fitting_mode == val) {
			/* the eDP scaling property is not changed */
			return 0;
		}
		intel_connector->panel.fitting_mode = val;

		goto done;
	}

4866 4867 4868
	return -EINVAL;

done:
4869 4870
	if (intel_encoder->base.crtc)
		intel_crtc_restore_mode(intel_encoder->base.crtc);
4871 4872 4873 4874

	return 0;
}

4875
static void
4876
intel_dp_connector_destroy(struct drm_connector *connector)
4877
{
4878
	struct intel_connector *intel_connector = to_intel_connector(connector);
4879

4880
	kfree(intel_connector->detect_edid);
4881

4882 4883 4884
	if (!IS_ERR_OR_NULL(intel_connector->edid))
		kfree(intel_connector->edid);

4885 4886 4887
	/* Can't call is_edp() since the encoder may have been destroyed
	 * already. */
	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4888
		intel_panel_fini(&intel_connector->panel);
4889

4890
	drm_connector_cleanup(connector);
4891
	kfree(connector);
4892 4893
}

4894
void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4895
{
4896 4897
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;
4898

4899
	intel_dp_aux_fini(intel_dp);
4900
	intel_dp_mst_encoder_cleanup(intel_dig_port);
4901 4902
	if (is_edp(intel_dp)) {
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4903 4904 4905 4906
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
4907
		pps_lock(intel_dp);
4908
		edp_panel_vdd_off_sync(intel_dp);
4909 4910
		pps_unlock(intel_dp);

4911 4912 4913 4914
		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
4915
	}
4916
	drm_encoder_cleanup(encoder);
4917
	kfree(intel_dig_port);
4918 4919
}

4920 4921 4922 4923 4924 4925 4926
static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);

	if (!is_edp(intel_dp))
		return;

4927 4928 4929 4930
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
4931
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4932
	pps_lock(intel_dp);
4933
	edp_panel_vdd_off_sync(intel_dp);
4934
	pps_unlock(intel_dp);
4935 4936
}

4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	enum intel_display_power_domain power_domain;

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
	power_domain = intel_display_port_power_domain(&intel_dig_port->base);
	intel_display_power_get(dev_priv, power_domain);

	edp_panel_vdd_schedule_off(intel_dp);
}

4962 4963
static void intel_dp_encoder_reset(struct drm_encoder *encoder)
{
4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
	struct intel_dp *intel_dp;

	if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
		return;

	intel_dp = enc_to_intel_dp(encoder);

	pps_lock(intel_dp);

	/*
	 * Read out the current power sequencer assignment,
	 * in case the BIOS did something with it.
	 */
	if (IS_VALLEYVIEW(encoder->dev))
		vlv_initial_power_sequencer_setup(intel_dp);

	intel_edp_panel_vdd_sanitize(intel_dp);

	pps_unlock(intel_dp);
4983 4984
}

4985
static const struct drm_connector_funcs intel_dp_connector_funcs = {
4986
	.dpms = drm_atomic_helper_connector_dpms,
4987
	.detect = intel_dp_detect,
4988
	.force = intel_dp_force,
4989
	.fill_modes = drm_helper_probe_single_connector_modes,
4990
	.set_property = intel_dp_set_property,
4991
	.atomic_get_property = intel_connector_atomic_get_property,
4992
	.destroy = intel_dp_connector_destroy,
4993
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4994
	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4995 4996 4997 4998 4999
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
5000
	.best_encoder = intel_best_encoder,
5001 5002 5003
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5004
	.reset = intel_dp_encoder_reset,
5005
	.destroy = intel_dp_encoder_destroy,
5006 5007
};

5008
enum irqreturn
5009 5010 5011
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5012
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
5013 5014
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
5015
	enum intel_display_power_domain power_domain;
5016
	enum irqreturn ret = IRQ_NONE;
5017

5018 5019
	if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
		intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
5020

5021 5022 5023 5024 5025 5026 5027 5028 5029
	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
		/*
		 * vdd off can generate a long pulse on eDP which
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
		 */
		DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
			      port_name(intel_dig_port->port));
5030
		return IRQ_HANDLED;
5031 5032
	}

5033 5034
	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
		      port_name(intel_dig_port->port),
5035
		      long_hpd ? "long" : "short");
5036

