intel_dp.c 161 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/i2c.h>
29
#include <linux/slab.h>
30
#include <linux/export.h>
31 32
#include <linux/notifier.h>
#include <linux/reboot.h>
33
#include <drm/drmP.h>
34
#include <drm/drm_atomic_helper.h>
35 36 37
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_edid.h>
38
#include "intel_drv.h"
39
#include <drm/i915_drm.h>
40 41 42 43
#include "i915_drv.h"

#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)

44 45 46 47 48 49
/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

50
struct dp_link_dpll {
51
	int clock;
52 53 54 55
	struct dpll dpll;
};

static const struct dp_link_dpll gen4_dpll[] = {
56
	{ 162000,
57
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58
	{ 270000,
59 60 61 62
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
63
	{ 162000,
64
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65
	{ 270000,
66 67 68
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

69
static const struct dp_link_dpll vlv_dpll[] = {
70
	{ 162000,
71
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72
	{ 270000,
73 74 75
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

76 77 78 79 80 81 82 83 84 85
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
86
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
87
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
89
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90
	{ 540000,	/* m2_int = 27, m2_fraction = 0 */
91 92
		{ .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
};
93

94 95
static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
				  324000, 432000, 540000 };
96
static const int skl_rates[] = { 162000, 216000, 270000,
97 98
				  324000, 432000, 540000 };
static const int default_rates[] = { 162000, 270000, 540000 };
99

100 101 102 103 104 105 106 107 108
/**
 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
static bool is_edp(struct intel_dp *intel_dp)
{
109 110 111
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 113
}

114
static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115
{
116 117 118
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.base.dev;
119 120
}

121 122
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
123
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 125
}

126
static void intel_dp_link_down(struct intel_dp *intel_dp);
127
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129
static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 131
static void vlv_steal_power_sequencer(struct drm_device *dev,
				      enum pipe pipe);
132
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133

134 135
static int
intel_dp_max_link_bw(struct intel_dp  *intel_dp)
136
{
137
	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138 139 140 141

	switch (max_link_bw) {
	case DP_LINK_BW_1_62:
	case DP_LINK_BW_2_7:
142
	case DP_LINK_BW_5_4:
143
		break;
144
	default:
145 146
		WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
		     max_link_bw);
147 148 149 150 151 152
		max_link_bw = DP_LINK_BW_1_62;
		break;
	}
	return max_link_bw;
}

153 154 155 156 157
static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	u8 source_max, sink_max;

158
	source_max = intel_dig_port->max_lanes;
159 160 161 162 163
	sink_max = drm_dp_max_lane_count(intel_dp->dpcd);

	return min(source_max, sink_max);
}

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * The units on the numbers in the next two are... bizarre.  Examples will
 * make it clearer; this one parallels an example in the eDP spec.
 *
 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
 *
 *     270000 * 1 * 8 / 10 == 216000
 *
 * The actual data capacity of that configuration is 2.16Gbit/s, so the
 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
 * 119000.  At 18bpp that's 2142000 kilobits per second.
 *
 * Thus the strange-looking division by 10 in intel_dp_link_required, to
 * get the result in decakilobits instead of kilobits.
 */

181
static int
182
intel_dp_link_required(int pixel_clock, int bpp)
183
{
184
	return (pixel_clock * bpp + 9) / 10;
185 186
}

187 188 189 190 191 192
static int
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
	return (max_link_clock * max_lanes * 8) / 10;
}

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int max_dotclk = dev_priv->max_dotclk_freq;
	int ds_max_dotclk;

	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;

	if (type != DP_DS_PORT_TYPE_VGA)
		return max_dotclk;

	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
						    intel_dp->downstream_ports);

	if (ds_max_dotclk != 0)
		max_dotclk = min(max_dotclk, ds_max_dotclk);

	return max_dotclk;
}

216
static enum drm_mode_status
217 218 219
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
220
	struct intel_dp *intel_dp = intel_attached_dp(connector);
221 222
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
223 224
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
225 226 227
	int max_dotclk;

	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
228

229 230
	if (is_edp(intel_dp) && fixed_mode) {
		if (mode->hdisplay > fixed_mode->hdisplay)
231 232
			return MODE_PANEL;

233
		if (mode->vdisplay > fixed_mode->vdisplay)
234
			return MODE_PANEL;
235 236

		target_clock = fixed_mode->clock;
237 238
	}

239
	max_link_clock = intel_dp_max_link_rate(intel_dp);
240
	max_lanes = intel_dp_max_lane_count(intel_dp);
241 242 243 244

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

245
	if (mode_rate > max_rate || target_clock > max_dotclk)
246
		return MODE_CLOCK_HIGH;
247 248 249 250

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

251 252 253
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

254 255 256
	return MODE_OK;
}

257
uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
258 259 260 261 262 263 264 265 266 267 268
{
	int	i;
	uint32_t v = 0;

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
	return v;
}

269
static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
270 271 272 273 274 275 276 277
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

278 279
static void
intel_dp_init_panel_power_sequencer(struct drm_device *dev,
280
				    struct intel_dp *intel_dp);
281 282
static void
intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
283
					      struct intel_dp *intel_dp);
284 285
static void
intel_dp_pps_init(struct drm_device *dev, struct intel_dp *intel_dp);
286

287 288 289 290 291
static void pps_lock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_device *dev = encoder->base.dev;
292
	struct drm_i915_private *dev_priv = to_i915(dev);
293 294 295 296 297 298
	enum intel_display_power_domain power_domain;

	/*
	 * See vlv_power_sequencer_reset() why we need
	 * a power domain reference here.
	 */
299
	power_domain = intel_display_port_aux_power_domain(encoder);
300 301 302 303 304 305 306 307 308 309
	intel_display_power_get(dev_priv, power_domain);

	mutex_lock(&dev_priv->pps_mutex);
}

static void pps_unlock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_device *dev = encoder->base.dev;
310
	struct drm_i915_private *dev_priv = to_i915(dev);
311 312 313 314
	enum intel_display_power_domain power_domain;

	mutex_unlock(&dev_priv->pps_mutex);

315
	power_domain = intel_display_port_aux_power_domain(encoder);
316 317 318
	intel_display_power_put(dev_priv, power_domain);
}

319 320 321 322 323
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
324
	struct drm_i915_private *dev_priv = to_i915(dev);
325
	enum pipe pipe = intel_dp->pps_pipe;
326 327 328
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
	uint32_t DP;

	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
		 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
		 pipe_name(pipe), port_name(intel_dig_port->port)))
		return;

	DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
		      pipe_name(pipe), port_name(intel_dig_port->port));

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

347
	if (IS_CHERRYVIEW(dev_priv))
348 349 350 351
		DP |= DP_PIPE_SELECT_CHV(pipe);
	else if (pipe == PIPE_B)
		DP |= DP_PIPEB_SELECT;

352 353 354 355 356 357
	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
358
	if (!pll_enabled) {
359
		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
360 361
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

362
		if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev_priv) ?
363 364 365 366 367
				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
			DRM_ERROR("Failed to force on pll for pipe %c!\n",
				  pipe_name(pipe));
			return;
		}
368
	}
369

370 371 372 373 374 375 376 377 378 379 380 381 382 383
	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
	 * to make this power seqeuencer lock onto the port.
	 * Otherwise even VDD force bit won't work.
	 */
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);
384

385
	if (!pll_enabled) {
386
		vlv_force_pll_off(dev, pipe);
387 388 389 390

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
391 392
}

393 394 395 396 397
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
398
	struct drm_i915_private *dev_priv = to_i915(dev);
399 400
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
401
	enum pipe pipe;
402

403
	lockdep_assert_held(&dev_priv->pps_mutex);
404

405 406 407
	/* We should never land here with regular DP ports */
	WARN_ON(!is_edp(intel_dp));

408 409 410 411 412 413 414
	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
415
	for_each_intel_encoder(dev, encoder) {
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
		struct intel_dp *tmp;

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

		tmp = enc_to_intel_dp(&encoder->base);

		if (tmp->pps_pipe != INVALID_PIPE)
			pipes &= ~(1 << tmp->pps_pipe);
	}

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
	if (WARN_ON(pipes == 0))
432 433 434
		pipe = PIPE_A;
	else
		pipe = ffs(pipes) - 1;
435

436 437
	vlv_steal_power_sequencer(dev, pipe);
	intel_dp->pps_pipe = pipe;
438 439 440 441 442 443

	DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
		      pipe_name(intel_dp->pps_pipe),
		      port_name(intel_dig_port->port));

	/* init power sequencer on this pipe and port */
444 445
	intel_dp_init_panel_power_sequencer(dev, intel_dp);
	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
446

447 448 449 450 451
	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);
452 453 454 455

	return intel_dp->pps_pipe;
}

456 457 458 459 460
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
461
	struct drm_i915_private *dev_priv = to_i915(dev);
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
	WARN_ON(!is_edp(intel_dp));

	/*
	 * TODO: BXT has 2 PPS instances. The correct port->PPS instance
	 * mapping needs to be retrieved from VBT, for now just hard-code to
	 * use instance #0 always.
	 */
	if (!intel_dp->pps_reset)
		return 0;

	intel_dp->pps_reset = false;

	/*
	 * Only the HW needs to be reprogrammed, the SW state is fixed and
	 * has been setup during connector init.
	 */
	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);

	return 0;
}

487 488 489 490 491 492
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
493
	return I915_READ(PP_STATUS(pipe)) & PP_ON;
494 495 496 497 498
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
499
	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
500 501 502 503 504 505 506
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}
507

508
static enum pipe
509 510 511
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
512 513
{
	enum pipe pipe;
514 515

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
516
		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
517
			PANEL_PORT_SELECT_MASK;
518 519 520 521

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

522 523 524
		if (!pipe_check(dev_priv, pipe))
			continue;

525
		return pipe;
526 527
	}

528 529 530 531 532 533 534 535
	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
536
	struct drm_i915_private *dev_priv = to_i915(dev);
537 538 539 540 541
	enum port port = intel_dig_port->port;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
542 543 544 545 546 547 548 549 550 551 552
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);
553 554 555 556 557 558

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
		DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
			      port_name(port));
		return;
559 560
	}

561 562 563
	DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
		      port_name(port), pipe_name(intel_dp->pps_pipe));

564 565
	intel_dp_init_panel_power_sequencer(dev, intel_dp);
	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
566 567
}

568
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
569
{
570
	struct drm_device *dev = &dev_priv->drm;
571 572
	struct intel_encoder *encoder;

573
	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
574
		    !IS_BROXTON(dev_priv)))
575 576 577 578 579 580 581 582 583 584 585 586
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

587
	for_each_intel_encoder(dev, encoder) {
588 589 590 591 592 593
		struct intel_dp *intel_dp;

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

		intel_dp = enc_to_intel_dp(&encoder->base);
594
		if (IS_BROXTON(dev_priv))
595 596 597
			intel_dp->pps_reset = true;
		else
			intel_dp->pps_pipe = INVALID_PIPE;
598
	}
599 600
}

601 602 603 604 605 606 607 608 609 610 611 612
struct pps_registers {
	i915_reg_t pp_ctrl;
	i915_reg_t pp_stat;
	i915_reg_t pp_on;
	i915_reg_t pp_off;
	i915_reg_t pp_div;
};

static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
				    struct intel_dp *intel_dp,
				    struct pps_registers *regs)
{
613 614
	int pps_idx = 0;

615 616
	memset(regs, 0, sizeof(*regs));

617 618 619 620
	if (IS_BROXTON(dev_priv))
		pps_idx = bxt_power_sequencer_idx(intel_dp);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		pps_idx = vlv_power_sequencer_pipe(intel_dp);
621

622 623 624 625 626 627
	regs->pp_ctrl = PP_CONTROL(pps_idx);
	regs->pp_stat = PP_STATUS(pps_idx);
	regs->pp_on = PP_ON_DELAYS(pps_idx);
	regs->pp_off = PP_OFF_DELAYS(pps_idx);
	if (!IS_BROXTON(dev_priv))
		regs->pp_div = PP_DIVISOR(pps_idx);
628 629
}

630 631
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
632
{
633
	struct pps_registers regs;
634

635 636 637 638
	intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
				&regs);

	return regs.pp_ctrl;
639 640
}

641 642
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
643
{
644
	struct pps_registers regs;
645

646 647 648 649
	intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
				&regs);

	return regs.pp_stat;
650 651
}

652 653 654 655 656 657 658 659
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
660
	struct drm_i915_private *dev_priv = to_i915(dev);
661 662 663 664

	if (!is_edp(intel_dp) || code != SYS_RESTART)
		return 0;

665
	pps_lock(intel_dp);
666

667
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
668
		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
669
		i915_reg_t pp_ctrl_reg, pp_div_reg;
670
		u32 pp_div;
671

672 673
		pp_ctrl_reg = PP_CONTROL(pipe);
		pp_div_reg  = PP_DIVISOR(pipe);
674 675 676 677 678 679 680 681 682
		pp_div = I915_READ(pp_div_reg);
		pp_div &= PP_REFERENCE_DIVIDER_MASK;

		/* 0x1F write to PP_DIV_REG sets max cycle delay */
		I915_WRITE(pp_div_reg, pp_div | 0x1F);
		I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
		msleep(intel_dp->panel_power_cycle_delay);
	}

683
	pps_unlock(intel_dp);
684

685 686 687
	return 0;
}

688
static bool edp_have_panel_power(struct intel_dp *intel_dp)
689
{
690
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
691
	struct drm_i915_private *dev_priv = to_i915(dev);
692

693 694
	lockdep_assert_held(&dev_priv->pps_mutex);

695
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
696 697 698
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

699
	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
700 701
}

702
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
703
{
704
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
705
	struct drm_i915_private *dev_priv = to_i915(dev);
706

707 708
	lockdep_assert_held(&dev_priv->pps_mutex);

709
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
710 711 712
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

713
	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
714 715
}

716 717 718
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
719
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
720
	struct drm_i915_private *dev_priv = to_i915(dev);
721

722 723
	if (!is_edp(intel_dp))
		return;
724

725
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
726 727
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
728 729
			      I915_READ(_pp_stat_reg(intel_dp)),
			      I915_READ(_pp_ctrl_reg(intel_dp)));
730 731 732
	}
}

733 734 735 736 737
static uint32_t
intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
738
	struct drm_i915_private *dev_priv = to_i915(dev);
739
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
740 741 742
	uint32_t status;
	bool done;

743
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
744
	if (has_aux_irq)
745
		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
746
					  msecs_to_jiffies_timeout(10));
747
	else
748
		done = wait_for(C, 10) == 0;
749 750 751 752 753 754 755 756
	if (!done)
		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
			  has_aux_irq);
#undef C

	return status;
}

757
static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
758
{
759
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
760
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
761

762 763 764
	if (index)
		return 0;

765 766
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
767
	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
768
	 */
769
	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
770 771 772 773 774
}

static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
775
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
776 777 778 779

	if (index)
		return 0;

780 781 782 783 784
	/*
	 * The clock divider is based off the cdclk or PCH rawclk, and would
	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
	 * divide by 2000 and use that
	 */
785
	if (intel_dig_port->port == PORT_A)
786
		return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
787 788
	else
		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
789 790 791 792 793
}

static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
794
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
795

796
	if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
797
		/* Workaround for non-ULT HSW */
798 799 800 801 802
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
803
	}
804 805

	return ilk_get_aux_clock_divider(intel_dp, index);
806 807
}

808 809 810 811 812 813 814 815 816 817
static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

818 819 820 821
static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
				     bool has_aux_irq,
				     int send_bytes,
				     uint32_t aux_clock_divider)
822 823
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
824 825
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
826 827
	uint32_t precharge, timeout;

828
	if (IS_GEN6(dev_priv))
829 830 831 832
		precharge = 3;
	else
		precharge = 5;

833
	if (IS_BROADWELL(dev_priv) && intel_dig_port->port == PORT_A)
834 835 836 837 838
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
839
	       DP_AUX_CH_CTL_DONE |
840
	       (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
841
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
842
	       timeout |
843
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
844 845
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
846
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
847 848
}

849 850 851 852 853 854 855 856 857 858 859 860
static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				      bool has_aux_irq,
				      int send_bytes,
				      uint32_t unused)
{
	return DP_AUX_CH_CTL_SEND_BUSY |
	       DP_AUX_CH_CTL_DONE |
	       (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
	       DP_AUX_CH_CTL_TIME_OUT_1600us |
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
861
	       DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
862 863 864
	       DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
}

865 866
static int
intel_dp_aux_ch(struct intel_dp *intel_dp,
867
		const uint8_t *send, int send_bytes,
868 869 870 871
		uint8_t *recv, int recv_size)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
872
	struct drm_i915_private *dev_priv = to_i915(dev);
873
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
874
	uint32_t aux_clock_divider;
875 876
	int i, ret, recv_bytes;
	uint32_t status;
877
	int try, clock = 0;
878
	bool has_aux_irq = HAS_AUX_IRQ(dev);
879 880
	bool vdd;

881
	pps_lock(intel_dp);
882

883 884 885 886 887 888
	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
889
	vdd = edp_panel_vdd_on(intel_dp);
890 891 892 893 894 895 896 897