5037 5038 5039
	power_domain = intel_display_port_power_domain(intel_encoder);
	intel_display_power_get(dev_priv, power_domain);

5040
	if (long_hpd) {
5041 5042
		/* indicate that we need to restart link training */
		intel_dp->train_set_valid = false;
5043

5044 5045
		if (!intel_digital_port_connected(dev_priv, intel_dig_port))
			goto mst_fail;
5046 5047 5048 5049 5050 5051 5052

		if (!intel_dp_get_dpcd(intel_dp)) {
			goto mst_fail;
		}

		intel_dp_probe_oui(intel_dp);

5053 5054 5055 5056
		if (!intel_dp_probe_mst(intel_dp)) {
			drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
			intel_dp_check_link_status(intel_dp);
			drm_modeset_unlock(&dev->mode_config.connection_mutex);
5057
			goto mst_fail;
5058
		}
5059 5060
	} else {
		if (intel_dp->is_mst) {
5061
			if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
5062 5063 5064 5065
				goto mst_fail;
		}

		if (!intel_dp->is_mst) {
5066
			drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
5067
			intel_dp_check_link_status(intel_dp);
5068
			drm_modeset_unlock(&dev->mode_config.connection_mutex);
5069 5070
		}
	}
5071 5072 5073

	ret = IRQ_HANDLED;

5074
	goto put_power;
5075 5076 5077 5078 5079 5080 5081
mst_fail:
	/* if we were in MST mode, and device is not there get out of MST mode */
	if (intel_dp->is_mst) {
		DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
		intel_dp->is_mst = false;
		drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
	}
5082 5083 5084 5085
put_power:
	intel_display_power_put(dev_priv, power_domain);

	return ret;
5086 5087
}

5088 5089
/* Return which DP Port should be selected for Transcoder DP control */
int
5090
intel_trans_dp_port_sel(struct drm_crtc *crtc)
5091 5092
{
	struct drm_device *dev = crtc->dev;
5093 5094
	struct intel_encoder *intel_encoder;
	struct intel_dp *intel_dp;
5095

5096 5097
	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
		intel_dp = enc_to_intel_dp(&intel_encoder->base);
5098

5099 5100
		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
		    intel_encoder->type == INTEL_OUTPUT_EDP)
5101
			return intel_dp->output_reg;
5102
	}
5103

5104 5105 5106
	return -1;
}

5107
/* check the VBT to see whether the eDP is on another port */
5108
bool intel_dp_is_edp(struct drm_device *dev, enum port port)
5109 5110
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5111
	union child_device_config *p_child;
5112
	int i;
5113
	static const short port_mapping[] = {
5114 5115 5116 5117
		[PORT_B] = DVO_PORT_DPB,
		[PORT_C] = DVO_PORT_DPC,
		[PORT_D] = DVO_PORT_DPD,
		[PORT_E] = DVO_PORT_DPE,
5118
	};
5119

5120 5121 5122 5123 5124 5125 5126
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
	if (INTEL_INFO(dev)->gen < 5)
		return false;

5127 5128 5129
	if (port == PORT_A)
		return true;

5130
	if (!dev_priv->vbt.child_dev_num)
5131 5132
		return false;

5133 5134
	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
		p_child = dev_priv->vbt.child_dev + i;
5135

5136
		if (p_child->common.dvo_port == port_mapping[port] &&
5137 5138
		    (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
5139 5140 5141 5142 5143
			return true;
	}
	return false;
}

5144
void
5145 5146
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
5147 5148
	struct intel_connector *intel_connector = to_intel_connector(connector);

5149
	intel_attach_force_audio_property(connector);
5150
	intel_attach_broadcast_rgb_property(connector);
5151
	intel_dp->color_range_auto = true;
5152 5153 5154

	if (is_edp(intel_dp)) {
		drm_mode_create_scaling_mode_property(connector->dev);
5155 5156
		drm_object_attach_property(
			&connector->base,
5157
			connector->dev->mode_config.scaling_mode_property,
5158 5159
			DRM_MODE_SCALE_ASPECT);
		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5160
	}
5161 5162
}

5163 5164 5165 5166 5167 5168 5169
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
	intel_dp->last_power_cycle = jiffies;
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

5170 5171
static void
intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5172
				    struct intel_dp *intel_dp)
5173 5174
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5175 5176
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;
5177 5178
	u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
	int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg = 0;
5179

5180 5181
	lockdep_assert_held(&dev_priv->pps_mutex);

5182 5183 5184 5185
	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
	if (IS_BROXTON(dev)) {
		/*
		 * TODO: BXT has 2 sets of PPS registers.
		 * Correct Register for Broxton need to be identified
		 * using VBT. hardcoding for now
		 */
		pp_ctrl_reg = BXT_PP_CONTROL(0);
		pp_on_reg = BXT_PP_ON_DELAYS(0);
		pp_off_reg = BXT_PP_OFF_DELAYS(0);
	} else if (HAS_PCH_SPLIT(dev)) {
5196
		pp_ctrl_reg = PCH_PP_CONTROL;
5197 5198 5199 5200
		pp_on_reg = PCH_PP_ON_DELAYS;
		pp_off_reg = PCH_PP_OFF_DELAYS;
		pp_div_reg = PCH_PP_DIVISOR;
	} else {
5201 5202 5203 5204 5205 5206
		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);

		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5207
	}
5208 5209 5210

	/* Workaround: Need to write PP_CONTROL with the unlock key as
	 * the very first thing. */
5211
	pp_ctl = ironlake_get_pp_control(intel_dp);
5212

5213 5214
	pp_on = I915_READ(pp_on_reg);
	pp_off = I915_READ(pp_off_reg);
5215 5216 5217 5218
	if (!IS_BROXTON(dev)) {
		I915_WRITE(pp_ctrl_reg, pp_ctl);
		pp_div = I915_READ(pp_div_reg);
	}
5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232

	/* Pull timing values out of registers */
	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
		PANEL_POWER_UP_DELAY_SHIFT;

	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
		PANEL_LIGHT_ON_DELAY_SHIFT;

	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
		PANEL_LIGHT_OFF_DELAY_SHIFT;

	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
		PANEL_POWER_DOWN_DELAY_SHIFT;

5233 5234 5235 5236 5237 5238 5239 5240 5241
	if (IS_BROXTON(dev)) {
		u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
			BXT_POWER_CYCLE_DELAY_SHIFT;
		if (tmp > 0)
			cur.t11_t12 = (tmp - 1) * 1000;
		else
			cur.t11_t12 = 0;
	} else {
		cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5242
		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5243
	}
5244 5245 5246 5247

	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);

5248
	vbt = dev_priv->vbt.edp_pps;
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
5267
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
5268 5269 5270 5271 5272 5273 5274 5275 5276
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

5277
#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
5278 5279 5280 5281 5282 5283 5284
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

5285 5286 5287 5288 5289 5290 5291 5292 5293 5294
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
		      intel_dp->panel_power_cycle_delay);

	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
}

static void
intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5295
					      struct intel_dp *intel_dp)
5296 5297
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5298 5299
	u32 pp_on, pp_off, pp_div, port_sel = 0;
	int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
5300
	int pp_on_reg, pp_off_reg, pp_div_reg = 0, pp_ctrl_reg;
5301
	enum port port = dp_to_dig_port(intel_dp)->port;
5302
	const struct edp_power_seq *seq = &intel_dp->pps_delays;
5303

5304
	lockdep_assert_held(&dev_priv->pps_mutex);
5305

5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
	if (IS_BROXTON(dev)) {
		/*
		 * TODO: BXT has 2 sets of PPS registers.
		 * Correct Register for Broxton need to be identified
		 * using VBT. hardcoding for now
		 */
		pp_ctrl_reg = BXT_PP_CONTROL(0);
		pp_on_reg = BXT_PP_ON_DELAYS(0);
		pp_off_reg = BXT_PP_OFF_DELAYS(0);

	} else if (HAS_PCH_SPLIT(dev)) {
5317 5318 5319 5320
		pp_on_reg = PCH_PP_ON_DELAYS;
		pp_off_reg = PCH_PP_OFF_DELAYS;
		pp_div_reg = PCH_PP_DIVISOR;
	} else {
5321 5322 5323 5324 5325
		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);