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
	pm_qos_update_request(&dev_priv->pm_qos, 0);

	intel_dp_check_edp(intel_dp);
898

899 900
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
901
		status = I915_READ_NOTRACE(ch_ctl);
902 903 904 905 906 907
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}

	if (try == 3) {
908 909 910 911 912 913 914 915 916
		static u32 last_status = -1;
		const u32 status = I915_READ(ch_ctl);

		if (status != last_status) {
			WARN(1, "dp_aux_ch not started status 0x%08x\n",
			     status);
			last_status = status;
		}

917 918
		ret = -EBUSY;
		goto out;
919 920
	}

921 922 923 924 925 926
	/* Only 5 data registers! */
	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
		ret = -E2BIG;
		goto out;
	}

927
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
928 929 930 931
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  has_aux_irq,
							  send_bytes,
							  aux_clock_divider);
932

933 934 935 936
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
937
				I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
938 939
					   intel_dp_pack_aux(send + i,
							     send_bytes - i));
940 941

			/* Send the command and wait for it to complete */
942
			I915_WRITE(ch_ctl, send_ctl);
943 944 945 946 947 948 949 950 951 952

			status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);

			/* Clear done status and any errors */
			I915_WRITE(ch_ctl,
				   status |
				   DP_AUX_CH_CTL_DONE |
				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
				   DP_AUX_CH_CTL_RECEIVE_ERROR);

953
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
954
				continue;
955 956 957 958 959 960 961 962

			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
963
				continue;
964
			}
965
			if (status & DP_AUX_CH_CTL_DONE)
966
				goto done;
967
		}
968 969 970
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
971
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
972 973
		ret = -EBUSY;
		goto out;
974 975
	}

976
done:
977 978 979
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
980
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
981
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
982 983
		ret = -EIO;
		goto out;
984
	}
985 986 987

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
988
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
989
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
990 991
		ret = -ETIMEDOUT;
		goto out;
992 993 994 995 996
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

	/*
	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
	 * We have no idea of what happened so we return -EBUSY so
	 * drm layer takes care for the necessary retries.
	 */
	if (recv_bytes == 0 || recv_bytes > 20) {
		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
			      recv_bytes);
		/*
		 * FIXME: This patch was created on top of a series that
		 * organize the retries at drm level. There EBUSY should
		 * also take care for 1ms wait before retrying.
		 * That aux retries re-org is still needed and after that is
		 * merged we remove this sleep from here.
		 */
		usleep_range(1000, 1500);
		ret = -EBUSY;
		goto out;
	}

1018 1019
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
1020

1021
	for (i = 0; i < recv_bytes; i += 4)
1022
		intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
1023
				    recv + i, recv_bytes - i);
1024

1025 1026 1027 1028
	ret = recv_bytes;
out:
	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);

1029 1030 1031
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

1032
	pps_unlock(intel_dp);
1033

1034
	return ret;
1035 1036
}

1037 1038
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1039 1040
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1041
{
1042 1043 1044
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
	uint8_t txbuf[20], rxbuf[20];
	size_t txsize, rxsize;
1045 1046
	int ret;

1047 1048 1049
	txbuf[0] = (msg->request << 4) |
		((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
1050 1051
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
1052

1053 1054 1055
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
1056
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1057
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1058
		rxsize = 2; /* 0 or 1 data bytes */
1059

1060 1061
		if (WARN_ON(txsize > 20))
			return -E2BIG;
1062

1063 1064
		WARN_ON(!msg->buffer != !msg->size);

1065 1066
		if (msg->buffer)
			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1067

1068 1069 1070
		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
1071

1072 1073 1074 1075 1076 1077 1078
			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
1079 1080
		}
		break;
1081

1082 1083
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
1084
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1085
		rxsize = msg->size + 1;
1086

1087 1088
		if (WARN_ON(rxsize > 20))
			return -E2BIG;
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
1101
		}
1102 1103 1104 1105 1106
		break;

	default:
		ret = -EINVAL;
		break;
1107
	}
1108

1109
	return ret;
1110 1111
}

1112 1113
static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
				       enum port port)
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
{
	switch (port) {
	case PORT_B:
	case PORT_C:
	case PORT_D:
		return DP_AUX_CH_CTL(port);
	default:
		MISSING_CASE(port);
		return DP_AUX_CH_CTL(PORT_B);
	}
}

1126 1127
static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
					enum port port, int index)
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
{
	switch (port) {
	case PORT_B:
	case PORT_C:
	case PORT_D:
		return DP_AUX_CH_DATA(port, index);
	default:
		MISSING_CASE(port);
		return DP_AUX_CH_DATA(PORT_B, index);
	}
}

1140 1141
static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
				       enum port port)
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
{
	switch (port) {
	case PORT_A:
		return DP_AUX_CH_CTL(port);
	case PORT_B:
	case PORT_C:
	case PORT_D:
		return PCH_DP_AUX_CH_CTL(port);
	default:
		MISSING_CASE(port);
		return DP_AUX_CH_CTL(PORT_A);
	}
}

1156 1157
static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
					enum port port, int index)
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
{
	switch (port) {
	case PORT_A:
		return DP_AUX_CH_DATA(port, index);
	case PORT_B:
	case PORT_C:
	case PORT_D:
		return PCH_DP_AUX_CH_DATA(port, index);
	default:
		MISSING_CASE(port);
		return DP_AUX_CH_DATA(PORT_A, index);
	}
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
/*
 * On SKL we don't have Aux for port E so we rely
 * on VBT to set a proper alternate aux channel.
 */
static enum port skl_porte_aux_port(struct drm_i915_private *dev_priv)
{
	const struct ddi_vbt_port_info *info =
		&dev_priv->vbt.ddi_port_info[PORT_E];

	switch (info->alternate_aux_channel) {
	case DP_AUX_A:
		return PORT_A;
	case DP_AUX_B:
		return PORT_B;
	case DP_AUX_C:
		return PORT_C;
	case DP_AUX_D:
		return PORT_D;
	default:
		MISSING_CASE(info->alternate_aux_channel);
		return PORT_A;
	}
}

1196 1197
static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
				       enum port port)
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
{
	if (port == PORT_E)
		port = skl_porte_aux_port(dev_priv);

	switch (port) {
	case PORT_A:
	case PORT_B:
	case PORT_C:
	case PORT_D:
		return DP_AUX_CH_CTL(port);
	default:
		MISSING_CASE(port);
		return DP_AUX_CH_CTL(PORT_A);
	}
}

1214 1215
static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
					enum port port, int index)
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
{
	if (port == PORT_E)
		port = skl_porte_aux_port(dev_priv);

	switch (port) {
	case PORT_A:
	case PORT_B:
	case PORT_C:
	case PORT_D:
		return DP_AUX_CH_DATA(port, index);
	default:
		MISSING_CASE(port);
		return DP_AUX_CH_DATA(PORT_A, index);
	}
}

1232 1233
static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
					 enum port port)
1234 1235 1236 1237 1238 1239 1240 1241 1242
{
	if (INTEL_INFO(dev_priv)->gen >= 9)
		return skl_aux_ctl_reg(dev_priv, port);
	else if (HAS_PCH_SPLIT(dev_priv))
		return ilk_aux_ctl_reg(dev_priv, port);
	else
		return g4x_aux_ctl_reg(dev_priv, port);
}

1243 1244
static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
					  enum port port, int index)
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
{
	if (INTEL_INFO(dev_priv)->gen >= 9)
		return skl_aux_data_reg(dev_priv, port, index);
	else if (HAS_PCH_SPLIT(dev_priv))
		return ilk_aux_data_reg(dev_priv, port, index);
	else
		return g4x_aux_data_reg(dev_priv, port, index);
}

static void intel_aux_reg_init(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
	enum port port = dp_to_dig_port(intel_dp)->port;
	int i;

	intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
	for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
		intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
}

1265
static void
1266 1267 1268 1269 1270
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	kfree(intel_dp->aux.name);
}

1271
static void
1272
intel_dp_aux_init(struct intel_dp *intel_dp)
1273
{
1274 1275
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum port port = intel_dig_port->port;
1276

1277
	intel_aux_reg_init(intel_dp);
1278
	drm_dp_aux_init(&intel_dp->aux);
1279

1280
	/* Failure to allocate our preferred name is not critical */
1281
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1282
	intel_dp->aux.transfer = intel_dp_aux_transfer;
1283 1284
}

1285
static int
1286
intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1287
{
1288 1289 1290
	if (intel_dp->num_sink_rates) {
		*sink_rates = intel_dp->sink_rates;
		return intel_dp->num_sink_rates;
1291
	}
1292 1293 1294 1295

	*sink_rates = default_rates;

	return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1296 1297
}

1298
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1299
{
1300
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1301
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
1302

1303 1304
	if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
	    IS_BROADWELL(dev_priv) || (INTEL_GEN(dev_priv) >= 9))
1305 1306 1307 1308 1309
		return true;
	else
		return false;
}

1310
static int
1311
intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1312
{
1313
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1314
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
1315 1316
	int size;

1317
	if (IS_BROXTON(dev_priv)) {
1318
		*source_rates = bxt_rates;
1319
		size = ARRAY_SIZE(bxt_rates);
1320
	} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1321
		*source_rates = skl_rates;
1322 1323 1324 1325
		size = ARRAY_SIZE(skl_rates);
	} else {
		*source_rates = default_rates;
		size = ARRAY_SIZE(default_rates);
1326
	}
1327

1328
	/* This depends on the fact that 5.4 is last value in the array */
1329
	if (!intel_dp_source_supports_hbr2(intel_dp))
1330
		size--;
1331

1332
	return size;
1333 1334
}

1335 1336
static void
intel_dp_set_clock(struct intel_encoder *encoder,
1337
		   struct intel_crtc_state *pipe_config)
1338 1339
{
	struct drm_device *dev = encoder->base.dev;
1340
	struct drm_i915_private *dev_priv = to_i915(dev);
1341 1342
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
1343

1344
	if (IS_G4X(dev_priv)) {
1345 1346
		divisor = gen4_dpll;
		count = ARRAY_SIZE(gen4_dpll);
1347
	} else if (HAS_PCH_SPLIT(dev_priv)) {
1348 1349
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
1350
	} else if (IS_CHERRYVIEW(dev_priv)) {
1351 1352
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
1353
	} else if (IS_VALLEYVIEW(dev_priv)) {
1354 1355
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
1356
	}
1357 1358 1359

	if (divisor && count) {
		for (i = 0; i < count; i++) {
1360
			if (pipe_config->port_clock == divisor[i].clock) {
1361 1362 1363 1364 1365
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
1366 1367 1368
	}
}

1369 1370
static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
1371
			   int *common_rates)
1372 1373 1374 1375 1376
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
1377 1378
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
1379
			common_rates[k] = source_rates[i];
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

1392 1393
static int intel_dp_common_rates(struct intel_dp *intel_dp,
				 int *common_rates)
1394 1395 1396 1397 1398
{
	const int *source_rates, *sink_rates;
	int source_len, sink_len;

	sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1399
	source_len = intel_dp_source_rates(intel_dp, &source_rates);
1400 1401 1402

	return intersect_rates(source_rates, source_len,
			       sink_rates, sink_len,
1403
			       common_rates);
1404 1405
}

1406 1407 1408 1409 1410 1411 1412 1413
static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
1414
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
	const int *source_rates, *sink_rates;
1425 1426
	int source_len, sink_len, common_len;
	int common_rates[DP_MAX_SUPPORTED_RATES];
1427 1428 1429 1430 1431
	char str[128]; /* FIXME: too big for stack? */

	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

1432
	source_len = intel_dp_source_rates(intel_dp, &source_rates);
1433 1434 1435 1436 1437 1438 1439
	snprintf_int_array(str, sizeof(str), source_rates, source_len);
	DRM_DEBUG_KMS("source rates: %s\n", str);

	sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
	snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
	DRM_DEBUG_KMS("sink rates: %s\n", str);

1440 1441 1442
	common_len = intel_dp_common_rates(intel_dp, common_rates);
	snprintf_int_array(str, sizeof(str), common_rates, common_len);
	DRM_DEBUG_KMS("common rates: %s\n", str);
1443 1444
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
static void intel_dp_print_hw_revision(struct intel_dp *intel_dp)
{
	uint8_t rev;
	int len;

	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
	      DP_DWN_STRM_PORT_PRESENT))
		return;

	len = drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_HW_REV, &rev, 1);
	if (len < 0)
		return;

	DRM_DEBUG_KMS("sink hw revision: %d.%d\n", (rev & 0xf0) >> 4, rev & 0xf);
}

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
static void intel_dp_print_sw_revision(struct intel_dp *intel_dp)
{
	uint8_t rev[2];
	int len;

	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
	      DP_DWN_STRM_PORT_PRESENT))
		return;

	len = drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_SW_REV, &rev, 2);
	if (len < 0)
		return;

	DRM_DEBUG_KMS("sink sw revision: %d.%d\n", rev[0], rev[1]);
}

1483
static int rate_to_index(int find, const int *rates)
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
{
	int i = 0;

	for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
		if (find == rates[i])
			break;

	return i;
}

1494 1495 1496 1497 1498 1499
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
	int rates[DP_MAX_SUPPORTED_RATES] = {};
	int len;

1500
	len = intel_dp_common_rates(intel_dp, rates);
1501 1502 1503
	if (WARN_ON(len <= 0))
		return 162000;

1504
	return rates[len - 1];
1505 1506
}

1507 1508
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
1509
	return rate_to_index(rate, intel_dp->sink_rates);
1510 1511
}

1512 1513
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
			   uint8_t *link_bw, uint8_t *rate_select)
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
{
	if (intel_dp->num_sink_rates) {
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

1525 1526
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
{
	int bpp, bpc;

	bpp = pipe_config->pipe_bpp;
	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);

	if (bpc > 0)
		bpp = min(bpp, 3*bpc);

	return bpp;
}

1539
bool
1540
intel_dp_compute_config(struct intel_encoder *encoder,
1541 1542
			struct intel_crtc_state *pipe_config,
			struct drm_connector_state *conn_state)
1543
{
1544
	struct drm_device *dev = encoder->base.dev;
1545
	struct drm_i915_private *dev_priv = to_i915(dev);
1546
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1547
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1548
	enum port port = dp_to_dig_port(intel_dp)->port;
1549
	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1550
	struct intel_connector *intel_connector = intel_dp->attached_connector;
1551
	int lane_count, clock;
1552
	int min_lane_count = 1;
1553
	int max_lane_count = intel_dp_max_lane_count(intel_dp);
1554
	/* Conveniently, the link BW constants become indices with a shift...*/
1555
	int min_clock = 0;
1556
	int max_clock;
1557
	int bpp, mode_rate;
1558
	int link_avail, link_clock;
1559 1560
	int common_rates[DP_MAX_SUPPORTED_RATES] = {};
	int common_len;
1561
	uint8_t link_bw, rate_select;
1562

1563
	common_len = intel_dp_common_rates(intel_dp, common_rates);
1564 1565

	/* No common link rates between source and sink */
1566
	WARN_ON(common_len <= 0);
1567

1568
	max_clock = common_len - 1;
1569

1570
	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
1571 1572
		pipe_config->has_pch_encoder = true;

1573
	pipe_config->has_drrs = false;
1574
	pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1575

1576 1577 1578
	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
1579 1580 1581

		if (INTEL_INFO(dev)->gen >= 9) {
			int ret;
1582
			ret = skl_update_scaler_crtc(pipe_config);
1583 1584 1585 1586
			if (ret)
				return ret;
		}

1587
		if (HAS_GMCH_DISPLAY(dev_priv))
1588 1589 1590
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
						 intel_connector->panel.fitting_mode);
		else
1591 1592
			intel_pch_panel_fitting(intel_crtc, pipe_config,
						intel_connector->panel.fitting_mode);
1593 1594
	}

1595
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1596 1597
		return false;

1598
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
1599
		      "max bw %d pixel clock %iKHz\n",
1600
		      max_lane_count, common_rates[max_clock],
1601
		      adjusted_mode->crtc_clock);
1602

1603 1604
	/* Walk through all bpp values. Luckily they're all nicely spaced with 2
	 * bpc in between. */
1605
	bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1606
	if (is_edp(intel_dp)) {
1607 1608 1609

		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
1610
			(dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1611
			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1612 1613
				      dev_priv->vbt.edp.bpp);
			bpp = dev_priv->vbt.edp.bpp;
1614 1615
		}

1616 1617 1618 1619 1620 1621 1622 1623 1624
		/*
		 * Use the maximum clock and number of lanes the eDP panel
		 * advertizes being capable of. The panels are generally
		 * designed to support only a single clock and lane
		 * configuration, and typically these values correspond to the
		 * native resolution of the panel.
		 */
		min_lane_count = max_lane_count;
		min_clock = max_clock;
1625
	}
1626

1627
	for (; bpp >= 6*3; bpp -= 2*3) {
1628 1629
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
						   bpp);
1630

1631
		for (clock = min_clock; clock <= max_clock; clock++) {
1632 1633 1634 1635
			for (lane_count = min_lane_count;
				lane_count <= max_lane_count;
				lane_count <<= 1) {

1636
				link_clock = common_rates[clock];
1637 1638 1639 1640 1641 1642 1643 1644 1645
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					goto found;
				}
			}
		}
	}
1646

1647
	return false;
1648

1649
found:
1650 1651 1652 1653 1654 1655
	if (intel_dp->color_range_auto) {
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
1656 1657 1658 1659 1660
		pipe_config->limited_color_range =
			bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
	} else {
		pipe_config->limited_color_range =
			intel_dp->limited_color_range;
1661 1662
	}