		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5326 5327
	}

5328 5329 5330 5331 5332 5333 5334 5335
	/*
	 * And finally store the new values in the power sequencer. The
	 * backlight delays are set to 1 because we do manual waits on them. For
	 * T8, even BSpec recommends doing it. For T9, if we don't do this,
	 * we'll end up waiting for the backlight off delay twice: once when we
	 * do the manual sleep, and once when we disable the panel and wait for
	 * the PP_STATUS bit to become zero.
	 */
5336
	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5337 5338
		(1 << PANEL_LIGHT_ON_DELAY_SHIFT);
	pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5339
		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5340 5341
	/* Compute the divisor for the pp clock, simply match the Bspec
	 * formula. */
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
	if (IS_BROXTON(dev)) {
		pp_div = I915_READ(pp_ctrl_reg);
		pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
		pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
				<< BXT_POWER_CYCLE_DELAY_SHIFT);
	} else {
		pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
		pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
				<< PANEL_POWER_CYCLE_DELAY_SHIFT);
	}
5352 5353 5354

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
5355
	if (IS_VALLEYVIEW(dev)) {
5356
		port_sel = PANEL_PORT_SELECT_VLV(port);
5357
	} else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5358
		if (port == PORT_A)
5359
			port_sel = PANEL_PORT_SELECT_DPA;
5360
		else
5361
			port_sel = PANEL_PORT_SELECT_DPD;
5362 5363
	}

5364 5365 5366 5367
	pp_on |= port_sel;

	I915_WRITE(pp_on_reg, pp_on);
	I915_WRITE(pp_off_reg, pp_off);
5368 5369 5370 5371
	if (IS_BROXTON(dev))
		I915_WRITE(pp_ctrl_reg, pp_div);
	else
		I915_WRITE(pp_div_reg, pp_div);
5372 5373

	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5374 5375
		      I915_READ(pp_on_reg),
		      I915_READ(pp_off_reg),
5376 5377
		      IS_BROXTON(dev) ?
		      (I915_READ(pp_ctrl_reg) & BXT_POWER_CYCLE_DELAY_MASK) :
5378
		      I915_READ(pp_div_reg));
5379 5380
}

5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
 * @dev: DRM device
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
5393
static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5394 5395 5396
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_encoder *encoder;
5397 5398
	struct intel_digital_port *dig_port = NULL;
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
5399
	struct intel_crtc_state *config = NULL;
5400
	struct intel_crtc *intel_crtc = NULL;
5401
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5402 5403 5404 5405 5406 5407

	if (refresh_rate <= 0) {
		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
		return;
	}

5408 5409
	if (intel_dp == NULL) {
		DRM_DEBUG_KMS("DRRS not supported.\n");
5410 5411 5412
		return;
	}

5413
	/*
5414 5415
	 * FIXME: This needs proper synchronization with psr state for some
	 * platforms that cannot have PSR and DRRS enabled at the same time.
5416
	 */
5417

5418 5419
	dig_port = dp_to_dig_port(intel_dp);
	encoder = &dig_port->base;
5420
	intel_crtc = to_intel_crtc(encoder->base.crtc);
5421 5422 5423 5424 5425 5426

	if (!intel_crtc) {
		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
		return;
	}

5427
	config = intel_crtc->config;
5428

5429
	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5430 5431 5432 5433
		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
		return;
	}

5434 5435
	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
5436 5437
		index = DRRS_LOW_RR;

5438
	if (index == dev_priv->drrs.refresh_rate_type) {
5439 5440 5441 5442 5443 5444 5445 5446 5447 5448
		DRM_DEBUG_KMS(
			"DRRS requested for previously set RR...ignoring\n");
		return;
	}

	if (!intel_crtc->active) {
		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
		return;
	}

5449
	if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
		switch (index) {
		case DRRS_HIGH_RR:
			intel_dp_set_m_n(intel_crtc, M1_N1);
			break;
		case DRRS_LOW_RR:
			intel_dp_set_m_n(intel_crtc, M2_N2);
			break;
		case DRRS_MAX_RR:
		default:
			DRM_ERROR("Unsupported refreshrate type\n");
		}
	} else if (INTEL_INFO(dev)->gen > 6) {
5462 5463
		u32 reg = PIPECONF(intel_crtc->config->cpu_transcoder);
		u32 val;
5464

5465
		val = I915_READ(reg);
5466
		if (index > DRRS_HIGH_RR) {
5467 5468 5469 5470
			if (IS_VALLEYVIEW(dev))
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
5471
		} else {
5472 5473 5474 5475
			if (IS_VALLEYVIEW(dev))
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5476 5477 5478 5479
		}
		I915_WRITE(reg, val);
	}

5480 5481 5482 5483 5484
	dev_priv->drrs.refresh_rate_type = index;

	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
}

5485 5486 5487 5488 5489 5490
/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
void intel_edp_drrs_enable(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_crtc *crtc = dig_port->base.base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	if (!intel_crtc->config->has_drrs) {
		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
		return;
	}

	mutex_lock(&dev_priv->drrs.mutex);
	if (WARN_ON(dev_priv->drrs.dp)) {
		DRM_ERROR("DRRS already enabled\n");
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

5518 5519 5520 5521 5522
/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
 *
 */
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
void intel_edp_drrs_disable(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_crtc *crtc = dig_port->base.base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	if (!intel_crtc->config->has_drrs)
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
		intel_dp_set_drrs_state(dev_priv->dev,
			intel_dp->attached_connector->panel.
			fixed_mode->vrefresh);

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

5564
	/*
5565 5566
	 * The delayed work can race with an invalidate hence we need to
	 * recheck.
5567 5568
	 */

5569 5570
	if (dev_priv->drrs.busy_frontbuffer_bits)
		goto unlock;
5571

5572 5573 5574 5575
	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
		intel_dp_set_drrs_state(dev_priv->dev,
			intel_dp->attached_connector->panel.
			downclock_mode->vrefresh);
5576

5577 5578
unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
5579 5580
}

5581
/**
5582
 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5583 5584 5585
 * @dev: DRM device
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
5586 5587
 * This function gets called everytime rendering on the given planes start.
 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5588 5589 5590
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
5591 5592 5593 5594 5595 5596 5597
void intel_edp_drrs_invalidate(struct drm_device *dev,
		unsigned frontbuffer_bits)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	enum pipe pipe;

5598
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5599 5600
		return;

5601
	cancel_delayed_work(&dev_priv->drrs.work);
5602

5603
	mutex_lock(&dev_priv->drrs.mutex);
5604 5605 5606 5607 5608
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

5609 5610 5611
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;

5612 5613 5614
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;

5615
	/* invalidate means busy screen hence upclock */
5616
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5617 5618 5619 5620 5621 5622 5623
		intel_dp_set_drrs_state(dev_priv->dev,
				dev_priv->drrs.dp->attached_connector->panel.
				fixed_mode->vrefresh);

	mutex_unlock(&dev_priv->drrs.mutex);
}

5624
/**
5625
 * intel_edp_drrs_flush - Restart Idleness DRRS
5626 5627 5628
 * @dev: DRM device
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
5629 5630 5631 5632
 * This function gets called every time rendering on the given planes has
 * completed or flip on a crtc is completed. So DRRS should be upclocked
 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
 * if no other planes are dirty.
5633 5634 5635
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
5636 5637 5638 5639 5640 5641 5642
void intel_edp_drrs_flush(struct drm_device *dev,
		unsigned frontbuffer_bits)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	enum pipe pipe;

5643
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5644 5645
		return;

5646
	cancel_delayed_work(&dev_priv->drrs.work);
5647

5648
	mutex_lock(&dev_priv->drrs.mutex);
5649 5650 5651 5652 5653
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

5654 5655
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;
5656 5657

	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5658 5659
	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;

5660
	/* flush means busy screen hence upclock */
5661
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5662 5663 5664 5665 5666 5667 5668 5669 5670
		intel_dp_set_drrs_state(dev_priv->dev,
				dev_priv->drrs.dp->attached_connector->panel.
				fixed_mode->vrefresh);

	/*
	 * flush also means no more activity hence schedule downclock, if all
	 * other fbs are quiescent too
	 */
	if (!dev_priv->drrs.busy_frontbuffer_bits)
5671 5672 5673 5674 5675
		schedule_delayed_work(&dev_priv->drrs.work,
				msecs_to_jiffies(1000));
	mutex_unlock(&dev_priv->drrs.mutex);
}