1663
	pipe_config->lane_count = lane_count;
1664

1665
	pipe_config->pipe_bpp = bpp;
1666
	pipe_config->port_clock = common_rates[clock];
1667

1668 1669 1670 1671 1672
	intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
			      &link_bw, &rate_select);

	DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
		      link_bw, rate_select, pipe_config->lane_count,
1673
		      pipe_config->port_clock, bpp);
1674 1675
	DRM_DEBUG_KMS("DP link bw required %i available %i\n",
		      mode_rate, link_avail);
1676

1677
	intel_link_compute_m_n(bpp, lane_count,
1678 1679
			       adjusted_mode->crtc_clock,
			       pipe_config->port_clock,
1680
			       &pipe_config->dp_m_n);
1681

1682
	if (intel_connector->panel.downclock_mode != NULL &&
1683
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1684
			pipe_config->has_drrs = true;
1685 1686 1687 1688 1689 1690
			intel_link_compute_m_n(bpp, lane_count,
				intel_connector->panel.downclock_mode->clock,
				pipe_config->port_clock,
				&pipe_config->dp_m2_n2);
	}

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	/*
	 * DPLL0 VCO may need to be adjusted to get the correct
	 * clock for eDP. This will affect cdclk as well.
	 */
	if (is_edp(intel_dp) &&
	    (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))) {
		int vco;

		switch (pipe_config->port_clock / 2) {
		case 108000:
		case 216000:
1702
			vco = 8640000;
1703 1704
			break;
		default:
1705
			vco = 8100000;
1706 1707 1708 1709 1710 1711
			break;
		}

		to_intel_atomic_state(pipe_config->base.state)->cdclk_pll_vco = vco;
	}

1712
	if (!HAS_DDI(dev_priv))
1713
		intel_dp_set_clock(encoder, pipe_config);
1714

1715
	return true;
1716 1717
}

1718
void intel_dp_set_link_params(struct intel_dp *intel_dp,
1719 1720
			      int link_rate, uint8_t lane_count,
			      bool link_mst)
1721
{
1722 1723 1724
	intel_dp->link_rate = link_rate;
	intel_dp->lane_count = lane_count;
	intel_dp->link_mst = link_mst;
1725 1726
}

1727 1728
static void intel_dp_prepare(struct intel_encoder *encoder,
			     struct intel_crtc_state *pipe_config)
1729
{
1730
	struct drm_device *dev = encoder->base.dev;
1731
	struct drm_i915_private *dev_priv = to_i915(dev);
1732
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1733
	enum port port = dp_to_dig_port(intel_dp)->port;
1734
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1735
	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1736

1737 1738 1739 1740
	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
				 pipe_config->lane_count,
				 intel_crtc_has_type(pipe_config,
						     INTEL_OUTPUT_DP_MST));
1741

1742
	/*
1743
	 * There are four kinds of DP registers:
1744 1745
	 *
	 * 	IBX PCH
1746 1747
	 * 	SNB CPU
	 *	IVB CPU
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
	 * configuration happens (oddly) in ironlake_pch_enable
	 */
1758

1759 1760 1761 1762
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1763

1764 1765
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1766
	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
1767

1768
	/* Split out the IBX/CPU vs CPT settings */
1769

1770
	if (IS_GEN7(dev) && port == PORT_A) {
1771 1772 1773 1774 1775 1776
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

1777
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1778 1779
			intel_dp->DP |= DP_ENHANCED_FRAMING;

1780
		intel_dp->DP |= crtc->pipe << 29;
1781
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
1782 1783
		u32 trans_dp;

1784
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1785 1786 1787 1788 1789 1790 1791

		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1792
	} else {
1793
		if (!HAS_PCH_SPLIT(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
1794 1795
		    !IS_CHERRYVIEW(dev_priv) &&
		    pipe_config->limited_color_range)
1796
			intel_dp->DP |= DP_COLOR_RANGE_16_235;
1797 1798 1799 1800 1801 1802 1803

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

1804
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1805 1806
			intel_dp->DP |= DP_ENHANCED_FRAMING;

1807
		if (IS_CHERRYVIEW(dev_priv))
1808
			intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1809 1810
		else if (crtc->pipe == PIPE_B)
			intel_dp->DP |= DP_PIPEB_SELECT;
1811
	}
1812 1813
}

1814 1815
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1816

1817 1818
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
1819

1820 1821
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1822

1823 1824 1825
static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
				   struct intel_dp *intel_dp);

1826
static void wait_panel_status(struct intel_dp *intel_dp,
1827 1828
				       u32 mask,
				       u32 value)
1829
{
1830
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1831
	struct drm_i915_private *dev_priv = to_i915(dev);
1832
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
1833

1834 1835
	lockdep_assert_held(&dev_priv->pps_mutex);

1836 1837
	intel_pps_verify_state(dev_priv, intel_dp);

1838 1839
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1840

1841
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1842 1843 1844
			mask, value,
			I915_READ(pp_stat_reg),
			I915_READ(pp_ctrl_reg));
1845

1846 1847 1848
	if (intel_wait_for_register(dev_priv,
				    pp_stat_reg, mask, value,
				    5000))
1849
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1850 1851
				I915_READ(pp_stat_reg),
				I915_READ(pp_ctrl_reg));
1852 1853

	DRM_DEBUG_KMS("Wait complete\n");
1854
}
1855

1856
static void wait_panel_on(struct intel_dp *intel_dp)
1857 1858
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
1859
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1860 1861
}

1862
static void wait_panel_off(struct intel_dp *intel_dp)
1863 1864
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
1865
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1866 1867
}

1868
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1869
{
1870 1871 1872
	ktime_t panel_power_on_time;
	s64 panel_power_off_duration;

1873
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1874

1875 1876 1877 1878 1879
	/* take the difference of currrent time and panel power off time
	 * and then make panel wait for t11_t12 if needed. */
	panel_power_on_time = ktime_get_boottime();
	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);

1880 1881
	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
1882 1883 1884
	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
		wait_remaining_ms_from_jiffies(jiffies,
				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1885

1886
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1887 1888
}

1889
static void wait_backlight_on(struct intel_dp *intel_dp)
1890 1891 1892 1893 1894
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

1895
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1896 1897 1898 1899
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
1900

1901 1902 1903 1904
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

1905
static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1906
{
1907
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1908
	struct drm_i915_private *dev_priv = to_i915(dev);
1909
	u32 control;
1910

1911 1912
	lockdep_assert_held(&dev_priv->pps_mutex);

1913
	control = I915_READ(_pp_ctrl_reg(intel_dp));
1914 1915
	if (WARN_ON(!HAS_DDI(dev_priv) &&
		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
1916 1917 1918
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
1919
	return control;
1920 1921
}

1922 1923 1924 1925 1926
/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
1927
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1928
{
1929
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1930 1931
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1932
	struct drm_i915_private *dev_priv = to_i915(dev);
1933
	enum intel_display_power_domain power_domain;
1934
	u32 pp;
1935
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
1936
	bool need_to_disable = !intel_dp->want_panel_vdd;
1937

1938 1939
	lockdep_assert_held(&dev_priv->pps_mutex);

1940
	if (!is_edp(intel_dp))
1941
		return false;
1942

1943
	cancel_delayed_work(&intel_dp->panel_vdd_work);
1944
	intel_dp->want_panel_vdd = true;
1945

1946
	if (edp_have_panel_vdd(intel_dp))
1947
		return need_to_disable;
1948

1949
	power_domain = intel_display_port_aux_power_domain(intel_encoder);
1950
	intel_display_power_get(dev_priv, power_domain);
1951

1952 1953
	DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
		      port_name(intel_dig_port->port));
1954

1955 1956
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
1957

1958
	pp = ironlake_get_pp_control(intel_dp);
1959
	pp |= EDP_FORCE_VDD;
1960

1961 1962
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1963 1964 1965 1966 1967

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1968 1969 1970
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
1971
	if (!edp_have_panel_power(intel_dp)) {
1972 1973
		DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
			      port_name(intel_dig_port->port));
1974 1975
		msleep(intel_dp->panel_power_up_delay);
	}
1976 1977 1978 1979

	return need_to_disable;
}

1980 1981 1982 1983 1984 1985 1986
/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
1987
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1988
{
1989
	bool vdd;
1990

1991 1992 1993
	if (!is_edp(intel_dp))
		return;

1994
	pps_lock(intel_dp);
1995
	vdd = edp_panel_vdd_on(intel_dp);
1996
	pps_unlock(intel_dp);
1997

1998
	I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1999
	     port_name(dp_to_dig_port(intel_dp)->port));
2000 2001
}

2002
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2003
{
2004
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2005
	struct drm_i915_private *dev_priv = to_i915(dev);
2006 2007 2008 2009
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	enum intel_display_power_domain power_domain;
2010
	u32 pp;
2011
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2012

2013
	lockdep_assert_held(&dev_priv->pps_mutex);
2014

2015
	WARN_ON(intel_dp->want_panel_vdd);
2016

2017
	if (!edp_have_panel_vdd(intel_dp))
2018
		return;
2019

2020 2021
	DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
		      port_name(intel_dig_port->port));
2022

2023 2024
	pp = ironlake_get_pp_control(intel_dp);
	pp &= ~EDP_FORCE_VDD;
2025

2026 2027
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);
2028

2029 2030
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2031

2032 2033 2034
	/* Make sure sequencer is idle before allowing subsequent activity */
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2035

2036
	if ((pp & PANEL_POWER_ON) == 0)
2037
		intel_dp->panel_power_off_time = ktime_get_boottime();
2038

2039
	power_domain = intel_display_port_aux_power_domain(intel_encoder);
2040
	intel_display_power_put(dev_priv, power_domain);
2041
}
2042

2043
static void edp_panel_vdd_work(struct work_struct *__work)
2044 2045 2046 2047
{
	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
						 struct intel_dp, panel_vdd_work);

2048
	pps_lock(intel_dp);
2049 2050
	if (!intel_dp->want_panel_vdd)
		edp_panel_vdd_off_sync(intel_dp);
2051
	pps_unlock(intel_dp);
2052 2053
}

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

2067 2068 2069 2070 2071
/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2072
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2073
{
2074
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2075 2076 2077

	lockdep_assert_held(&dev_priv->pps_mutex);

2078 2079
	if (!is_edp(intel_dp))
		return;
2080

2081
	I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2082
	     port_name(dp_to_dig_port(intel_dp)->port));
2083

2084 2085
	intel_dp->want_panel_vdd = false;

2086
	if (sync)
2087
		edp_panel_vdd_off_sync(intel_dp);
2088 2089
	else
		edp_panel_vdd_schedule_off(intel_dp);
2090 2091
}

2092
static void edp_panel_on(struct intel_dp *intel_dp)
2093
{
2094
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2095
	struct drm_i915_private *dev_priv = to_i915(dev);
2096
	u32 pp;
2097
	i915_reg_t pp_ctrl_reg;
2098

2099 2100
	lockdep_assert_held(&dev_priv->pps_mutex);

2101
	if (!is_edp(intel_dp))
2102
		return;
2103

2104 2105
	DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
		      port_name(dp_to_dig_port(intel_dp)->port));
2106

2107 2108 2109
	if (WARN(edp_have_panel_power(intel_dp),
		 "eDP port %c panel power already on\n",
		 port_name(dp_to_dig_port(intel_dp)->port)))
2110
		return;
2111

2112
	wait_panel_power_cycle(intel_dp);
2113

2114
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2115
	pp = ironlake_get_pp_control(intel_dp);
2116 2117 2118
	if (IS_GEN5(dev)) {
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
2119 2120
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2121
	}
2122

2123
	pp |= PANEL_POWER_ON;
2124 2125 2126
	if (!IS_GEN5(dev))
		pp |= PANEL_POWER_RESET;

2127 2128
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2129

2130
	wait_panel_on(intel_dp);
2131
	intel_dp->last_power_on = jiffies;
2132

2133 2134
	if (IS_GEN5(dev)) {
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2135 2136
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2137
	}
2138
}
2139

2140 2141 2142 2143 2144 2145 2146
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
	if (!is_edp(intel_dp))
		return;

	pps_lock(intel_dp);
	edp_panel_on(intel_dp);
2147
	pps_unlock(intel_dp);
2148 2149
}

2150 2151

static void edp_panel_off(struct intel_dp *intel_dp)
2152
{
2153 2154
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2155
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2156
	struct drm_i915_private *dev_priv = to_i915(dev);
2157
	enum intel_display_power_domain power_domain;
2158
	u32 pp;
2159
	i915_reg_t pp_ctrl_reg;
2160

2161 2162
	lockdep_assert_held(&dev_priv->pps_mutex);

2163 2164
	if (!is_edp(intel_dp))
		return;
2165

2166 2167
	DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
		      port_name(dp_to_dig_port(intel_dp)->port));
2168

2169 2170
	WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
	     port_name(dp_to_dig_port(intel_dp)->port));
2171

2172
	pp = ironlake_get_pp_control(intel_dp);
2173 2174
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
2175
	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2176
		EDP_BLC_ENABLE);
2177

2178
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2179

2180 2181
	intel_dp->want_panel_vdd = false;

2182 2183
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2184

2185
	intel_dp->panel_power_off_time = ktime_get_boottime();
2186
	wait_panel_off(intel_dp);
2187 2188

	/* We got a reference when we enabled the VDD. */
2189
	power_domain = intel_display_port_aux_power_domain(intel_encoder);
2190
	intel_display_power_put(dev_priv, power_domain);
2191
}
2192

2193 2194 2195 2196
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
	if (!is_edp(intel_dp))
		return;
2197

2198 2199
	pps_lock(intel_dp);
	edp_panel_off(intel_dp);
2200
	pps_unlock(intel_dp);
2201 2202
}

2203 2204
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2205
{
2206 2207
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
2208
	struct drm_i915_private *dev_priv = to_i915(dev);
2209
	u32 pp;
2210
	i915_reg_t pp_ctrl_reg;
2211

2212 2213 2214 2215 2216 2217
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
2218
	wait_backlight_on(intel_dp);
2219

2220
	pps_lock(intel_dp);
2221

2222
	pp = ironlake_get_pp_control(intel_dp);
2223
	pp |= EDP_BLC_ENABLE;
2224

2225
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2226 2227 2228

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2229

2230
	pps_unlock(intel_dp);
2231 2232
}

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
/* Enable backlight PWM and backlight PP control. */
void intel_edp_backlight_on(struct intel_dp *intel_dp)
{
	if (!is_edp(intel_dp))
		return;

	DRM_DEBUG_KMS("\n");

	intel_panel_enable_backlight(intel_dp->attached_connector);
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2247
{
2248
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2249
	struct drm_i915_private *dev_priv = to_i915(dev);
2250
	u32 pp;
2251
	i915_reg_t pp_ctrl_reg;
2252

2253 2254 2255
	if (!is_edp(intel_dp))
		return;

2256
	pps_lock(intel_dp);
2257

2258
	pp = ironlake_get_pp_control(intel_dp);
2259
	pp &= ~EDP_BLC_ENABLE;
2260

2261
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2262 2263 2264

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2265

2266
	pps_unlock(intel_dp);
2267 2268

	intel_dp->last_backlight_off = jiffies;
2269
	edp_wait_backlight_off(intel_dp);
2270
}
2271

2272 2273 2274 2275 2276 2277 2278
/* Disable backlight PP control and backlight PWM. */
void intel_edp_backlight_off(struct intel_dp *intel_dp)
{
	if (!is_edp(intel_dp))
		return;

	DRM_DEBUG_KMS("\n");
2279

2280
	_intel_edp_backlight_off(intel_dp);
2281
	intel_panel_disable_backlight(intel_dp->attached_connector);
2282
}
2283

2284 2285 2286 2287 2288 2289 2290 2291
/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2292 2293
	bool is_enabled;

2294
	pps_lock(intel_dp);
2295
	is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2296
	pps_unlock(intel_dp);
2297 2298 2299 2300

	if (is_enabled == enable)
		return;

2301 2302
	DRM_DEBUG_KMS("panel power control backlight %s\n",
		      enable ? "enable" : "disable");
2303 2304 2305 2306 2307 2308 2309

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

2310 2311 2312 2313 2314 2315 2316 2317 2318
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;

	I915_STATE_WARN(cur_state != state,
			"DP port %c state assertion failure (expected %s, current %s)\n",
			port_name(dig_port->port),
2319
			onoff(state), onoff(cur_state));
2320 2321 2322 2323 2324 2325 2326 2327 2328
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
2329
			onoff(state), onoff(cur_state));
2330 2331 2332 2333
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

2334 2335
static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
2336
{
2337
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2338
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2339

2340 2341 2342
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);
2343

2344
	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2345
		      pipe_config->port_clock);
2346 2347 2348

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

2349
	if (pipe_config->port_clock == 162000)
2350 2351 2352 2353 2354 2355 2356 2357
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

	I915_WRITE(DP_A, intel_dp->DP);
	POSTING_READ(DP_A);
	udelay(500);

2358 2359 2360 2361 2362 2363 2364
	/*
	 * [DevILK] Work around required when enabling DP PLL
	 * while a pipe is enabled going to FDI:
	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
	 * 2. Program DP PLL enable
	 */
	if (IS_GEN5(dev_priv))
2365
		intel_wait_for_vblank_if_active(&dev_priv->drm, !crtc->pipe);
2366