5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
/**
 * DOC: Display Refresh Rate Switching (DRRS)
 *
 * Display Refresh Rate Switching (DRRS) is a power conservation feature
 * which enables swtching between low and high refresh rates,
 * dynamically, based on the usage scenario. This feature is applicable
 * for internal panels.
 *
 * Indication that the panel supports DRRS is given by the panel EDID, which
 * would list multiple refresh rates for one resolution.
 *
 * DRRS is of 2 types - static and seamless.
 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
 * (may appear as a blink on screen) and is used in dock-undock scenario.
 * Seamless DRRS involves changing RR without any visual effect to the user
 * and can be used during normal system usage. This is done by programming
 * certain registers.
 *
 * Support for static/seamless DRRS may be indicated in the VBT based on
 * inputs from the panel spec.
 *
 * DRRS saves power by switching to low RR based on usage scenarios.
 *
 * eDP DRRS:-
 *        The implementation is based on frontbuffer tracking implementation.
 * When there is a disturbance on the screen triggered by user activity or a
 * periodic system activity, DRRS is disabled (RR is changed to high RR).
 * When there is no movement on screen, after a timeout of 1 second, a switch
 * to low RR is made.
 *        For integration with frontbuffer tracking code,
 * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
 *
 * DRRS can be further extended to support other internal panels and also
 * the scenario of video playback wherein RR is set based on the rate
 * requested by userspace.
 */

/**
 * intel_dp_drrs_init - Init basic DRRS work and mutex.
 * @intel_connector: eDP connector
 * @fixed_mode: preferred mode of panel
 *
 * This function is  called only once at driver load to initialize basic
 * DRRS stuff.
 *
 * Returns:
 * Downclock mode if panel supports it, else return NULL.
 * DRRS support is determined by the presence of downclock mode (apart
 * from VBT setting).
 */
5726
static struct drm_display_mode *
5727 5728
intel_dp_drrs_init(struct intel_connector *intel_connector,
		struct drm_display_mode *fixed_mode)
5729 5730
{
	struct drm_connector *connector = &intel_connector->base;
5731
	struct drm_device *dev = connector->dev;
5732 5733 5734
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_display_mode *downclock_mode = NULL;

5735 5736 5737
	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
	mutex_init(&dev_priv->drrs.mutex);

5738 5739 5740 5741 5742 5743
	if (INTEL_INFO(dev)->gen <= 6) {
		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5744
		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5745 5746 5747 5748 5749 5750 5751
		return NULL;
	}

	downclock_mode = intel_find_panel_downclock
					(dev, fixed_mode, connector);

	if (!downclock_mode) {
5752
		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5753 5754 5755
		return NULL;
	}

5756
	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5757

5758
	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5759
	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5760 5761 5762
	return downclock_mode;
}

5763
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5764
				     struct intel_connector *intel_connector)
5765 5766 5767
{
	struct drm_connector *connector = &intel_connector->base;
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5768 5769
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
5770 5771
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_display_mode *fixed_mode = NULL;
5772
	struct drm_display_mode *downclock_mode = NULL;
5773 5774 5775
	bool has_dpcd;
	struct drm_display_mode *scan;
	struct edid *edid;
5776
	enum pipe pipe = INVALID_PIPE;
5777 5778 5779 5780

	if (!is_edp(intel_dp))
		return true;

5781 5782 5783
	pps_lock(intel_dp);
	intel_edp_panel_vdd_sanitize(intel_dp);
	pps_unlock(intel_dp);
5784

5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799
	/* Cache DPCD and EDID for edp. */
	has_dpcd = intel_dp_get_dpcd(intel_dp);

	if (has_dpcd) {
		if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
			dev_priv->no_aux_handshake =
				intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
				DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
	} else {
		/* if this fails, presume the device is a ghost */
		DRM_INFO("failed to retrieve link info, disabling eDP\n");
		return false;
	}

	/* We now know it's not a ghost, init power sequence regs. */
5800
	pps_lock(intel_dp);
5801
	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5802
	pps_unlock(intel_dp);
5803

5804
	mutex_lock(&dev->mode_config.mutex);
5805
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
			drm_mode_connector_update_edid_property(connector,
								edid);
			drm_edid_to_eld(connector, edid);
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

	/* prefer fixed mode from EDID if available */
	list_for_each_entry(scan, &connector->probed_modes, head) {
		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
			fixed_mode = drm_mode_duplicate(dev, scan);
5824 5825
			downclock_mode = intel_dp_drrs_init(
						intel_connector, fixed_mode);
5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836
			break;
		}
	}