2367
	intel_dp->DP |= DP_PLL_ENABLE;
2368

2369
	I915_WRITE(DP_A, intel_dp->DP);
2370 2371
	POSTING_READ(DP_A);
	udelay(200);
2372 2373
}

2374
static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2375
{
2376
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2377 2378
	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2379

2380 2381 2382
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);
2383

2384 2385
	DRM_DEBUG_KMS("disabling eDP PLL\n");

2386
	intel_dp->DP &= ~DP_PLL_ENABLE;
2387

2388
	I915_WRITE(DP_A, intel_dp->DP);
2389
	POSTING_READ(DP_A);
2390 2391 2392
	udelay(200);
}

2393
/* If the sink supports it, try to set the power state appropriately */
2394
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2395 2396 2397 2398 2399 2400 2401 2402
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
2403 2404
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
2405 2406 2407 2408 2409 2410
	} else {
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
2411 2412
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
2413 2414 2415 2416 2417
			if (ret == 1)
				break;
			msleep(1);
		}
	}
2418 2419 2420 2421

	if (ret != 1)
		DRM_DEBUG_KMS("failed to %s sink power state\n",
			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2422 2423
}

2424 2425
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
2426
{
2427
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2428
	enum port port = dp_to_dig_port(intel_dp)->port;
2429
	struct drm_device *dev = encoder->base.dev;
2430
	struct drm_i915_private *dev_priv = to_i915(dev);
2431 2432
	enum intel_display_power_domain power_domain;
	u32 tmp;
2433
	bool ret;
2434 2435

	power_domain = intel_display_port_power_domain(encoder);
2436
	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2437 2438
		return false;

2439 2440
	ret = false;

2441
	tmp = I915_READ(intel_dp->output_reg);
2442 2443

	if (!(tmp & DP_PORT_EN))
2444
		goto out;
2445

2446
	if (IS_GEN7(dev) && port == PORT_A) {
2447
		*pipe = PORT_TO_PIPE_CPT(tmp);
2448
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2449
		enum pipe p;
2450

2451 2452 2453 2454
		for_each_pipe(dev_priv, p) {
			u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
			if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
				*pipe = p;
2455 2456 2457
				ret = true;

				goto out;
2458 2459 2460
			}
		}

2461
		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2462
			      i915_mmio_reg_offset(intel_dp->output_reg));
2463
	} else if (IS_CHERRYVIEW(dev_priv)) {
2464 2465 2466
		*pipe = DP_PORT_TO_PIPE_CHV(tmp);
	} else {
		*pipe = PORT_TO_PIPE(tmp);
2467
	}
2468

2469 2470 2471 2472 2473 2474
	ret = true;

out:
	intel_display_power_put(dev_priv, power_domain);

	return ret;
2475
}
2476

2477
static void intel_dp_get_config(struct intel_encoder *encoder,
2478
				struct intel_crtc_state *pipe_config)
2479 2480 2481
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	u32 tmp, flags = 0;
2482
	struct drm_device *dev = encoder->base.dev;
2483
	struct drm_i915_private *dev_priv = to_i915(dev);
2484 2485
	enum port port = dp_to_dig_port(intel_dp)->port;
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2486

2487
	tmp = I915_READ(intel_dp->output_reg);
2488 2489

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2490

2491
	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2492 2493 2494
		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2495 2496 2497
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
2498

2499
		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2500 2501 2502 2503
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
2504
		if (tmp & DP_SYNC_HS_HIGH)
2505 2506 2507
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
2508

2509
		if (tmp & DP_SYNC_VS_HIGH)
2510 2511 2512 2513
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
2514

2515
	pipe_config->base.adjusted_mode.flags |= flags;
2516

2517 2518
	if (!HAS_PCH_SPLIT(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
2519 2520
		pipe_config->limited_color_range = true;

2521 2522 2523
	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

2524 2525
	intel_dp_get_m_n(crtc, pipe_config);

2526
	if (port == PORT_A) {
2527
		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2528 2529 2530 2531
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
2532

2533 2534 2535
	pipe_config->base.adjusted_mode.crtc_clock =
		intel_dotclock_calculate(pipe_config->port_clock,
					 &pipe_config->dp_m_n);
2536

2537 2538
	if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2553 2554
			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2555
	}
2556 2557
}

2558 2559 2560
static void intel_disable_dp(struct intel_encoder *encoder,
			     struct intel_crtc_state *old_crtc_state,
			     struct drm_connector_state *old_conn_state)
2561
{
2562
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2563
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2564

2565
	if (old_crtc_state->has_audio)
2566
		intel_audio_codec_disable(encoder);
2567

2568
	if (HAS_PSR(dev_priv) && !HAS_DDI(dev_priv))
2569 2570
		intel_psr_disable(intel_dp);

2571 2572
	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
2573
	intel_edp_panel_vdd_on(intel_dp);
2574
	intel_edp_backlight_off(intel_dp);
2575
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2576
	intel_edp_panel_off(intel_dp);
2577

2578
	/* disable the port before the pipe on g4x */
2579
	if (INTEL_GEN(dev_priv) < 5)
2580
		intel_dp_link_down(intel_dp);
2581 2582
}

2583 2584 2585
static void ilk_post_disable_dp(struct intel_encoder *encoder,
				struct intel_crtc_state *old_crtc_state,
				struct drm_connector_state *old_conn_state)
2586
{
2587
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2588
	enum port port = dp_to_dig_port(intel_dp)->port;
2589

2590
	intel_dp_link_down(intel_dp);
2591 2592

	/* Only ilk+ has port A */
2593 2594
	if (port == PORT_A)
		ironlake_edp_pll_off(intel_dp);
2595 2596
}

2597 2598 2599
static void vlv_post_disable_dp(struct intel_encoder *encoder,
				struct intel_crtc_state *old_crtc_state,
				struct drm_connector_state *old_conn_state)
2600 2601 2602 2603
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);

	intel_dp_link_down(intel_dp);
2604 2605
}

2606 2607 2608
static void chv_post_disable_dp(struct intel_encoder *encoder,
				struct intel_crtc_state *old_crtc_state,
				struct drm_connector_state *old_conn_state)
2609 2610 2611
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct drm_device *dev = encoder->base.dev;
2612
	struct drm_i915_private *dev_priv = to_i915(dev);
2613

2614 2615 2616 2617 2618 2619
	intel_dp_link_down(intel_dp);

	mutex_lock(&dev_priv->sb_lock);

	/* Assert data lane reset */
	chv_data_lane_soft_reset(encoder, true);
2620

2621
	mutex_unlock(&dev_priv->sb_lock);
2622 2623
}

2624 2625 2626 2627 2628 2629 2630
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
			 uint32_t *DP,
			 uint8_t dp_train_pat)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
2631
	struct drm_i915_private *dev_priv = to_i915(dev);
2632 2633
	enum port port = intel_dig_port->port;

2634 2635 2636 2637
	if (dp_train_pat & DP_TRAINING_PATTERN_MASK)
		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
			      dp_train_pat & DP_TRAINING_PATTERN_MASK);

2638
	if (HAS_DDI(dev_priv)) {
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
		uint32_t temp = I915_READ(DP_TP_CTL(port));

		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
		else
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;

		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;

			break;
		case DP_TRAINING_PATTERN_1:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
			break;
		case DP_TRAINING_PATTERN_2:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
			break;
		case DP_TRAINING_PATTERN_3:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
			break;
		}
		I915_WRITE(DP_TP_CTL(port), temp);

2664
	} else if ((IS_GEN7(dev) && port == PORT_A) ||
2665
		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF_CPT;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		case DP_TRAINING_PATTERN_3:
2679
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2680 2681 2682 2683 2684
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		}

	} else {
2685
		if (IS_CHERRYVIEW(dev_priv))
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
			*DP &= ~DP_LINK_TRAIN_MASK_CHV;
		else
			*DP &= ~DP_LINK_TRAIN_MASK;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2;
			break;
		case DP_TRAINING_PATTERN_3:
2701
			if (IS_CHERRYVIEW(dev_priv)) {
2702 2703
				*DP |= DP_LINK_TRAIN_PAT_3_CHV;
			} else {
2704
				DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2705 2706 2707 2708 2709 2710 2711
				*DP |= DP_LINK_TRAIN_PAT_2;
			}
			break;
		}
	}
}

2712 2713
static void intel_dp_enable_port(struct intel_dp *intel_dp,
				 struct intel_crtc_state *old_crtc_state)
2714 2715
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2716
	struct drm_i915_private *dev_priv = to_i915(dev);
2717 2718 2719

	/* enable with pattern 1 (as per spec) */

2720
	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2721 2722 2723 2724 2725 2726 2727 2728

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
2729
	if (old_crtc_state->has_audio)
2730
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2731 2732 2733

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
2734 2735
}

2736 2737
static void intel_enable_dp(struct intel_encoder *encoder,
			    struct intel_crtc_state *pipe_config)
2738
{
2739 2740
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct drm_device *dev = encoder->base.dev;
2741
	struct drm_i915_private *dev_priv = to_i915(dev);
2742
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2743
	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2744
	enum pipe pipe = crtc->pipe;
2745

2746 2747
	if (WARN_ON(dp_reg & DP_PORT_EN))
		return;
2748

2749 2750
	pps_lock(intel_dp);

2751
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2752 2753
		vlv_init_panel_power_sequencer(intel_dp);

2754
	intel_dp_enable_port(intel_dp, pipe_config);
2755 2756 2757 2758 2759 2760 2761

	edp_panel_vdd_on(intel_dp);
	edp_panel_on(intel_dp);
	edp_panel_vdd_off(intel_dp, true);

	pps_unlock(intel_dp);

2762
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2763 2764
		unsigned int lane_mask = 0x0;

2765
		if (IS_CHERRYVIEW(dev_priv))
2766
			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
2767

2768 2769
		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
2770
	}
2771

2772
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2773
	intel_dp_start_link_train(intel_dp);
2774
	intel_dp_stop_link_train(intel_dp);
2775

2776
	if (pipe_config->has_audio) {
2777
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2778
				 pipe_name(pipe));
2779 2780
		intel_audio_codec_enable(encoder);
	}
2781
}
2782

2783 2784 2785
static void g4x_enable_dp(struct intel_encoder *encoder,
			  struct intel_crtc_state *pipe_config,
			  struct drm_connector_state *conn_state)
2786
{
2787 2788
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);

2789
	intel_enable_dp(encoder, pipe_config);
2790
	intel_edp_backlight_on(intel_dp);
2791
}
2792

2793 2794 2795
static void vlv_enable_dp(struct intel_encoder *encoder,
			  struct intel_crtc_state *pipe_config,
			  struct drm_connector_state *conn_state)
2796
{
2797 2798
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);

2799
	intel_edp_backlight_on(intel_dp);
2800
	intel_psr_enable(intel_dp);
2801 2802
}

2803 2804 2805
static void g4x_pre_enable_dp(struct intel_encoder *encoder,
			      struct intel_crtc_state *pipe_config,
			      struct drm_connector_state *conn_state)
2806 2807
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2808
	enum port port = dp_to_dig_port(intel_dp)->port;
2809

2810
	intel_dp_prepare(encoder, pipe_config);
2811

2812
	/* Only ilk+ has port A */
2813
	if (port == PORT_A)
2814
		ironlake_edp_pll_on(intel_dp, pipe_config);
2815 2816
}

2817 2818 2819
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2820
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
2821
	enum pipe pipe = intel_dp->pps_pipe;
2822
	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842

	edp_panel_vdd_off_sync(intel_dp);

	/*
	 * VLV seems to get confused when multiple power seqeuencers
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
	 * selected in multiple power seqeuencers, but let's clear the
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
	DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
		      pipe_name(pipe), port_name(intel_dig_port->port));
	I915_WRITE(pp_on_reg, 0);
	POSTING_READ(pp_on_reg);

	intel_dp->pps_pipe = INVALID_PIPE;
}

2843 2844 2845
static void vlv_steal_power_sequencer(struct drm_device *dev,
				      enum pipe pipe)
{
2846
	struct drm_i915_private *dev_priv = to_i915(dev);
2847 2848 2849 2850
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

2851 2852 2853
	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
		return;

2854
	for_each_intel_encoder(dev, encoder) {
2855
		struct intel_dp *intel_dp;
2856
		enum port port;
2857 2858 2859 2860 2861

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

		intel_dp = enc_to_intel_dp(&encoder->base);
2862
		port = dp_to_dig_port(intel_dp)->port;
2863 2864 2865 2866 2867

		if (intel_dp->pps_pipe != pipe)
			continue;

		DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2868
			      pipe_name(pipe), port_name(port));
2869

2870
		WARN(encoder->base.crtc,
2871 2872
		     "stealing pipe %c power sequencer from active eDP port %c\n",
		     pipe_name(pipe), port_name(port));
2873 2874

		/* make sure vdd is off before we steal it */
2875
		vlv_detach_power_sequencer(intel_dp);
2876 2877 2878 2879 2880 2881 2882 2883
	}
}

static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_device *dev = encoder->base.dev;
2884
	struct drm_i915_private *dev_priv = to_i915(dev);
2885 2886 2887 2888
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);

	lockdep_assert_held(&dev_priv->pps_mutex);

2889 2890 2891
	if (!is_edp(intel_dp))
		return;

2892 2893 2894 2895 2896 2897 2898 2899 2900
	if (intel_dp->pps_pipe == crtc->pipe)
		return;

	/*
	 * If another power sequencer was being used on this
	 * port previously make sure to turn off vdd there while
	 * we still have control of it.
	 */
	if (intel_dp->pps_pipe != INVALID_PIPE)
2901
		vlv_detach_power_sequencer(intel_dp);
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
	vlv_steal_power_sequencer(dev, crtc->pipe);

	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

	DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
		      pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));

	/* init power sequencer on this pipe and port */
2916 2917
	intel_dp_init_panel_power_sequencer(dev, intel_dp);
	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2918 2919
}

2920 2921 2922
static void vlv_pre_enable_dp(struct intel_encoder *encoder,
			      struct intel_crtc_state *pipe_config,
			      struct drm_connector_state *conn_state)
2923
{
2924
	vlv_phy_pre_encoder_enable(encoder);
2925

2926
	intel_enable_dp(encoder, pipe_config);
2927 2928
}

2929 2930 2931
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
				  struct intel_crtc_state *pipe_config,
				  struct drm_connector_state *conn_state)
2932
{
2933
	intel_dp_prepare(encoder, pipe_config);
2934

2935
	vlv_phy_pre_pll_enable(encoder);
2936 2937
}

2938 2939 2940
static void chv_pre_enable_dp(struct intel_encoder *encoder,
			      struct intel_crtc_state *pipe_config,
			      struct drm_connector_state *conn_state)
2941
{
2942
	chv_phy_pre_encoder_enable(encoder);
2943

2944
	intel_enable_dp(encoder, pipe_config);
2945 2946

	/* Second common lane will stay alive on its own now */
2947
	chv_phy_release_cl2_override(encoder);
2948 2949
}

2950 2951 2952
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
				  struct intel_crtc_state *pipe_config,
				  struct drm_connector_state *conn_state)
2953
{
2954
	intel_dp_prepare(encoder, pipe_config);
2955

2956
	chv_phy_pre_pll_enable(encoder);
2957 2958
}

2959 2960 2961
static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
				    struct intel_crtc_state *pipe_config,
				    struct drm_connector_state *conn_state)
2962
{
2963
	chv_phy_post_pll_disable(encoder);
2964 2965
}

2966 2967 2968 2969
/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
2970
bool
2971
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2972
{
2973 2974
	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2975 2976
}

2977
/* These are source-specific values. */
2978
uint8_t
2979
intel_dp_voltage_max(struct intel_dp *intel_dp)
2980
{
2981
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2982
	struct drm_i915_private *dev_priv = to_i915(dev);
2983
	enum port port = dp_to_dig_port(intel_dp)->port;
2984

2985
	if (IS_BROXTON(dev_priv))
2986 2987
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
	else if (INTEL_INFO(dev)->gen >= 9) {
2988
		if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
2989
			return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2990
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2991
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2992
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2993
	else if (IS_GEN7(dev) && port == PORT_A)
2994
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2995
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
2996
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2997
	else
2998
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2999 3000
}

3001
uint8_t
3002 3003
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
{
3004
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3005
	enum port port = dp_to_dig_port(intel_dp)->port;
3006

3007
	if (INTEL_GEN(dev_priv) >= 9) {
3008 3009 3010 3011 3012 3013 3014
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3015 3016
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3017 3018 3019
		default:
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
		}
3020
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3021
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3022 3023 3024 3025 3026 3027 3028
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3029
		default:
3030
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3031
		}
3032
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3033
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3034 3035 3036 3037 3038 3039 3040
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3041
		default:
3042
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3043
		}
3044
	} else if (IS_GEN7(dev_priv) && port == PORT_A) {
3045
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3046 3047 3048 3049 3050
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
3051
		default:
3052
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3053 3054 3055
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3056 3057 3058 3059 3060 3061 3062
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3063
		default:
3064
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3065
		}
3066 3067 3068
	}
}

3069
static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3070
{
3071
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3072 3073 3074 3075 3076
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
	uint8_t train_set = intel_dp->train_set[0];

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3077
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3078 3079
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3080
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3081 3082 3083
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
3084
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3085 3086 3087
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
3088
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3089 3090 3091
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
3092
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3093 3094 3095 3096 3097 3098 3099
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
			return 0;
		}
		break;
3100
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3101 3102
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3103
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3104 3105 3106
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
3107
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3108 3109 3110
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
3111
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3112 3113 3114 3115 3116 3117 3118
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3119
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3120 3121
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3122
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3123 3124 3125
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
3126
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3127 3128 3129 3130 3131 3132 3133
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3134
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3135 3136
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3137
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3149 3150
	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
				 uniqtranscale_reg_value, 0);
3151 3152 3153 3154

	return 0;
}

3155
static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3156
{
3157 3158 3159
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	u32 deemph_reg_value, margin_reg_value;
	bool uniq_trans_scale = false;
3160 3161 3162
	uint8_t train_set = intel_dp->train_set[0];

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3163
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3164
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3165
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3166 3167 3168
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
3169
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3170 3171 3172
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
3173
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3174 3175 3176
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
3177
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3178 3179
			deemph_reg_value = 128;
			margin_reg_value = 154;
3180
			uniq_trans_scale = true;
3181 3182 3183 3184 3185
			break;
		default:
			return 0;
		}
		break;
3186
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3187
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3188
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3189 3190 3191
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
3192
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3193 3194 3195
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
3196
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3197 3198 3199 3200 3201 3202 3203
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3204
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3205
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3206
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3207 3208 3209
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
3210
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3211 3212 3213 3214 3215 3216 3217
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3218
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3219
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3220
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3232 3233
	chv_set_phy_signal_level(encoder, deemph_reg_value,
				 margin_reg_value, uniq_trans_scale);
3234 3235 3236 3237

	return 0;
}

3238
static uint32_t
3239
gen4_signal_levels(uint8_t train_set)
3240
{
3241
	uint32_t	signal_levels = 0;
3242

3243
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3244
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3245 3246 3247
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
3248
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3249 3250
		signal_levels |= DP_VOLTAGE_0_6;
		break;
3251
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3252 3253
		signal_levels |= DP_VOLTAGE_0_8;
		break;
3254
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3255 3256 3257
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
3258
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3259
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3260 3261 3262
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
3263
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3264 3265
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
3266
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3267 3268
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
3269
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3270 3271 3272 3273 3274 3275
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

3276 3277
/* Gen6's DP voltage swing and pre-emphasis control */
static uint32_t
3278
gen6_edp_signal_levels(uint8_t train_set)
3279
{
3280 3281 3282
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3283 3284
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3285
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3286
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3287
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3288 3289
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3290
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3291 3292
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3293
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3294 3295
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3296
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3297
	default:
3298 3299 3300
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3301 3302 3303
	}
}

3304 3305
/* Gen7's DP voltage swing and pre-emphasis control */
static uint32_t
3306
gen7_edp_signal_levels(uint8_t train_set)
3307 3308 3309 3310
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3311
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3312
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
3313
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3314
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3315
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3316 3317
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

3318
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3319
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
3320
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3321 3322
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

3323
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3324
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
3325
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3326 3327 3328 3329 3330 3331 3332 3333 3334
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

3335
void
3336
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3337 3338
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3339
	enum port port = intel_dig_port->port;
3340
	struct drm_device *dev = intel_dig_port->base.base.dev;
3341
	struct drm_i915_private *dev_priv = to_i915(dev);
3342
	uint32_t signal_levels, mask = 0;
3343 3344
	uint8_t train_set = intel_dp->train_set[0];

3345
	if (HAS_DDI(dev_priv)) {
3346 3347
		signal_levels = ddi_signal_levels(intel_dp);

3348
		if (IS_BROXTON(dev_priv))
3349 3350 3351
			signal_levels = 0;
		else
			mask = DDI_BUF_EMP_MASK;
3352
	} else if (IS_CHERRYVIEW(dev_priv)) {
3353
		signal_levels = chv_signal_levels(intel_dp);
3354
	} else if (IS_VALLEYVIEW(dev_priv)) {
3355
		signal_levels = vlv_signal_levels(intel_dp);
3356
	} else if (IS_GEN7(dev) && port == PORT_A) {
3357
		signal_levels = gen7_edp_signal_levels(train_set);
3358
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3359
	} else if (IS_GEN6(dev) && port == PORT_A) {
3360
		signal_levels = gen6_edp_signal_levels(train_set);
3361 3362
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	} else {
3363
		signal_levels = gen4_signal_levels(train_set);
3364 3365 3366
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
	}

3367 3368 3369 3370 3371 3372 3373 3374
	if (mask)
		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);

	DRM_DEBUG_KMS("Using vswing level %d\n",
		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
			DP_TRAIN_PRE_EMPHASIS_SHIFT);
3375

3376
	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3377 3378 3379

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3380 3381
}

3382
void
3383 3384
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
				       uint8_t dp_train_pat)
3385
{
3386
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3387 3388
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
3389

3390
	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3391

3392
	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3393
	POSTING_READ(intel_dp->output_reg);
3394 3395
}

3396
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3397 3398 3399
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
3400
	struct drm_i915_private *dev_priv = to_i915(dev);
3401 3402 3403
	enum port port = intel_dig_port->port;
	uint32_t val;

3404
	if (!HAS_DDI(dev_priv))
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
		return;

	val = I915_READ(DP_TP_CTL(port));
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
	I915_WRITE(DP_TP_CTL(port), val);

	/*
	 * On PORT_A we can have only eDP in SST mode. There the only reason
	 * we need to set idle transmission mode is to work around a HW issue
	 * where we enable the pipe while not in idle link-training mode.
	 * In this case there is requirement to wait for a minimum number of
	 * idle patterns to be sent.
	 */
	if (port == PORT_A)
		return;

3422 3423 3424 3425
	if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
				    DP_TP_STATUS_IDLE_DONE,
				    DP_TP_STATUS_IDLE_DONE,
				    1))
3426 3427 3428
		DRM_ERROR("Timed out waiting for DP idle patterns\n");
}

3429
static void
3430
intel_dp_link_down(struct intel_dp *intel_dp)
3431
{
3432
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3433
	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3434
	enum port port = intel_dig_port->port;
3435
	struct drm_device *dev = intel_dig_port->base.base.dev;
3436
	struct drm_i915_private *dev_priv = to_i915(dev);
3437
	uint32_t DP = intel_dp->DP;
3438

3439
	if (WARN_ON(HAS_DDI(dev_priv)))
3440 3441
		return;

3442
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3443 3444
		return;

3445
	DRM_DEBUG_KMS("\n");
3446

3447
	if ((IS_GEN7(dev) && port == PORT_A) ||
3448
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3449
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3450
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3451
	} else {
3452
		if (IS_CHERRYVIEW(dev_priv))
3453 3454 3455
			DP &= ~DP_LINK_TRAIN_MASK_CHV;
		else
			DP &= ~DP_LINK_TRAIN_MASK;
3456
		DP |= DP_LINK_TRAIN_PAT_IDLE;
3457
	}
3458
	I915_WRITE(intel_dp->output_reg, DP);
3459
	POSTING_READ(intel_dp->output_reg);
3460

3461 3462 3463 3464 3465 3466 3467 3468 3469
	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
3470
	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3471 3472 3473 3474 3475 3476 3477
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

3478 3479 3480 3481 3482 3483 3484
		/* always enable with pattern 1 (as per spec) */
		DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
		I915_WRITE(intel_dp->output_reg, DP);
		POSTING_READ(intel_dp->output_reg);

		DP &= ~DP_PORT_EN;
3485
		I915_WRITE(intel_dp->output_reg, DP);
3486
		POSTING_READ(intel_dp->output_reg);
3487

3488
		intel_wait_for_vblank_if_active(&dev_priv->drm, PIPE_A);
3489 3490
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3491 3492
	}

3493
	msleep(intel_dp->panel_power_down_delay);
3494 3495

	intel_dp->DP = DP;
3496 3497
}

3498
static bool
3499
intel_dp_read_dpcd(struct intel_dp *intel_dp)
3500
{
3501 3502
	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
			     sizeof(intel_dp->dpcd)) < 0)
3503
		return false; /* aux transfer failed */
3504

3505
	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3506

3507 3508
	return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
3509

3510 3511 3512 3513 3514
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3515

3516 3517
	/* this function is meant to be called only once */
	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3518

3519
	if (!intel_dp_read_dpcd(intel_dp))
3520 3521
		return false;

3522 3523 3524
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
		dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
			DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3525

3526 3527 3528 3529 3530 3531 3532 3533
	/* Check if the panel supports PSR */
	drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
			 intel_dp->psr_dpcd,
			 sizeof(intel_dp->psr_dpcd));
	if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
		dev_priv->psr.sink_support = true;
		DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
	}
3534

3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
	if (INTEL_GEN(dev_priv) >= 9 &&
	    (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
		uint8_t frame_sync_cap;

		dev_priv->psr.sink_support = true;
		drm_dp_dpcd_read(&intel_dp->aux,
				 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
				 &frame_sync_cap, 1);
		dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
		/* PSR2 needs frame sync as well */
		dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
		DRM_DEBUG_KMS("PSR2 %s on sink",
			      dev_priv->psr.psr2_support ? "supported" : "not supported");
3548 3549
	}

3550 3551 3552
	/* Read the eDP Display control capabilities registers */
	if ((intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
	    drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3553 3554
			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
			     sizeof(intel_dp->edp_dpcd))
3555 3556
		DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
			      intel_dp->edp_dpcd);
3557

3558
	/* Intermediate frequency support */
3559
	if (intel_dp->edp_dpcd[0] >= 0x03) { /* eDp v1.4 or higher */
3560
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3561 3562
		int i;

3563 3564
		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
				sink_rates, sizeof(sink_rates));
3565

3566 3567
		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);
3568 3569 3570 3571

			if (val == 0)
				break;

3572 3573
			/* Value read is in kHz while drm clock is saved in deca-kHz */
			intel_dp->sink_rates[i] = (val * 200) / 10;
3574
		}
3575
		intel_dp->num_sink_rates = i;
3576
	}
3577

3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
	return true;
}


static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
	if (!intel_dp_read_dpcd(intel_dp))
		return false;

	if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT,
			     &intel_dp->sink_count, 1) < 0)
		return false;

	/*
	 * Sink count can change between short pulse hpd hence
	 * a member variable in intel_dp will track any changes
	 * between short pulse interrupts.
	 */
	intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);

	/*
	 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
	 * a dongle is present but no display. Unless we require to know
	 * if a dongle is present or not, we don't need to update
	 * downstream port information. So, an early return here saves
	 * time from performing other operations which are not required.
	 */
	if (!is_edp(intel_dp) && !intel_dp->sink_count)
		return false;
3608

3609 3610 3611 3612 3613 3614 3615
	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
	      DP_DWN_STRM_PORT_PRESENT))
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

3616 3617 3618
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
			     intel_dp->downstream_ports,
			     DP_MAX_DOWNSTREAM_PORTS) < 0)
3619 3620 3621
		return false; /* downstream port status fetch failed */

	return true;
3622 3623
}

3624 3625 3626 3627 3628 3629 3630 3631
static void
intel_dp_probe_oui(struct intel_dp *intel_dp)
{
	u8 buf[3];

	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
		return;

3632
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3633 3634 3635
		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
			      buf[0], buf[1], buf[2]);

3636
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3637 3638 3639 3640
		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
			      buf[0], buf[1], buf[2]);
}

3641
static bool
3642
intel_dp_can_mst(struct intel_dp *intel_dp)
3643 3644 3645
{
	u8 buf[1];

3646 3647 3648
	if (!i915.enable_dp_mst)
		return false;

3649 3650 3651 3652 3653 3654
	if (!intel_dp->can_mst)
		return false;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

3655 3656
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_MSTM_CAP, buf, 1) != 1)
		return false;
3657

3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
	return buf[0] & DP_MST_CAP;
}

static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
	if (!i915.enable_dp_mst)
		return;

	if (!intel_dp->can_mst)
		return;

	intel_dp->is_mst = intel_dp_can_mst(intel_dp);

	if (intel_dp->is_mst)
		DRM_DEBUG_KMS("Sink is MST capable\n");
	else
		DRM_DEBUG_KMS("Sink is not MST capable\n");

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
					intel_dp->is_mst);
3679 3680
}

3681
static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3682
{
3683
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3684
	struct drm_device *dev = dig_port->base.base.dev;
3685
	struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
Rodrigo Vivi's avatar
Rodrigo Vivi committed
3686
	u8 buf;
3687
	int ret = 0;
3688 3689
	int count = 0;
	int attempts = 10;
3690

3691 3692
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
		DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3693 3694
		ret = -EIO;
		goto out;
3695 3696
	}

3697
	if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3698
			       buf & ~DP_TEST_SINK_START) < 0) {
3699
		DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3700 3701 3702
		ret = -EIO;
		goto out;
	}
3703

3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
	do {
		intel_wait_for_vblank(dev, intel_crtc->pipe);

		if (drm_dp_dpcd_readb(&intel_dp->aux,
				      DP_TEST_SINK_MISC, &buf) < 0) {
			ret = -EIO;
			goto out;
		}
		count = buf & DP_TEST_COUNT_MASK;
	} while (--attempts && count);

	if (attempts == 0) {
3716
		DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3717 3718 3719
		ret = -ETIMEDOUT;
	}

3720
 out:
3721
	hsw_enable_ips(intel_crtc);
3722
	return ret;
3723 3724 3725 3726 3727
}

static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3728
	struct drm_device *dev = dig_port->base.base.dev;
3729 3730
	struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
	u8 buf;
3731 3732
	int ret;

3733 3734 3735 3736 3737 3738 3739 3740 3741
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
		return -EIO;

	if (!(buf & DP_TEST_CRC_SUPPORTED))
		return -ENOTTY;

	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
		return -EIO;

3742 3743 3744 3745 3746 3747
	if (buf & DP_TEST_SINK_START) {
		ret = intel_dp_sink_crc_stop(intel_dp);
		if (ret)
			return ret;
	}

3748
	hsw_disable_ips(intel_crtc);
3749

3750
	if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3751 3752 3753
			       buf | DP_TEST_SINK_START) < 0) {
		hsw_enable_ips(intel_crtc);
		return -EIO;
3754 3755
	}

3756
	intel_wait_for_vblank(dev, intel_crtc->pipe);
3757 3758 3759 3760 3761 3762 3763 3764 3765
	return 0;
}

int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = dig_port->base.base.dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
	u8 buf;
3766
	int count, ret;
3767 3768 3769 3770 3771 3772
	int attempts = 6;

	ret = intel_dp_sink_crc_start(intel_dp);
	if (ret)
		return ret;

Rodrigo Vivi's avatar
Rodrigo Vivi committed
3773
	do {
3774 3775
		intel_wait_for_vblank(dev, intel_crtc->pipe);

3776
		if (drm_dp_dpcd_readb(&intel_dp->aux,
3777 3778
				      DP_TEST_SINK_MISC, &buf) < 0) {
			ret = -EIO;
3779
			goto stop;
3780
		}
3781
		count = buf & DP_TEST_COUNT_MASK;
3782

3783
	} while (--attempts && count == 0);
Rodrigo Vivi's avatar
Rodrigo Vivi committed
3784 3785

	if (attempts == 0) {
3786 3787 3788 3789 3790 3791 3792 3793
		DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
		ret = -ETIMEDOUT;
		goto stop;
	}

	if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
		ret = -EIO;
		goto stop;
Rodrigo Vivi's avatar
Rodrigo Vivi committed
3794
	}
3795

3796
stop:
3797
	intel_dp_sink_crc_stop(intel_dp);
3798
	return ret;
3799 3800
}

3801 3802 3803
static bool
intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
3804
	return drm_dp_dpcd_read(&intel_dp->aux,
3805 3806
				       DP_DEVICE_SERVICE_IRQ_VECTOR,
				       sink_irq_vector, 1) == 1;
3807 3808
}

3809 3810 3811 3812 3813
static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
	int ret;

3814
	ret = drm_dp_dpcd_read(&intel_dp->aux,
3815 3816 3817 3818 3819 3820 3821 3822
					     DP_SINK_COUNT_ESI,
					     sink_irq_vector, 14);
	if (ret != 14)
		return false;

	return true;
}

3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
{
	uint8_t test_result = DP_TEST_ACK;
	return test_result;
}

static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
{
	uint8_t test_result = DP_TEST_NAK;
	return test_result;
}

static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
3836
{
3837
	uint8_t test_result = DP_TEST_NAK;
3838 3839 3840 3841
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
3842
	    connector->edid_corrupt ||
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
				      intel_dp->aux.i2c_nack_count,
				      intel_dp->aux.i2c_defer_count);
		intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
	} else {
3858 3859 3860 3861 3862 3863 3864
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

3865 3866
		if (!drm_dp_dpcd_write(&intel_dp->aux,
					DP_TEST_EDID_CHECKSUM,
3867
					&block->checksum,
3868
					1))
3869 3870 3871 3872 3873 3874 3875 3876 3877
			DRM_DEBUG_KMS("Failed to write EDID checksum\n");

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
		intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
	}

	/* Set test active flag here so userspace doesn't interrupt things */
	intel_dp->compliance_test_active = 1;