	/* fallback to VBT if available for eDP */
	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
		fixed_mode = drm_mode_duplicate(dev,
					dev_priv->vbt.lfp_lvds_vbt_mode);
		if (fixed_mode)
			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
	}
5837
	mutex_unlock(&dev->mode_config.mutex);
5838

5839 5840 5841
	if (IS_VALLEYVIEW(dev)) {
		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
		register_reboot_notifier(&intel_dp->edp_notifier);
5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860

		/*
		 * Figure out the current pipe for the initial backlight setup.
		 * If the current pipe isn't valid, try the PPS pipe, and if that
		 * fails just assume pipe A.
		 */
		if (IS_CHERRYVIEW(dev))
			pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
		else
			pipe = PORT_TO_PIPE(intel_dp->DP);

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = intel_dp->pps_pipe;

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = PIPE_A;

		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
			      pipe_name(pipe));
5861 5862
	}

5863
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5864
	intel_connector->panel.backlight.power = intel_edp_backlight_power;
5865
	intel_panel_setup_backlight(connector, pipe);
5866 5867 5868 5869

	return true;
}

5870
bool
5871 5872
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
5873
{
5874 5875 5876 5877
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
5878
	struct drm_i915_private *dev_priv = dev->dev_private;
5879
	enum port port = intel_dig_port->port;
5880
	int type, ret;
5881

5882 5883
	intel_dp->pps_pipe = INVALID_PIPE;

5884
	/* intel_dp vfuncs */
5885 5886 5887
	if (INTEL_INFO(dev)->gen >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
	else if (IS_VALLEYVIEW(dev))
5888 5889 5890 5891 5892 5893 5894 5895
		intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;

5896 5897 5898 5899
	if (INTEL_INFO(dev)->gen >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
		intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5900

5901 5902 5903
	if (HAS_DDI(dev))
		intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;

5904 5905
	/* Preserve the current hw state. */
	intel_dp->DP = I915_READ(intel_dp->output_reg);
5906
	intel_dp->attached_connector = intel_connector;
5907

5908
	if (intel_dp_is_edp(dev, port))
5909
		type = DRM_MODE_CONNECTOR_eDP;
5910 5911
	else
		type = DRM_MODE_CONNECTOR_DisplayPort;
5912

5913 5914 5915 5916 5917 5918 5919 5920
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

5921 5922 5923 5924 5925
	/* eDP only on port B and/or C on vlv/chv */
	if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
		    port != PORT_B && port != PORT_C))
		return false;

5926 5927 5928 5929
	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
			port_name(port));

5930
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5931 5932 5933 5934 5935
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

	connector->interlace_allowed = true;
	connector->doublescan_allowed = 0;

5936
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5937
			  edp_panel_vdd_work);
5938

5939
	intel_connector_attach_encoder(intel_connector, intel_encoder);
5940
	drm_connector_register(connector);
5941

Paulo Zanoni's avatar
Paulo Zanoni committed
5942
	if (HAS_DDI(dev))
5943 5944 5945
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;
5946
	intel_connector->unregister = intel_dp_connector_unregister;
5947

5948
	/* Set up the hotplug pin. */
5949 5950
	switch (port) {
	case PORT_A:
5951
		intel_encoder->hpd_pin = HPD_PORT_A;
5952 5953
		break;
	case PORT_B:
5954
		intel_encoder->hpd_pin = HPD_PORT_B;
5955
		if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5956
			intel_encoder->hpd_pin = HPD_PORT_A;
5957 5958
		break;
	case PORT_C:
5959
		intel_encoder->hpd_pin = HPD_PORT_C;
5960 5961
		break;
	case PORT_D:
5962
		intel_encoder->hpd_pin = HPD_PORT_D;
5963
		break;
5964 5965 5966
	case PORT_E:
		intel_encoder->hpd_pin = HPD_PORT_E;
		break;
5967
	default:
5968
		BUG();
5969 5970
	}

5971
	if (is_edp(intel_dp)) {
5972
		pps_lock(intel_dp);
5973 5974
		intel_dp_init_panel_power_timestamps(intel_dp);
		if (IS_VALLEYVIEW(dev))
5975
			vlv_initial_power_sequencer_setup(intel_dp);
5976
		else
5977
			intel_dp_init_panel_power_sequencer(dev, intel_dp);
5978
		pps_unlock(intel_dp);
5979
	}
5980