3878 3879 3880 3881
	return test_result;
}

static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
3882
{
3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
	uint8_t test_result = DP_TEST_NAK;
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
	uint8_t response = DP_TEST_NAK;
	uint8_t rxdata = 0;
	int status = 0;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
	if (status <= 0) {
		DRM_DEBUG_KMS("Could not read test request from sink\n");
		goto update_status;
	}

	switch (rxdata) {
	case DP_TEST_LINK_TRAINING:
		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
		intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
		intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
		DRM_DEBUG_KMS("EDID test requested\n");
		intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
		intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
		DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
		break;
	}

update_status:
	status = drm_dp_dpcd_write(&intel_dp->aux,
				   DP_TEST_RESPONSE,
				   &response, 1);
	if (status <= 0)
		DRM_DEBUG_KMS("Could not write test response to sink\n");
3931 3932
}

3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
	bool bret;

	if (intel_dp->is_mst) {
		u8 esi[16] = { 0 };
		int ret = 0;
		int retry;
		bool handled;
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
		if (bret == true) {

			/* check link status - esi[10] = 0x200c */
3948
			if (intel_dp->active_mst_links &&
3949
			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3950 3951 3952 3953 3954
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
				intel_dp_start_link_train(intel_dp);
				intel_dp_stop_link_train(intel_dp);
			}

3955
			DRM_DEBUG_KMS("got esi %3ph\n", esi);
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);

			if (handled) {
				for (retry = 0; retry < 3; retry++) {
					int wret;
					wret = drm_dp_dpcd_write(&intel_dp->aux,
								 DP_SINK_COUNT_ESI+1,
								 &esi[1], 3);
					if (wret == 3) {
						break;
					}
				}

				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
				if (bret == true) {
3971
					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
					goto go_again;
				}
			} else
				ret = 0;

			return ret;
		} else {
			struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
			/* send a hotplug event */
			drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
		}
	}
	return -EINVAL;
}

3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
static void
intel_dp_check_link_status(struct intel_dp *intel_dp)
{
	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
	u8 link_status[DP_LINK_STATUS_SIZE];

	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));

	if (!intel_dp_get_link_status(intel_dp, link_status)) {
		DRM_ERROR("Failed to get link status\n");
		return;
	}

	if (!intel_encoder->base.crtc)
		return;

	if (!to_intel_crtc(intel_encoder->base.crtc)->active)
		return;

	/* if link training is requested we should perform it always */
	if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
	    (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
			      intel_encoder->base.name);
		intel_dp_start_link_train(intel_dp);
		intel_dp_stop_link_train(intel_dp);
	}
}

4020 4021 4022 4023 4024 4025 4026
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
4027 4028 4029 4030 4031
 *
 * intel_dp_short_pulse -  handles short pulse interrupts
 * when full detection is not required.
 * Returns %true if short pulse is handled and full detection
 * is NOT required and %false otherwise.
4032
 */
4033
static bool
4034
intel_dp_short_pulse(struct intel_dp *intel_dp)
4035
{
4036
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
4037
	u8 sink_irq_vector = 0;
4038 4039
	u8 old_sink_count = intel_dp->sink_count;
	bool ret;
4040

4041 4042 4043 4044 4045 4046 4047 4048
	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
	intel_dp->compliance_test_active = 0;
	intel_dp->compliance_test_type = 0;
	intel_dp->compliance_test_data = 0;

4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
	/*
	 * Now read the DPCD to see if it's actually running
	 * If the current value of sink count doesn't match with
	 * the value that was stored earlier or dpcd read failed
	 * we need to do full detection
	 */
	ret = intel_dp_get_dpcd(intel_dp);

	if ((old_sink_count != intel_dp->sink_count) || !ret) {
		/* No need to proceed if we are going to do full detect */
		return false;
4060 4061
	}

4062 4063
	/* Try to read the source of the interrupt */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4064 4065
	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
	    sink_irq_vector != 0) {
4066
		/* Clear interrupt source */
4067 4068 4069
		drm_dp_dpcd_writeb(&intel_dp->aux,
				   DP_DEVICE_SERVICE_IRQ_VECTOR,
				   sink_irq_vector);
4070 4071

		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4072
			DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4073 4074 4075 4076
		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
	}

4077 4078 4079
	drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
	intel_dp_check_link_status(intel_dp);
	drm_modeset_unlock(&dev->mode_config.connection_mutex);
4080 4081

	return true;
4082 4083
}

4084
/* XXX this is probably wrong for multiple downstream ports */
4085
static enum drm_connector_status
4086
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4087
{
4088 4089 4090 4091 4092 4093
	uint8_t *dpcd = intel_dp->dpcd;
	uint8_t type;

	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

4094 4095 4096
	if (is_edp(intel_dp))
		return connector_status_connected;

4097 4098
	/* if there's no downstream port, we're done */
	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4099
		return connector_status_connected;
4100 4101

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
4102 4103
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4104

4105 4106
		return intel_dp->sink_count ?
		connector_status_connected : connector_status_disconnected;
4107 4108
	}

4109 4110 4111
	if (intel_dp_can_mst(intel_dp))
		return connector_status_connected;

4112
	/* If no HPD, poke DDC gently */
4113
	if (drm_probe_ddc(&intel_dp->aux.ddc))
4114
		return connector_status_connected;
4115 4116

	/* Well we tried, say unknown for unreliable port types */
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
4129 4130 4131

	/* Anything else is out of spec, warn and ignore */
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4132
	return connector_status_disconnected;
4133 4134
}

4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
	enum drm_connector_status status;

	status = intel_panel_detect(dev);
	if (status == connector_status_unknown)
		status = connector_status_connected;

	return status;
}

4148 4149
static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
				       struct intel_digital_port *port)
4150
{
4151
	u32 bit;
4152

4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
	switch (port->port) {
	case PORT_A:
		return true;
	case PORT_B:
		bit = SDE_PORTB_HOTPLUG;
		break;
	case PORT_C:
		bit = SDE_PORTC_HOTPLUG;
		break;
	case PORT_D:
		bit = SDE_PORTD_HOTPLUG;
		break;
	default:
		MISSING_CASE(port->port);
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
				       struct intel_digital_port *port)
{
	u32 bit;

	switch (port->port) {
	case PORT_A:
		return true;
	case PORT_B:
		bit = SDE_PORTB_HOTPLUG_CPT;
		break;
	case PORT_C:
		bit = SDE_PORTC_HOTPLUG_CPT;
		break;
	case PORT_D:
		bit = SDE_PORTD_HOTPLUG_CPT;
		break;
4190 4191 4192
	case PORT_E:
		bit = SDE_PORTE_HOTPLUG_SPT;
		break;
4193 4194 4195
	default:
		MISSING_CASE(port->port);
		return false;
4196
	}
4197

4198
	return I915_READ(SDEISR) & bit;
4199 4200
}

4201
static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4202
				       struct intel_digital_port *port)
4203
{
4204
	u32 bit;
4205

4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
	switch (port->port) {
	case PORT_B:
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
	case PORT_C:
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
	case PORT_D:
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
		MISSING_CASE(port->port);
		return false;
	}

	return I915_READ(PORT_HOTPLUG_STAT) & bit;
}

4224 4225
static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
					struct intel_digital_port *port)
4226 4227 4228 4229 4230
{
	u32 bit;

	switch (port->port) {
	case PORT_B:
4231
		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4232 4233
		break;
	case PORT_C:
4234
		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4235 4236
		break;
	case PORT_D:
4237
		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4238 4239 4240 4241
		break;
	default:
		MISSING_CASE(port->port);
		return false;
4242 4243
	}

4244
	return I915_READ(PORT_HOTPLUG_STAT) & bit;
4245 4246
}

4247
static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4248
				       struct intel_digital_port *intel_dig_port)
4249
{
4250 4251
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	enum port port;
4252 4253
	u32 bit;

4254 4255
	intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
	switch (port) {
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
	case PORT_A:
		bit = BXT_DE_PORT_HP_DDIA;
		break;
	case PORT_B:
		bit = BXT_DE_PORT_HP_DDIB;
		break;
	case PORT_C:
		bit = BXT_DE_PORT_HP_DDIC;
		break;
	default:
4266
		MISSING_CASE(port);
4267 4268 4269 4270 4271 4272
		return false;
	}

	return I915_READ(GEN8_DE_PORT_ISR) & bit;
}

4273 4274 4275 4276 4277 4278 4279
/*
 * intel_digital_port_connected - is the specified port connected?
 * @dev_priv: i915 private structure
 * @port: the port to test
 *
 * Return %true if @port is connected, %false otherwise.
 */
4280
static bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4281 4282
					 struct intel_digital_port *port)
{
4283
	if (HAS_PCH_IBX(dev_priv))
4284
		return ibx_digital_port_connected(dev_priv, port);
4285
	else if (HAS_PCH_SPLIT(dev_priv))
4286
		return cpt_digital_port_connected(dev_priv, port);
4287 4288
	else if (IS_BROXTON(dev_priv))
		return bxt_digital_port_connected(dev_priv, port);
4289 4290
	else if (IS_GM45(dev_priv))
		return gm45_digital_port_connected(dev_priv, port);
4291 4292 4293 4294
	else
		return g4x_digital_port_connected(dev_priv, port);
}

4295
static struct edid *
4296
intel_dp_get_edid(struct intel_dp *intel_dp)
4297
{
4298
	struct intel_connector *intel_connector = intel_dp->attached_connector;
4299

4300 4301 4302 4303
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
4304 4305
			return NULL;

4306
		return drm_edid_duplicate(intel_connector->edid);
4307 4308 4309 4310
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}
4311

4312 4313 4314 4315 4316
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;
4317

4318
	intel_dp_unset_edid(intel_dp);
4319 4320 4321 4322 4323 4324 4325
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

	if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
		intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
	else
		intel_dp->has_audio = drm_detect_monitor_audio(edid);
4326 4327
}

4328 4329
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
4330
{
4331
	struct intel_connector *intel_connector = intel_dp->attached_connector;
4332

4333 4334
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;
4335

4336 4337
	intel_dp->has_audio = false;
}
4338

4339
static enum drm_connector_status
4340
intel_dp_long_pulse(struct intel_connector *intel_connector)
4341
{
4342
	struct drm_connector *connector = &intel_connector->base;
4343
	struct intel_dp *intel_dp = intel_attached_dp(connector);
4344 4345
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4346
	struct drm_device *dev = connector->dev;
4347
	enum drm_connector_status status;
4348
	enum intel_display_power_domain power_domain;
4349
	u8 sink_irq_vector = 0;
4350

4351 4352
	power_domain = intel_display_port_aux_power_domain(intel_encoder);
	intel_display_power_get(to_i915(dev), power_domain);
4353

4354 4355 4356
	/* Can't disconnect eDP, but you can close the lid... */
	if (is_edp(intel_dp))
		status = edp_detect(intel_dp);
4357 4358 4359
	else if (intel_digital_port_connected(to_i915(dev),
					      dp_to_dig_port(intel_dp)))
		status = intel_dp_detect_dpcd(intel_dp);
4360
	else
4361 4362
		status = connector_status_disconnected;

4363
	if (status == connector_status_disconnected) {
4364 4365 4366 4367
		intel_dp->compliance_test_active = 0;
		intel_dp->compliance_test_type = 0;
		intel_dp->compliance_test_data = 0;

4368 4369 4370 4371 4372 4373 4374 4375 4376
		if (intel_dp->is_mst) {
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst,
				      intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}

4377
		goto out;
4378
	}
4379

4380
	if (intel_encoder->type != INTEL_OUTPUT_EDP)
4381
		intel_encoder->type = INTEL_OUTPUT_DP;
4382

4383 4384 4385 4386 4387 4388
	DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
		      yesno(intel_dp_source_supports_hbr2(intel_dp)),
		      yesno(drm_dp_tps3_supported(intel_dp->dpcd)));

	intel_dp_print_rates(intel_dp);

4389 4390
	intel_dp_probe_oui(intel_dp);

4391
	intel_dp_print_hw_revision(intel_dp);
4392
	intel_dp_print_sw_revision(intel_dp);
4393

4394 4395 4396
	intel_dp_configure_mst(intel_dp);

	if (intel_dp->is_mst) {
4397 4398 4399 4400 4401
		/*
		 * If we are in MST mode then this connector
		 * won't appear connected or have anything
		 * with EDID on it
		 */
4402 4403
		status = connector_status_disconnected;
		goto out;
4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
	} else if (connector->status == connector_status_connected) {
		/*
		 * If display was connected already and is still connected
		 * check links status, there has been known issues of
		 * link loss triggerring long pulse!!!!
		 */
		drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
		intel_dp_check_link_status(intel_dp);
		drm_modeset_unlock(&dev->mode_config.connection_mutex);
		goto out;
4414 4415
	}

4416 4417 4418 4419 4420 4421 4422 4423
	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

4424
	intel_dp_set_edid(intel_dp);
4425 4426
	if (is_edp(intel_dp) || intel_connector->detect_edid)
		status = connector_status_connected;
4427
	intel_dp->detect_done = true;
4428

4429 4430
	/* Try to read the source of the interrupt */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4431 4432
	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
	    sink_irq_vector != 0) {
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
		/* Clear interrupt source */
		drm_dp_dpcd_writeb(&intel_dp->aux,
				   DP_DEVICE_SERVICE_IRQ_VECTOR,
				   sink_irq_vector);

		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
			intel_dp_handle_test_request(intel_dp);
		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
	}

4444
out:
4445
	if (status != connector_status_connected && !intel_dp->is_mst)
4446
		intel_dp_unset_edid(intel_dp);
4447

4448
	intel_display_power_put(to_i915(dev), power_domain);
4449
	return status;
4450 4451 4452 4453 4454 4455 4456 4457
}

static enum drm_connector_status
intel_dp_detect(struct drm_connector *connector, bool force)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4458
	enum drm_connector_status status = connector->status;
4459 4460 4461 4462 4463 4464 4465 4466

	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);

	if (intel_dp->is_mst) {
		/* MST devices are disconnected from a monitor POV */
		intel_dp_unset_edid(intel_dp);
		if (intel_encoder->type != INTEL_OUTPUT_EDP)
4467
			intel_encoder->type = INTEL_OUTPUT_DP;
4468 4469 4470
		return connector_status_disconnected;
	}

4471 4472
	/* If full detect is not performed yet, do a full detect */
	if (!intel_dp->detect_done)
4473
		status = intel_dp_long_pulse(intel_dp->attached_connector);
4474 4475

	intel_dp->detect_done = false;
4476

4477
	return status;
4478 4479
}

4480 4481
static void
intel_dp_force(struct drm_connector *connector)
4482
{
4483
	struct intel_dp *intel_dp = intel_attached_dp(connector);
4484
	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4485
	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4486
	enum intel_display_power_domain power_domain;
4487

4488 4489 4490
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
	intel_dp_unset_edid(intel_dp);
4491

4492 4493
	if (connector->status != connector_status_connected)
		return;
4494

4495 4496
	power_domain = intel_display_port_aux_power_domain(intel_encoder);
	intel_display_power_get(dev_priv, power_domain);
4497 4498 4499

	intel_dp_set_edid(intel_dp);

4500
	intel_display_power_put(dev_priv, power_domain);
4501 4502

	if (intel_encoder->type != INTEL_OUTPUT_EDP)
4503
		intel_encoder->type = INTEL_OUTPUT_DP;
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}
4517

4518
	/* if eDP has no EDID, fall back to fixed mode */
4519 4520
	if (is_edp(intel_attached_dp(connector)) &&
	    intel_connector->panel.fixed_mode) {
4521
		struct drm_display_mode *mode;
4522 4523

		mode = drm_mode_duplicate(connector->dev,
4524
					  intel_connector->panel.fixed_mode);
4525
		if (mode) {
4526 4527 4528 4529
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
4530

4531
	return 0;
4532 4533
}

4534 4535 4536 4537
static bool
intel_dp_detect_audio(struct drm_connector *connector)
{
	bool has_audio = false;
4538
	struct edid *edid;
4539

4540 4541
	edid = to_intel_connector(connector)->detect_edid;
	if (edid)
4542
		has_audio = drm_detect_monitor_audio(edid);
4543

4544 4545 4546
	return has_audio;
}

4547 4548 4549 4550 4551
static int
intel_dp_set_property(struct drm_connector *connector,
		      struct drm_property *property,
		      uint64_t val)
{
4552
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
4553
	struct intel_connector *intel_connector = to_intel_connector(connector);
4554 4555
	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4556 4557
	int ret;

4558
	ret = drm_object_property_set_value(&connector->base, property, val);
4559 4560 4561
	if (ret)
		return ret;

4562
	if (property == dev_priv->force_audio_property) {
4563 4564 4565 4566
		int i = val;
		bool has_audio;

		if (i == intel_dp->force_audio)
4567 4568
			return 0;

4569
		intel_dp->force_audio = i;
4570

4571
		if (i == HDMI_AUDIO_AUTO)
4572 4573
			has_audio = intel_dp_detect_audio(connector);
		else
4574
			has_audio = (i == HDMI_AUDIO_ON);
4575 4576

		if (has_audio == intel_dp->has_audio)
4577 4578
			return 0;

4579
		intel_dp->has_audio = has_audio;
4580 4581 4582
		goto done;
	}

4583
	if (property == dev_priv->broadcast_rgb_property) {
4584
		bool old_auto = intel_dp->color_range_auto;
4585
		bool old_range = intel_dp->limited_color_range;
4586

4587 4588 4589 4590 4591 4592
		switch (val) {
		case INTEL_BROADCAST_RGB_AUTO:
			intel_dp->color_range_auto = true;
			break;
		case INTEL_BROADCAST_RGB_FULL:
			intel_dp->color_range_auto = false;
4593
			intel_dp->limited_color_range = false;
4594 4595 4596
			break;
		case INTEL_BROADCAST_RGB_LIMITED:
			intel_dp->color_range_auto = false;
4597
			intel_dp->limited_color_range = true;
4598 4599 4600 4601
			break;
		default:
			return -EINVAL;
		}
4602 4603

		if (old_auto == intel_dp->color_range_auto &&
4604
		    old_range == intel_dp->limited_color_range)
4605 4606
			return 0;

4607 4608 4609
		goto done;
	}

4610 4611 4612 4613 4614 4615
	if (is_edp(intel_dp) &&
	    property == connector->dev->mode_config.scaling_mode_property) {
		if (val == DRM_MODE_SCALE_NONE) {
			DRM_DEBUG_KMS("no scaling not supported\n");
			return -EINVAL;
		}
4616 4617 4618 4619 4620
		if (HAS_GMCH_DISPLAY(dev_priv) &&
		    val == DRM_MODE_SCALE_CENTER) {
			DRM_DEBUG_KMS("centering not supported\n");
			return -EINVAL;
		}
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630

		if (intel_connector->panel.fitting_mode == val) {
			/* the eDP scaling property is not changed */
			return 0;
		}
		intel_connector->panel.fitting_mode = val;

		goto done;
	}

4631 4632 4633
	return -EINVAL;

done:
4634 4635
	if (intel_encoder->base.crtc)
		intel_crtc_restore_mode(intel_encoder->base.crtc);
4636 4637 4638 4639

	return 0;
}

4640 4641 4642 4643
static int
intel_dp_connector_register(struct drm_connector *connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
4644 4645 4646 4647 4648
	int ret;

	ret = intel_connector_register(connector);
	if (ret)
		return ret;
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658

	i915_debugfs_connector_add(connector);

	DRM_DEBUG_KMS("registering %s bus for %s\n",
		      intel_dp->aux.name, connector->kdev->kobj.name);

	intel_dp->aux.dev = connector->kdev;
	return drm_dp_aux_register(&intel_dp->aux);
}

4659 4660 4661 4662 4663 4664 4665
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
	drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
	intel_connector_unregister(connector);
}

4666
static void
4667
intel_dp_connector_destroy(struct drm_connector *connector)
4668
{
4669
	struct intel_connector *intel_connector = to_intel_connector(connector);
4670

4671
	kfree(intel_connector->detect_edid);
4672

4673 4674 4675
	if (!IS_ERR_OR_NULL(intel_connector->edid))
		kfree(intel_connector->edid);

4676 4677 4678
	/* Can't call is_edp() since the encoder may have been destroyed
	 * already. */
	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4679
		intel_panel_fini(&intel_connector->panel);
4680

4681
	drm_connector_cleanup(connector);
4682
	kfree(connector);
4683 4684
}

4685
void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4686
{
4687 4688
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;
4689

4690
	intel_dp_mst_encoder_cleanup(intel_dig_port);
4691 4692
	if (is_edp(intel_dp)) {
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4693 4694 4695 4696
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
4697
		pps_lock(intel_dp);
4698
		edp_panel_vdd_off_sync(intel_dp);
4699 4700
		pps_unlock(intel_dp);

4701 4702 4703 4704
		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
4705
	}
4706 4707 4708

	intel_dp_aux_fini(intel_dp);

4709
	drm_encoder_cleanup(encoder);
4710
	kfree(intel_dig_port);
4711 4712
}

4713
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4714 4715 4716 4717 4718 4719
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);

	if (!is_edp(intel_dp))
		return;

4720 4721 4722 4723
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
4724
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4725
	pps_lock(intel_dp);
4726
	edp_panel_vdd_off_sync(intel_dp);
4727
	pps_unlock(intel_dp);
4728 4729
}

4730 4731 4732 4733
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
4734
	struct drm_i915_private *dev_priv = to_i915(dev);
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
	enum intel_display_power_domain power_domain;

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4749
	power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4750 4751 4752 4753 4754
	intel_display_power_get(dev_priv, power_domain);

	edp_panel_vdd_schedule_off(intel_dp);
}

4755
void intel_dp_encoder_reset(struct drm_encoder *encoder)
4756
{
4757 4758 4759 4760 4761
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

	if (!HAS_DDI(dev_priv))
		intel_dp->DP = I915_READ(intel_dp->output_reg);
4762 4763 4764 4765 4766 4767

	if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
		return;

	pps_lock(intel_dp);

4768 4769
	/* Reinit the power sequencer, in case BIOS did something with it. */
	intel_dp_pps_init(encoder->dev, intel_dp);
4770 4771 4772
	intel_edp_panel_vdd_sanitize(intel_dp);

	pps_unlock(intel_dp);
4773 4774
}

4775
static const struct drm_connector_funcs intel_dp_connector_funcs = {
4776
	.dpms = drm_atomic_helper_connector_dpms,
4777
	.detect = intel_dp_detect,
4778
	.force = intel_dp_force,
4779
	.fill_modes = drm_helper_probe_single_connector_modes,
4780
	.set_property = intel_dp_set_property,
4781
	.atomic_get_property = intel_connector_atomic_get_property,
4782
	.late_register = intel_dp_connector_register,
4783
	.early_unregister = intel_dp_connector_unregister,
4784
	.destroy = intel_dp_connector_destroy,
4785
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4786
	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4787 4788 4789 4790 4791 4792 4793 4794
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4795
	.reset = intel_dp_encoder_reset,
4796
	.destroy = intel_dp_encoder_destroy,
4797 4798
};

4799
enum irqreturn
4800 4801 4802
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
	struct intel_dp *intel_dp = &intel_dig_port->dp;
4803
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4804
	struct drm_device *dev = intel_dig_port->base.base.dev;
4805
	struct drm_i915_private *dev_priv = to_i915(dev);
4806
	enum intel_display_power_domain power_domain;
4807
	enum irqreturn ret = IRQ_NONE;
4808

4809 4810
	if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
	    intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4811
		intel_dig_port->base.type = INTEL_OUTPUT_DP;
4812

4813 4814 4815 4816 4817 4818 4819 4820 4821
	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
		/*
		 * vdd off can generate a long pulse on eDP which
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
		 */
		DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
			      port_name(intel_dig_port->port));
4822
		return IRQ_HANDLED;
4823 4824
	}

4825 4826
	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
		      port_name(intel_dig_port->port),
4827
		      long_hpd ? "long" : "short");
4828

4829 4830 4831 4832 4833
	if (long_hpd) {
		intel_dp->detect_done = false;
		return IRQ_NONE;
	}

4834
	power_domain = intel_display_port_aux_power_domain(intel_encoder);
4835 4836
	intel_display_power_get(dev_priv, power_domain);

4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
	if (intel_dp->is_mst) {
		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
			/*
			 * If we were in MST mode, and device is not
			 * there, get out of MST mode
			 */
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
			intel_dp->detect_done = false;
			goto put_power;
4850
		}
4851
	}
4852

4853 4854 4855 4856
	if (!intel_dp->is_mst) {
		if (!intel_dp_short_pulse(intel_dp)) {
			intel_dp->detect_done = false;
			goto put_power;
4857
		}
4858
	}
4859 4860 4861

	ret = IRQ_HANDLED;

4862 4863 4864 4865
put_power:
	intel_display_power_put(dev_priv, power_domain);

	return ret;
4866 4867
}

4868
/* check the VBT to see whether the eDP is on another port */
4869
bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4870
{
4871
	struct drm_i915_private *dev_priv = to_i915(dev);
4872

4873 4874 4875 4876 4877 4878 4879
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
	if (INTEL_INFO(dev)->gen < 5)
		return false;

4880 4881 4882
	if (port == PORT_A)
		return true;

4883
	return intel_bios_is_port_edp(dev_priv, port);
4884 4885
}

4886
void
4887 4888
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
4889 4890
	struct intel_connector *intel_connector = to_intel_connector(connector);

4891
	intel_attach_force_audio_property(connector);
4892
	intel_attach_broadcast_rgb_property(connector);
4893
	intel_dp->color_range_auto = true;
4894 4895 4896

	if (is_edp(intel_dp)) {
		drm_mode_create_scaling_mode_property(connector->dev);
4897 4898
		drm_object_attach_property(
			&connector->base,
4899
			connector->dev->mode_config.scaling_mode_property,
4900 4901
			DRM_MODE_SCALE_ASPECT);
		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4902
	}
4903 4904
}

4905 4906
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
4907
	intel_dp->panel_power_off_time = ktime_get_boottime();
4908 4909 4910 4911
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

4912
static void
4913 4914
intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
			   struct intel_dp *intel_dp, struct edp_power_seq *seq)
4915
{
4916
	u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
4917
	struct pps_registers regs;
4918

4919
	intel_pps_get_registers(dev_priv, intel_dp, &regs);
4920 4921 4922

	/* Workaround: Need to write PP_CONTROL with the unlock key as
	 * the very first thing. */
4923
	pp_ctl = ironlake_get_pp_control(intel_dp);
4924

4925 4926
	pp_on = I915_READ(regs.pp_on);
	pp_off = I915_READ(regs.pp_off);
4927
	if (!IS_BROXTON(dev_priv)) {
4928 4929
		I915_WRITE(regs.pp_ctrl, pp_ctl);
		pp_div = I915_READ(regs.pp_div);
4930
	}
4931 4932

	/* Pull timing values out of registers */
4933 4934
	seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
		     PANEL_POWER_UP_DELAY_SHIFT;
4935

4936 4937
	seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
		  PANEL_LIGHT_ON_DELAY_SHIFT;
4938

4939 4940
	seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
		  PANEL_LIGHT_OFF_DELAY_SHIFT;
4941

4942 4943
	seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
		   PANEL_POWER_DOWN_DELAY_SHIFT;
4944

4945
	if (IS_BROXTON(dev_priv)) {
4946 4947 4948
		u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
			BXT_POWER_CYCLE_DELAY_SHIFT;
		if (tmp > 0)
4949
			seq->t11_t12 = (tmp - 1) * 1000;
4950
		else
4951
			seq->t11_t12 = 0;
4952
	} else {
4953
		seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4954
		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4955
	}
4956 4957
}

4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      state_name,
		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}

static void
intel_pps_verify_state(struct drm_i915_private *dev_priv,
		       struct intel_dp *intel_dp)
{
	struct edp_power_seq hw;
	struct edp_power_seq *sw = &intel_dp->pps_delays;

	intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);

	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
		DRM_ERROR("PPS state mismatch\n");
		intel_pps_dump_state("sw", sw);
		intel_pps_dump_state("hw", &hw);
	}
}

4983 4984 4985 4986
static void
intel_dp_init_panel_power_sequencer(struct drm_device *dev,
				    struct intel_dp *intel_dp)
{
4987
	struct drm_i915_private *dev_priv = to_i915(dev);
4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

	intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
4998

4999
	intel_pps_dump_state("cur", &cur);
5000

5001
	vbt = dev_priv->vbt.edp.pps;
5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

5015
	intel_pps_dump_state("vbt", &vbt);
5016 5017 5018

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
5019
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
5020 5021 5022 5023 5024 5025 5026 5027 5028
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

5029
#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
5030 5031 5032 5033 5034 5035 5036
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

5037 5038 5039 5040 5041 5042
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
		      intel_dp->panel_power_cycle_delay);

	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052

	/*
	 * We override the HW backlight delays to 1 because we do manual waits
	 * on them. For T8, even BSpec recommends doing it. For T9, if we
	 * don't do this, we'll end up waiting for the backlight off delay
	 * twice: once when we do the manual sleep, and once when we disable
	 * the panel and wait for the PP_STATUS bit to become zero.
	 */
	final->t8 = 1;
	final->t9 = 1;
5053 5054 5055 5056
}

static void
intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5057
					      struct intel_dp *intel_dp)
5058
{
5059
	struct drm_i915_private *dev_priv = to_i915(dev);
5060
	u32 pp_on, pp_off, pp_div, port_sel = 0;
5061
	int div = dev_priv->rawclk_freq / 1000;
5062
	struct pps_registers regs;
5063
	enum port port = dp_to_dig_port(intel_dp)->port;
5064
	const struct edp_power_seq *seq = &intel_dp->pps_delays;
5065

5066
	lockdep_assert_held(&dev_priv->pps_mutex);
5067

5068
	intel_pps_get_registers(dev_priv, intel_dp, &regs);
5069

5070
	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5071 5072
		(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
	pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5073
		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5074 5075
	/* Compute the divisor for the pp clock, simply match the Bspec
	 * formula. */
5076
	if (IS_BROXTON(dev_priv)) {
5077
		pp_div = I915_READ(regs.pp_ctrl);
5078 5079 5080 5081 5082 5083 5084 5085
		pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
		pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
				<< BXT_POWER_CYCLE_DELAY_SHIFT);
	} else {
		pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
		pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
				<< PANEL_POWER_CYCLE_DELAY_SHIFT);
	}
5086 5087 5088

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
5089
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5090
		port_sel = PANEL_PORT_SELECT_VLV(port);
5091
	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
5092
		if (port == PORT_A)
5093
			port_sel = PANEL_PORT_SELECT_DPA;
5094
		else
5095
			port_sel = PANEL_PORT_SELECT_DPD;
5096 5097
	}

5098 5099
	pp_on |= port_sel;

5100 5101
	I915_WRITE(regs.pp_on, pp_on);
	I915_WRITE(regs.pp_off, pp_off);
5102
	if (IS_BROXTON(dev_priv))
5103
		I915_WRITE(regs.pp_ctrl, pp_div);
5104
	else
5105
		I915_WRITE(regs.pp_div, pp_div);
5106 5107

	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5108 5109
		      I915_READ(regs.pp_on),
		      I915_READ(regs.pp_off),
5110
		      IS_BROXTON(dev_priv) ?
5111 5112
		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
		      I915_READ(regs.pp_div));
5113 5114
}

5115 5116 5117
static void intel_dp_pps_init(struct drm_device *dev,
			      struct intel_dp *intel_dp)
{
5118 5119 5120
	struct drm_i915_private *dev_priv = to_i915(dev);

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5121 5122 5123 5124 5125 5126 5127
		vlv_initial_power_sequencer_setup(intel_dp);
	} else {
		intel_dp_init_panel_power_sequencer(dev, intel_dp);
		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
	}
}

5128 5129
/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5130
 * @dev_priv: i915 device
5131
 * @crtc_state: a pointer to the active intel_crtc_state
5132 5133 5134 5135 5136 5137 5138 5139 5140
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
5141 5142 5143
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
				    struct intel_crtc_state *crtc_state,
				    int refresh_rate)
5144 5145
{
	struct intel_encoder *encoder;
5146 5147
	struct intel_digital_port *dig_port = NULL;
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
5148
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5149
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5150 5151 5152 5153 5154 5155

	if (refresh_rate <= 0) {
		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
		return;
	}

5156 5157
	if (intel_dp == NULL) {
		DRM_DEBUG_KMS("DRRS not supported.\n");
5158 5159 5160
		return;
	}

5161
	/*
5162 5163
	 * FIXME: This needs proper synchronization with psr state for some
	 * platforms that cannot have PSR and DRRS enabled at the same time.
5164
	 */
5165

5166 5167
	dig_port = dp_to_dig_port(intel_dp);
	encoder = &dig_port->base;
5168
	intel_crtc = to_intel_crtc(encoder->base.crtc);
5169 5170 5171 5172 5173 5174

	if (!intel_crtc) {
		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
		return;
	}

5175
	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5176 5177 5178 5179
		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
		return;
	}

5180 5181
	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
5182 5183
		index = DRRS_LOW_RR;

5184
	if (index == dev_priv->drrs.refresh_rate_type) {
5185 5186 5187 5188 5189
		DRM_DEBUG_KMS(
			"DRRS requested for previously set RR...ignoring\n");
		return;
	}

5190
	if (!crtc_state->base.active) {
5191 5192 5193 5194
		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
		return;
	}

5195
	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206
		switch (index) {
		case DRRS_HIGH_RR:
			intel_dp_set_m_n(intel_crtc, M1_N1);
			break;
		case DRRS_LOW_RR:
			intel_dp_set_m_n(intel_crtc, M2_N2);
			break;
		case DRRS_MAX_RR:
		default:
			DRM_ERROR("Unsupported refreshrate type\n");
		}
5207 5208
	} else if (INTEL_GEN(dev_priv) > 6) {
		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5209
		u32 val;
5210

5211
		val = I915_READ(reg);
5212
		if (index > DRRS_HIGH_RR) {
5213
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5214 5215 5216
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
5217
		} else {
5218
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5219 5220 5221
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5222 5223 5224 5225
		}
		I915_WRITE(reg, val);
	}

5226 5227 5228 5229 5230
	dev_priv->drrs.refresh_rate_type = index;

	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
}

5231 5232 5233
/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
5234
 * @crtc_state: A pointer to the active crtc state.
5235 5236 5237
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
5238 5239
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
			   struct intel_crtc_state *crtc_state)
5240 5241
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
5242
	struct drm_i915_private *dev_priv = to_i915(dev);
5243