5981 5982 5983
	ret = intel_dp_aux_init(intel_dp, intel_connector);
	if (ret)
		goto fail;
5984

5985
	/* init MST on ports that can support it */
5986 5987 5988 5989
	if (HAS_DP_MST(dev) &&
	    (port == PORT_B || port == PORT_C || port == PORT_D))
		intel_dp_mst_encoder_init(intel_dig_port,
					  intel_connector->base.base.id);
5990

5991
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5992 5993 5994
		intel_dp_aux_fini(intel_dp);
		intel_dp_mst_encoder_cleanup(intel_dig_port);
		goto fail;
5995
	}
5996

5997 5998
	intel_dp_add_properties(intel_dp, connector);

5999 6000 6001 6002 6003 6004 6005 6006
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
	if (IS_G4X(dev) && !IS_GM45(dev)) {
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
6007

6008 6009
	i915_debugfs_connector_add(connector);

6010
	return true;
6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026

fail:
	if (is_edp(intel_dp)) {
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
		pps_lock(intel_dp);
		edp_panel_vdd_off_sync(intel_dp);
		pps_unlock(intel_dp);
	}
	drm_connector_unregister(connector);
	drm_connector_cleanup(connector);

	return false;
6027
}
6028 6029 6030 6031

void
intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
{
6032
	struct drm_i915_private *dev_priv = dev->dev_private;
6033 6034 6035 6036 6037
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

6038
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6039 6040 6041
	if (!intel_dig_port)
		return;

6042
	intel_connector = intel_connector_alloc();
Sudip Mukherjee's avatar
Sudip Mukherjee committed
6043 6044
	if (!intel_connector)
		goto err_connector_alloc;
6045 6046 6047 6048 6049 6050 6051

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
			 DRM_MODE_ENCODER_TMDS);

6052
	intel_encoder->compute_config = intel_dp_compute_config;
6053 6054
	intel_encoder->disable = intel_disable_dp;
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
6055
	intel_encoder->get_config = intel_dp_get_config;
6056
	intel_encoder->suspend = intel_dp_encoder_suspend;
6057
	if (IS_CHERRYVIEW(dev)) {
6058
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6059 6060
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
6061
		intel_encoder->post_disable = chv_post_disable_dp;
6062
		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6063
	} else if (IS_VALLEYVIEW(dev)) {
6064
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6065 6066
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
6067
		intel_encoder->post_disable = vlv_post_disable_dp;
6068
	} else {
6069 6070
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
6071 6072
		if (INTEL_INFO(dev)->gen >= 5)
			intel_encoder->post_disable = ilk_post_disable_dp;
6073
	}
6074

6075
	intel_dig_port->port = port;
6076 6077
	intel_dig_port->dp.output_reg = output_reg;

6078
	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
6079 6080 6081 6082 6083 6084 6085 6086
	if (IS_CHERRYVIEW(dev)) {
		if (port == PORT_D)
			intel_encoder->crtc_mask = 1 << 2;
		else
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
	} else {
		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
	}
6087
	intel_encoder->cloneable = 0;
6088

6089
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6090
	dev_priv->hotplug.irq_port[port] = intel_dig_port;
6091

Sudip Mukherjee's avatar
Sudip Mukherjee committed
6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103
	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
		goto err_init_connector;

	return;

err_init_connector:
	drm_encoder_cleanup(encoder);
	kfree(intel_connector);
err_connector_alloc:
	kfree(intel_dig_port);

	return;
6104
}
6105 6106 6107 6108 6109 6110 6111 6112

void intel_dp_mst_suspend(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

	/* disable MST */
	for (i = 0; i < I915_MAX_PORTS; i++) {
6113
		struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131
		if (!intel_dig_port)
			continue;

		if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
			if (!intel_dig_port->dp.can_mst)
				continue;
			if (intel_dig_port->dp.is_mst)
				drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
		}
	}
}

void intel_dp_mst_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

	for (i = 0; i < I915_MAX_PORTS; i++) {
6132
		struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147
		if (!intel_dig_port)
			continue;
		if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
			int ret;

			if (!intel_dig_port->dp.can_mst)
				continue;

			ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
			if (ret != 0) {
				intel_dp_check_mst_status(&intel_dig_port->dp);
			}
		}
	}
}