5244
	if (!crtc_state->has_drrs) {
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
		return;
	}

	mutex_lock(&dev_priv->drrs.mutex);
	if (WARN_ON(dev_priv->drrs.dp)) {
		DRM_ERROR("DRRS already enabled\n");
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

5263 5264 5265
/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
5266
 * @old_crtc_state: Pointer to old crtc_state.
5267 5268
 *
 */
5269 5270
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
			    struct intel_crtc_state *old_crtc_state)
5271 5272
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
5273
	struct drm_i915_private *dev_priv = to_i915(dev);
5274

5275
	if (!old_crtc_state->has_drrs)
5276 5277 5278 5279 5280 5281 5282 5283 5284
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5285 5286
		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
5287 5288 5289 5290 5291 5292 5293

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

5307
	/*
5308 5309
	 * The delayed work can race with an invalidate hence we need to
	 * recheck.
5310 5311
	 */

5312 5313
	if (dev_priv->drrs.busy_frontbuffer_bits)
		goto unlock;
5314

5315 5316 5317 5318 5319 5320
	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;

		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
	}
5321

5322 5323
unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
5324 5325
}

5326
/**
5327
 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5328
 * @dev_priv: i915 device
5329 5330
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
5331 5332
 * This function gets called everytime rendering on the given planes start.
 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5333 5334 5335
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
5336 5337
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
			       unsigned int frontbuffer_bits)
5338 5339 5340 5341
{
	struct drm_crtc *crtc;
	enum pipe pipe;

5342
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5343 5344
		return;

5345
	cancel_delayed_work(&dev_priv->drrs.work);
5346

5347
	mutex_lock(&dev_priv->drrs.mutex);
5348 5349 5350 5351 5352
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

5353 5354 5355
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;

5356 5357 5358
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;

5359
	/* invalidate means busy screen hence upclock */
5360
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5361 5362
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5363 5364 5365 5366

	mutex_unlock(&dev_priv->drrs.mutex);
}

5367
/**
5368
 * intel_edp_drrs_flush - Restart Idleness DRRS
5369
 * @dev_priv: i915 device
5370 5371
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
5372 5373 5374 5375
 * This function gets called every time rendering on the given planes has
 * completed or flip on a crtc is completed. So DRRS should be upclocked
 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
 * if no other planes are dirty.
5376 5377 5378
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
5379 5380
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
			  unsigned int frontbuffer_bits)
5381 5382 5383 5384
{
	struct drm_crtc *crtc;
	enum pipe pipe;

5385
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5386 5387
		return;

5388
	cancel_delayed_work(&dev_priv->drrs.work);
5389

5390
	mutex_lock(&dev_priv->drrs.mutex);
5391 5392 5393 5394 5395
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

5396 5397
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;
5398 5399

	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5400 5401
	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;

5402
	/* flush means busy screen hence upclock */
5403
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5404 5405
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5406 5407 5408 5409 5410 5411

	/*
	 * flush also means no more activity hence schedule downclock, if all
	 * other fbs are quiescent too
	 */
	if (!dev_priv->drrs.busy_frontbuffer_bits)
5412 5413 5414 5415 5416
		schedule_delayed_work(&dev_priv->drrs.work,
				msecs_to_jiffies(1000));
	mutex_unlock(&dev_priv->drrs.mutex);
}

5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
/**
 * DOC: Display Refresh Rate Switching (DRRS)
 *
 * Display Refresh Rate Switching (DRRS) is a power conservation feature
 * which enables swtching between low and high refresh rates,
 * dynamically, based on the usage scenario. This feature is applicable
 * for internal panels.
 *
 * Indication that the panel supports DRRS is given by the panel EDID, which
 * would list multiple refresh rates for one resolution.
 *
 * DRRS is of 2 types - static and seamless.
 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
 * (may appear as a blink on screen) and is used in dock-undock scenario.
 * Seamless DRRS involves changing RR without any visual effect to the user
 * and can be used during normal system usage. This is done by programming
 * certain registers.
 *
 * Support for static/seamless DRRS may be indicated in the VBT based on
 * inputs from the panel spec.
 *
 * DRRS saves power by switching to low RR based on usage scenarios.
 *
Daniel Vetter's avatar
Daniel Vetter committed
5440 5441 5442 5443 5444 5445 5446 5447
 * The implementation is based on frontbuffer tracking implementation.  When
 * there is a disturbance on the screen triggered by user activity or a periodic
 * system activity, DRRS is disabled (RR is changed to high RR).  When there is
 * no movement on screen, after a timeout of 1 second, a switch to low RR is
 * made.
 *
 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
 * and intel_edp_drrs_flush() are called.
5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
 *
 * DRRS can be further extended to support other internal panels and also
 * the scenario of video playback wherein RR is set based on the rate
 * requested by userspace.
 */

/**
 * intel_dp_drrs_init - Init basic DRRS work and mutex.
 * @intel_connector: eDP connector
 * @fixed_mode: preferred mode of panel
 *
 * This function is  called only once at driver load to initialize basic
 * DRRS stuff.
 *
 * Returns:
 * Downclock mode if panel supports it, else return NULL.
 * DRRS support is determined by the presence of downclock mode (apart
 * from VBT setting).
 */
5467
static struct drm_display_mode *
5468 5469
intel_dp_drrs_init(struct intel_connector *intel_connector,
		struct drm_display_mode *fixed_mode)
5470 5471
{
	struct drm_connector *connector = &intel_connector->base;
5472
	struct drm_device *dev = connector->dev;
5473
	struct drm_i915_private *dev_priv = to_i915(dev);
5474 5475
	struct drm_display_mode *downclock_mode = NULL;

5476 5477 5478
	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
	mutex_init(&dev_priv->drrs.mutex);

5479 5480 5481 5482 5483 5484
	if (INTEL_INFO(dev)->gen <= 6) {
		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5485
		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5486 5487 5488 5489 5490 5491 5492
		return NULL;
	}

	downclock_mode = intel_find_panel_downclock
					(dev, fixed_mode, connector);

	if (!downclock_mode) {
5493
		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5494 5495 5496
		return NULL;
	}

5497
	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5498

5499
	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5500
	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5501 5502 5503
	return downclock_mode;
}

5504
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5505
				     struct intel_connector *intel_connector)
5506 5507 5508
{
	struct drm_connector *connector = &intel_connector->base;
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5509 5510
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
5511
	struct drm_i915_private *dev_priv = to_i915(dev);
5512
	struct drm_display_mode *fixed_mode = NULL;
5513
	struct drm_display_mode *downclock_mode = NULL;
5514 5515 5516
	bool has_dpcd;
	struct drm_display_mode *scan;
	struct edid *edid;
5517
	enum pipe pipe = INVALID_PIPE;
5518 5519 5520 5521

	if (!is_edp(intel_dp))
		return true;

5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534
	/*
	 * On IBX/CPT we may get here with LVDS already registered. Since the
	 * driver uses the only internal power sequencer available for both
	 * eDP and LVDS bail out early in this case to prevent interfering
	 * with an already powered-on LVDS power sequencer.
	 */
	if (intel_get_lvds_encoder(dev)) {
		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
		DRM_INFO("LVDS was detected, not registering eDP\n");

		return false;
	}

5535
	pps_lock(intel_dp);
5536 5537

	intel_dp_init_panel_power_timestamps(intel_dp);
5538
	intel_dp_pps_init(dev, intel_dp);
5539
	intel_edp_panel_vdd_sanitize(intel_dp);
5540

5541
	pps_unlock(intel_dp);
5542

5543
	/* Cache DPCD and EDID for edp. */
5544
	has_dpcd = intel_edp_init_dpcd(intel_dp);
5545

5546
	if (!has_dpcd) {
5547 5548
		/* if this fails, presume the device is a ghost */
		DRM_INFO("failed to retrieve link info, disabling eDP\n");
5549
		goto out_vdd_off;
5550 5551
	}

5552
	mutex_lock(&dev->mode_config.mutex);
5553
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
			drm_mode_connector_update_edid_property(connector,
								edid);
			drm_edid_to_eld(connector, edid);
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

	/* prefer fixed mode from EDID if available */
	list_for_each_entry(scan, &connector->probed_modes, head) {
		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
			fixed_mode = drm_mode_duplicate(dev, scan);
5572 5573
			downclock_mode = intel_dp_drrs_init(
						intel_connector, fixed_mode);
5574 5575 5576 5577 5578 5579 5580 5581
			break;
		}
	}

	/* fallback to VBT if available for eDP */
	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
		fixed_mode = drm_mode_duplicate(dev,
					dev_priv->vbt.lfp_lvds_vbt_mode);
5582
		if (fixed_mode) {
5583
			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5584 5585 5586
			connector->display_info.width_mm = fixed_mode->width_mm;
			connector->display_info.height_mm = fixed_mode->height_mm;
		}
5587
	}
5588
	mutex_unlock(&dev->mode_config.mutex);
5589

5590
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5591 5592
		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
		register_reboot_notifier(&intel_dp->edp_notifier);
5593 5594 5595 5596 5597 5598

		/*
		 * Figure out the current pipe for the initial backlight setup.
		 * If the current pipe isn't valid, try the PPS pipe, and if that
		 * fails just assume pipe A.
		 */
5599
		if (IS_CHERRYVIEW(dev_priv))
5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
			pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
		else
			pipe = PORT_TO_PIPE(intel_dp->DP);

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = intel_dp->pps_pipe;

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = PIPE_A;

		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
			      pipe_name(pipe));
5612 5613
	}

5614
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5615
	intel_connector->panel.backlight.power = intel_edp_backlight_power;
5616
	intel_panel_setup_backlight(connector, pipe);
5617 5618

	return true;
5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630

out_vdd_off:
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
	pps_lock(intel_dp);
	edp_panel_vdd_off_sync(intel_dp);
	pps_unlock(intel_dp);

	return false;
5631 5632
}

5633
bool
5634 5635
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
5636
{
5637 5638 5639 5640
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
5641
	struct drm_i915_private *dev_priv = to_i915(dev);
5642
	enum port port = intel_dig_port->port;
5643
	int type;
5644

5645 5646 5647 5648 5649
	if (WARN(intel_dig_port->max_lanes < 1,
		 "Not enough lanes (%d) for DP on port %c\n",
		 intel_dig_port->max_lanes, port_name(port)))
		return false;

5650 5651
	intel_dp->pps_pipe = INVALID_PIPE;

5652
	/* intel_dp vfuncs */
5653 5654
	if (INTEL_INFO(dev)->gen >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5655
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5656
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5657
	else if (HAS_PCH_SPLIT(dev_priv))
5658 5659
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
5660
		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5661

5662 5663 5664
	if (INTEL_INFO(dev)->gen >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
5665
		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5666

5667
	if (HAS_DDI(dev_priv))
5668 5669
		intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;

5670 5671
	/* Preserve the current hw state. */
	intel_dp->DP = I915_READ(intel_dp->output_reg);
5672
	intel_dp->attached_connector = intel_connector;
5673

5674
	if (intel_dp_is_edp(dev, port))
5675
		type = DRM_MODE_CONNECTOR_eDP;
5676 5677
	else
		type = DRM_MODE_CONNECTOR_DisplayPort;
5678

5679 5680 5681 5682 5683 5684 5685 5686
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

5687
	/* eDP only on port B and/or C on vlv/chv */
5688
	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
5689
		    is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5690 5691
		return false;

5692 5693 5694 5695
	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
			port_name(port));

5696
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5697 5698 5699 5700 5701
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

	connector->interlace_allowed = true;
	connector->doublescan_allowed = 0;

5702
	intel_dp_aux_init(intel_dp);
5703

5704
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5705
			  edp_panel_vdd_work);
5706

5707
	intel_connector_attach_encoder(intel_connector, intel_encoder);
5708

5709
	if (HAS_DDI(dev_priv))
5710 5711 5712 5713
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;

5714
	/* Set up the hotplug pin. */
5715 5716
	switch (port) {
	case PORT_A:
5717
		intel_encoder->hpd_pin = HPD_PORT_A;
5718 5719
		break;
	case PORT_B:
5720
		intel_encoder->hpd_pin = HPD_PORT_B;
5721
		if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
5722
			intel_encoder->hpd_pin = HPD_PORT_A;
5723 5724
		break;
	case PORT_C:
5725
		intel_encoder->hpd_pin = HPD_PORT_C;
5726 5727
		break;
	case PORT_D:
5728
		intel_encoder->hpd_pin = HPD_PORT_D;
5729
		break;
5730 5731 5732
	case PORT_E:
		intel_encoder->hpd_pin = HPD_PORT_E;
		break;
5733
	default:
5734
		BUG();
5735 5736
	}

5737
	/* init MST on ports that can support it */
5738
	if (HAS_DP_MST(dev) && !is_edp(intel_dp) &&
5739 5740 5741
	    (port == PORT_B || port == PORT_C || port == PORT_D))
		intel_dp_mst_encoder_init(intel_dig_port,
					  intel_connector->base.base.id);
5742

5743
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5744 5745 5746
		intel_dp_aux_fini(intel_dp);
		intel_dp_mst_encoder_cleanup(intel_dig_port);
		goto fail;
5747
	}
5748

5749 5750
	intel_dp_add_properties(intel_dp, connector);

5751 5752 5753 5754
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
5755
	if (IS_G4X(dev_priv) && !IS_GM45(dev_priv)) {
5756 5757 5758
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
5759 5760

	return true;
5761 5762 5763 5764 5765

fail:
	drm_connector_cleanup(connector);

	return false;
5766
}
5767

5768 5769 5770
bool intel_dp_init(struct drm_device *dev,
		   i915_reg_t output_reg,
		   enum port port)
5771
{
5772
	struct drm_i915_private *dev_priv = to_i915(dev);
5773 5774 5775 5776 5777
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

5778
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5779
	if (!intel_dig_port)
5780
		return false;
5781

5782
	intel_connector = intel_connector_alloc();
Sudip Mukherjee's avatar
Sudip Mukherjee committed
5783 5784
	if (!intel_connector)
		goto err_connector_alloc;
5785 5786 5787 5788

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

5789
	if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5790
			     DRM_MODE_ENCODER_TMDS, "DP %c", port_name(port)))
5791
		goto err_encoder_init;
5792

5793
	intel_encoder->compute_config = intel_dp_compute_config;
5794 5795
	intel_encoder->disable = intel_disable_dp;
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
5796
	intel_encoder->get_config = intel_dp_get_config;
5797
	intel_encoder->suspend = intel_dp_encoder_suspend;
5798
	if (IS_CHERRYVIEW(dev_priv)) {
5799
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5800 5801
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
5802
		intel_encoder->post_disable = chv_post_disable_dp;
5803
		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5804
	} else if (IS_VALLEYVIEW(dev_priv)) {
5805
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5806 5807
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
5808
		intel_encoder->post_disable = vlv_post_disable_dp;
5809
	} else {
5810 5811
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
5812 5813
		if (INTEL_INFO(dev)->gen >= 5)
			intel_encoder->post_disable = ilk_post_disable_dp;
5814
	}
5815

5816
	intel_dig_port->port = port;
5817
	intel_dig_port->dp.output_reg = output_reg;
5818
	intel_dig_port->max_lanes = 4;
5819

5820
	intel_encoder->type = INTEL_OUTPUT_DP;
5821
	if (IS_CHERRYVIEW(dev_priv)) {
5822 5823 5824 5825 5826 5827 5828
		if (port == PORT_D)
			intel_encoder->crtc_mask = 1 << 2;
		else
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
	} else {
		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
	}
5829
	intel_encoder->cloneable = 0;
5830
	intel_encoder->port = port;
5831

5832
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5833
	dev_priv->hotplug.irq_port[port] = intel_dig_port;
5834

Sudip Mukherjee's avatar
Sudip Mukherjee committed
5835 5836 5837
	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
		goto err_init_connector;

5838
	return true;
Sudip Mukherjee's avatar
Sudip Mukherjee committed
5839 5840 5841

err_init_connector:
	drm_encoder_cleanup(encoder);
5842
err_encoder_init:
Sudip Mukherjee's avatar
Sudip Mukherjee committed
5843 5844 5845
	kfree(intel_connector);
err_connector_alloc:
	kfree(intel_dig_port);
5846
	return false;
5847
}
5848 5849 5850

void intel_dp_mst_suspend(struct drm_device *dev)
{
5851
	struct drm_i915_private *dev_priv = to_i915(dev);
5852 5853 5854 5855
	int i;

	/* disable MST */
	for (i = 0; i < I915_MAX_PORTS; i++) {
5856
		struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5857 5858

		if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5859 5860
			continue;

5861 5862
		if (intel_dig_port->dp.is_mst)
			drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5863 5864 5865 5866 5867
	}
}

void intel_dp_mst_resume(struct drm_device *dev)
{
5868
	struct drm_i915_private *dev_priv = to_i915(dev);
5869 5870 5871
	int i;

	for (i = 0; i < I915_MAX_PORTS; i++) {
5872
		struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5873
		int ret;
5874

5875 5876
		if (!intel_dig_port || !intel_dig_port->dp.can_mst)
			continue;
5877

5878 5879 5880
		ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
		if (ret)
			intel_dp_check_mst_status(&intel_dig_port->dp);
5881 5882
	}
}